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Abstract
Higher Quasicoherent Sheaves
by
German Stefanich
Doctor of Philosophy in Mathematics
University of California, Berkeley

Professor David Nadler, Chair

This thesis consists of two parts. The first half concerns various foundational aspects of
the theory of enriched oco-categories. We develop the theory of adjunctions and weighted
limits and colimits in enriched oo-categories. We introduce theories of enriched oco-props and
operads, which provide a framework for the study of higher algebra in the enriched context.
Finally, we study the theory of monads and monadic adjunctions in enriched (oo, 2)-categories,
and prove an enriched generalization of the Barr-Beck-Lurie monadicity theorem.

The second half of this thesis applies the results of the first half to the study of higher
categorical sheaf theory in derived algebraic geometry. We introduce and study a theory of
quasicoherent sheaves of presentable stable (0o, n)-categories on prestacks, generalizing the
case n = 1 studied in [Gail5]. We prove a universal property for the (oo, n + 1)-category of
correspondences, generalizing and providing a new approach to the case n = 1 from [GR17],
and use it to show that our higher quasicoherent sheaves give rise to representations of the
higher categories of correspondences of prestacks. We also introduce a notion of n-affineness
for prestacks and provide a simple inductive criterion for checking n-affineness, which allows
one to reduce affineness questions to the case n = 1 studied in [Gail5].
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Chapter 1

Introduction

This thesis consists of two parts. The first part deals with the foundations of the theory of
enriched oo-categories. The second part applies the material of part I to the study of higher
categorical sheaf theory in derived algebraic geometry.

This work is part of a program aimed at constructing new examples of fully extended
topological field theories. The following introduction explains how this thesis fits into this
broader program. We also refer to the introduction of each part for a more in depth description
of its contents.

1.1 Topological field theory and geometric Langlands

Let n be a nonnegative integer. Then, following [Lur09b] and [CS19], one may define
a symmetric monoidal (co,n)-category nCob called the (oo, n)-category of (unoriented)
cobordisms, with the following informal description:

e Objects of nCob are finite collections of points, to be thought of as compact 0-
dimensional manifolds.

e A morphism between two compact 0-dimensional manifolds S and 7T is a 1-dimensional
compact manifold with boundary M equipped with a decomposition OM = SUT. In
other words, this is a cobordism from S to T'.

e In general, for every 1 < k < n, a k-cell in nCob is in particular a k-dimensional compact
manifold with boundaries and arbitrary codimensional corners, which determines a
cobordism between two pieces of its boundary.

e Composition in nCob is given by gluing of cobordisms along shared boundary compo-
nents.

e The symmetric monoidal structure on nCob is given by taking disjoint unions of
manifolds.
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Let D be a symmetric monoidal (co,n + 1)-category, whose objects we think about as
being (00, n)-categories of some sort. A (fully extended, unoriented) (n + 1)-dimensional
topological field theory! with target D is a symmetric monoidal functor y : nCob — D. This
assigns in particular:

e To the empty zero dimensional manifold (3, the unit 1p in D.
e To the zero dimensional manifold consisting of one point, an object x(pt) in D.

e To the circle S', thought of as a cobordism from 0 to itself, an object x(S') in Endp(1p).

To a closed 2-dimensional manifold M, thought of as a self-cobordism of the empty
1-dimensional cobordism, an object x (M) in Endgya,(15)(D).

In general, to a closed k-dimensional manifold, an object in the “k-fold looping” of D.

The above data is subject to various constraints, which encode the locality of x: the value of
x on a manifold can be recovered by expressing the manifold as a composition of cobordisms.

In recent years, topological field theories have been found to provide a powerful framework
that organizes a number of structures arising in geometric representation theory. A central
instance of these interactions is given by the geometric Langlands program. It was observed
by Kapustin and Witten in [KWO07] that the geometric Langlands correspondence can be
understood as a consequence of an equivalence between two four dimensional topological field
theories attached to a complex reductive group and its Langlands dual group. Although it
is now understood that geometric Langlands in is usual formulation is more closely related
to conformal field theory rather than topological field theory, Kapustin and Witten’s work
has led to creation of the so-called Betti version of geometric Langlands [BN18], which has
a more topological flavour, and is conjectured to ultimately form part of an equivalence of
four-dimensional topological field theories.

Although the topological field theories in Kapustin and Witten’s work make sense physi-
cally, they do not yet admit a rigorous mathematical formulation. So far, only some traces of
the full structure of a topological field theory have been put in firm mathematical footing.
There is in fact a fairly limited supply of fully extended topological field theories that have
been constructed beyond dimension 2. This raises the following natural question:

Question 1. How do we construct interesting examples of topological field theories, in
particular those which are expected to underlie the Betti geometric Langlands program?

The cobordism hypothesis [Lur09b] provides one possible way to approach this question.
It states roughly speaking that the data of y can be recovered its value on a point: in fact,
any object d of D gives rise to a unique topological field theory x such that y(pt) = d, as

IThis is more typically called an n-dimensional topological field theory, as the dimension of the manifolds
is bounded by n. We choose however to use here a terminology that more closely matches how these objects are
named in the physics literature: the reader may think that we are discussing (n + 1)-dimensional topological
field theories whose values at (n + 1)-dimensional manifolds diverge.
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long as d satisfies appropriate finiteness conditions, and comes equipped with an O(n)-fixed
point structure.

This essentially reduces the problem to constructing interesting examples of (oo, n)-
categories (or, more generally, objects in a background (oo, n + 1)-category D). In this thesis,
we begin exploring the idea that higher categorical sheaf theory provides a rich source of
(00, n)-categories and topological field theories, and gives tools to begin answering question 1.

1.2 Two dimensional field theories via sheaf theory

We now explain the most basic instance of using sheaf theory to produce topological field
theories, which serves as a guide for our categorified story.

Let X be a (quasicompact, quasiseparated) scheme over a field k, and let QCoh(X) be
the dg-category of quasicoherent sheaves on X. We consider QCoh(X) as an object in the
symmetric monoidal (0o, 2)-category 2%ect of presentable dg-categories, described informally
as follows:

e Objects in 2%ect are dg-categories admitting all colimits, satisfying a certain set
theoretical tameness condition called presentability.

e Given two objects C, D in 27%ect, the co-category Homaye(C, D) is the full subcategory
of Funct(C, D) on the colimit preserving functors.

e The unit of 2%ect is the dg-category Vect of (chain complexes of) k-vector spaces.

e Given two objects C, D, their tensor product C ® D is the universal recipient of a functor
C x D — C ® D which preserves colimits in each coordinate and coequalizes the action
of Vect on both factors.

It turns out that QCoh(X) is a dualizable object in 2%ect, and can be equipped with
a canonical structure of O(1)-fixed point. The cobordism hypothesis thus guarantees that
QCoh(X) gives rise to a 2-dimensional topological field theory x with target 2#ect. In physics
language, this is a version of the B-model of X.

By definition, the value of x at the point recovers QCoh(X). Being a 2-dimensional
topological field theory, it also makes sense to wonder about the value of y at the circle. The
most robust way to compute this, and in fact understand y in its entirety, is provided by the
following fundamental result, first proven in [GR17]:

Theorem 1.2.1. The assignment Y +— QCoh(Y) forms part of a symmetric monoidal functor
QCoh : 2Corr(Sch) — 2¥ect” P .

In the above theorem, 2%ect>°® denotes the (oo,2)-category obtained from 2%ect by
reversing the orientation of the 2-cells, and 2Corr(Sch) denotes the (oo, 2)-category of corre-
spondences of schemes, described informally as follows:
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Objects of 2Corr(Sch) are (quasicompact, quasiseparated, derived) schemes over k.

Given two schemes Y, Z, a morphism from Y to Z in 2Corr(Sch) is a third scheme S
equipped with maps Y + § — Z.

Given two composable morphisms Y <+ S — Z < S” — W, their composition is given
by Y < Sxz58 —W.

e Given two parallel morphisms Y < S — Z and Y < S’ — Z, a 2-cell between them is
a commutative diagram of schemes as follows:

S

N

Y A

N

S/

e Given two schemes Y, Z, the tensor product of Y and Z in 2Corr(Sch) is the object
Y x Z.

Concretely, theorem 1.2.1 associates to each morphism Y & S % Z in 2Corr(Sch), the
Fourier-Mukai type functor ¢,.p* : QCoh(Y) — QCoh(Z). One can think about theorem 1.2.1
as providing an efficient way of encoding the functoriality of the theory of quasicoherent
sheaves. For instance, compatibility with compositions encodes the base change property,
and the functoriality under 2-cells encodes the fact that pushforwards are right adjoint to
pullbacks.

Using theorem 1.2.1 one can give a very concise construction of the topological field theory
X associated to a fixed scheme X, as a composition of three different symmetric monoidal

functors: ot
1Cob — 2Corr(Spc®) — 2Corr(Sch) 2 2%ect>oP .

Here the first arrow is the functor from cobordisms to cospans in spaces which arises from
considering a cobordism as a cospan between its boundary components. The middle arrow
is induced from the functor X (=) : Spc® — Sch which maps each homotopy type M to the
(derived) scheme X parametrizing maps from M into X.

The benefit of the above construction is that it provides a fairly direct way of computing
the value of x on the circle (we refer to [BN13] for more on this theme). Indeed, x(S') is the
endofunctor of Vect given by the composition

Vect = QCoh(Spec(k)) = QCoh(X5") X QCoh(Spec(k)) = Vect

where 7 : X5' — Spec(k) denotes the projection. This recovers the endofunctor of Vect given
by tensoring with O(X Sl). We may summarize this by saying that the value of x on the
circle recovers the space of functions on X "
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The scheme X5 is called the (derived) loop space of X. Breaking the circle symmetry,
one may present S* as the suspension of S°, which leads to the description of X' as the
fiber product X X xxx X. In the case when X = Spec(A) is affine, we may further rewrite
this as Spec(A @494 A). In other words, the space of functions on X* " is the chain complex
computing the Hochschild homology of A. This connection with Hochschild invariants makes
the derived loop space an object of central importance in derived algebraic geometry (see
[TV09], [BN12], [Prel5)).

1.3 Higher quasicoherent sheaves

One of the main goals of this thesis is to present a version of the above story which allows
one to produce topological field theories of dimension greater than 2. In order to do so, one
must leave the realm of sheaves with values in vector spaces, and work with sheaves with
values in higher categories - indeed, in order to produce an (n + 1)-dimensional topological
field theory we need to replace QCoh(X) with some kind of (0o, n)-category.

The first problem to be solved is to construct categorifications of 2%ect. We accomplish
this in chapter 12, where we introduce for each n > 2 a symmetric monoidal (co,n + 1)-
category (n+1)%ect of k-linear presentable stable (0o, n)-categories. To a first approximation,
we may think about (n + 1)7ect as follows:

e An object in (n+1)7ect is an (0o, n)-category which admits all colimits, such that all its
Hom (0o, n — 1)-categories also admit all colimits, and all the Hom (oo, n — 2)-categories
of those admit all colimits, and so on. At the very last level, we require the co-categories
that arise to admit all colimits, and to come equipped with a k-linear structure on their
Hom spaces.

e Given two objects C,D in (n + 1)%ect, morphisms from C to D are k-linear functors
which preserve colimits at all levels.

e The unit of (n + 1)%ect is given by n7ect.

e Given two objects C,D, their tensor product C ® D is the universal recipient of a
k-bilinear functor C x D — C ® D which preserves colimits (at all levels) in each
coordinate.

Although the above description provides useful intuition, our definition of (n + 1)7ect
proceeds along somewhat different lines. Instead of defining (n + 1)%ect directly as a
subcategory of the (co,n + 1)-category of k-linear (oo, n)-categories, we first define its
underlying symmetric monoidal oo-category (n + 1)Vect, and then produce an (oo, n + 1)-
categorical enhancement of (n + 1)Vect.

The definition of (n+1)Vect is inductive. Given a definition of nVect, we define (n+1)Vect
to be a certain tame full subcategory of the co-category of cocomplete oo-categories equipped
with an action of nVect (we refer to the introduction of part II and to chapter 12 for an
explanation of this tameness condition).
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To construct the (co,n + 1)-categorical enhancement (n + 1)%ect we make use of the
theory of enriched oo-categories developed in [GH15] and [Hin20a|, which we review in chapter
3. This theory allows us to pass from oo-categories tensored over a symmetric monoidal
oo-category M, to oo-categories enriched in M. For our purposes, we need in fact a functorial
strengthening of the procedure of enrichment of tensored oco-categories, which we develop in
chapter 4.

The theory of higher presentable categories not only serves to define (n + 1)%ect. In
fact, for each commutative k-(dg)-algebra A, one may define a commutative algebra object
A-mod"™ in (n + 1)%ect, which we think about as the k-linear (oo, n)-category of A-linear
presentable stable (co,n — 1)-categories. As before, in order to define A-mod"”, one first
defines its underlying module A-mod™ over nVect. This is done inductively by setting
A-mod” = A, and A-mod” = (A-mod™ ') -mod(nVect).

This leads us to the notion of quasicoherent sheaf of higher categories on an affine scheme:

Definition 1.3.1. Let X = Spec(A) be an affine scheme. We let nQCoh(X) = A-mod".
We call this the presentable stable (oo, n)-category of quasicoherent sheaves of presentable
stable (0o, n — 1)-categories on X .

Unpacking the definition, we see that nQCoh(X) corresponds to the data of an nVect-
module nQCoh(X), which is in turn defined inductively starting with QCoh(X) by setting
nQCoh(X) to be (n — 1)QCoh(X)-mod(nVect).

Having the notion of a higher quasicoherent sheaf on an affine scheme, one may formally
extend it to any prestack X by defining nQCoh(X) to be the limit of nQCoh(S) over all
affine schemes S equipped with a map to X.

In the case n = 2, our theory reduces to the theory of sheaves of categories studied in
[Gailb]. A concept of central importance in that case is the notion of 1-affineness. Roughly
speaking, a prestack X is l-affine if 2QCoh(X) is equivalent to QCoh(X')-mod(2Vect). This
is true by definition for affine schemes, but it also holds for a number of prestacks of interest,
including schemes (see [Gailb]).

In chapter 14 we introduce a notion of (n — 1)-affineness for arbitrary n > 1. Roughly
speaking, a prestack is said to be (n — 1)-affine if there is an equivalence

nQCoh(X) = (n — 1)QCoh(X)-mod(n¥ect)

as objects in (n + 1)%ect. To make sense of the above, we use the theory of monads and
monadic morphisms in enriched (oo, 2)-categories which we develop in chapter 7, which builds
upon a theory of enriched higher algebra that we introduce in chapter 6.

The following theorem is our main result on the theory of higher affineness. It allows one
to reduce questions of higher affineness to the case n = 2, which was studied in [Gail5].

Theorem 1.3.2. Let X be a prestack, and let n > 3. Assume that the diagonal map
X — X x X is (n— 2)-affine. Then X is (n — 1)-affine.
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In particular, it is a consequence of theorem 1.3.2 that prestacks with schematic diagonal
are (n — 1)-affine for all n > 3.

The proof of theorem 1.3.2 is given in chapter 14. One of its ingredients is the following
enriched generalization of the Barr-Beck-Lurie monadicity theorem, which we prove in chapter
7

Theorem 1.3.3. Let M be a presentable symmetric monoidal co-category and let G : C — D
be a functor of M-enriched co-categories. Then the following are equivalent:

(i) There exists a monad M on D and a structure of M-module on G, such that G presents
C as the Filenberg-Moore object of M.

(ii) For every M-enriched oco-category £, the functor of co-categories underlying the functor
of M-enriched co-categories

G, : Funct(&,C) — Funct(€, D)
18 monadic.

(iii) The functor G admits a left adjoint, is conservative, and creates conical geometric
realizations of G-split simplicial objects.

To formulate the third condition in theorem 1.3.3 we use the theory of conical colimits in
enriched oo-categories which we develop in chapter 5, as part of a general study of adjunctions
and weighted limits in enriched oo-categories.

1.4 Higher dimensional field theories via higher sheaf theory

Our second main result concerning the theory of higher quasicoherent sheaves is the following
generalization of theorem 1.2.1, which we prove in chapter 14:

Theorem 1.4.1. The assignment Y — nQCoh(Y') forms part of a symmetric monoidal

functor
nQCoh : (n + 1)Corr(Sch) — (n + 1) ¥ect™H1)op

In the above theorem, (n + 1)%ect"™P denotes the (co,n + 1)-category obtained from
(n+ 1)7ect by reversing the orientation of the (n + 1)-dimensional cells, and (n + 1)Corr(Sch)
denotes the (0o, n+1)-category of correspondences of schemes, defined informally by induction
as follows:

e Objects of (n + 1)Corr(Sch) are schemes over k.

e Given two schemes Y, Z, we have an equivalence of (0o, n)-categories

Hom 4+ 1)corr(sen) (Y, Z) = nCorr(Schy,z).
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Concretely, theorem 1.4.1 associates to each morphism Y - S — Z in (n + 1)Corr(Sch)
the functor of nVect-modules nQCoh(Y) — nQCoh(Z) given by tensoring with the (n —
1)QCoh(Y) — nQCoh(Z)-bimodule (n — 1)QCoh(S). Furthermore, it associates to each 2-cell

Y/ip\Z
NS

the natural transformation of functors resulting from the morphism of (n — 1)QCoh(Y') —
(n — 1)QCoh(Z)-bimodules

¢.p* : (n — 1)QCoh(S) — (n — 1)QCoh(S").

