
GROTHENDIECK AND SPRINGER’S NEW YEAR RESOLUTIONS

FOR 2019

ROK GREGORIC

This is a LATEXed version of an email I sent on January 16, 2019 to my friend Tom
Gannon, an aspiring geometric group theorist and fellow grad student at UT. I had just
spent a week in New York city, visiting my coadvisor at Columbia, and learning cool, albeit
rather basic, representation theory. Without anybody there to share the excitement, I
channelled it into this email to Tom.

The topic of this note is mostly the Springer resolution, and its Grothendieckian up-
grade, although there is a rather lengthy digression into the most basic basics of Hamilton-
ian mechanics in there for good measure. While no knowledge of the latter is presupposed,
some basic familiarity (on the level of Fulton-Harris or lower) with representation theory
is assumed. In particular, we trust the reader to know what we mean by saying that we
fix a Lie group g, and possibly inside it a Borel subalgebra b and Cartan subalgebra h.

As always, I can not guarantee that everything below is correct, only that I thought it
was when I wrote it. Use at your own risk!

1. Nilpotent Co’ Ain’t Yo Foe

The classical Springer resolution story can be told in many ways, but we have to start
somewhere: consider the nilpotent cone

N = {elements x in g which are nilpotent, i.e for which ad(x) is nilpotent}.

Surely we like N ; given a Borel b, we have b ∩N = n, singling out the nilpotent radical.
This is cool because it gives us the recipe to extract n out of the Borel without any choices,
and so we can get hold of the ‘abstract’ Cartan (I still think that’s a silly name) as the
quotient b/n = h.

Compare this to how the ’more classical’ (= Fulton-Harris) way one might go about
things: fix a Cartan subalgebra h inside b, this produces a root system and you can take
h to be the direct sum of all the root spaces corresponding to strictly positive roots (while
b and h are sums of root spaces for non-negative and zero roots respectively). That’s all
fine and good and is the way you want to think of the h, b, n in terms of the weight yoga.
Alas, the theoretical shortcoming is that all the identifications, such as b/n = h, seemingly
depend on the choices we made. Said differently, it isn’t obvious from this approach that
there is a distinguished isomorphism b/n = h, independent of the choice of h inside b. That
would a big hinderance, as having this universality is very useful a number of times in rep
theoretic considerations you, and to a lesser extent I, engage in.

Btw, it looks at first glance as if we did something illegal somewhere in the first approach:
how can n inside b be uniquely determined without specifying h? After all, h constitutes
the orthogonal complement to n in h wrt the Killing form, and by standing assumption
that the Lie algebra g we’re playing around in is semisimple, the KIlling form is non-
degenerate. So it looks as though we’ve found a universal way of locating the Cartan h
in b. Alas, we know that a single Borel may contain more than one Cartan (right?). But
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I think we’re good - the point is that, despite the Killing form being a non-degenerate
bilinear form, its restriction to subspaces need not be. Indeed, recall Cartan’s criterion:
in order for Killing to be non-degenerate1, the Lie algebra must be semisimple. And yes,
the Killing form of g restricts to the Killing form of b, but the Borel subalgebra, nice as it
is, certainly isn’t semisimple - its radical, far from being trivial, equals itself! So when we
said that h was the orthogonal complement to n in b wrt to the Killing form, that didn’t
make any sense.

Alright, that was a weird digression. Back to the nilpotent cone. N isn’t just a set: the
coefficients of the characteristic polynomial p(t) = det(t − ad(x)) of the linear map ad(x)
are polynomial equations in x, and their common vanishing set is precisely N (indeed,
a matrix is nilpotent iff all its eigenvalues are 0 - think about the Jordan form!). This
exhibits N as a closed subvariety in g, so it’s a geometrically meaningful guy. Wohoo!

Here’s another description of N : you may start with the quotient map g → g//G and
ask yourself what its (scheme theoretic) fiber over 0 is (spoilers: it’s N). Passing to
functions, we’re asking for the pushout of the diagram C← Sym∗(g)G → Sym∗(g), where
the wrong-way map is the augmentation of the symmetric algebra, and the right-way map
is the inclusion. The pushout thus is the quotient of Sym∗(g) by the ideal generated by
Sym+(g)G. Thinking a little about the ideal we are cutting out, and remembering the
yoga of symmetric polynomials (that’s precisely what we’re cutting out), we observe that
we are once again cutting out the coefficients of the characteristic polynomial, which we
already know to produce N .

How to think about this fact, this fiber presentation of N? Well, it says that N , as
a subset of g, has a unique dense open Ad-orbit, a well-known important fact about the
nilpotent cone (in fact, it has finitely many adjoint orbits overall). But the way to think
about it: if you have an x ∈ g such that Ad(s)(x) = 0 for all s ∈ G, plug in s = exp(y) for
any y ∈ g to see that ad(x) = 0. But really, you are trying to take the fiber fro the AG
point of view, i.e. to evaluate anything, we must first reduce it. That is to say, it would
be just as good if instead ad(x)k = 0 for some k >> 0. And lo and behold, that’s nothing
but nilpotence of x.

Okay, time to move on to the Springer goodness.

2. Springer is German for Knight in Chess

So say we care about N , and know it’s a variety. Perhaps sadly, it turns out to have
singularities. For elements of g = sl2 for example, nilpotence = non-maximal rank =
vanishing of determinant. Hence N is cut out from A3 by x2 + yz = 0, so it is the usual
cylindrical cone (substitute y ↦ y − z and z ↦ z − y, if that makes you feel better). In
fact the nilpotent cone of any g will be a cone in the sense of algebraic geometry, i.e. a
Gm-invariant subvariety of g, and it will contain the origin 0 in g, which will hence have
to be a singular point.

The Springer resolution Ñ is, as the name suggests, a resolution, namely a (specific)
resolution of singularities for N .

But you don’t need to know what you’re doing to stumble upon Ñ . If you like the flag
variety’s propery that G/B = {Borel subalgebras in g}, then you might form the following
by accident:

Ñ = {(x,b);b a Borel in g, x a point in n (corresponding to the Borel b)}.

1Math makes us utter some truly shocking strings of words sometimes. The standard joke about
birational geometers at an airport comes to mind.
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See how useful it was here that we know we can take n inside b without making any
choices! Anyway, clearly Ñ , being an incidence subset of G/Bg, has a map to G/B given
by (x,b) ↦ b, and a map to g given by (x,b) ↦ x. Note though that, since n is always

nilpotent, and any nilpotent element belongs to some Borel, the map Ñ → g factors
surjectively through the inclusion N → g. Voila, we have obtained a map Ñ → N , which
we claim is the desired resolution of singularities.

The proof sees you restrict to regular elements of N , i.e. such x ∈ N that h = Cg(x) is a
Cartan subalgebra. That’s an acceptable thing to do, seeing how the regular elements are
dense. For a fixed x in Nreg, look at the fiber above it in Ñ and recognize it’s precisely the
Borels containing x. But a regular nilpotent element is apparently contained in a unique
Borel, so the map Ñ → N is indeed a bijection. This has been a very brief proof sketch,
and some more comments on what goes into a real proof will be provided later in §7.

Of course, Ñ is much cooler than just being a resolution of singularities. This can be
seen by the sheer myriad of different ways you could stumble on it.

3. You Could Also be a Differential Geometer

Say you were thinking about your friend the flag variety X = G/B as a smooth projective
variety, in particular as a smooth manifold. The whole deal of smooth manifolds is that
they are geometric objects, by which I mean the underlying topological manifold, but
they come equipped with enough extra structure that linear methods, the one thing in
mathematics we actually know decently well, are available to study their structure, at
least on very very small pieces. (In fact, this same paradigm explains the ambiquity of
differential calculus in all its incarnations). The linearization mechanism comes packaged
as the (co)tangent bundle. Thus the main thing that viewing X as a smooth manifold
instantly buys you, is giving you access to its cotangent bundle T ∗X.

What is its fiber of T ∗X → X over a point b of X (which we are identifying with the
choice of a Borel subalgebra b in g)? Since G and B are both framed manifolds, the
sought cotangent space is the quotient g∗/b∗ = (n−)∗, where n− is the nilpotent part of the
Borel opposite to b, e.g. spanned by negative root spaces. Under the equivalence g∗ = g,
furnished by the Killing form, this identifies with n, the nilpotent part of b itself, so we
find that T ∗bX = n. Consequently T ∗X is just another name for Ñ .

This switch in perspective opens some interesting doors (one could even say floodgates).
That is because tangent bundles on manifolds carry extra structure: they admit a canonical
symplectic structure. I don’t really know how much you know about or care too deeply
for symplectic geometry though.

4. Or a Lover of Classical Mechanics

The frame of mind I can adopt to care for symplectic manifolds is recalling how much
fun classical mechanics is! (In such stark contrast to quantum mechanics2.)

You’ve probably heard this spiel before, but here goes: what does one need to do
physics?

i) Well, we’re analyzing some phenomena, so there should be a phase space, encoded
by a smooth manifold M , parametrizing all possible states that the mechanical
system under consideration could be in. The functions on this phase space are
physical quantities, which associate to every possible state of our system a value.
We call these functions ‘observables’, betraying a belief that these are the things

2This opinion is from my December 2018 self who initially wrote this, and has since been thoroughly
revised.
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that we can, given a system in whatever state, observe, which is to say, measure.

ii) Because we are there and will measure something, we single out an observable
H ∶M → R and call it the Hamiltonian. It’s supposed to correspond in a certain
way to the ‘total energy’ of the system, but that’s not too helpful. One POV is
that it encodes our physical presence along the system (a POV that starts being
important in QM). Another, perhaps saner POV, is that H is encoding all the laws
of physics relevant to the experiment; that is certainly the approach one adopts
when computing examples of mechanical systems. In any case, the Hamiltonian is
neccessary, because before without it, we only have the phase space, the ’space of
possible states of a system’, without anything singling out the ’system’ itself.

iii) So we have H, and it should tell us about the system itself that we are looking
at. In particular, it should dictate the time evolution of the system; supposing it’s
in one state right now, where will be after a little time passes. You could object
that perhaps that can’t be determined, but the premise is that it can, i.e. that the
universe is deterministic. This isn’t that bizzare; a large goal of physics is making
predictions, and actions eliciting reactions, etc., so such an assumption, at least
on a very basic local level governing the behavior of mechanical systems, is always
present in physics (from this point of view of what determinacy means, so far as I
can tell even in quantum math).

Okay, that was a philosophical digression, justifying the claim that there should
be a way of extracting time evolution out of the Hamiltonian. Time evolution
should tell us for any state how the system will change from that state, and what
state it has been in just prior; we are describing the notion of a flow, i.e. in
classical terminology a ‘1-parameter family of deformations’. These come from
a well-known source: from vector fields! Indeed, a vector field X on M defines
locally (in coordinate patches) on M a first order PDE, which we can integrate
given the initial data of a point in M , obtaining a flow on M . Conversely, the
classical terminology calls a vector field the ‘infinitesimal generator of the flow’.

So if we had a vector field at our disposal, we could integrate it to obtain a flow
on M , which is in turn what encodes the time evolution of the mechanical system
we are studying. But what we have (given ourselves so far) is just a function
H on M . From it, we can extract a 1-form dH on M , which is a good step
forward, but sadly it has the wrong variance. So we find ourselves requiring a
mechanism to convert differential 1-forms into vector fields, i.e. a vector bundle
map T ∗M → TM . This is equivalent to a pairing

ω ∶ TM ⊗ TM →R

(on the level of bundles, e.g. R is the constant line bundle on M). We would like
T ∗M → TM to be an iso, or equivalently for the pairing of vector fields ω to be
non-degenerate. In some ways, this ω is really the mechanism which encodes the
laws of physics, or perhaps the immutable physical truths of the universe, as it
allows us to transform the prescription for how the system is allowed to behave,
i.e. the Hamiltonian, into the actual way in which the system does behave, i.e.
evolve with time.