We may think about theorem 1.4.1 as encoding the functoriality of the theory of higher
quasicoherent sheaves. As n grows, we have more and more functoriality available at our
disposal, having to do with the ability to form Fourier-Mukai transforms, and Fourier-Mukai
transforms between Fourier-Mukai kernels, and so on.

Given a scheme X | we may use theorem 1.4.1 to produce an (n+1)-dimensional topological
field theory y with target (n + 1)%ect, by composing three symmetric monoidal functors:

nCob — (n + 1)Corr(Spc) BN (n 4 1)Corr(Sch) 2228 (n + 1) Fect "+ |

Assuming some expected facts? about the relation between nCob and (n + 1)Corr(Spc®),
one may use the above description of y to show that its value on a k-dimensional manifold
M can be identified with (n — k)QCoh(X*). We may think about this as a generalization of
the geometric description of the Hochschild invariants of a commutative algebra.

For many purposes, it is useful to have a generalization of theorem 1.4.1 which applies to
prestacks, and not only schemes. It turns out that when passing to prestacks one loses some
functoriality, so the general statement involves the (0o, n)-category of correspondences rather
than the (oo, n + 1)-categorical version:

Theorem 1.4.2. The assignment Y — nQCoh(Y') forms part of a symmetric monoidal
functor

nQCoh : nCorr(PreStk) — (n + 1)7ect .

In higher categorical sheaf theory, the relationship between different categorical levels is
arguably just as important as the property of each categorical level on its own. In order to

2The first arrow in this composition is defined by the property that it sends the point to the point.
In order to use this description of x for computation, one needs to know that the first arrow can also be
recovered by interpreting cobordisms as cospans of spaces.
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organize the functoriality of the theories nQCoh for different values of n, we use in this thesis
the theory of categorical spectra®, which we develop in chapter 13. In the same way that in
stable homotopy theory a spectrum is defined to be a sequence of pointed homotopy types
compatible under looping, a categorical spectrum is a sequence of pointed (0o, c0)-categories
compatible under passage to endomorphisms of the basepoint.

It turns out that one may assemble the sequence of (oo, n)-categories nCorr(PreStk) into
a categorical spectrum Corr(PreStk), called the categorical spectrum of correspondences of
prestacks. Similarly, one may assemble the (0o, n+ 1)-categories (n+ 1)7ect into a categorical
spectrum of higher vector spaces. The entire functoriality of the theory of higher quasicoherent
sheaves may be summarized by saying that it gives rise to a morphism of categorical spectra
from Corr(PreStk) to the categorical spectrum of higher vector spaces.

Continuing along these lines, one could say that the subject of higher categorical sheaf
theory consists more generally of the study of the representation theory of the categorical
spectrum of correspondences - the theory of higher quasicoherent sheaves being the most
basic such representation.

The proofs of theorems 1.4.1 and 1.4.2 depend on a universal property for the higher
categories of correspondences, which we establish in chapter 11:

Theorem 1.4.3. Let C be an oo-category admitting finite limits, and let D be a symmetric
monoidal (co,n + 1)-category. Then restriction along the inclusion C — (n + 1)Corr(C)
induces an equivalence between the space of symmetric monoidal functors (n+ 1)Corr(C) — D
and the space of symmetric monotidal functors C — D satisfying the left n-fold Beck-Chevalley
condition.

The left n-fold Beck-Chevalley condition is a minimalistic list of base change properties
that we introduce in chapter 11. In the same way that verifying the usual left Beck-Chevalley
condition for a functor F': C — D involves checking an adjointability statement for every
cartesian square in C, verifying the left n-fold Beck-Chevalley condition involves checking a
series of n different adjointability statements for every such cartesian square.

Our proof of theorem 1.4.3 is inductive, and builds upon the case n = 2. In the case n = 2,
theorem 1.4.3 reduces to the universal property of the (0o, 2)-category of correspondences
established in [GR17]. We provide in chapter 10 of this thesis a new approach to the proof of
this basic case, which builds upon the description of Hom functors for enriched oco-categories
from [Hin20a], and the theory of two-sided fibrations of co-categories which we study in
chapter 9.

1.5 Organization

This thesis consists of two parts. Below we provide a brief description of the contents of
each part. We refer also to the introduction of each part for an expanded description of its

3We first learned about the notion of categorical spectrum from Constantin Teleman, under the name of
anticategory.
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contents.

Part I deals with the foundations of the theory of enriched co-categories. We begin in
chapter 3 by presenting a systematic treatment of the basics of the theory, and include back-
ground on the theory of (00, 00)-categories, which will be used throughout the thesis. Chapter
4 studies the theory of modules over algebroids, and provides a functorial enhancement of the
procedure of enrichment of presentable modules, which forms the basis of our construction
of the theory of higher presentable categories. Chapter 5 studies the theory of adjunctions
between enriched oo-categories, and introduces a theory of weighted colimits. Chapter 6
introduces a theory of enriched oco-props, and a new approach to enriched oco-operads. Finally,
chapter 7 studies the theories of monads an monadic morphisms in enriched (oo, 2)-categories,
and provides a proof of theorem 1.3.3.

Part II is concerned with the foundations of the higher categorical sheaf theory. We
begin in chapter 9 by discussing the theory of two-sided fibrations, and proving a universal
property for the two-sided fibration of correspondences. In chapter 10 we collect a number
of basic results concerning the (oo, 2)-category of correspondences, and present our proof
of the case n = 2 of theorem 1.4.3, building on the material from chapter 9. In chapter 11
we study the problem of constructing functors out of higher categories of correspondences.
We include here a proof of theorem 1.4.3, as well as an extension theorem which forms the
basis of the passage from affine schemes to prestacks involved in theorem 1.4.2. In chapter
12 we introduce the theory of higher presentable categories, and show that it satisfies the
conditions of the extension theorem from chapter 11. Chapter 13 deals with the theory of
categorical spectra, and discusses its relationship with the theory of symmetric monoidal
higher categories. Finally, in chapter 14 we introduce the theory of higher quasicoherent
sheaves, and supply proofs of theorems 1.3.2, 1.4.1 and 1.4.2.
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Conventions and notation

We use the language of higher category theory and higher algebra as developed in [Lur09a]
and [Lurl7]. All of our notions will be assumed to be homotopical or co-categorical, and
we suppress this from our notation - for instance, we use the word n-category to mean
(00, n)-category.

We work with a nested sequence of universes. Objects belonging to the first universe are
called small, objects in the second universe are called large, and objects in the third universe
are called very large.

We denote by Spc and Cat the categories of (small) spaces and categories. For each n > 2
we denote by nCat the category of small n-categories. We denote by %at the 2-categorical
enhancement of Cat, and in general by n%at the (n + 1)-categorical enhancement of nCat. If
X is one of those objects (or related), we denote by X its large variant. For instance, S/p\c
denotes the category of large spaces.

We denote by Pr’ the category of presentable categories and colimit preserving functors.
We usually consider this as a symmetric monoidal category, with the tensor product con-
structed in [Lurl7] section 4.8. By presentable (symmetric) monoidal category we mean a
(commutative) algebra in Pr”. In other words, this is a presentable category equipped with a
(symmetric) monoidal structure compatible with colimits.

If C is an n-category and k > 0, we denote by C=F the k-category obtained from C by
discarding all cells of dimension greater than k, and by =*C the k-category obtained from
C by inverting all cells of dimension greater than k. In particular, for each category C we
denote by C= the space of objects of C.

For each category C we denote by Home(—, —) the Hom-functor of C. We denote by P(C)
its presheaf category. We usually identify C with its image under the Yoneda embedding.

Given a pair of n-categories C, D we denote by Funct(C, D) the n-category of functors
between C and D. When we wish to only consider the space of functors between them we
will use the notation Hom,c,(C, D) instead.

Given a right (resp. left) adjointable functor of categories 5 : C — D, we will usually
denote by 8% (resp. BF) its right (resp. left) adjoint. More generally, we use a similar notation
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for adjoint morphisms in a 2-category. We say that a commutative square of categories

07

¢

s

D —25D

is vertically right adjointable if § and ' admit right adjoints and the induced natural
transformation o/ 8’ — %« is an isomorphism. Similarly, we can talk about horizontal
left adjointability, or vertical left / right adjointability. We will at various points use the
connections between adjointability of squares and the theory of two-sided fibrations which we
develop in chapter 9.

We make use at various points of the theory of operads. We use a language for speaking
about these which is close in spirit to the classical language in terms of objects and operations
which satisfy a composition rule. Namely, given an operad O with associated category of
operators p : O® — Fin,, we call p~1((1)) the category of objects of O, and arrows in O%
lying above an active arrow of the form (n) — (1) are called operations of O. We will for
the most part work with O without making explicit reference to the fibration p, and make it
clear when we need to refer to the category of operators instead.

We denote by Op the category of operads, and for each operad O we denote by Op, the
category of O-operads. We denote by Assos, LM, BM the operads for associative algebras,
left modules, and bimodules, respectively.



Part 1

Enriched oo-category theory

13
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Chapter 2

Introduction to part 1

The theory of enriched oco-categories, introduced in [GH15] and independently in [Hin20a),
provides a unified approach to various important notions in higher category theory. As
particular cases, it recovers the notions of (co,n)-categories, spectral categories, and dg-
categories. The first goal of part I is to present a roughly complete treatment of the basics
of the subject, adapted to our needs. We include also an introduction to the theory of
(00, 00)-categories from the point of view of iterated enrichment.

The second goal of part I is to make a number of contributions to the state of the art in
enriched oo-category theory, including;:

We provide an alternative approach to the definition of the operad which corepresents
enrichment, which we show to be equivalent to previous approaches in the literature.

We study the functoriality properties of the procedure of enrichment of presentable
modules from [GH15] and [Hin20a].

We study the theory of adjunctions and weighted limits and colimits in enriched oco-
categories, and show that an enriched oo-category admits all weighted colimits if and
only if it admits all conical colimits and copowers.

We study higher algebra in the enriched context, and introduce a new approach to the
theory of enriched oo-operads, via enriched oo-props.

We study the theory of monads in the setting of enriched (oo, 2)-categories, and prove
an enriched generalization of the Barr-Beck-Lurie monadicity theorem, which provides
a description of monadic functors of enriched co-categories.

The material in chapters 3, 4 and 5 is an expansion of the author’s preprint [Ste20b]
(except for its last section which is present in part II of this thesis as chapter 12).

Below we provide a more detailed description of the contents of part I. As usual in this
thesis, we will use the convention where all objects are oo-categorical by default, and suppress
this from our notation from now on.
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2.1 The notion of an enriched category

Let M be a monoidal category. Roughly speaking, an algebroid A in M with space of objects
X consists of

e For every pair of objects z,y in X an object A(y,x) in M.

e For every object z in X a morphism 1y — A(z, ).

e For every triple of objects z,y, z a morphism A(z,y) ® A(y,z) — A(z, x).

e Associativity and unit isomorphisms, and an infinite list of higher coherence data.

Given an algebroid A with space of objects X, there is a Segal space underlying A, with
space of objects X and for each pair of objects y, z the space of morphism being given by
Hom (14, A(y, z)). We say that A is an M-enriched category if its underlying Segal space
is complete.

The theory of enriched categories provides a unified approach to various different notions
in category theory:

e In the case when M = Spc is the cartesian symmetric monoidal category of spaces, an
M-enriched category is simply a category.

e In the case when M = nCat is the cartesian symmetric monoidal category of n-
categories, an M-enriched category is the same as an (n + 1)-category.

e In the case when M = Sp is the category of spectra with its smash symmetric monoidal
structure, we obtain a notion of spectrally enriched category. Stable categories are
examples of these.

e In the case when M = Vecty, is the category of k-module spectra over a field k, we
obtain a notion of k-linear category. This provides a robust approach to the theory of
dg-categories, which is native to the oo-categorical world (we refer to [Haul5] for the
comparison with dg-categories).

It is worth noting that the theory of enriched categories not only unifies the above notions,
but it provides a streamlined way of relating them: given a symmetric monoidal functor
F: M — M’ and an M-enriched category A, there is an M-enriched category F\.A with the
same space of objects, and such that (F1.4)(y, z) = F(A(y, x)) for every pair of objects x,y.
For instance, this allows one to obtain a spectrally enriched category from an (unenriched)
category, by passing to free spectra Hom-wise.

The theory of M-enriched algebroids and categories was introduced in [GH15], and an
alternative approach was provided in [Hin20a]. The definition of M-enriched algebroid is
an instance of the general strategy of corepresenting higher structures. For each space X
the assignment M +— Algbrd (M) that sends each monoidal category M to the category of
algebroids with space of objects X turns out to be corepresented by a nonsymmetric operad
Assosy, with the following properties:
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e The space of objects of Assosy is X x X.

e Given n > 0 and a sequence of objects {z; }o<i<n of X, there is an operation with source
{(@i, 2i51) bo<icn—1 and target (xo, ;).

In the case when X = [0], the operad Assosy is equivalent to the associative operad - this
reflects the fact that an algebroid with one object is the same as an associative algebra. In
general, we think about Assosy as a many object version of the associative operad.

The approaches to the definition of Assosy from [GH15] and [Hin20a] are somewhat
different, although they both produce equivalent operads, as explained in [Mac21]. In chapter
3 we provide yet another (equivalent) approach to the definition of Assosy, inspired by that
of [Hin20al], but somewhat different in its implementation. We show that the assignment
X — Assosy is corepresented by an associative cooperad € internal to Cat, which is in turn
determined by its underlying associative cooperad € internal to O-truncated categories. The
cooperad €% is classical and it can therefore be defined by specifying a finite amount of
data. It is in fact uniquely characterized by a surprisingly small amount of data: namely the
O-truncated categories of objects and operations, and the cosource and cotarget maps. This
observation allows us to compare our definition to previous approaches in the literature. We
also use similar arguments to provide concise definitions of the operads LMy and BMx that
play a key role in [Hin20a).

The rest of chapter 3 is devoted to presenting the basics of the theory of enriched oo-
categories. For ease of reference, we include here some results which appear previously in
[GH15] and [Hin20a).

We finish chapter 3 with an introduction to the theory of (0o, 00)-categories, which we
call w-categories. Although for most of our purposes the w-categories that we will encounter
will be n-categories for some finite n, we consider the notion of w-category to provide a
convenient framework for doing higher category theory in cases where the exact bounds on
the dimensions of the cells are irrelevant.

2.2 Enrichment of presentable modules

Let M be a presentable symmetric monoidal category and let C be a presentable module
over M. Given a pair of objects ¢, ¢’ in C, there is a Hom object s#ome(c, ') in M, defined
by the property that it represents the presheaf m +— Home(m ® ¢, ).

It was shown in [GH15] and [Hin20a] that one may in fact associate to C and M-
enriched category C with the same space of objects as C, and having the property that
Homg(c, d) = H#ome(c, d) for every pair of objects ¢, ¢ in C. This is a key construction in
the theory of enriched categories. For instance, specializing to the case C = M, this allows
one to obtain an Me-enriched category M enhancing the category M.
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The main result of chapter 4 provides a functorial enrichment of the assignment C — C.!
We may informally summarize it as follows:

—M
Theorem 2.2.1. Let M be a presentable symmetric monoidal category, and denote by Cat
the category of large M-enriched categories. Then there is a lax symmetric monoidal functor

M
O : M-mod(Pr") — Cat
with the following properties:

—M —
(i) The composition of O with the lax symmetric monoidal forgetful functor Cat  — Cat
recovers the usual lax symmetric monoidal forgetful functor M -mod(Pr*) — Cat

(ii) For every presentable module C over M, we have an equivalence 0,,(C) = C.

This functoriality will be a key ingredient in chapter 12 when we construct the theories of
presentable n-categories. As a more basic consequence, we mention the following:

Corollary 2.2.2. Let M be a presentable symmetric monoidal category. Then there is a
canonical symmetric monoidal structure on M which recovers upon passage to underlying
categories the original symmetric monoidal structure on M.