Then, giving ourselves such an ω, we can turn the 1-form dH into a vecor field,
which we will denote XH . The flow, φt ∶ M → M for t ∈ R, of this field encodes
the time evolution. What does this mean concretely? Well, given an observable
f ∶M →R (though the codomain could be any other smooth manifold too, if you
wanted), which we think of as this observable at time 0, we define ft = f ○ φt for
any t to be what this observable will become after the passage of t time. Since ft

4



represents the ‘same observable’ as f , only at a ‘different time’ let us follow the
common convention and leave the subscript t implicit.

We can now also check how much a given observable f changes with time, i.e.
form its derivative. Basic differential calculus manipulations show that

df

dt
=XH(f).

This gives some insight into the physical relevance of the Hamiltonian vector field
XH : if we view vector fields as derivations on functions, then XH is the operator
d
dt of differentiating with respect to time. ♡

iv) The final remark sounds silly, but it’s sort of important: the laws of physics should
not change with time. What that means is that H, the observable by which we
have gauged the passage of time, should be invariant under this time evolution.
Since the latter is encoded by the flow φt of the vector field XH , we require that
H is constant wrt t. By what we know about d

dt , this is equivalent to requiring
that XH(H) = 0. Chasing through the definitions, we get

0 =XH(H) = dH(XH) = ω(XH ,XH).

This looks like a property of H, but at the end of the day, H was somewhat
arbitrary. Indeed, we just chose something we can measure and gauges everything
according to it, but we could well have chosen something else. Said differently,
different observers might see different Hamiltonians, despite the phases being the
same. This sounds like some relativity voodo, but it’s really a more elementary
observation. Though we first specified H and only then discussed ω, the latter
should be something attached to the phase space M itself, and work the same for
any choice of Hamiltonian. As said before, ω is encoding a much more fundamental
physical nature than the choice of particular physical phenomenon that H specifies.

The takeaway is that we should require the equation ω(XH ,XH) = 0 to hold for
all possible choices of Hamiltonians ( = for all observables) H on M .

Though that isn’t quite without loss of generality (unless M is simply connected,
I think), let’s instead assume we have a bit more: let’s say that ω(X,X) = 0 holds
for all vector fields X on M . That is to say, ω is antisymmetric (as we’re not in
char 2), and as such can be identified with a differential 2-form on M .

v) The fundamental laws of nature (i.e. that structure of reality, which, unlike the
laws of physics affecting only a particular system that were the subject of iii.), is
independent of the particular physical system we are studying), does not change
with time. Since those were incarnated in the 2-form ω on the phase space M , this
requirement can be formalized as saying that dω

dt = 0. This should, just as M and
ω are, be independent of the choice of Hamiltonian H inducing the time evolution.
That is to say, it should hold for all choices of H ∶M →R.

Recall that the operator d
dt of time derivative in the physical system determined

by a Hamiltonian H ∶ M → R is given by the Hamiltonian vector field XH . Ac-
cording to a basic but useful result of differential calculus on manifolds, literally
called Cartan’s magic formula, we have

d
dt(ω) = (dω)(XH ,−) + d(ω(XH ,−)).

By definition of the vector field XH , we have dH = ω(XH ,−), so the second term
on the rhs above vanishes by d2 = 0. Time invariance of ω is thus equivalent to
vanishing of dω, evaluated at Hamiltonian vector fields on one variable. Since the
choice of H was arbitrary above, this is equivalent to dω vanishing when evalated
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by any vector field on one variable, and hence to dω = 0. So ω must be a closed
2-form.

And we’re done! We’ve pursued the bare minimum setup needed for physics, and we
have ended up with a smooth manifold M with a closed non-degenerate 2-form ω - a
symplectic manifold!

The takeaway is the following: symplectic geometry may be viewed as the study of
Hamiltonian classical mechanics. Such a perspective of course isn’t always beneficial,
but sometimes (or at least for me, basically always) it sheds some light on the various
constructions one encounters in symplectic geometry.

Anyway, for what proports to be physics, the last few paragraphs were rather abstract,
so let us see how the classical mechanics that we all know and love (in the Hamiltonian
setup) constitutes an example of the above paradigm.

Give a mechanical system, it will possess a space of possible positions, the configuration
space in the form of a smooth manifold M . This isn’t the phase space, as it’s just the
configurations of the system; a dampened pendulum might return to the same position a
number of times, but each time with a different velocity, so it attain the same configuration
at different phases. So what else do we need to specify to know the state of the system,
other than its position in space? Newton’s law can be understood as saying that the
position and velocity determine all other physical attributes of a system, hence we need to
add in velocities. If q is a coordinate on M , then surely its velocity would most naturally
be the tangent vector d

dq , but it turns out to be more convenient to encode it as the 1-form

dq instead. That is to say, we take the cotangent bundle T ∗M to be the phase space.
The Hamiltonian will be any smooth function H ∶ T ∗M → R. Classically you would take
H = T +U for T the kinetic energy and U some potential.

There is one more piece of data needs: the symplectic form ω. In order to find it we work
locally, letting q be a coordinate on M , which you may view as ‘horizontal’ coordinates on
T ∗M , and p = dq be the corresponding fiber or ‘vertical’ coordinates of T ∗M . Together
p and q form a coordinate system on T ∗M , in which we define the 2-form ω = dp ∧ dq
(note that because p = dq isn’t really itself a differential, only a coordinate on T ∗M , its
differential dp needn’t be zero and all is fine). The claim is that this always defines a
symplectic form on the phase space T ∗M .

So woohoo, we’ve equipped an arbitrary cotangent bundle with a symplectic structure
(as promised in the previous section), but we’ve done so ‘accidentally’ or ‘along the way’
of motivating ourselves about symplectic manifolds in the first place!

In fact, the cotangent bundle is a rather generic example of a symplectic structure; a
theorem of Darboux guarantees that any symplectic manifold is localy isomorphic to a
cotangent space with its canonical symplectic structure. The local coordinates realizing
such an iso are called called canonical coordinates, and also play a prominent role in
classical Hamiltonian mechanics. So the fact that we usually do mechanics with a specified
configuration space inside the phase space is not a severe restriction - working locally in
canonical coordinates that can always be arranged.

Before we move on, let’s point out that the time evolution law on T ∗M with a Hamil-
tonian H takes on an especially familiar form. In terms of the usual canonical coordinates
(q, p) on T ∗M described above, a calculation shows the associated Hamiltonian vector
field to be

XH =
dH

dp

d

dq
−
dH

dq

d

dp
.
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Thus time evolution of the observables p and q (and since they are the coordinates on the
phase space, it really suffices to specify just those) is hence expressed as

dq
dt = XH(q) = dH

dp ,
dp
dt = XH(p) = −dHdq ,

recovering Hamilton’s equations, in a form in which you’ve surely encountered them in
some physics class.

5. Hamilton was a Man of Action

Before we return to the flag variety and ask what the symplectic techniques can do
for us there (the answer, unsurprisingly, is quite a lot), let’s spend a little more time on
symplectic geometry = classical mechanics.

In physics, there is often a lot of talk of symmetry. A symmetry of a mechanical sys-
tem is a group action which preserves everyhing in such a way, that the physics remains
unaffected. Finding symmetries of a system is a crucial technique for working out essen-
tially any more involved examples, the spinning top being perhaps the most famous. The
primary thing symmetries buy you is constants of motion (that’s the celebrated Noether’s
Theorem, the one great thing Our Lady did outside abstract algebra), which are terrifically
useful to have.

Technically speaking, from a Hamiltonian perspective on mechanics that we are pur-
suing, a symmetry of a system (M,ω,H) is a smooth action of a Lie algebra G on M ,
which satisfies some compatibility with the symplectic structure, and for which the Hamil-
tonian function H is G-invariant. The compatibility condition, which goes by the name
Hamiltonian action in symplectic geometry, comes in two parts:

● Firstly, G must act on M through symplectomorphisms, which is to say that for
any s ∈ G, the translation map s ∶M →M preserves the symplectic structure ω.

● Secondly, the associated infinitesimal action, which means the induced Lie algebra
map a ∶ g → {vector fields on M} is required to land inside Hamiltonian vector
fields. Said differently, for every x ∈ g, the vector field a(x) on M must be of the
form d(Hx) for some function3 Hx on M .

Summarizing informally, the group G acts on the phase space is such a way, that the
infinitesimal generators of this action are the ‘physically meaningful’ ones, i.e. the ones
which give rise to time evolution wrt some Hamiltonian. Equivalently, the curve t ↦
exp(tx)m for a fixed x ∈ g, fixed m ∈ M , must be a trajectory of the state m under
the motion dictated by some Hamiltonian. From the POV of mechanics, that is a very
reasonable thing to assume!

Btw, the constants of motion promised by Noether’s Theorem are precisely the ob-
servables Hx on M for x ∈ g. Said theorem is therefore quite straightforward from this

3The reqirement that a(x) = d(Hx) specifies the observable Hx only up to a constant (or pedantically,
a locally constant function). Picking the constants for Hx simultaneously for all x in an appropriately
uniform way, making the induced moment map µ ∶ Obs → g∗ (we’ll talk about it much more in what
follows) continuos isn’t all that difficult.

But it also doesn’t specify the map µ (or equivalently, all those constants) uniquely yet: there is still
one constant of room. To determine it (i.e. set some kind of initial value), recall the requirement that
the moment map be G-equivariant. Under at least some assumptions (I forget the precise details, but I
think either if G is compact or semisimple, we’re good - otherwise there is a correction of equivariance by
a g∗-valued cocycle game that one needs to play), this serves to uniquely pin down the constants, and with
that, allows us to talk about ”the” moment map.

7



post-modern POV on mechanics - it amounts to the claim that
d(Hx)
dt = 0, which is a simple

calculation.

Given a Hamiltonian action of G on a symplectic manifold (M,ω), we obtain the so-
called moment map µ ∶M → g∗ by sending a point m to the functional x↦Hx(m) on the
Lie algebra g. (Actually, the name moment map is an unfortunate mistranslation from
French, and it should be called the momentum map for physics reasons. Alas, the name
seems to have stuck.)

Why the name moment(um) map? Well, in the arguably most classical mechanical
setup of a point in 3-space, with phase space M = T ∗(R3), the rotarional symmetry of the
underlying phase space R3 induces a Hamiltonian SO(3)-action on the phase space. The
associated momentum map µ ∶M → so(3) = (R3,×), where × denotes the cross product,
identifies precisely with the angular momentum from basic classical mechanics: in standard
canonical coordinates µ(q, p) = q × p. If state (q, p) is realized by a mechanical system, q

is the position vector and p = dq
dt is the velocity, so it’s really the angular momentum you

remember!

The moment map is an oft-used powerful tool in symplectic geometry; for instance,
under some mild extra conditions, the preimage µ−1(0) inherits a G-action from M , and
its quotient by this action is what’s called the symplectic quotient of M by G, or the
Hamiltonian reduction of M . The ever-so slightly unfortunate, but completely standard,
notation for it is M//G.

Of course there is nothing special about the point 0 ∈ g∗, and we could analogously form
variants of Hamiltonian reduction µ−1(x)/G for any regular value x of the moment map
µ.

If you wish to avoid the pesky niceness requirements on the G-action, you know what
to do: go derived, form homotopy quotients instead of ordinary ones, rake in the profits!
Pavel Safranov has written some exciting papers on derived Hamiltonian reduction. In
fact, he does it even in the shifted symplectic setting, so it’s even more exiting!

6. I am the Moment, the Moment is Me

We’ve gotten so far, wading neck-deep through the dense swamps of symplectic geometry
= classical mechanics. Wasn’t this supposed to be all about rep theory?! Can’t we just
stop, turn back?