2.3 Adjunctions and weighted limits

In chapter 5 we generalize the theory of adjunctions and limits to the enriched context.
The concept of adjunction between enriched categories behaves in a similar fashion as its
unenriched counterpart: given a pair of functors of M-enriched categories F' : C — D and
G : D — C, a natural transformation 7 : 1o — GF' is said to present G as right adjoint to F
if for each pair of objects ¢ in C and d in D, we have an induced equivalence

Homp(F(c),d) = Home(c, G(d))

as objects in M. We note that this condition is strictly stronger than the condition that n
be the unit of an adjunction between the categories underlying C and D.

The theory of limits has a somewhat different character in the enriched world. While in
unenriched category theory limits for a diagram F' : Z — C are particular extensions of F
to the category obtained from Z by adjoining an initial object, in enriched category theory
there is a greater variety of kinds of extensions that one may consider: for every copresheaf
W on Z, there is an associated cone Z;;,, and the problem of extending F' to Zyj, leads to the
notion of W-weighted limit.2

"'While finishing this work we learned about recent work of H. Heine [Hei20] which yields a similar
functorial strengthening of this procedure.

ZWe refer also to [Hin21] for a discussion of the related concept of weighted colimits for left modules over
enriched categories. Conjecturally, these two notions should be related via the procedure of enrichment of
presentable modules.
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The simplest cases of weighted limits have their own name. In the case when Z is induced
from an unenriched category and the weight W is the constant functor with value 1,4, one
speaks about conical limits. This is the kind of limit that one usually works with in unenriched
category theory. The existence of conical limits in an enriched category is often used in
combination with the following result, which is a basic consequence of the stability results for
conical limits which we prove in chapter 5:

Theorem 2.3.1. Let M be a presentable symmetric monoidal category. Let T be a category
and denote by Iy, the induced M-enriched category. Let D be an M-enriched category
admitting all conical limits and let f: T — J' be an epimorphism of M-enriched categories.
Let X : Tyg — Funct(J, D) be a functor. Then:

(i) The diagram X admits a conical limit X< which is preserved by the evaluation functors.
(i) If X factors through Funct(J’, D) then X< also factors through Funct(J', D).

A case of fundamental importance is when M = Cat and f : J — J' is the inclusion of
the universal right adjointable arrow in the universal adjunction Adj. In this case theorem
2.3.1 reduces to the assertion that a limit of adjointable arrows in a 2-category with conical
limits is also adjointable, provided that certain base-change conditions are met.

Besides conical limits, another instance of weighted limits of particular importance occurs
in the case when Z is the unit M-enriched category, but the copresheaf W is arbitrary. In this
case, a weighted limit is called a power. Our main result concerning the theory of weighted
limits guarantees that one may in fact reduce many questions about weighted limits to the
case of conical limits and powers.

Theorem 2.3.2. Let M be a presentable symmetric monoidal category, and let C be an
M-enriched category. Then C admits all weighted limits if and only if it admits all conical
limits and powers. In this case, a functor of M-enriched categories G : C — D preserves all
weighted limits if and only if it preserves all conical limits and powers.

As a consequence, we are able to conclude that the enriched categories underlying
presentable modules admit all weighted limits and colimits:

Corollary 2.3.3. Let M be a presentable symmetric monoidal category and let C be a
presentable M-module. Then the M-enriched category Op(C) admits all weighted limits and
colimits.

The theory of enriched adjunctions and weighted limits is used in the rest of the thesis in
a fundamental way:

e Theorem 2.3.2 plays a role in our study of monads in chapter 7, where it is used show
that the 2-category of M-enriched categories admits all Eilenberg-Moore objects for
monads. As we shall see, FEilenberg-Moore objects are special kinds of weighted limits,
which are neither conical limits nor powers.
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e The extension theorem for functors out of higher categories of correspondences from
chapter 11 requires the existence of conical colimits in the target n-category - the role
of this hypothesis is in fact mediated by theorem 2.3.1. This is then used in chapter
14 in our study of higher quasicoherent sheaves, where we use the fact, established in
chapter 12, that higher presentable categories admit all conical colimits (and many
conical limits).

2.4 Enriched higher algebra
Let M be a symmetric monoidal category. An M-enriched pre-prop P consists of:
e A space of objects P.

e For every pair {zs}ses, {yt}ier of finite families of elements of P, an object

Homp ({75 }ses, {¥i }eer)

in M of operations in P with source {x;}scs and target {y; }ier.

For every triple {zs}ses, {yt}rer, {zu}ucy of finite families of elements of P, a composi-
tion map

HomP({IS}SGS’ {yt}t€T> X HomP({yt}t€T7 {Zu}uEU) — HomP({xs}se% {Zu}uGU)

e For every object x in P, a unit map 1,y — Homp(z, ).

e For every quadruple X = {xs}scs, Y = {¥iher, Z = {2u}uer, W = {w, }yev of finite
families of elements of P, a stacking map

Homp(X,Y) ® Homp(Z, W) — Homp(X U Z, Y UW)

[somorphisms witnessing unitality and associativity of composition, compatibility with
stacking, and an infinite family of higher coherence data.

An M-enriched pre-prop P has an underlying M-enriched algebroid, whose morphisms
are operations in P with single source and target. We say that P is an M-enriched prop
if its underlying M-enriched algebroid is an M-enriched category. We say that P is an
M-enriched operad if it is an M-enriched prop satisfying an extra condition, which roughly
speaking states that arbitrary operations are determined by single target operations.

The theory of M-enriched props and operads is fundamental in the study of M-enriched
structures admitting operations with multiple sources and targets. In chapter 6 we present
one way of making the above definitions precise.

Our approach is similar in spirit to the approach to the theory of (unenriched) operads
developed in [Lurl7]. We may summarize the latter by saying that it studies operads O by
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means of their categories of operators. The key insight is that, in the classical context, an
(1,1)-operad can be recovered from its category of operators, as a (1, 1)-category over Fin,
satisfying a number of properties. One then defines an operad to be a category over Fin,
satisfying analogous conditions. This has the advantage of reducing the study of operads to
questions in category theory, and furthermore allowing direct access to various constructions
of interest.

In our case, when M is not cartesian there is not a good notion of categories of operations:
classically, the category of operators of an (1, 1)-operad is the free semicartesian monoidal
category on it, and this is a notion that only makes sense in the cartesian context. Instead, we
will access M-enriched operads by means of their enveloping symmetric monoidal M-enriched
algebroids, which are simply defined as commutative algebras in the symmetric monoidal
category Algbrd(M)s,.. More precisely, we will define M-enriched operads and props as
commutative algebra objects in Algbrd(M)sp. equipped with a subspace of their space of
objects, subject to a number of conditions.

Our approach differs from the previous approach to enriched operads from [CH20], where
enriched operads are defined as objects of a localization of a certain category of presheaves.
Our methods have the benefit of making the relations between enriched operads, props and
symmetric monoidal categories explicit, allowing one to reduce questions about M-enriched
operads to questions about symmetric monoidal M-enriched algebroids.

In our approach, we are able to show that the category of symmetric monoidal M-enriched
categories is equivalent to a subcategory of the category of M-enriched operads. We can
thus think about symmetric monoidal M-enriched categories as being M-enriched operads
satisfying a certain representability condition. This gives access to a robust notion of lax
symmetric monoidal functors in the enriched setting. Furthermore, the inclusion of symmetric
monoidal M-enriched categories into M-enriched operads admits a left adjoint, which we
can think about as sending each M-enriched operad to its enveloping symmetric monoidal
Me-enriched category.

2.5 Monadicity

The notions of monads and monadic functors are fundamental in category theory. Of central
importance is the monadicity theorem:

Theorem 2.5.1 ([Lurl7] theorem 4.7.3.5). Let G : D — C be a functor of categories. The
following conditions are equivalent:

(i) The functor G is monadic: in other words, G admits a left adjoint I, and G is equivalent
to the forgetful functor LModa(C) — C for A the endomorphism monad of G.

(ii) There exists an algebra A in the monoidal category of endofunctors of C such that G is
equivalent to the forgetful functor LMods(C) — C.

(iii) The functor G is conservative and creates geometric realizations of G-split simplicial
objects.
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The notion of monadic functor only depends on the 2-categorical structure of Gat. We
can therefore think about theorem 2.5.1 (in particular, the equivalence between the first two
and the last item) as providing a characterization of monadic morphisms in %at.

In chapter 7 we extend the theory of monads and monadic morphisms to (possibly
enriched) 2-categories. The main result of this chapter is the following enriched generalization
of theorem 2.5.1, which provides a characterization of monadic morphism in the 2-category
of categories enriched over a presentable symmetric monoidal category.?

Theorem 2.5.2. Let M be a presentable symmetric monoidal category and let G : C — D
be a functor of M-enriched categories. Then the following are equivalent:

(i) There exists a monad M on D and a structure of M-module on G, such that G presents
C as the Filenberg-Moore object of M.

(ii) For every M-enriched category &, the functor of categories underlying the functor of

M-enriched categories
G, : Funct(€,C) — Funct(€, D)

18 monadic.

(iii) The functor G admits a left adjoint, is conservative, and creates conical geometric
realizations of G-split simplicial objects.

2.6 Organization

We now describe the contents of part I in more detail. We refer the reader also to the
introduction of each chapter for an expanded outline of its contents.

Chapter 3 is a general introduction to enriched category theory. We begin by describing
our approach to the definition of the operad Assosy, and the closely related operads LM x
and BMxy. We then review the notions of algebroids and enriched categories, and the
general functoriality and multiplicativity properties of the theory. We finish this section with
an introduction to the theory of n-categories and w-categories via iterated enrichment.

Chapter 4 deals with the theory of left modules and bimodules over algebroids. The bulk
of this section is devoted to the construction of a functorial enhancement of the procedure of
enrichment of modules over presentable categories. We also outline here the construction of
the Yoneda embedding via diagonal bimodules, following [Hin20a].

In chapter 5 we study the theory of adjunctions between enriched categories, and weighted
limits and colimits in enriched categories. We introduce the notion of local right adjoint to
a functor between enriched categories, and show that a right adjoint exists if and only if
all local adjoints exist. We also establish stability results for adjunctions under limits and
passage to functor categories. We then use the theory of adjunctions to study the theory of

3We refer to [Dub70] for a discussion of the monadicity theorem in the setting of classical enriched
category theory.
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weighted limits and colimits, and the important special case of conical limits and colimits. We
finish this chapter by proving theorem 2.3.2; which we use to show that enriched categories
that arise from presentable modules admit all weighted limits and colimits.

In chapter 6 we discuss a number of topics concerning higher algebra in the enriched
setting. We discuss the theory of cartesian symmetric monoidal enriched categories, and
show that it is equivalent to the theory of symmetric monoidal enriched categories with finite
products. We introduce 2-categories of O-monoidal enriched categories for any operad O,
and discuss their enrichment in the case when M is cartesian. We finish this chapter by
introducing a theory of enriched props and operads.

In chapter 7 we study the theory of monads and monadic morphisms in enriched 2-
categories. We provide here a proof of theorem 2.5.2. Specializing to the case M = wCat, we
recover notions of monads and monadic morphisms in arbitrary w-categories.
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Chapter 3

Enriched category theory

Let M be a monoidal category. An algebroid A in M with space of objects X consists of
e For every pair of objects z,y an object A(y, ) in M.
e For every object z in X a morphism 1y — A(z, ).
e For every triple of objects z,y, 2 a morphism A(z,y) ® A(y,z) — A(z,x).
e Associativity and unit isomorphisms, and an infinite list of higher coherence data.

Given an algebroid A with space of objects X, there is a Segal space underlying A, with
space of objects X and for each pair of objects y, x the space of morphism being given by
Hom (14, A(y, z)). We say that A is an M-enriched category if its underlying Segal space
is complete. Our goal in this chapter is to review the theory of algebroids and enriched
categories, and the approach to n-category theory via iterated enrichment.

For each space X the assignment M — Algbrd (M) that sends each monoidal category
M to the category of algebroids with space of objects X turns out to be corepresented by a
nonsymmetric operad Assosy, to be thought of as a many object version of the associative
operad. The assignment X — Assosy determines a functor from spaces to the category of
associative operads, which is in turn corepresented by an associative cooperad € internal to
the category Cat.

We begin in 3.1 by reviewing the notion of internal operads and cooperads, and presenting
the definition of the cooperad €. This is defined starting from a cooperad €< in the (classical)
category of posets, which can be specified by a finite amount of data, namely the posets of
objects and operations, with source, target, unit, and composition maps. We show that ¢!
is in fact uniquely determined from its categories of objects and operations, together with
source and target maps - this uniqueness criterion allows us later on to compare our approach
to enrichment with other approaches in the literature.

In 3.2 we give the definition of the associative operad Assosy for an arbitrary category
X. Although for the purposes of enriched category theory the category X will always be a
space, we will use this extra generality later on to give a direct description of the equivalence
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between Cat and the category of categories enriched in Spc. We also give definitions of the
related operads LM x and BMx y which corepresent left modules and bimodules.

In 3.3 we review the definition and functoriality of the category of algebroids Algbrd(M)
in an associative operad M. We pay special attention to the case when M is a presentable
monoidal category - in this case we have that Algbrd(M) is also presentable. We introduce
two basic examples of algebroids: the trivial algebroid, and the cells - together these generate
Algbrd(M).

In 3.4 we review the case of Spc-algebroids with a space of objects, and its equivalence
with the category of Segal spaces. We then define the category of M-enriched categories
Cat™ as the full subcategory of Algbrd(M) on those algebroids with a space of objects and
whose underlying Segal space is complete and reprove the basic fact that if M is presentable
monoidal then Cat™ is an accessible localization of Alghrd(M).

In 3.5 we discuss the canonical symmetric monoidal structure in the category of algebroids
over a symmetric monoidal category. In the presentable setting, this gives access in particular
to a notion of functor algebroids and functor enriched categories. We prove here a basic
result describing Hom objects in functor algebroids when the source algebroid is a cell,
which will later on be used as a starting point for establishing various facts about general
functor algebroids. We finish by studying the behavior of functor algebroids as we change
the enriching category.

In 3.6 we review the approach to n-categories as categories enriched in (n — 1)-categories.
We discuss the various functors relating the categories nCat for different values of n. In
the limit as n tends to infinity we recover the category wCat of w-categories. Although for
our purposes all of the w-categories we will encounter will be n-categories for some finite n,
the theory of w-categories provides a convenient setting in which to work with n-categories
in cases where the exact value of n is irrelevant or may vary. We show that the theory of
w-category is in fact a fixed point under enrichment: there is an equivalence between wCat
and the category of categories enriched in wCat.

Remark 3.0.1. The theory of algebroids and enriched categories was introduced in [GH15]
and [Hin20a]. In this thesis we introduce a new approach to the subject based on the internal
cooperad €, and show that this approach arrives at the same theory as that from [Hin20a].

Some of the basic facts about algebroids and enriched categories that we discuss in
3.3-3.5 (for instance, claims about presentability, existence of symmetric monoidal structures,
functoriality of the theory) appear already in some way in the references. We chose to include
statements and proofs of most of those facts for completeness and ease of reference, as our
notation and conventions differ from other sources.

Another reason why we opted for a systematic treatment of the subject is that in many
cases we in fact need tools that go beyond those which appear in the literature. For instance,
in 3.5 we show that the category of algebroids over a symmetric operad admits the structure
of a symmetric operad, and that this structure is functorial under morphisms of operads -
this functoriality will be necessary in chapter 12 to construct the realization functor ¢,,. We
also pay special attention throughout the chapter to enriched cells. We are able to obtain a
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good understanding of products and functor categories for cells, which is a basic building
block for proving results for arbitrary functor categories later on. In particular, this will be
crucial in chapter 5 when we discuss adjunctions between functor enriched categories.

3.1 The internal cooperad &

We begin with a general discussion of the procedure of internalization of objects of arbitrary
presentable categories.

Definition 3.1.1. Let D be a presentable category and let C be a complete category. A
D-object internal to C is a limit preserving functor F : D°® — C. We denote by D(C) the full
subcategory of Funct(DP,C) on the internal D-objects.

Example 3.1.2. Let D be a presentable category. Then it follows from [Lur09a] proposition
5.5.2.2 that D(Spc) is equivalent to D.

Example 3.1.3. Let C be a complete category. Then Spc(C) is equivalent to C. More
generally, if D’ is a small category then (P(D’))(C) is equivalent to Funct(D"P,C).

Remark 3.1.4. Let D be a presentable category and let C be a locally small complete
category. It follows from [Lur09a] proposition 5.5.2.2 that a functor F' : D°? — C is limit
preserving if and only if it has a left adjoint. In this context, the data of F' is equivalent to
the data of a functor G : C°® — D such that for every d in D the presheaf Homp(d, G(—))
on C is representable. If C is presentable then this condition is equivalent to G preserving
limits, and so we conclude that D(C) = C(D). In other words, if C and D are presentable
then D-objects internal to C are the same as C-objects internal to D. Indeed, in this case the
category D(C) = C(D) admits a symmetric presentation as C ® D (see [Lurl7] proposition
48.1.17).