No!! We’ve come this far, no sense giving up now! I am not throwing away my shot!!
At explaining how all this ties back to the Springer resolution.

In hopes of understanding Hamiltonian actions better, let’s go back to the one sort of
symplectic manifolds we understand, the contangent bundle T ∗M , i.e. back to the classical
mechanics where we have specified configurations inside phases. Then a particular case
of a Hamiltonian G-action on T ∗M is any action induced on the cotangent bundle by an
action of a Lie group G on the underlying smooth manifold M . So any symmetry of the
configuration space instantly produces a symmetry of the whole mechanical system.

In this case, Hamiltonian reduction turns out to be T ∗(M/G), at least when G acts
nicely (free and prop discont, say) on M . In symbols (T ∗M)//G = T ∗(M/G), so the
symplectic quotient “goes inside T ∗”. The moment map µ ∶ T ∗M → g∗ also admits an
explicit description: its associated map of functions (let’s be in AG again, just for a
moment) Sym∗(g) = O(g)→ O(T ∗M) = Γ(M ; Sym∗(TM)) is generated as an algebra map
by the linear map

g
a
Ð→ Γ(M ;TM)→ Γ(M ; Sym∗

(TM)),
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with a the infinitesimal action and the second map induced by the inclusion TM →

Sym∗(TM).

Most importantly for our purposes, this means that the left G-action on G/B (or equiv-
alently, the conjugation action on the Borels) gives rise to a Hamiltonian G-action on the

cotangent bundle of our good-old flag variety; a Hamiltonian G-action on T ∗(G/B) = Ñ .

Wherever there is a Hamiltonian action, there is a moment map, which in this case maps
Ñ → g∗. Post-composing with the Killing form isomorphism, we get a map Ñ → g, which
is precisely the Grothendieck resolution map, i.e. the resolution of singularities. People
who symplect to survive know a lot about moment maps, so the mere fact that this is a
moment map allows you to conclude various things about the Grothendieck resolution.

In §3, I implied that discovering the Grothendieck resolution in the guise of T ∗(G/B)

could happen accidentally. Hopefully §3-6 illustrated exhaustively that conversely one
could also come upon this incarnation of Ñ knowing what they were doing very well
indeed.

6.3/4. A Brief Word From Our Sponsors

Before departing from the symplectic realm, now that we’ve seen what we came here to
see, allow me to just mention one other important rep theoretically significant occurence
of symplectic stuff.

The relevant thing is the Riemann-Hilbert Correspondence. I know you have been told
to not care too deeply about it, hence I’m relegating it to a passing mention. RH is at
its essence a vast generalization of the classical differential geometric equivalence between
vector bundles with flat connections and local systems (= locally constant sheaves of
vector spaces). It gives an equivalence between perverse sheaves and regular holonomic D-
modules. Perverse sheaves are a very useful generalization of constructible sheaves, about
which I want to say nothing other than that they, along with the RH correspondence, were
used to solve (or better, to reduce it to things trivial in light of the Beilinson-Bernstein
thm) the Kazhdan-Lusztig Conjecture. What I do wish to point out, on the other hand,
is that the condition of holonomicity on D-modules is something that has to do with
symplectic manifolds.

Very briefly: for a coherent D-module F on a smooth variety X, there exist good
filtrations, compatible with the degree filtration on the sheaf of differential operators DX ,
and s.t. the associated graded modules are each finitely generated (sadly there isn’t a
canonical choice for such a good filtration, but luckly everything ends up being independent
of its choice anyway). Then gr(F ) is a coherent sheaf of gr(DX) = Sym∗(TX)-modules, or
equivalently a coherent sheaf on the cotangent bundle T ∗X. Taking its support produces
a closed subvariety of T ∗X, denoted SS(F ) and called either the characteristic variety (in
analogy with characteristics in differential equations) or the singular support of F .

This SS(F ) isn’t just any old subvariety of T ∗X. The canonical symplectic form omega
vanishes on it, making singular suppored a so-called isochronic submanifold. Sadly I don’t
have a very good understanding of what this condition means on the level of mechanics.
But one thing I can tell you about them that their dimension is bounded below by one
half dimX (recall that any symplectic manifold has to be even dimensional, since odd
dimensional vector spaces can’t support non-degenerate antisymmetric bilinear pairings
by easy linear algebra). If this lower bound is achieved, the isotropic submanifold is called
a Lagrangian submanifold.

Now Lagrangian submanifolds, they are the stars of symplectic geometry. Their inter-
section theory is superbly well-behaves and who knows what else, but most crucially (for
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me to care), they admit an interpretation in terms of mehcanics. Indeed, given the sym-
plectic manifold T ∗M , the phase space of a classical mechanical system, the zero section
M in T ∗M is an example of an isotropic submanifold. Since dimT ∗M = 2 dimM , the zero
section is actually Lagrangian. And in canonical coordinates, any Lagrangian submanifold
is of this form. That is to say: a Lagrangian submanifold in a symplectic one corresponds
to specifying a configuration space inside the phase space.

A coherent D-module is by definition holonomic iff its singular support is Lagrangian.
So you see a situation where the symplectic geometry plays a crucial role in a purely D-
module story. There’s more to say about this, but let’s not. We’ve dwelt in symplecticland
long enough!

7. Why are We Neglecting Poor Alexander

At this point, symplectic and mechanics mussings will probably take up more than half
of this text. But it’s really all about rep theory, namely about the Springer resolution Ñ !

Well, maybe not all; the title mentions Grothendieck too. So let’s focus on his contri-
bution to the story.

Seeing the great success we had with the Springer resolution by defining it as an in-
cidence set of borels and their elements, we could try an even more basic version of the
same idea:

g̃ = {(x,b);b a Borel in g, x a point in b}.

This is the Grothendieck-Springer resolution, sometimes called the GS simultaneous res-
olution or the Grothendieck alteration. It has an evident map to the flag variety X = G/B
by projecting onto the second factor, and an almost obvious one to the universal Cartan
h, comprised of projecting onto the first factor, composed with the universal quotient map
b→ h.

In a very similar spirit, there is a map g̃ → g given by (x,b) → x ∈ b ⊂ g. This is

the analogue of the Springer resolution map Ñ → N , but also its generalization, since Ñ
is contained in g̃, and the restriction of the GS resolution map is precisely the Springer
resolution map.

The last two maps from the GS resolution are related by commutative square

g̃

��

// h

��

g // h//W

Here the right vertical arrow is the quotient projection, the lower horizontal arrow is the
Chevalley map, and the other two arrows have just been discussed above. The commu-
tativity of the diagram should basically be obvious, in light of how the Chevalley can
either be expressed in terms of restriction to a chosen embedded Cartan, or in terms of
the quotient map to the universal Cartan.

While commutative, the above square only becomes a pullback if we restrict to regular
elements of g everywhere. Indeed, if I’m understanding everything right, an element of g
is regular iff it’s a regular point (in the analysis sense) for the Chevalley map.

That the square is Cartesian over the regular locus is rather easy to see though (dis-
claimer: this is still something of a proof-sketch, as this is only an note. But basically
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everything is there). The claim is that g̃reg → greg is a W -bundle4, and that the map
g̃reg → h is W -equivariant. In that case the square encodes a map of W -bundles, and since
the fibers are the same (what with both being W on account of being W -bundles5), the
maps between them are isos (which is itself equivalent to Cartesianness of the square).
But a fiber over a regular x is Borels containing the Cartan h = Cg(x), i.e. the choices
of which roots are the positive roots in a fixed root lattice. Since the Weyl group is, by
its definition in terms of the root data, precisely the full symmetry group that permutes
these choices among each other, and clearly does so simply transitively, the claim follows.

The above square also contains a lot about Ñ and N . Indeed, N may be seen as the
fiber of the lower horizontal map g → h//W at the trivial coset, by a description of N
that we discussed near the end of §1 together with the Chevalley Restriction Theorem.
Similarly, but more tautologically, Ñ is the fiber of the upper horizontal map g̃ → h at
0. Therefore the pullack of this square along the inclusion of 0 on the right produces the
Springer resolution map Ñ → N . In particular, knowing that the square is Cartesian over
the regular locus and that the fibers W are finite means that we have proved in a way that
is substantially less sketchy way than before that the Springer map is actually birational
(there’s also the matter of the codimension of greg in g that I’m sweeping under the rug
here - actually, a very nice proof of that also relies on simplicial structures on coadjoint
orbits and moment maps! See the end of §10 for a little more on that.).

Btw, note how elegantly g̃ allows us to express the Weyl group, as the fiber of g̃reg → greg.
Contrast with the usual way one defines W , either by reflections in the weight lattice, or
by picking a maximal torus H in a connected group G with Lie algebra g and forming
W = NG(H)/H. Both require making choices, of h and b or of G and H respectively.
Technically the GS approach also requires making a choice of the regular element at
which to take the fiber, the Weyl group has an independent role as the structure group
of the torsor. Anyway, apparently this POV is useful for certain things (which I don’t
understand) some people like to do with Weyl groups.

8. Maximizing Individual (Instead of Social) Utility

So why do we, perhaps (for the matter of argument) fancying ourselves geometric rep-
resentation theorists, care? Well, let’s recall where the Grothendieck-Speinger resolution
enters the proof of Beilinson-Drinfeld Localization. (Surely you know all this at least as
well as me if not much better, but allow me to include it just for completeness.)

The setup is such: you have already proved that the structure map U(g) → D(X) for
X = G/B the flag variety factors through the quotient map U(g)→ U(g)0, moding out the
kernel of the central character. We wish to show that the induced map U(g)0 →D(X) is
an iso.

To do this, you do what else but pass to associated graded wrt the PBW and order
filtrations respectively. We compose this map of associated gradeds on both sides with
respectively the surjection

O(N) = Sym∗
(g)/Sym+

(g)G → gr∗(U(g)0),

4I was alerted to the fact that there is some subtlety involved in what we mean by a “W -cover” here.
In particular, it is not correct to say that the map in question is a W -torsor. But let us turn a blind eye,
and pretend all is fine.

5There is some more of the same sort of cheating going on here. Actually, what we said only holds over
the so-called regular semisimple elements of g, over which we do genuinelly get W -torsors. Extending that
to the whole of greg take some work.
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coming from the PBW theorem and the identification gr∗(Z(g)) = Sym∗(g)G, and the
injection

gr∗(D(X))→ Sym∗
(TX) = O(Ñ)

coming from the ”PBW for DX” and left exactness of taking global sections. The isos
with functions are things we already encountered along the way, in §1 and §3 respectively.
Chasing through the definitions shows the map of functions to be the one indiced by the
Springer resolution map Ñ → N . If we know Kostant’s result that it’s birational (and an

iota more), it follows that it induces an iso O(N)→ O(Ñ). But then the composite

O(N)
sur
Ð→ gr∗(U(g)0)→ gr∗(D(X))

inj
Ð→ O(Ñ)

is a bijection, so the leftmost map must in particular be injective and the rightmost map
likewise surjective. Both are therefore bijective, proving the middle map to be a bijection
also. But the functor gr∗ is conservative, so indeed U(g)0 →D(X) is an iso.

9. You Can Still be a Differential Geometer

So far we’ve seen the utility of the GS resolution, but only one construction of it.
Recall that, other than as an incidence set, the Springer resolution can also be realized as
T ∗(G/B). What’s the analogous cotangent bundle-level description of g̃?

Let’s start with Y = G/N , the ‘extended flag variety’ or the ‘base affine’ (a piece of
terminology I find very perplexing). The inclusion N ⊂ B (as its unipotent radical, no
less) induces a map G/N → G/B. The fiber is (G/N)/(G/B) = B/N = H, so we have
exhibited Y → X as an H-torsor. In particular, Y carries a narural H-action wrt which
Y /H = X. Note though that this is not the H-action restricted from the obvious left
G-action on G/N , at least there is no reason for the two actions to agree so far as I can
tell.