Remark 3.1.5. Let L : D; — D, be a localization functor between presentable categories
and let C be a locally small complete category. Then the functor Dy(C) — D;(C) given by
precomposition with L is a fully faithful embedding. A D;-object F : D¥ — C belongs to
D, (C) if and only if the associated functor G : C°? — D; factors through Ds.

Remark 3.1.6. Let D be a presentable category and let C be a classical locally small
complete category. Let D<o be the full subcategory of D on the O-truncated objects and
denote by 7<o : D — D<( the truncation functor. Then it follows from remark 3.1.5 that
precomposition with 7« induces an equivalence D<y(C) = D(C).

Example 3.1.7. Let C be a classical locally small complete category. Then Set(C) is
equivalent to C. If C is presentable then C(Set) is also equivalent to C.

Remark 3.1.8. Let D be a presentable category. Let D’ be a small category equipped with
a localization functor L : P(D’) — D, so that the right adjoint to L embeds D as a full
subcategory of P(D’). Let C be a locally small complete category. Then it follows from a
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combination of example 3.1.3 and remark 3.1.5 that D(C) is equivalent to the full subcategory
of Funct(D'P,C) on those functors F' such that the presheaf Home(c, F'(—)) belongs to D for
every c in C.

We now specialize the above discussion to the case of internal operads.

Notation 3.1.9. Denote by Op the category of operads. For each operad O we denote by
Opy the category of operads over O.

Definition 3.1.10. Let O be an operad, and C be a complete category. An O-operad internal
to C is an Opp-object internal to C. If C' is a cocomplete category then an O-cooperad internal
is an C' is an O-operad internal to (C")°P.

Remark 3.1.11. Let O be an operad, and C be a presentable category. Then following
remark 3.1.4, we see that an O-cooperad internal to C is the same data as an accessible, limit
preserving functor G : C = Opp.

Remark 3.1.12. Let O be an operad and C be a classical locally small complete category.
Then by virtue of remark 3.1.6 we have an equivalence Op,(C) = (Opp)<o(C). In other
words, O-operads internal to C are the same as 0-truncated O-operads internal to C.
Assume now that O is a O-truncated object of Op, so that it has a set V' of objects, and
a set M of operations. Consider the full subcategory D’ of (Opy)<o on the following objects:

e The trivial O-operad v, for each o in V.
e For every operation m in M, the free O-operad f,, containing an m-operation.

e For every operation m in M with source objects {0; }ics, and every family of operations
{m;}ics where the target object of m; is o;, the O-operad f,,, », defined as the pushout

(I_I m) U i
€S Lies vo;

Then (Opy)<o is a localization of the category of set valued presheaves on D'. Using
remark 3.1.8 are able to obtain a concrete description of the category Opy,(C). Namely, an
O-operad O internal to C consist of the following data:

e For each o in V an object O'(v,) in C.

e For each m in M with source objects {0;};cs and target object o, an object O'(f,,) in
C, equipped with source and target maps [[, 4 O'(v,,) <= O'(fm) = O'(0,).

e For each o in V' a unit map O'(v,) — O'(fiq,), where id, denotes the identity l-ary
operation of o.



CHAPTER 3. ENRICHED CATEGORY THEORY 27

e For each m in M with source objects {0;}ics, and every family of operations {m;}ics
where the target object of m; is 0;, a composition map

[T O Gm) *11,cs 000 O (Fm) = O(F0).

i€S
where [ denotes the composite in O of family of operations {m;};cs with m.

The above data is required to satisfy a finite list of standard compatibility conditions
mimicking those of the category of O-truncated O-operads, built so that the data obtained
from the above by applying a corepresentable functor C — Set defines an O-operad in Set.
In other words:

e Composition and unit maps are required to be compatible with sources and targets.
e Units are required to be compatible with compositions.
e Composition is required to be associative.

e For every oin V' the unit map induces an isomorphism between O’ (v,) and the subobject
of isomorphisms inside O'(fiq, ).

Example 3.1.13. Let C be a locally small complete category and let Assos be the operad
governing associative algebras. Then Assos-operads internal to C will be called internal
nonsymmetric operads. By virtue of remark 3.1.12, in the case when C is classical we can
specify a nonsymmetric operad internal to C by giving a finite amount of information. Namely,
a nonsymmetric operad O internal to C consists of the following data:

e An object V' in C parametrizing objects of O.

e For each n > 0 an object M, in C parametrizing n-ary operations in O, equipped with
source and target maps V" < M,, — V.

e A unit map V — M.

e For each n > 0 and each sequence {n;}1<;<, of nonnegative integers with sum N a
composition map
I M., xve M, — My

1<i<n
subject to the conditions described in remark 3.1.12.
We now present the construction of the internal nonsymmetric cooperad in strict categories

¢ which underlies the assignment X ~— Assosy. As discussed in example 3.1.13, we can do
this by specifying a finite amount of information.
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Construction 3.1.14. Let Cat<y be the category of 0-truncated categories. In other words,
this is the category of strict categories with no nontrivial isomorphisms. We define a
nonsymmetric cooperad € internal to Cat<( as follows:

e The category V of objects of € is the set with two elements {t, s}.

e For each n > 0 the category M,, of n-ary operations of €% is in fact a poset, and has
objects t;, s; for 0 <¢ < n+ 1, with ¢ty = so and t,,.1 = S,41, and arrows s; < ;41 for
0 < i <n. We depict this as follows:

to =50 «— 11 S1 — 1o Sn<—tn+1:8n+1

e The cosource map V™ — M, maps the i-th copy of ¢ and s to t; and s; respectively.
The cotarget map M, <— V maps t, s to ty and s, respectively.

e The counit map M; — V maps ty and t; to t and s; and sy to s.

e Let n > 0 and let {n;}1<j<, be a sequence of nonnegative integers with sum N. Denote
the objects of |_|j M, by t;, 53, where 1 < j <nand 0 <k <nj;+ 1. The poset

(1)

1<i<n ylin

has two extra objects which are in the image of the cotarget map M, <— V. We denote
these by t; and s/, ;. The cocomposition map

My — <|_| Mm> U M.

7 yin

sends tg, sy+1 to t; and s, 41, and for i # 0, N sends ¢; and s; to tf; and si respectively,
where (7, k) is the unique pair with 1 <k < n; such that (Zl§l<j ny) + k =1i.

Remark 3.1.15. For each n > 0 the cosource and cotarget maps V" — M,, <— V are jointly
surjective. It follows from this, that € is characterized uniquely by the first three items of
construction 3.1.14. In other words, there is a unique way in which we could have defined the
counit and cocomposition maps for €' once we are given the data of V, M,, and the cosource
and cotarget maps.

Remark 3.1.16. The internal nonsymmetric cooperad € defines a colimit preserving functor
(OP aseos)<0 — Cat<g which we continue denoting by €. Composing this with the inclusion
A — (Cat)<g — (Opagos)<o We obtain a cosimplicial O-truncated category A — Caty.
This satisfies the Segal conditions, and is in fact a cocategory object in Cat<(. Inspecting
construction 3.1.14 reveals that this is the functor that sends [n] to the poset [n]|_|[n]P.
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Our next task is to extend €% to a nonsymmetric cooperad internal to Cat.

Proposition 3.1.17. There is a unique internal cooperad € : Op .o — Cat whose categories
of objects and operations are O-truncated, and making the following triangle commute

OpASSOS # Cat

T<0
k l

Catgo

where T<q s left adjoint to the inclusion.

Proof. Recall the presentation of Op, .. in terms of complete Segal operads from [Barl8], as
a localization of the presheaf category on the category Ag of trees. This identifies Op 4y, With
the full subcategory of P(Ag) on those presheaves satisfying suitable Segal and completeness
conditions. Let L : P(Ag) — Opagos be the localization functor, and i : Ag — P(Ag) be
the inclusion. Let v be the terminal associative operad, thought of as an object of Ag, and
for each n > 0 let f,, be the free associative operad on an operation of arity n, again thought
of as an object of Ag.

Since L is a localization, and in particular an epimorphism, it suffices to show that there
is a unique colimit preserving functor ¢’ : P(Ag) — Cat which factors through Op .., maps
the objects v and | to O-truncated categories, and makes the following triangle commute:

P(Ag) —<— Cat

o 1=

Cat§0

For this it suffices to show that there is a unique functor G : Ag — Cat which satisfies the
dual Segal and completeness conditions, maps v and § to O-truncated categories, and makes
the following triangle commute:

A@ L) Cat

TSO
el

Catgo

Let j : Cat<o — Cat be the inclusion. We claim that Gy = j€Li satisfies the dual Segal
and completeness conditions. The fact that Gy satisfies the dual completeness conditions
follows from the description of the simplicial category underlying Gy from 3.1.16. The fact
that G satisfies the dual Segal conditions follows from the fact that j preserves the pushouts
involved in them.

Note that Gy comes equipped with an identification € : 7<¢Gy = €9Li given by the
counit of the adjunction 7« 4 j. It now suffices to show that pair (G, p) of a functor G
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and an identification p : 7<oG = €Li as above is canonically equivalent to (Gg,€). Let
n: G — j7<oG be the unit map. The fact that G maps v and §, to O-truncated categories
implies that 7 is an isomorphism on the full subcategory of Ag on the objects v and f,. Since
both G and j7<(G = Gy satisty the dual Segal conditions, we conclude that (jp) o n gives us
an isomorphism G = Gy. Our claim now follows from the fact that the diagram of functors
and natural isomorphisms

T<om . T<0Jp
TS()G _— TgojTgoG _— TgoGo

\ /
¢l

commutes in a natural way. O]

Corollary 3.1.18. Let C': Opyyos — Cat be an internal associative cooperad. Assume that
the category of objects and category of operations of C' are equivalent to those of €, with an
equivalence that commutes with the cosource and cotarget maps. The C' is equivalent to €.

Proof. By remark 3.1.15 we have that 7<oC is equivalent to €°!. The claim now follows from
proposition 3.1.17. O

Remark 3.1.19. Recall that Cat and Op,,, come equipped with involutions (—)° and
(=)™, which correspond to actions of Z/27Z on both categories. The internal cooperad
€1 Opageos — Cat<g can be given a Z/27Z- equivariant structure, by switching the role of
t and s in the category of objects, and of s;,t; with ¢,,1_; and s,,1_; in the categories of
operations. It follows from proposition 3.1.17 that the internal cooperad € inherits a Z/27Z
equivariant structure. In particular, we have a commutative square

OP Assos —% 5 Cat

Jres lop

OpASSOS L) Cat.

3.2 The operad Assosx
We now introduce the operad Assosx that corepresents the assignment M — Algbrd y (M).

Notation 3.2.1. Let Assos_ : Cat — Op,ps be the right adjoint to €. This sends each
category X to an associative operad Assosy.

Remark 3.2.2. In the case when X is the terminal category, the operad Assosy coincides
with the associative operad Assos. In general, we think about Assosx as a many object
version of Assos. The category of objects of Assosy is X x X°. Given a nonempty
sequence {(y;, ;) }1<i<n of source objects, and a target object (y,z), a multimorphism
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{(yi, z:) }1<i<cn — (y, ) consists of a series of arrows x; <— y;11 for 1 < i < n, and arrows
T, < x and y < y;. A multimorphism from the empty sequence of objects to (y,z) consists
of an arrow y < .

Remark 3.2.3. In [Hin20a], Hinich works in the language of categories of operators, and
defines an assignment Assos” : Cat — Op,.... to be corepresented by a certain functor
F : AJA? — Cat<g. This functor is the categories of operators incarnation of the internal
nonsymmetric cooperad €.

Indeed, note that the functor Assos™ is accessible and preserves limits, so by virtue of
remark 3.1.11 it is corepresented by an internal nonsymmetric cooperad € : Op, ... — Cat.
Direct inspection of the definition of F reveals that the category of objects and operations
of ¢ agree with those of €9, in a way which is compatible with source and target maps.
As observed in corollary 3.1.18 this implies that € is equivalent to €. It follows that the
functor Assos” defined in [Hin20a] is equivalent to our functor Assos.

Example 3.2.4. Let X = {a,b} be the set with two elements a,b. Then the associative
operad Assosy is classical, and can be computed explicitly from the definitions. We note that
it has objects (a,a), (b,0), (a,b), (b,a). The objects (a,a) and (b,b) are algebras in Assosy.
The object (a,b) is an (a, a) — (b, b) bimodule and the object (b,a) is a (b, b) — (a, a) bimodule.

As we shall see below, for each pair of categories X, Y, the category X x Y °P has compatible
(weak) actions of the associative operads Assosy and Assosy on the left and on the right.
This is the basis for the theory of bimodules over algebroids.

Notation 3.2.5. Denote by BM, LM, RM be the associative operads governing bimodules
left modules, and right modules, respectively. Recall that we have canonical inclusions
LM — BM « RM. We denote by Assos™ and Assos™ the copies of the associative operad in
BM contained in LM and RM, respectively.

Construction 3.2.6. Let X and Y be categories. Consider the projection X UY — {a, b}
from the disjoint union of X and Y into the set with two elements a,b, that maps X
to a and Y to b. Applying the functor Assos_ we obtain a map of associative operads
Assosxyy — Assosg, . We let BMyy be the BM-operad obtained by pullback of Assosxy
along the map BM — Assos(,p corresponding to the (a,a) — (b,b) bimodule (a,b) (see
example 3.2.4). The assignment X — BMxy is functorial in X and Y. We denote by
BM_ _ : Cat x Cat — Opgy the corresponding functor.

Remark 3.2.7. Let X,Y be categories. The functor Assos_ preserves limits since it is a
right adjoint. Applying it to the cartesian square

X — X UuY

| |

{a} — {a,0}
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we conclude that the Assos™-component of BMx y coincides with Assosx. This equivalence
is natural in X.
Similarly, from the cartesian square

Y — XuY

| |

{0} —— {a,0}

we see that the Assos™-component of BM x,y coincides with Assosy.
Consider now the cartesian square

(BMxy)m — Assosxuy

! J

{(a,b)} ——— Assos{an}

where the category (BMx y),, is the fiber of BMyy over the universal bimodule m in BM.
Applying the (limit preserving) forgetful functor Op,.,s — Cat we obtain a cartesian square

(BMxy)m — (X x XP)U(Y xYP)U(X X YP)U (Y x XP)

| |

{(a,0)} > {(a,a),(b,0), (a,0), (b, a)}.

We conclude that the category (BMy y )., is equivalent to X x Y°P. This equivalence is also
natural in X,Y.

Example 3.2.8. Let X be a category. Then we have an equivalence

Assos(X U X) = Assos(X x {a,b}) = Assos(X) x Assos({a, b})
which is natural in X. It follows that we have an equivalence BMx x = Assosx x BM, which
is natural in X.

Notation 3.2.9. Let X be a category. Denote by BMx the associative operad BMy g. Let
LMx be the LM-operad obtained by pullback of BMy along the inclusion LM — BM. We
denote by BM_ : Cat — Opp,; the functor that assigns to each category X the BM-operad
BMy, and by LM_ the composition of BM_ with the functor of base change to LM.

Remark 3.2.10. In [Hin20a], Hinich defines an assignment BM” : Cat — Oppgy in the
language of categories of operators, by declaring it to be corepresented by a certain functor

Fem i AJ(Apy)P — Cat.
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The functor BM? is accessible and preserves limits, and therefore by remark 3.1.11 it is
corepresented by an internal BM-cooperad €, : Oppy — Cat.
Likewise, our functor BM_ can be obtained as the composite functor

Assos_ (a,a)(avb)(b,b)

—u{b}
Cat = Cat/{a} B— Cat/{a7b} — (OpAssos)/ASSOS{a,b} (OpAssos)/BM = OpBM

and each of the functors in the composition preserves limits and is accessible, so we have
that BM_ is also corepresented by an internal BM-cooperad €gy : Opgy — Cat. Direct
inspection of the functor Fgy reveals that €gy and QZgM have equivalent categories of objects
and operations, in a way compatible with sources and target. A variation of the arguments
in proposition 3.1.17 and corollary 3.1.18 (where we work with (Ag),gm ) shows that the
cooperads €y and €, are equivalent, and thus our functor BM_ is equivalent to the functor
BM* from [Hin20a].

3.3 Algebroids

We now present the definition of an algebroid in an associative operad (also known as
categorical algebras in [GH15] and enriched precategories in [Hin20a]) and review the basic
funtoriality properties of the theory.

Definition 3.3.1. Let M be an associative operad and X be a category. An algebroid on M
with category of objects X is an Assosx-algebra in M.