The space Y with its H-action is quite important rep theoretically. For instance, twisted
D-modules on X can be profitably viewed as weakly H-equivariant D-modules on Y , to-
gether with specified monodromy, to be given by the character we’re twisting by, along
the H-orbits. (This is only about 89% clear to me right now, but I’m getting there. If you
know how to rigorously prove this, I’d be very happy if you could show me sometime.) Sup-
posing the twisting was trivial, this would for instance produce (strongly) H-equivariant
D-modules on Y , which is of course the same thing as D-modules on X, which is certainly
what non-twisted D-modules shoud be.

Relatedly, if you wish to have a Beilinson-Bernstein Localization Theorem realize g-
modules as D-modules on something like the flag variety, but you don’t wish to specify
the central character, one thing you could do is consider all weakly H-equivariant D-
modules on Y . This is discussed in one of Ben-Zvi and Nadler’s papers, and it turns out
that this sort of localization is an equivalence, modulo some jazzed up Weyl group action.

Enough advertizing for Y , let’s see how it connects to the Grothendieck-Springer res-
olution. Consider the cotangent bundle T ∗Y → Y . Its fiber over a point y ∈ Y , i.e. the
cotangent space to Y at y, is easily seen to be g∗/n∗ = b by standard Killing form identifi-
cation of duals, where b is the Borel in g that is the image of y under the projection map
Y →X. Thus T ∗Y is seen to consist of pairs (y, x) of a point y ∈ Y (whatever that really
is) together with an element x of the Borel subalgebra b ⊂ g determined by y.

Note that the H-action on T ∗Y , naturally extending the H-action on Y , is trivial along
fibers. Indeed, it would act by ad(s) in the fiber direction for s ∈ H, but conjugation
in abelian groups isn’t very interesting. This means that the quoient (T ∗Y )/H becomes
identified with pairs ([y], x) for [y] ∈ Y /H = X and x an element of the corresponding
Borel b - and we’ve ended up finding a cotangent bundle description of g̃!
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I think comparing the formulas Ñ = T ∗X and g̃ = (T ∗Y )/H really highlights both the
comparison and the differences between the two constructions.

10. Or a Fan of Mechanics, Of Course

Writing Ñ and g̃ like that, our spider sense start tingling. Recalling that T ∗Y carries
a symplectic structure, and that the H-action on Y equips T ∗Y with a Hamiltonian H-
action, we are reminded of a formula for Hamiltonian reduction that we saw in §6.

Indeed, the (wlog Killing iso composed) moment map µ ∶ T ∗Y → h∗ maps, in terms of
the discussed incidence description, explicitlyy u,

(y, x)→ y ∈ b→ b/n = h.

It clearly folows that µ−1(0)/H is nothing but the incidence description of Ñ . In fancy
words, we have realized the Springer resolution as the Hamiltonian reduction of the
Grothendieck-Springer resolution. In fancy symbols: Ñ = g̃//H.

In fact, we could have taken any other point x ∈ h too (quite possibly I should also
assume that x is regular throughout), rather than the origin 0 as we did above. The
variant of the Hamiltonian reduction obtained that way (the action of H on T ∗Y is good
enough that there is no need to worry about anything) forms a resolution of singularities
for the associated fiber of the map g→ h//W at the corresponding coset (this follows from
the exact same considerations as for x = 0, namely restricting to regular elements and
pulling back the square from §7).

We can be more explicit about what this latter fiber over the oribit of x is. In this
setting, it is more common to resist the urge to post-compose the moment map with the
Killing iso as we had some before, so let us observe this convention. In particular, we are
looking at the fiber of the map g∗ → h∗//W at the orbit of an element x ∈ h∗. By Chevalley,
it is the same thing as the orbit of the quotient map g∗ → g∗//G at the orbit determined
by x, i.e. the coadjoint orbit that contains x. Again by Chevalley, any coadjoint orbit
contains some such x.

We may conclude that restricting the (Killing iso composed) GS resolution g̃ → g∗ to
any coadjoint orbit O in g∗ contains a resolution of singularities. This is the sense in which
g̃ is a ’simultaneous’ resolution. Furthermore the subvariety of g̃ which is the resolution
of a given coadjoint orbit O in g̃ can be determined quite concretely: picking an element
x ∈ O ∩ h∗, it consists of all the points in g̃ of the form (b, x + y) for x + y ∈ b and y ∈ g
nilpotent.

The reason we rather didn’t Killing iso the difference between g and g∗ away in this
section, is similiar to why we prefer to phrase Hamiltonian mechanics in terms of the
cotangent bundle as opposed to the tangent bundle. Indeed, the coadjoint orbits come
equipped with a symplectic structure (even more: the obvious action of G is Hamiltonian
wrt this symplectic structure) as an byproduct of the above discussion. But in fact, this
symplectic structure, called the Kirilov-Kostant symplectic structure, is quite classical and
admits a nice naive definition:

The G-action on a fixed coadjoint orbit O being transitive implies that the infinitesimal
action map a ∶ gtø{vector fields on O} (which is in this case nothing but the lowercase
coadjoint action ad∗) is too. For any x belonging to O, and any u, v ∈ g, it thus suffices to
define

ωx(a(u), a(v)) = x([u, v]),

where on the rhs we have evaluated x as the linear functional on h that it is. The claim
is that the 2-form ω on O is a symplectic form.

13



The very exietence of a symplectic structure on coadjoint orbits is very magical. Since
only even dimensional manfiolds admit symplectic structures, it follows that all coadjoint
orbits are even dimensional. From this, it for instance instantly follows that Nreg in N
has codimension one, since N −Nreg is a union of adjoint orbits with at least one missing,
and as such has codimension at least 2. (Okay, I guess you still needed to have already
known that N contains finitely many orbits..).

11. Maybe You’re a Fan of Borel-Bott-Weil

As the Monthy Pythons were fond of saying: and now for something completely dif-
ferent! And by different, just as the Monthy Python, I of course mean a different way of
approaching the Grothendieck-Springer resolution.

Recall the Borel-Bott-Weil Theorem, on irreducible highest weight representations as
G-equivariant vector bundles on the flag variety X = G/B. If the Beilinson-Bernstein Lo-
calization Theorem marks the beginning of the field of geometriy representation theory, as
I have often heard people assert, then surely Borel-Bott-Weil is the immediate prehistory,
which layed the groundwork, fermented wild new ideas in public imagination, and made
the air brimming with anxiety and anticipation for the inevitable revolution.

Anyhow, to a B-rep M , you associate the vector bundle L(M) = G ×B M , where the
subscript G stands not for fibered, but for balanced product (this has some potential to be
confusing. I have seen some people denote balanced products by superscripts, which might
be the way to go). The terminal projection M → pt gives rise to the bundle projection
L(M) = G ×B M − − > G ×B pt = G/B, and the fiber is clearly M . The content of BBW
is that this allows you to convert representations into vector bundles and study those,
to great avail as you now have the full power of algebro geometric theory of sheaves and
bundles at your disposal. Especially highest weight reps become especially accessible, as
we know a lot about line bundles on varieties.

So let’s do the BBW for M = b, with the adjoint action. We get L(b) = G×B b, yielding
a vector bundle with fiber b on X. Let’s think about what we’re doing here: we take pairs
(s, x) of an element s ∈ G and x ∈ b, and identify for every t ∈ B the pair (st, x) with
(s,Ad(t)x). In that way the first factor traverses the elements of the poset sB ∈ G/B.
Fixing the value of sB (but not of s itself), the second factor traverses the Borel subalgebra
Ad(s)b of g (since the adjoint action of B preserves its Lie algebra b, this is independent of
the choice of coset representative s). This is the Lie algebra of the Borel subgroup sBs−1
in G. Thus we recognize once again the incidence description of g̃.

This description of the GS resolution is in some ways inferior to the previously discussed
ones, since it requires choosing a Borel subgroup B ⊂ G. Note that before, even though
we often denoted the flag variety as G/B, we did not actually need to choose B, since the
flag variety can well be identified with the space of Borels.

One genuinely interesting thing to be gained by viewing g̃ this way though is that it
makes evident the equivalence of quotient stacks g̃/G = b/B, where the rhs is quotient
wrt to the adjoint action. This might seem minor, but phrasing rep theory in terms of
algebraic geometry, these sort of objects come up a lot and encode much.

For instance, much of the highest weight yoga is encoded in the correspondence of
adjoint action quotient stacks

g/G← b/B → h//H,

induced by choosing a Borel subgroup B ⊂ G. But by the above observation, we may
replace the midele term with g̃/G, removing the seeming dependence on any choices. I
think this, its appearence in the above fundamental correspondence, probably also best
highlights the importance of g̃ for rep theory.
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12. Quantization is a Fancy Word and Little More

To conclude this massive exposition dump on the Springer and Grothendieck-Springer
resolutions, I would like to paraphrase and elaborate upon an answer that David offered
to a mathoverflow question about the importance of the Springer resolution.

It has to do with quantization. Now I don’t know how you are, but I for one freeze
wherever anyone mentions that word. But for our purposes here, quantization won’t be
anything scary. It will just mean the following: we’ll be given a graded commutative
algebra A. Its quantization will mean just a usually non-commutative filteted algebra Â
for which gr∗(Â) = A. We’d also say that A is the classical limit of Â. We might also

say that Â is the quantization of SpecA, following the paradigm that the classical role of
spaces is played in the quantum realm by “noncommutative spaces”.

The prime example is U(g), which we view as a quantization of Sym∗(g), or by Killing
iso of g itself. Similarly the sheaf of differential operators DX is viewed as a quantization
of the cotangent bundle T ∗X (and if the latter is where classical mechanics happens, then
... wink wink, nudge nudge!).

What does the Springer resolution, or more precisely its factorization

T ∗X = Ñ → N → g,

quantize to? Well, we’ve already seen that O(N) is the associated graded wrt the PBW fil-
tration of the quotient U(g) of the enveloping algebra by the kernel of the trivial character.
Hence the above springer factorization quantizes to

U(g)→ U(g)0 →D(X).

The fact that the Springer resolution Ñ → N is birational, i.e. that it induces an iso on
functions (and it is in some sense really the algebras of function that we are quantizing),
reflects that the above factorization induces an iso U(g)0 =D(X).

This is the sense in which the Springer resolution quantizes to the Beilinson-Bernstein
theorem (though of course, the full theorem identifies more than just algebras, namely
of categories). In fact, this (perhaps with fewer mentions of quantization) is the usual
argument one uses in the course of proving BB, and certainly the one we discussed in §8.

A phrase one sometimes hears is that “Quantization is not a science, but an art!”, which
is to say that the same classical phenomenon may admit several different quantizations
(and finding the most physically relevant one might not be easy). Despite our (you and me,
right here and now), shall we say, heavily curtailed understanding of what quantization
entails (- passing to the associated graded), we can see this very well: several different
filtrations may produce the same associated graded.

Indeed, Ñ = T ∗X could, instead of as D(X), also be quantized as Dλ(X), the ring of
λ-twisted differential operators, for any dominant (I was assured that this is the right word
to say) weight λ ∈ h∗. In that case, to remain compatible, we should also quantize N not as
U(g)0, but as U(g)λ. (Really that’s nothing scary, just determining the associated gradeds
of these filtered algebras.) With this choice of quantization, Springer resolution quantizes
to the version of the BB theorem with the central character associated to lambda.

The takeaway can therefore be: “The Springer resolutoion quantizes to Beilinson-
Bernstein Localization.”

I could be mistaken, but I am willing to wager a guess that the Grothdieck-Springer
resolution analogously quantizes to the “Beilinson-Bernstein over the base affine” ver-
sion from David’s paper, i.e. version for weakly H-equivariant D-modules on Y = G/N ,
mentioned in §9.

With that piece of unfounded bs speculation, it is high time to wrap up this write-up.
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