Remark 3.3.2. Let M be an associative operad. An algebroid with category of objects
[0] is an algebra in M. In general, we think about an algebroid A in M as a many-object
associative algebra. Indeed, an algebroid with category of objects X assigns to each pair of
objects y,z in X an object A(y,z) in M and to every n > 0 and every sequence of arrows
Yo = To ¢ Y1, L1 < Y2, -+, L1 < Yn, Tn < Yni1 = Tni1 it assigns a multimorphism

{Ay1, 21), Aly2, 22), - - A(yn; Tn) } = A(Yo, Tng1)
in M. In the case when M is a monoidal category, this is the same as a morphism
Alyr, 21) @ Aye, 22) @ ..., @A(Yns Tn) = A(Yo, Tnt1)-
Specializing to the case n = 0 we obtain for every pair of objects x,y a map
Homy (y, z) — Homu (1, A(y, )).

In particular, starting from the identity in Homy (x, ) we obtain a map 1, — A(x, z) (the
unit at x).
In the case when n = 2 and all the arrows are identities we obtain a map

Alz,y) @ Ay, z) — A(z, x)

(the composition map) for every triple of objects z,y, z in M. It follows from the definition
of the composition rule in the cooperad € that these maps satisfy the usual unitality and
associativity rules up to homotopy.



CHAPTER 3. ENRICHED CATEGORY THEORY 34

Construction 3.3.3. Let X be a category and M be an associative operad. We de-
note by Algbrdy (M) the category of Assosx-algebras in M. Denote by Algbrd_(—) :
Cat® X Opp s — Cat the composite functor

op Assos®? x id op Alg_(—)
Cat X OpAssos OpAssos X OpAssos Cat .

For each M in Op,,, we denote by Algbrd(M) the total category of the cartesian fibration
associated to the functor Algbrd_(M) : Cat®® — Cat. We call Algbrd(M) the category of
algebroids in M.

The assignment M +— (Algbrd(M) — Cat) yields a functor

Algbrd(—) : Opagsos — Cat

equipped with a natural transformation to the constant functor Cat. We denote by Algbrd
the total category of the cocartesian fibration associated to Algbrd(—). This comes equipped
with a projection Algbrd — Cat x Opy.., Whose fiber over a pair (X, M) is the category
Algbrd y (M). This is the two-sided fibration associated to the functor Algbrd(—)_.!

Notation 3.3.4. Let i : X — Y be a functor of categories, and let j : M — A be a map of
associative operads. We denote by i' : Algbrdy- (M) — Algbrd (M) the functor induced by
i, and by ji : Algbrd(M) — Algbrd(N) the functor induced by j.

Example 3.3.5. Let M be a monoidal category. Then the unit 1,4 has an algebra structure,
and therefore defines an algebroid with category of objects [0]. Since 1,4 is initial in
Algbrdy, (M), the functor Algbrd(M) — Spe corepresented by 1 is equivalent to the
restriction along the projection Algbrd(M) — Cat of the functor Cat — Spc corepresented
by [0]. In particular, for every M-algebroid A with category of objects X, the space
Homaigbrar) (11, A) is equivalent to the space underlying X.

Example 3.3.6. Let M be monoidal category, and let m be an object in M. Assume that
M admits an initial object which is compatible with the monoidal structure. Let X = {a, b}
be the set with two elements. Then we may form the free Assosy-algebra C,, in M equipped
with a map m — C,,(a,b). The description of free algebras from [Lurl7] definition 3.1.3.1
yields the following description of C,,:

o Ch((a,a)) = Cn((bd)) = 1pm.
e C(a,b)=m.
e (b, a) is the initial object of M.

"'We refer to chapter 9 for background on the theory of two-sided fibrations and bifibrations, and a general
discussion of the Grothendieck construction which relates these to bifunctors into Cat.
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We call the algebroids of the form C,, cells. These come equipped with two maps
1pm — G, which pick out the objects (a,a) (the target) and (b, b) (the source). These maps
can be combined into a single map out of the coproduct 1,4 U 1o in Algbrd(M) (note that
this coproduct indeed exists and is given by the initial object in Algbrdy, ;3 (M), which agrees
with the cell associated to the initial object in M).

The formation of cells is functorial in m: it underlies a colimit preserving functor

C_: M — Algbrdy, ;, (M)

given by operadic left Kan extension along the inclusion {(a,b)} — Assosy,p;. This assignment
is furthermore functorial in M. In other words, given another monoidal category M’ with
compatible initial object and a monoidal functor F' : M — M’ which preserves initial objects,
then the commutative square of categories

V(a,b)

Algbrd{(l’b} (M) — M

I
Algbrd g, (M) =% M

is horizontally left adjointable.

Remark 3.3.7. Let u : Op,.s — Cat be the colocalization functor that attaches to each
associative operad its category of objects. It follows from 3.1.16 that we have an equivalence
uAssos_ = id x(id)°P as endofunctors of Cat. In particular, for every category X and
associative operad M we have a functor

Algbrd y (M) — Funct(X x X M)

which is natural in X and M. We think about this as the functor which attaches to each
algebroid A with category of objects X, the hom-functor of A restricted to X.

Remark 3.3.8. Recall from remark 3.1.19 that the cooperad € intertwines the order reversing
involution (—)™" of Op .. and the passing to opposites involution of Cat. It follows that the
same is true for the functor Assos_ : Cat — Op s We thus see that the functor Algbrd_(—)
admits the structure of a fixed point for the involution (—)°P x (—)*¥ on Cat® X Op s, Which
implies that there is an involution (—)°® on Algbrd and an enhancement of the projection
Algbrd — Cat X Opp s t0 & Z/2Z-equivariant map.

In particular, for every category X and associative operad M, we have an equivalence
Algbrd y (M) = Algbrd yop (M™). In the case when X is a space and M is the associative
operad underlying a symmetric operad, then the pair (X, M) is has the structure of fixed
point for the involution (—)° x (—)"". It follows that the involution (—)°P : Algbrd — Algbrd
restricts to an involution on Algbrd y (M). In other words, if M underlies a symmetric operad,
then any M-algebroid A with a space of objects X has attached to it another M-algebroid
AP with space of objects X. Examining the fixed point structure on ¢ from remark 3.1.19
reveals that for every pair of objects v,z in X one has A°®(y,x) = A(z,y).
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Example 3.3.9. Let M be a symmetric monoidal category compatible with initial object
and let m be an object of M. Then the cell C,, is equivalent to its opposite. This equivalence
interchanges sources and targets - namely, there is a commutative diagram of M-algebroids

Lae L] L ((a,a),(b,b)) C,.

Js -
L[ 1y 2@ e yop,
In general, for any M-algebroid A we can think about A° as being obtained from A by
reversing the direction of the cells.

Remark 3.3.10. Let M, M’ be associative operads. Then for every category X there is a
functor
Alg (M) x Algbrd y (M) — Algbrd  (M").

This is natural in X and therefore defines a functor
Alg \((M') x Algbrd(M) — Algbrd(M’)

which enhances the functoriality of construction 3.3.3 to take into account natural transfor-
mations between morphisms of associative operads. This is compatible with composition:
namely, given a third associative operad M", there is a commutative square

Alg o (M) x Alg (M) x Algbrd(M) —— Alg o (M”) x Algbrd(M’)

l l

Alg  (M") x Algbrd(M) > Algbrd(M").

This is part of the data that would arise from an enhancement of Algbrd(—) to a functor of 2-
categories. We do not construct this enhancement here; however note that the above property
is already enough to conclude that if M, M’ are monoidal categories and F' : M — M’ is
a monoidal functor admitting a (lax monoidal) right adjoint F, then we have an induced
adjunction

F : Algbrd(M) = Algbrd(M') : (Ff),.

By working with monoidal envelopes and passing to presheaf categories, one can often
reduce questions in enriched category theory to the case when the enriching category is a
presentable monoidal category. We now study some of the features of this setting.

Remark 3.3.11. In construction 3.3.3 we implicitly assumed that all operads and categories
were small. Passing to a larger universe, one can similarly discuss categories of algebroids in
presentable monoidal categories. Given a presentable monoidal category M, we will denote
by Algbrd(M) the category of algebroids in M with a small category of objects. Its version

where we allow large categories of objects will be denoted by ATng(M)



CHAPTER 3. ENRICHED CATEGORY THEORY 37

Proposition 3.3.12. Let M be a presentable category equipped with a monoidal structure
which is compatible with colimits. Then

(i) The category Algbrd(M) is presentable, and the projection Algbrd(M) — Cat is a
limit and colimit preserving cartesian and cocartesian fibration.

(ii) For every colimit preserving monoidal functor F: M — M’ into another presentable
monoidal category, the induced functor F, : Algbrd(M) — Algbrd(M') preserves
colimits.

Proof. We note that item (ii) is a direct consequence of remark 3.3.10 together with the adjoint
functor theorem. We now prove item (i). It follows from [Lurl7] corollary 3.2.3.5 that for every
category X the category Algbrd (M) is presentable. Moreover, using [Lurl7] corollary 3.1.3.5
we see that for every functor i : X — Y the induced functor 7' : Algbrdy (M) — Algbrd (M)
admits a left adjoint, so that the projection Algbrd(M) — Cat is both a cartesian and a
cocartesian fibration. Since the functors Assos_ and Alg_(M) are accessible, we conclude
from [GHN17] theorem 10.3 that Algbrd(M) is a presentable category. The fact that the
projection to Cat preserves limits and colimits is now a consequence of [Lur09a] corollary
4.3.1.11. 0

Notation 3.3.13. For each associative operad M denote by Algbrd(M)g,. the full subcate-
gory of Algbrd(M) on those algebroids which have a space of objects.

Remark 3.3.14. Let M be a presentable monoidal category. Let x be a regular cardinal
and let {m; };ez be a small family of k-compact generators of M. Then the cells C,,, together
with the unit algebroid 14 are a family of k-compact generators of Algbrd(M)gpe.

3.4 Enriched categories

Our next goal is to review the notion of enriched category. In order to do this, we will first
need to study the category of algebroids in the case M = Spc equipped with its cartesian
monoidal structure.

Construction 3.4.1. Let M = Spc be the category of spaces, equipped with its cartesian
monoidal structure. Then for every category X the category Algbrdy (Spc) is presentable
([Lurl7] corollary 3.2.3.5), and in particular admits an initial object. Since the projection
Algbrd(Spc) — Cat is a cartesian fibration, there is a unique section s : Cat — Algbrd(Spc)
such that for every category X we have that s(X) is initial in Algbrd y(Spc).

Consider the cartesian square

Algbrd(Spc)spe —— Algbrd(Spc)
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Since p is a cartesian fibration and ¢ admits a right adjoint, we have that the above square is
horizontally right adjointable. The right adjoint ¢'% : Algbrd(Spc) — Algbrd(Spc)s,. maps
an algebroid A : Assosxy — Spc to the algebroid defined by the composite map

A
Assosy<o — Assosy — Spc.

Denote by p : Cat — Algbrd(Spc)spe the composite map (i')%s.
Example 3.4.2. The algebroid p([0]) is the unit algebroid 1gp..

Example 3.4.3. Examining the description of free algebras from [Lurl7] definition 3.1.3.1
yields the following description of p([1]):

e p([1]) has a set of objects with two elements 0, 1.
e p([1])(0,0) = p([1])(1,1) = p([1])(1,0) are the singleton set.
e p([1])(0,1) is empty.
In other words, we have that p([1]) is equivalent to the cell Cfy).
Lemma 3.4.4. The section s from construction 3.4.1 admits a left adjoint.

Proof. We continue with the notation from construction 3.4.1. It follows from remark 3.3.14
that Algbrd(Spc)sp. is generated under colimits by the cell Cjg and the trivial algebroid 1gp.
To obtain a set of generators for Algbrd(Spc) it suffices to add the algebroid s([1]). Since
Cat admits all colimits, in order to show that s has a left adjoint, it suffices to show that for
each generator G, there is a category C and a morphism 7 : G — s(C) such that for every
category D the composite map

Homc, (C, D) = Hom ajgprd(spe) (5(C), s(D)) AN Homagbrd(spe) (G, (D))

is an equivalence. Note that the section s is fully faithful, so the first map in the above
composition is always an isomorphism. Since 1g,. and s([1]) belong to the image of s, the
identity maps of 1gp,. and s([1]) satisfy the desired condition.

It remains to consider the case of the generator Cl. We take C = [1], and the map
n : Clg — s(C) to be the morphism of algebroids associated to the image of the map
Ispe — s([1])(1,0) induced by the unique arrow 1 <— 0 in [1]. Let D be a category and
consider the commutative triangle

HomCat (Ca D) i ? HomAlgbrd(Spc) (C[O]a S(D))




CHAPTER 3. ENRICHED CATEGORY THEORY 39

where the diagonal maps are the source and target maps. In order to show that n*s, is an
equivalence, it suffices to show that it is an equivalence when restricted to the fiber over any
point (x,y) in D=0 x D=Y. This restriction recovers the map Homp(x,y) — s(D)(y, z) which
assigns to each arrow y <— z : o in D, the image of the induced map lgpe — s(D)(y, x). Our
claim now follows from the fact that s(D) is the free Assosp-algebra in Spc on the unique
algebra over the empty operad, together with the description of free algebras from [Lurl7]
definition 3.1.3.1. O

The following proposition is a slight rephrasing of [GH15] theorem 4.4.7 and the discussion
in [Hin20a] section 5.

Proposition 3.4.5. There is a unique equivalence between Algbrd(Spc)spe and the category
P(A)seg of Segal spaces which intertwines the map p and the canonical inclusion of Cat into
P(A)seg as the subcategory of complete Segal spaces.

Proof. First we note that this equivalence is unique, if it exists. Indeed, the same method
of proof of [Lur09a] theorem 5.2.9.1 shows that the space of automorphisms of the category
P(A)seg is a two element set, consisting of the identity and the orientation reversing auto-
morphism. It follows that the space of automorphisms of P(A)ge, that restrict to the identity
on Cat is contractible.

The existence of an equivalence F' : Algbrd(Spc)gpe — P(A)seg is the subject of [GH15]
theorem 4.4.7. Denote by i : Cat — P(A)geg the inclusion. It remains to show that we have
an equivalence F'p =i. Note that by virtue of lemma 3.4.4, the map p admits a left adjoint.
It therefore suffices to show that there is an equivalence % = pf F~1,

Both " and p"F~! are colimit preserving functors P(A)se, — Cat, and so they are
determined by the data of a Segal cosimplicial category. In the case of i%, this is the canonical
inclusion A — Cat. The proof of lemma 3.4.4 shows that p* maps lgp. to [0] and Cg to [1],
in a way compatible with the source and target maps. Moreover, inspecting the construction
of the equivalence F' from [GH15] reveals that F~' maps [0] to lspe and [1] to Cjg, in a
way compatible with source and target maps. It follows that the Segal cosimplicial category
induced by p“F~! is the identity on the full subcategory of A on the objects [0] and [1].
The Segal conditions imply that p“F~!([n]) is equivalent to i*([n]) for all [n], and it is in
particular a O-truncated category. Our claim now follows from the fact that the source and
target maps [0] — [1] < [0] are jointly surjective, using the same arguments as those that
establish corollary 3.1.18 O]

Remark 3.4.6. It follows from remark 3.3.8 that Algbrd(Spc)spe comes equipped with an
involution (—)°P. The map p intertwines the involutions (—)°? on Cat and Algbrd(Spc)spe.
It follows from the uniqueness statement in proposition 3.4.5 that the equivalence between
P(A)geg and Algbrd(Spc)spe admits a Z/2Z-equivariant structure.

We now review the definition of M-enriched categories. These are M-algebroids satisfying
a suitable completeness condition.
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Notation 3.4.7. Let M be an associative operad and equip Spc with its cartesian monoidal
structure. We denote by 7 : M — Spc the morphism of associative operads which maps
each object m in M to the space of operations from the empty list into m.

Remark 3.4.8. Let M be monoidal category. If M is presentable monoidal then the lax
symmetric monoidal functor 75, : M — Spc is right adjoint to the unit map Spc — M.
In general, 7y, can be obtained as the composition of the symmetric monoidal embedding
M — P(M) together with the lax symmetric monoidal map 7p(rq) : P(M) — Spe.

Definition 3.4.9. Let M be an associative operad. An object A in Algbrd(M) is said to be an
enriched category if it has a space of objects, and the induced object (Tam )1 A in Algbrd(Spc)spe
belongs to the image of p. We denote by Cat™ the full subcategory of Alghbrd(M) on the
enriched categories. Given an M-enriched category A and a pair of objects x,y in A, we will
usually use the notation Homy(z,y) instead of Ay, x).

In other words, an M-enriched category is a M-algebroid whose underlying Segal space
is a complete Segal space.

Example 3.4.10. Let M be a monoidal category such that the monoid End (1) does
not have nontrivial invertible elements (for instance, if M is a cartesian closed presentable
category). Then the unit algebroid 1,4 is an M-enriched category. If in addition M has an
initial object which is compatible with the monoidal structure, and the space of maps from
the unit to the initial object is empty, then for every m in M the cell C,, from example 3.3.6
is an M-enriched category.

Remark 3.4.11. It follows from remark 3.4.6 that an algebroid A is an enriched category if
and only if A° is an enriched category. In other words, the involution (—)°P restricts to an
involution on the full subcategory of Algbrd on the enriched categories.

Proposition 3.4.12. Let M be a presentable monoidal category. Then

(i) The inclusion Cat™ — Algbrd(M)sp. exhibits Cat™ as an accessible localization of
Algbrd(M)spe. In particular, Cat™ is presentable.

(ii) Let F': M — M’ be a colimit preserving monoidal functor into another presentable
monoidal category. Then the functor F : Algbrd(M)spe — Algbrd(M)spe descends to
a functor Cat™ — Cat™'.

Proof. Recall that Cat embeds into the category of Segal spaces as the full subcategory of
local objects for the projection « from the walking isomorphism to the terminal category.
Since the lax monoidal functor 7, is right adjont to the unit map 1,4 : Spc — M, we obtain
an adjunction

(Lpg)r = Algbrd(Spe)spe T Algbrd(M)spe @ (Ta)r -

It follows that Cat™ is the full subcategory of Algbrd(M)s,. of iy local objects, which
proves item (i). Item (ii) now follows from the fact that Fi(1x)icv is equivalent to (1 )icx,
which becomes an isomorphism upon projection to Cat™'. O
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Remark 3.4.13. Let M be a monoidal category. Then Algbrd(M)g,. is a full subcategory
of Algbrd(P(M))gpe, and moreover Cat™ is the intersection of Alghrd(M)gye with Cat?).
Let C be an object in Algbrd(M)s,. and let C’ be its image in Cat”™M) | Tt follows from
the description of local equivalences from [GH15] corollary 5.6.3 that C’ belongs to Cat™.
It follows that Cat™ is a localization of Algbrd(M)spe, and moreover a map A — A’ in
Algbrd(M)g,. is local if and only if it is fully faithful (i.e., cartesian for the projection
Algbrd(M)gp. — Cat) and surjective on objects.

Example 3.4.14. Let M be a presentable monoidal category. As a consequence of proposi-
tion 3.4.12 the unit map 1, : Spc — M induces a functor (1), : Cat = Cat™° — Cat™.
In other words, any category defines an M-enriched category.

Remark 3.4.15. Let i : M — M’ be a colimit preserving monoidal functor between
presentable monoidal categories. Assume that ¢ is fully faithful, so that the functor 4, :
Algbrd(M) — Algbrd(M’) is fully faithful. Then for every M-algebroid A with a space of
objects, the Segal space underlying .4 is equivalent to the Segal space underlying A. In
particular, A is an M-enriched category if and only if ;.4 is an M’-enriched category. This
implies that the commutative square

Algbrd(M)gp. — Cat™

i l@!

Algbrd(M')gpe — Cat™’

arising from proposition 3.4.12 item (ii), is horizontally right adjointable.

Assume now that i admits a left adjoint, so that M is a localization of M’. Then
for every space X the functor i : Algbrdy (M) — Algbrdy (M) preserves limits and is
accessible. It follows from [Lur09a] proposition 4.3.1.9 together with the fact that the
projection Algbrd(M’)s,. — Spc is both a cartesian and a cocartesian fibration, that the
functor 7, : Algbrd(M) — Algbrd(M’) preserves limits and is accessible. It now follows from
the adjoint functor theorem that the above square is in fact also vertically left adjointable.
In particular, we have that Cat™ is a localization of Cat™'.

We can describe this in more concrete terms. Let A be an M’-enriched category. Then
A belongs to the image of 4, if and only if for every pair of objects z,y in A we have that
Hom 4(x,y) belongs to M. Equivalently, for every object m’ in M’, the map

Hom vy (ii*m’, Hom4(z, y)) — Hompe (m/, Homu(z, y))

given by precomposition with the unit m’ — ii’m/, is an equivalence. It follows that A
belongs to the image of i, if and only if it is local for the class of maps C,,, — Cj;z,,,,. Note
that we can simplify this further: we may take m’ to belong to a set of generators of M’.

3.5 Multiplicativity

We now discuss the notion of tensor product of algebroids and enriched categories.
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Proposition 3.5.1. The category Algbrd has finite products, which are preserved by the
projection to Cat X OPygeos-

Proof. Let X be a category. Then the functor Algbrdy(—) : Opy.os — Cat is limit preserving.
It follows from [Lur09a] corollary 4.3.1.15, that the total category Algbrdy of the associated
cocartesian fibration has all finite products, which are preserved by the projection to Opag.oe-
Furthermore, if {A4;};c7 is a finite family of objects of Algbrdy lying above a finite family
of associative operads { M, }iez, then its product is the unique object A in Algbrd (][] M)
equipped with cocartesian arrows to 4; lifting the projection [[ M; — M;, for all ¢ in Z.
Assume now given a functor of categories f : ¥ — X. Then f'A is an object in
Algbrdy (][] M;) which comes equipped with cocartesian arrows to f'A; lifting the projections
[T M; — M, for all i in Z. It follows that f' preserves finite products. By a combination of
[Lur09a] propositions 4.3.1.9 and 4.3.1.10 we conclude that the projection Algbrd — Cat has
all relative finite products, which are preserved by the map Algbrd — Cat X Op s Our
result now follows from the fact that Cat has all finite products. n

Remark 3.5.2. It follows from proposition 3.5.1 that the final object of Algbrd is the unique
algebroid lying above the final object of Cat X Op,y... In other words, this is the unit
algebroid of the final monoidal category.

Notation 3.5.3. Let A, B be objects of Algbrd. We denote by A X B their product in
Algbrd.

Remark 3.5.4. Let X,Y be categories and M, N be associative operads. Let A, B be
objects in Algbrd (M) and Algbrd, (N), respectively. Denote by py, p» the projections from
Algbrd to Cat and Op,, respectively. It follows from the proof of proposition 3.5.1 that

the span
A+~ AXB — B

is the unique lift of the span
(X, M) + (X XY, M xN) = (Y,N)

such that its left and right legs can be written as the composition of a ps-cocartesian followed
by a p;-cartesian morphism.
It follows that A X B is the algebroid defined by the map

Assosyxy = Assosx X Assosy AxB, M N
and the projections to A and B are induced from the following commutative diagram:

Assosy +—— Assosx X Assosy — Assosy

| [ s Js

Mée—  MXN — s N
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In particular, AKX B is an (M x M')-algebroid with category of objects X x Y, and for
every pair of objects (2/,v'), (z,y) we have an equivalence

(AR B)((z',y), (z,9)) = (Al',2), B(y, y))-

The composition maps for A X B are obtained by taking the product of the composition
maps of A and B.

Proposition 3.5.5. Let f : A — A’ be a morphism in Algbrd and let B be another object
of Algbrd. Denote by p = (p1,p2) the projection Algbrd — Cat X Oppgos-

(i) If f is pi-cartesian then fXidg is p;-cartesian.
(ii) If f is pe-cocartesian then fXidg is ps-cocartesian.

Proof. Denote by X, X' Y the categories of objects of A, A" and B, respectively, and let
M, M’ N be their underlying associative operads. Consider the following commutative
diagram in Cat X Op s

(X XY, M x N) —2020 oy, M) — 00y
l(Pleidmzind) l(Pleid,mf) l(m fip2f)
(X! Y, M x N 020 sy ppry 0D gy

This admits a lift to a commutative diagram

A
lf&idg lu
A' X B y A/

\
7

PN
X
()]

A
I
A/
where the horizontal rows are the factorizations of the projections as ps-cocartesian maps

followed by p;-cartesian maps.
Similarly, the commutative diagram

\
7

(X x V,M x N) —2929 (v sy, vy — 22y )
l(plfxid,pzfxid) l(plfxid,id) l(id,id)
(X' x YV, M x N) —202) o xr oy, Ny — 20y

admits a lift to a commutative diagram

AX B

> B S
lf Xidg ll’ lid
> B

A X B s B
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where the horizontal rows consist of a ps-cocartesian followed by a p;-cartesian map.
Assume now that f is p;-cartesian, so that M = M’. Then p and v are p;-cartesian.
Write fXidg = an where « is p;-cartesian and 7 is such that (p1, pe)n is invertible. We have

= (prh(f Bidg) = (pam)i(a)(pa)i(n)-

Since (paq)r is a morphism of cartesian fibrations, we have that (paq)(«) is cartesian and there-
fore (pa1)1(n) is an isomorphism. Similarly, we can conclude that (pa)i(n) is an isomorphism.
Item (i) now follows from the fact that the projections

Algbrdy,y (V) <22 Alghrd g,y (M x ) 2225 Algbrd g,y (M)

are jointly conservative.

We now prove item (ii). In this case, f is pe-cocartesian, so that X = X’. We therefore
have that v is invertible. Furthermore, we have that u = p'y f is py-cocartesian. As before,
write f X idg = na where « is py-cocartesian and 7 is such that (p1, p2)n is invertible. The
composition of 7 with the p,-cocartesian map pz : A’ X B — A’ is a lift of the projection
(idxxy, par) whose composition with the py-cocartesian map « is po-cocartesian. It follows
that pmn is po-cocartesian, and therefore we have that (pae)in is an isomorphism. A similar
argument shows that (par)in is an isomorphism. Our result now follows from the fact that
the projections

Algbrdy .y (V) <22 Algbrd gy (M’ x N) P20 Alobrd,y, (M)
are jointly conservative. O

Construction 3.5.6. We equip Algbrd and Cat X Op,. With their cartesian symmetric
monoidal structures, so that the projection Algbrd — Cat x Op, inherits a canonical
symmetric monoidal structure by proposition 3.5.1. It follows from proposition 3.5.5 that the
projection Algbrd — Op,..s 1S @ cocartesian fibration of operads, which straightens to a lax
symmetric monoidal structure on the functor Algbrd(—) : Oppges — Cat. Given M and N
two associative operads, this produces a functor

Algbrd(M) x Algbrd(N) — Algbrd(M x N)

which sends a pair of algebroids A, B to AKX B.

Let M be a symmetric monoidal category. We can think about M as a commutative
algebra object in Alg(Cat), and hence as a commutative algebra object in Opy ... It follows
that Algbrd(M) inherits a symmetric monoidal structure. We will usually denote by

® : Algbrd(M) x Algbrd(M) — Algbrd(M)

the resulting functor. We note that the assignment M — (Algbrd(M), ®) is part of a functor
CAlg(Cat) — CAIg(Cat).
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Remark 3.5.7. Let M be a symmetric monoidal category. The unit of the symmetric
monoidal structure on Algbrd(M) is the unit algebra in M, thought of as an algebroid with
category of objects [0]. The tensor product functor on Algbrd(M) can be computed as the
composition

Algbrd(M) x Algbrd(M) = Algbrd(M x M) 25 M

where m : M x M — M is the tensoring map. In particular, if A and B have category of
objects X and Y respectively then A ® B has category of objects X x Y. Moreover, if x, 2’
are objects in X and y,y" are objects in Y, we have an equivalence

(A@B)((z,y), (z,y)) = Ale,2) ® Ay, ).

Proposition 3.5.8. Let M be a category admitting finite products, equipped with the cartesian
symmetric monoidal structure. Then the symmetric monoidal structure on Algbrd(M) given
by construction 3.5.6 is cartesian.

Proof. As observed in remark 3.5.7, the unit 1aighram) of Algbrd(M) is the unit algebra in
M. To check that 1aigbra(r is final in Algbrd(M) we have to see that for every category
X, the algebroid 7'y 1aigbra(a is final in Algbrdy (M), where my : X — [0] denotes the
projection. Indeed, for every pair of objects x,y in X we have

W!)(lAlgbrd(M)(y>$) = 1A1gbrd(M)(7TXy, xT) = L

which is final in M. The fact that my 1ajgbra(m) is final then follows from [Lurl7] corollary
3.2.2.5.
It remains to check that for every pair of algebroids A, B in M, the projections

A=A® LAtgbraom) < AR B — L Atgbrd(m) RB=B

exhibit A ® B as the product of A and B in Algbrd(M). Let X, Y be the category of objects

of A, B respectively. We have to show that for every category Z equipped with functors
j:Z — X and j': Z — Y, the projections

J A (x5 (AeB) —j'B

exhibit (j x j/)'(A ® B) as the product of j'A and j"B in the category Algbrd,(M). Let
z,w be objects in Z. The induced diagram

7 Az w) = (j % ') (A® B)(2,w) = j"B(z,w)
is the equivalent to the diagram

and therefore it exhibits (j x j/)'(A ® B)(z,w) as the product of j'A(z,w) and j"B(z,w).
Our result now follows from another application of [Lurl7] corollary 3.2.2.5. O



CHAPTER 3. ENRICHED CATEGORY THEORY 46

The symmetric monoidal structure on algebroids from construction 3.5.6 restricts to
algebroids with a space of objects. The next proposition shows that this induces a symmetric
monoidal structure on enriched categories.

Proposition 3.5.9. Let M be a symmetric monoidal category. Then the localization functor
Algbrd(M)gpe — Cat™ is compatible with the restriction of the symmetric monoidal structure
of construction 3.5.6.

Proof. Recall that a morphism F : A — B in Algbrd(M)gp. is local for the localization in
the statement if and only if it is fully faithful and surjective on objects. Equivalently, this
means that F'is p;-cartesian and surjective on objects.
Let A’ be another object of Algbrd(M)sp,.. It follows from propositions 3.5.1 and 3.5.5
that
FRidgy : AXA — BX A

is still fully faithful and surjective on objects. Therefore the map F' ® id 4 = my(F Kid ) is
also fully faithful and surjective on objects, so it is local for the localization in the statement,
as desired. O

Corollary 3.5.10. Let M be a symmetric monoidal category. Then Cat™ inherits a sym-
metric monoidal structure from Algbrd(M)spe, and the localization Algbrd(M)gy. — Cat™
has a canonical symmetric monoidal structure.

Example 3.5.11. Let M be a category admitting finite products, equipped with its cartesian
symmetric monoidal structure. Then it follows from proposition 3.5.8 that the induced
symmetric monoidal structure on Cat™ is cartesian.

For later purposes, we will need a generalization of the functoriality of construction 3.5.6
which deals with lax symmetric monoidal functors between symmetric monoidal categories.
In fact, it turns out that for any symmetric operad M one can give Algbrd(M) and Cat™
the structure of a symmetric operad, in a way that depends functorially on M.

Construction 3.5.12. Denote by Env : Op — CAlg(Cat) the functor that sends each
symmetric operad to its enveloping symmetric monoidal category - in other words, this is left
adjoint to the inclusion CAlg(Cat) — Op. Consider now the composite functor

¢ Op 2% CAlg(Cat) 229 CAlg(Cat).

Note that the composition of ¢ with the forgetful functor CAIg(@:) — Cat receives a

natural transformation n from the functor Algbrd(—)|op : Op — Cat. For each symmetric
operad M, this induces a functor

n(M) : Algbrd(M) — £(M) = Algbrd(Env(M)).

Since the unit map M — Env(M) is an inclusion of symmetric operads, we have that n(M)
is fully faithful. Its image consists of those Env(M)-algebroids A such that A(y, z) belongs
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to M for each pair of objects y,z in A. Since Algbrd(Env(M)) has a symmetric monoidal
structure, the full subcategory Algbrd(,M) inherits the structure of a symmetric operad. This
is compatible with morphisms of symmetric operads, so we obtain a lift of Algbrd(—)|o, to a
functor _—
(Algbrd(—)|op)™® : Op — Op.
The following proposition shows that construction 3.5.12 extends the functoriality of the
theory of algebroids on symmetric monoidal categories from construction 3.5.6.

Proposition 3.5.13. The restriction of the functor (Algbrd(—)|op)™ to CAlg(Cat) factors
through CAlg(Cat), and coincides with the functor arising from construction 3.5.6.

Proof. Let M be a symmetric monoidal category. Then the inclusion M — Env(M)
exhibits M as a symmetric monoidal localization of Env(M). It follows that the inclusion
Algbrd(M) — Env(M) exhibits Algbrd(M) (with its symmetric monoidal structure from
construction 3.5.6) as a symmetric monoidal localization of Algbrd(Env(M)). This shows that
the operadic structure on Algbrd(M) from construction 3.5.12 coincides with the operadic
structure underlying the symmetric monoidal structure given to in construction 3.5.6.

Assume now given a symmetric monoidal functor F : M — M’ between symmetric
monoidal categories. We have a commutative square of symmetric monoidal categories and
symmetric monoidal functors

Algbrd(Env(M)) Y Algbrd(Env(M?))
Algbrd(M) —2— Algbrd(M’).

This is vertically right adjointable. Passing to right adjoints of the vertical arrows yields a
commutative diagram of symmetric monoidal categories and lax symmetric monoidal functors

Algbrd (Env(M)) 2 Algbrd(Env(M'))

| l

Algbrd(M) —2—— Algbrd(M").

It follows that the structures of morphism of symmetric operads on F) arising from construc-
tions 3.5.6 and 3.5.12 agree. In particular, we conclude that the restriction of (Algbrd(—)|op )"

to CAlg(Cat) factors through CAlg(éaTt).
Consider now the lax commutative triangle

CAlg(Cat) 2 CAlg(Cat)

K J/Algbrd()
Algbrd(—)

CAlg(Cat)
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obtained by applying Algbrd(—) to the counit of the defining adjunction for Env. Passing to
right adjoints yields a commutative triangle

CAlg(Cat) 2% CAlg(Cat)

K J/Algbrd(—)
Algbrd(—)

Op.

This identifies the diagonal arrow with the restriction of (Algbrd(—)|op)™™ to CAlg(Cat). O

Remark 3.5.14. Let F': M — M’ be a symmetric monoidal functor between symmetric
monoidal categories. Assume that F admits a right adjoint F?, and equip F'® with its natural
lax symmetric monoidal structure. Then F' and F'® induce a symmetric monoidal adjunction

Env(F) : Env(M) —— Env(M’') : Env(F'F).
This in turn induces a symmetric monoidal adjunction
Env(F), : Algbrd(Env(M)) = Algbrd(Env(M’)) : Env(F%),
which restricts to an adjunction with symmetric monoidal left adjoint
F : Algbrd(M) —— Algbrd(M’) : K.

It follows from this that the lax symmetric monoidal structure on F}¥ arising from construction
3.5.12 is equivalent to the one arising by passing to adjoints the symmetric monoidal structure
on Fi.

Remark 3.5.15. Let F': M — M/’ be a lax symmetric monoidal functor between symmetric
monoidal categories. Then the lax symmetric monoidal functor

Fy : Algbrd(M) — Algbrd(M’)
restricts to a lax symmetric monoidal functor
Fy : Algbrd(M)gpe — Algbrd(M)gpe

which in turn induces a lax symmetric monoidal functor F : Cat™ — Cat™’. This forms
part of a functor

(Cat™) |catg(carys=<)™ : CAlg(Cat)™ — CAlg(Cat)'™

where CAlg(Cat)!* denotes the category of symmetric monoidal categories and lax symmetric
monoidal functors.
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We now study the presentable symmetric monoidal case. The following result follows
from a version of [GH15] corollary 4.3.16 - we refer the reader there for a proof.

Proposition 3.5.16. Let M be a presentable symmetric monoidal category. Then the induced
symmetric monoidal structures on Algbrd(M) and Cat™ are compatible with colimits.

Corollary 3.5.17. Let M be a cartesian closed presentable category. Then Algbrd(M) and
Cat™ are cartesian closed.

Proof. Combine proposition 3.5.16 with example 3.5.11. m

Notation 3.5.18. Let M be a presentable symmetric monoidal category. We denote by
Funct(—, —) : Algbrd(M)°? x Algbrd(M) — Algbrd(M)
the internal Hom for the closed symmetric monoidal category Algbrd(M).

Proposition 3.5.19. Let M be a presentable symmetric monoidal category. Then the
category Algbrd(M)s,. is both a symmetric monoidal localization and a symmetric monoidal
colocalization of Algbrd(M).

Proof. Consider the pullback square

Algbrd(M)spe ——s Algbrd(M)

Recall from proposition 3.3.12 that p is both a cartesian and cocartesian fibration. Since 7
has both left and right adjoints, we conclude that i’ has both left and right adjoints as well.

Concretely, given an M-algebroid A with category of objects X, the unit A — #i'* A is a
p-cocartesian lift of the map X — =X from X into its geometric realization, and the counit
i'i"®A — A is a p-cartesian lift of the map X=° — X which includes the space of objects of
X inside X.

It remains to show that the adjoints to ¢ are compatible with the symmetric monoidal
structure on Algbrd(M). Let A and B be a pair of M-algebroids with category of objects X
and Y, respectively. Denote by n4 : A — i'i'* A and €4 : Vi’ A — A the localization and
colocalization of A.

Applying propositions 3.5.1 and 3.5.5 together with remark 3.5.7 we see that the map

id3®6A28®i/i/R¢4—>B®A

is p-cartesian and lies above an if*-colocal map. This implies that it is i’*-colocal, and
therefore we have that Algbrd(M)sp. is a symmetric monoidal colocalization of Algbrd(M).
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Consider now the map
idg@na: B A— BoiitA.

Its image under p is i%-local by a combination of proposition 3.5.1 and remark 3.5.7, together
with the fact that i’ preserves products. To prove that it idg ®n4 is i’-local it now suffices
to show that it is p-cocartesian. Using [GH15] lemma 3.6.15 we see that

idg™ny : BRA — BXi'*A

is cocartesian for the projection Algbrd(M x M) — Cat. In other words, idg Xn4 exhibits
BXi'i't A as the free Ass0sy (<o xy-algebra on the Assosy, x-algebra BX A. Our claim now
follows from the fact that the multiplication map m : M x M — M preserves the operadic
colimits involved in the description of this free algebra. O]

Proposition 3.5.20. Let M be a presentable symmetric monoidal category and let A, B be
two M-algebroids.

(i) If B has a space of objects then Funct(A, B) has a space of objects.
(ii) If B is an enriched category then Funct(A, B) is an enriched category.

Proof. Ttem (i) follows directly from the fact that Algbrd(M)gpe is a symmetric monoidal
localization of Algbrd(M). Similarly, item (ii) follows from proposition 3.5.9. O

Corollary 3.5.21. Let M be a presentable symmetric monoidal category. The functors

Funct(—, —)|A1gbrd(/\/l)‘s";cxAlgbrd(M)spC and Funct(—, —)|capMyorx (carm) are equivalent to the

internal Homs of Algbrd(M)sy. and Cat™, respectively.
Proof. This is a direct consequence of proposition 3.5.20. O

Remark 3.5.22. The involution (—)° : Algbrd — Algbrd is product preserving. It follows
that if M is a symmetric monoidal category, then the involution (—)°® on Algbrd(M)
respects the symmetric monoidal structure. In particular, given M-algebroids A, B, there is
an equivalence

Funct (A, B?)°? = Funct(A, B).

Our next goal is to provide a concrete description of the product of cells, and use it to
study functor algebroids in the case when the source is a cell.

Notation 3.5.23. Let M be a monoidal category with an initial object compatible with the
monoidal structure and let m,m’ be objects in M. Let X = {a,b, ¢} be the set with three
elements. Let Cy, v be the free Assosy-algebra equipped with maps m — C,,..v (b, ¢) and
m’ — Chy(a,b). This is characterized by the following properties:

o Cop(a,a) = Cpm(b,b) = Cpy(c, c) = 1p.
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)
o Crmi(b,a) = Chy(c,a) = Cpp(c, b) is the initial object of M.

We note that C,, , fits into a pushout

Iy — Oy

| |

Om’ E— Cm,m’

where the top horizontal arrow and left vertical arrows pick out the target and source objects,
respectively.

Remark 3.5.24. Let M be a symmetric monoidal category with compatible initial object,
and let m, m’ be objects in M. Then the algebroid C,, ® C,, has objects (i, j) for 0 <i,7 < 1.
Its morphisms can be depicted schematically as follows:

(0,0) —™— (1,0)

e

(0,1) —— (1,1)

Every Hom-object which is not associated to an arrow in the above diagram is the initial
object in M. Note that C,, ® C,, fits into a commutative square

Cm®m’ — C’m,m’

J !

Covom — Cp, @ Cpy

where:

e The right vertical arrow picks out the m-cell between (0,0) and (1,0) and the m/-cell
between (1,0) and (1,1).

e The bottom horizontal arrow picks out the m/-cell between (0,0) and (0,1) and the
m-cell between (0,1) and (1,1).

e The cell Cy, gm — Cr, ® Cpyr the m @ m/-cell between (0,0) and (1,1).
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Proposition 3.5.25. Let M be a symmetric monoidal category with compatible initial object,
and let m,m’ be objects in M. Then the commutative square of M-algebroids

Cm@m’ — Cm,m’

! !

lejm — C,, ® C,y
from remark 3.5.24, is a pushout square.

Proof. Observe first that the induced square at the level of objects is given by
{(07 0)7 (L 1)} ;) {(07 0)7 <1a 0)7 (17 1)}

L lf‘

{(07 0)7 (Oa 1)a (17 1)} ;) {07 1} X {07 1}
and is indeed a pushout square. Consider the following M-algebroids:

Cm@m/ = (jk>!0m®m’
Cm7m’ = j!cm,m’
Om’,m - Z.!Om’,m

Here we denote with (—), the functors induced from the fact that the projection map
Algbrd(M) — Cat is a cocartesian fibration. In other words, the above algebroids are
obtained from the previous ones by adding extra objects so that they all have set of objects
{0,1}2, where the new Hom objects are declared to be the initial object of M. Combining
proposition 3.3.12 with [Lur09a] proposition 4.3.1.9, we reduce to showing that the induced
square

Cm@m’ . Om,m’

| !

Cm/7m —— 0 C,y

is a pushout square in Algbrdg,132(M). Our claim now follows from the fact that the
images of the above square under the evaluation functors Algbrdq 132(M) — M are pushout
squares. ]

Corollary 3.5.26. Let M be a presentable symmetric monoidal category and let m be an
object in M. Let A be an M-algebroid and let p,v : C,, — A be two m-cells in A. Denote
by Fomp, the internal Hom functor for M. Then there is a pullback square

Funct(C,,, A)(v, p) —— A(v(0), 1(0)))

| |

A1), u(1)) ——— Hompm(m, A(v(1), 1(0)))



CHAPTER 3. ENRICHED CATEGORY THEORY 53

where the top horizontal and left vertical arrows are given by the source and target maps, and
the right horizontal and bottom vertical arrows are induced by composition with the cells v
and p, respectively.

Proof. Let m’ be another object of M. The pushout square of remark 3.5.24 can be enhanced
to a colimit diagram

1M|—|1M—>C L 1 aq

L >~

1M|_|C m®m/—>Cmm

~ | |

Coym — Cp, @ Chyy

where map 1y U 1y — Cprem picks out the source and target objects, and the maps
Imu Gy — Chy and Cy, U 1p — Cyy iy pick out the m-cell and the object which is not
contained in it.

Let X be the category of objects of A. We have an induced limit diagram of spaces

Xs0x X<0 ¢« Hom(C,,, A) x X=0

X=0 % Hom(C,,, A) Hom(Crnem, A) «—— Hom(Clyy s, A)
Hom(Cy m, A) ¢—— Hom(C,, ® C,r, A)

where all Homs are taken in Algbrd(M).
Consider now the commutative diagram of spaces

[0] » (0] < [0]
l(u(o)ﬂ/) l(u(o)ﬂ/(l)) l(uﬂ/(l))
X=0 x HomAlgbrd(M)(Cm7 ./4) — XSO XS0 HomAlgbrd(M)(C'm,A) x X=0

where the bottom left horizontal arrow is the target map, and the bottom right horizontal
arrow is the source map. Pulling back our previous diagram along this yields a cartesian
square of spaces

Hot (', Hom v (m, A(v(1), j(0)))) ———— Horm (', A(v(1), u(1)))

| I

Hom(m/, A(v(0), (0))) «———— Homp(m/, Funct(C,,, A) (v, 1)).

Our claim now follows from the fact that the above square is natural in m’. O
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We finish by studying the behavior of functor algebroids under changes in the enriching
categories.

Proposition 3.5.27. Let G : M — M’ be a colimit preserving symmetric monoidal functor
between presentable symmetric monoidal categories. Let C be an M-algebroid and let D be an
M’ algebroid. There is an equivalence of M-algebroids

Funct(C, (GF),D) = (G*), Funct(G,C, D)
which is natural in C and D.

Proof. Let £ be another M-algebroid. Then we have a chain of equivalences
Hom pigbraa) (€, Funct(C, (GF)D)) = Homaighraa) (€ ® C, (G™),D)
= Homjgpram) (GH(€ ® C), D)
= HomAlgbrd(M/)(GgE & GIC, D)
= Homaghramr) (G1E, Funct(G\C, D))
= Homagbrar) (€, (G™), Funct(G\C, D)).

Our claim follows from the fact that the above equivalences are natural in £,C and D. [

Proposition 3.5.28. Let i : M — M’ be a lax symmetric monoidal functor between
presentable symmetric monoidal categories. Assume that i is fully faithful and admits a left
adjoint which is strictly symmetric monoidal. Let C be an M'-algebroid, and D be an M
algebroid. Then Funct(C,#D) belongs to the image of i, : Algbrd(M) — Algbrd(M’).

Proof. Our conditions guarantee that i, : Algbrd(M) — Algbrd(M’) is fully faithful, and
admits a symmetric monoidal left adjoint. To show that Funct(C, D) belongs to the image
of 4y, it suffices to show that it is local for the maps g : & — i1il'E, for each M’-algebroid £.
Indeed, the map

Hom aighra(at) (4ir €, Funct(C, /D)) — Hompjghraary (€, Funct(C, D))
of precomposition with gg is equivalent to the map
Homajgbraar) (01 € ® C, /D) — Hompigbramry (€ @ C, i D)
of precomposition with ge¢ ® ide. It therefore suffices to show that the induced map
it (E®C) =i (iif€ ® C)
is an equivalence. This follows from the fact that i is a symmetric monoidal localization. [J

Corollary 3.5.29. Leti: M — M’ be a symmetric monoidal functor between presentable
symmetric monoidal categories. Assume that i is fully faithful and has a left adjoint which

1s strictly symmetric monoidal. Let C,D be M-algebroids. Then there is an equivalence
iy Funct(C, D) = Funct(i,C, /D), which is natural in C,D.

Proof. This is a direct consequence of proposition 3.5.28, as 4 Funct(C, D) and Funct(i,C, i/D)
both corepresent the same functor on Algbrd(M). O
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3.6 w-categories

The theory of n-categories can be obtained as a special case of the general notion of enriched
categories. We refer the reader to [GH15] and [Hin20a] for proofs that the following definition
agrees with other models for the theory of n-categories.

Definition 3.6.1. Let 1Cat be the category of categories. We inductively define for each
n > 2 the cartesian closed presentable category nCat of n-categories to be the category
Cat™=VC8 of categories enriched in the cartesian closed presentable category (n — 1)Cat.

Construction 3.6.2. Let i : Spc — Cat be the inclusion. This admits a left adjoint, and in
particular it has a canonical symmetric monoidal structure, where we equip Spc and Cat with
their cartesian symmetric monoidal structures. Specializing the discussion of remark 3.4.15
we obtain a commutative square of presentable categories and colimit preserving morphisms

Algbrd(Spc)spe — Cat

L

Algbrd(Cat)gp. — 2Cat

which is both horizontally right adjointable and vertically left adjointable, and whose vertical
arrows are fully faithful.

Denote by i*? the functor 4, : Cat — 2Cat. Arguing by induction, we obtain for all n > 2
a commutative square of presentable categories and colimit preserving functors

Algbrd((n — 1)Cat)g,c — nCat

l(infl,n)! ll"ﬂ,’nA*l

Algbrd(nCat)gpe — (n+ 1)Cat

which is both horizontally right adjointable and vertically left adjointable, and whose vertical
arrows are fully faithful. In particular, we have a sequence of presentable categories and left
adjointable colimit preserving fully faithful functors

7;0,1 1:172 i2’3
0Cat — Cat — 2Cat — 3Cat...

where we set 0Cat = Spc and :>! = 4. For each pair m > n denote by i®™ : nCat — mCat
the corresponding inclusion.

Example 3.6.3. Let Cj be the terminal object in Spe, and C be the arrow category [1]. We
inductively define for each n > 2 an n-category C,, as the cell associated to the (n—1)-category
Ch_1. We call C, the n-cell. It follows by induction that the category nCat is compactly
generated by the object C,. Note that for each 0 < k£ < n there are source and target maps
i’“”C’k — Cn
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In practice, we usually identify n-categories with their images under the functors i™™. In
other words, many times we implicitly work in the direct limit of the categories nCat.

Notation 3.6.4. Let wCat be the direct limit in Pr” of the sequence of construction 3.6.2.
We call it the category of w-categories. For each n > 0 denote by ™ : nCat — wCat the
induced map.

Remark 3.6.5. We can alternatively think about wCat as the limit of the categories nCat
under the functors (i»"*1)% : (n 4+ 1)Cat — nCat. In other words, an w-category is a
compatible family of n-categories for all n > 0. The resulting projections wCat — nCat are
right adjoint to the maps ™.

Note that ™" %1 preserves compact objects for every n > 0. Therefore wCat is compactly
generated and the maps i"™* preserve compact objects. In particular, we have that the
projections (i) preserve filtered colimits.

Remark 3.6.6. The sequence of categories from construction 3.6.2 yields a functor
(—)Cat : N — Cat

where N is the poset of natural numbers. Let p : &€ — N be the associated cocartesian
fibration. Since the functors ¢™"™! admit right adjoints, this is also a cartesian fibration. By
virtue of remark 3.6.5, the category wCat is the category of cartesian sections of p. Note
that £ is a full subcategory of the product N x (| J,,~,nCat). It follows that wCat is the full
subcategory of the functor category Funct(N, |, -, nCat) on those sequences of objects

Co>C ...

such that C, is an n-category for each n > 0, and the map (i""+1)F

each n > 0.

1, is an isomorphism for

Proposition 3.6.7. For each n > 0 the inclusion i"™* : nCat — wCat s fully faithful and
admits both a left and a right adjoint.

Proof. The existence of a right adjoint was already observed in remark 3.6.5. By the same
argument as in remark 3.6.6, we have an equivalence between wCat and the full subcategory
of the functor category Funct(Ns,,J, -, mCat) on those sequences

2 i
Cn Z—>Cn+1 —+1>

such that C,, is an m-category for each m > n, and the map (i™™"1)%,, is an isomorphism
for each m > n. In this language, the projection (™) is given by the corestriction to nCat
of the composite map

wCat — Funct(Ns,, U mCat) = U mCat .

m>n m>n
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The left adjoint to ev,, is given by left Kan extension along the inclusion {n} — Ns,,, and
is fully faithful. The fact that «™* is fully faithful follows from the fact that the left adjoint
to ev,, maps an n-category C to the constant diagram

C—C—...

and this belongs to wCat.
It remains to show that i™* admits a left adjoint. We have that i™* is given by the
corestriction to wCat of the composite map

nCat — U mCat — Funct(N>,, U mCat)

m>n m>n

where the second arrow is the functor of precomposition with the projection Ns,, — {n}.
The composition of the two arrows above is limit and colimit preserving. Furthermore, the
inclusion wCat — Funct(Nx,, |,,-,, mCat) is accessible and limit preserving. We conclude
that i™“ is accessible and limit preserving, and the adjoint functor theorem guarantees that
it admits a left adjoint, as desired. O

Notation 3.6.8. Let n > 0. We denote by (—)=" and ="(—) the right and left adjoints to
the inclusion ™*. We think about these as the functors that discard (resp. invert) cells of
dimension greater than n.

Remark 3.6.9. We have a diagram
P09 ()=S0 5 gte( S 5 29 ()=2 o = idyca

of endofunctors of wCat, where the transitions are induced by the counits of the adjunctions
vl o (R We note that for every n > 0 the composition of the above sequence with
the functor (—)=" is eventually constant, and is therefore a filtered colimit diagram.

Recall from remark 3.6.5 that wCat is the limit of the sequence of categories

(il,Q)R 23)R

GOl G
0Cat +—— 1Cat 2Cat ...+ wCat.

Each of the transition functors above preserve filtered colimits. We conclude that id, g, is
the colimit of the endofunctors i (—)=". In other words, every w-category is the colimit of
its truncations.

Proposition 3.6.10. The category wCat is cartesian closed.

Proof. Let D be an w-category and let X* : Z% — wCat be a colimit diagram for X = X*|7.
We have to show that the induced diagram X" x D is also a colimit diagram. For each
n >0 let X be an extension of i™*(X=") to a colimit diagram in wCat. Thanks to remark
3.6.9, we have X* = colim,, X, . Since wCat is compactly generated we have that products
distribute over filtered colimits, and therefore we have

X" x D = colim, (X x D).
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It suffices to show that X x D is a colimit diagram for each n > 0. Using remark 3.6.9
again, we have
XZ x D = colim,,(X> x i™“D=m).

It therefore suffices to show that for each n,m > 0, the diagram X" x i"™*“D=™ is a colimit
diagram in wCat. This follows from the fact that (max(n,m))Cat is cartesian closed and
closed under products and colimits inside wCat. O

Notation 3.6.11. We denote by
Funct(—, —) : wCat? x wCat — wCat

the internal Hom of wCat.

Remark 3.6.12. Equip the category wCat with its cartesian symmetric monoidal structure.
For each category X we have that Algbrd (wCat) is equivalent to the limit of the categories
Algbrd i (nCat) under the transition functors (i), Integrating over all such X we see
that Algbrd(wCat) is the limit of the categories Algbrd(nCat) under the functors (i )&

Using proposition 3.6.7 we see that the inclusion % is the unit map for the presentable
monoidal category wCat. It follows that that an object in Algbrd(wCat) is an enriched
category if and only if its image in Algbrd(nCat) is an enriched category for all n > 0.
Therefore the category Cat““ is the limit of the categories Cat"“® under the transition

functors (i""T1)E. Passing to left adjoints we conclude that the colimit in Pr’ of the diagram

1,2 -2,3

2.0,1 7, 7
Cat®P¢ L Cat®™ L Cat®at —— .

is Cat““®. The above is however equivalent to the diagram in construction 3.6.2. It follows
that there is an equivalence

Cat“® = ,Cat

which makes the following diagram commute for all n > 0:

CatnCat Z-!mw Cathat

I |

(n + 1)Cat A Cat

In other words, an w-category can be thought of as a category enriched in w-categories, in
a way which is compatible with the definition of (n + 1)-categories as categories enriched
in n-categories. In particular, the internal Hom functor for wCat fits into the framework of
functor enriched categories from 3.5.

Proposition 3.6.13. The functor S”(—) : wCat — nCat preserves finite products for all
n > 0.
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Proof. We first observe that the final object of wCat is the image of the final object of nCat
under the (limit preserving) inclusion ™. Hence ="(—) preserves final objects.

We now show that S"(—) preserves binary products. Let C, D be two w-categories. Thanks
to remark 3.6.9, we can write C = colim,;,>¢ C,,, and D = colim,, > D,, where C,, and D,, are
m-categories for each m > 0. Since products commute with filtered colimits in wCat, we have

C x D = colim;;,>0 Cp, X Dy,

Since S”(—) preserves colimits, we reduce to showing that for each m > n the left adjoint to
the inclusion ™™ preserves products. Arguing inductively, we may furthermore reduce to
the case n = 0, m = 1, which follows from the fact that the geometric realization functor
Cat — Spc preserves finite products. O

Corollary 3.6.14. Let C and D be w-categories, and assume that D is an n-category for
some n > 0. Then Funct(C, D) is an n-category. Moreover, if C is also an n-category then
Funct(C, D) can be identified with the internal Hom between C and D in nCat.

Proof. Combine proposition 3.6.13, proposition 3.5.28 and corollary 3.5.29. O]

Remark 3.6.15. Let n > 0. Passing to right adjoints in the commutative diagram of remark
3.6.12 yields a commutative square

CatnCat (7)‘Sn Cathat

P

(n + 1)Cat 7 oCat.

It follows that for every w-category C, the category underlying C (thought of as an object
of Cat*“®) is C='. In particular, its space of objects is C=0. Furthermore, for each par of
objects x,y in C, we have an equivalence

Homes<ni1(,y) = Home (z, y)=".

Similarly, passing to left adjoints in the commutative diagram of remark 3.6.12 yields a
commutative square

CatnCat Sn(_)’ Cathat

ol

(n+ 1)Cat D Cat.

It follows that for every w-category C, the (n + 1)-category ="*'C is the image under the
localization functor Algbrd(nCat)s,. — (n + 1)Cat of an algebroid ="*'CP™ with space of
objects C=°, and such that for every pair of objects =,y in C=° we have an equivalence

Hom<n+1ppre (2, ) = ~"Home(, y).
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Example 3.6.16. Let m > n > 1. It follows by induction that <"C,, is the singleton set.
On the other hand, C=" is the boundary of the (n + 1)-cell dC,,,1, defined inductively by the
fact that 0C) is empty, and for n > 1 we have 0C,, = Cy¢, _,.

Remark 3.6.17. Looking at the unit of the adjunction i("*V« - (—)<"*l through the
equivalence given by the first commutative square in remark 3.6.15 shows that an w-category
C is an (n + 1)-category for some n > 0 if and only for every pair of objects z,y in C, the
w-category Home(x,y) is an n-category.

Remark 3.6.18. Recall from remarks 3.3.8 and 3.4.11 that we have an involution (—)°" on
the full subcategory of Algbrd on the enriched categories, which restricts to an involution on
the category of algebroids over any symmetric operad. In particular, for each n > 1 we have
an induced involution on nCat by virtue of its description as Cat™ ¢t

It follows by induction that nCat comes equipped with n commuting involutions (—)*°P
for 1 < k < n. We think about (—)’“‘OlD as the involution that inverts the direction of all
k-cells. These involutions are compatible with the inclusions i®"!, and they therefore induce
an infinite family of commuting involutions on the category wCat.
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Chapter 4

Modules over algebroids

Let M be a monoidal category and let C be a category left tensored over M. A left module
in C for an M-algebroid A consists of:

e For each object z in A an object P(x) in C.
e For every pair of objects z,y in A a morphism A(y,z) @ P(z) — P(y).

e An infinite list of compatibility data between the above morphisms and the structure
maps for A.

More generally, assume given another monoidal category M’, and an M — M’-bimodule
category C. If A and B are algebroids in M and M’ respectively, an A — B-bimodule in C
consists of:

For each pair of objects x in A and y in B, an object P(x,y) in C.

For every pair of objects x, 2’ in A and object y in B, a morphism
A2’ ) @ P(a,y) = P2’ y).
e For every pair of objects ¢, in B and object z in A, a morphism

P(z,y) @ By,y') = P(x,y)

An infinite list of compatibility data between the above morphisms and the structure
maps for A and B.

Our goal in this chapter is to review the theory of left modules and bimodules, and
provide a functorial enhancement of the procedure of enrichment of presentable modules over
presentable monoidal categories.

We begin in 4.1 by using the operads LMy from 3.2 to define the category of left modules
over an algebroid. We show that there is a well behaved procedure of restriction of scalars
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along morphisms of algebroids. We record here two basic results regarding the multiplicativity
properties of the theory of left modules, analogous the ones obtained in 3.5 for the theory of
algebroids.

In 4.2 we construct, for each presentable symmetric monoidal category M, a lax symmetric
monoidal functor Y

Or - M-mod(Pr") — Cat .

For each presentable M-module C, the enriched category 6,,(C) has C as its underlying
category, and for each pair of objects x,y in C one has an isomorphism between Homg,,, ¢y (2, y)
and the Hom object .#om¢(x,y) obtained from the action of M on C. We show that the
functor 6, is compatible with changes in the enriching category. In the particular case when
M is the category of spaces with its cartesian symmetric monoidal structure, we prove that
the functor 6,4 is equivalent, as a lax symmetric monoidal functor, to the usual forgetful
functor from M -mod(Pr”) to Cat. As a first consequence of the existence and properties of
O, we show that M admits a canonical enrichment over itself. This allows us in particular
to construct an (n + 1)-category of n-categories for each n > 0, and in the limit it provides a
definition of the w-category of w-categories.

In 4.3 we review the notion of bimodule over an algebroid. We recall here the approach
to the construction of the Yoneda embedding via the diagonal bimodule and the folding
construction from [Hin20al, and record a basic result regarding the procedure of restriction
of scalars in the context of bimodules over algebroids.

4.1 Left modules

We begin by reviewing the concept of left module over an algebroid.

Notation 4.1.1. For each LM-operad M we denote by M, the its Assos-component, and
by M,, the fiber of M over the module object in LM.

Definition 4.1.2. Let M be a LM-operad. Let A be an algebroid in M; with category of
objects X. A left A-module is a LM x-algebra in M, whose Assosy-component is identified
with A.

Remark 4.1.3. Let M be a LM-operad. Let A be an algebroid in M; with category of
objects X. A left A-module P assigns to each object z in X an object P(z) in M,,. For
every n > 0 and every sequence of objects and arrows

Yo =20 < Y1, L1 < Y2, -+, Tp—1 < Yn, Ty < Yn+1
in X, the left A- module P induces a multimorphism

{A(yl, xl)v tee ’A(yna xn)a P(yn-i-l)} — P(yo)

in M. In the case when M is a LM-monoidal category (in other words, M, is a monoidal
category and M,, is a left module for it), this induces a morphism

Ayr, 21) @ .. @ AYn, Tn) @ P(Yni1) = Pbo)-
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In particular, in the case when n = 1 and the arrows are identities we obtain, for every pair
of objects xg, 1 in X a map

A(ZL‘Q,Il) X P(Il) — P(ZL‘Q)
This is compatible with the units and composition of A, up to homotopy.

Example 4.1.4. Let X be a category and let z be an object of X. Then the functor
(id,z) : X U[0] — X induces a morphism of associative operads LM x — Assosx. It follows
that for every associative operad M and every M-algebroid A with category of objects X,
we have an induced left module P in M. This has the following properties:

e For every object 2/ in X we have P(2') = A(2/, z).
e For every pair of objects 2/, 2” in X the action map
{A(",2"), P(a)} = P(")
is equivalent, under the identifications of the previous item, to the composition map
{A(Z", 2", A2, 2)} — A(2", x).

We call P the left module corepresented by x. We will usually use the notation A(—, z) for
P, and in the case when A is an M-enriched category, we instead write Hom4(z, —).
Construction 4.1.5. Consider the functor Alg;,; (—) defined by the composition

LM_ X idopy Alg_(—)

Cat? x Oppy Oprhy x Op g —— Cat.

For each object M in Opyy; we denote by LMod(M) the total category of the cartesian
fibration associated to the functor Alg;,, (M) : Cat®® — Cat. This comes equipped with
a forgetful functor LMod(M) — Algbrd(M,). For each algebroid A in M, we denote by
LMod4(M) the fiber of LMod(M) over A, and call it the category of left A-modules.

The assignment M +— LMod(M) defines a functor LMod(—) : Opgy — Cat. Let LMod
be the total category of the associated cocartesian fibration. In other words, LMod is the
total category of the two-sided fibration associated to Algyy (—)-

Warning 4.1.6. Our usage of the terminology LMod(M) conflicts with that of [Lurl7].
There only left modules over associative algebras are considered - this corresponds to the
fiber of the projection LMod(M) — Cat over [0].

Remark 4.1.7. The category LMod fits into a commutative square

Arropax(Cat) ¢——— LMod ———  Algbrd

l | |

Cat x Cat «+—— Cat x Opyy; — Cat X Oppg0s -
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Here the vertical arrows are the two-sided fibrations classified by the functors Funct(—, —),
Alg; i (=) and Algbrd_(—), and the horizontal arrows are the functors of “forgetting the
algebra” and “forgetting the left module”.

Proposition 4.1.8. Let M be a LM-operad. Then the projection
p : LMod(M) — Algbrd(M,)

is a cartesian fibration. Moreover, a morphism F : (A, P) — (B, Q) in LMod(M) is p-
cartesian if and only if for every object x in A the induced map P(zx) — Q(F(x)) is an
1somorphism.

Proof. Let Env(M) be the LM-monoidal envelope of M, and let P(Env(M)) be the image
of Env(M) under the symmetric monoidal functor P : Cat — Pr”. We have a commutative
square of categories

LMod(M) ——— LMod(P(Env(M)))

| |

Algbrd(M,;) —— Algbrd(P(Env(M)),).

Note that the horizontal arrows are fully faithful. Our result would follow if we are able to
show that the right vertical arrow is a cartesian fibration, and that cartesian morphisms are
given by the condition in the statement. In other words, it suffices to prove the result in the
case when M is a presentable LM-monoidal category. We assume that this is the case from

Nnow on.
Let X be a category. Recall from [Hin20a] that LM is a flat LM-operad. It follows that
there is a universal LM-operad M x equipped with a morphism of LM-operads

MX X1I,M LMX — M.
In particular, we have equivalences
AlgLMX (M) = Algpy(Mx)

and
AlgbrdX (M) = AlgAssos ( (MX)Z) :

The projection px : Algyy, (M) — Algbrdy (M;) becomes identified, under this dictionary,
with the canonical projection

piX : AlgLM(MX) — AlgAssos((MX)l)‘

As discussed in [Hin20a] corollary 4.4.9, M x is a presentable LM-monoidal category. It
now follows from [Lurl7] corollary 4.2.3.2 that px is a cartesian fibration, and moreover a
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morphism F : (A, P) — (B, Q) in Algy, is px-cartesian if and only if for every object x in
X the induced map P(z) — Q(z) is an isomorphism.

Assume now that F'is px-cartesian and let g : Y — X be a functor of categories. Consider
the induced morphism

gF :(gA gP) = (¢B.¢'Q)

in Algyyp, (M). Let y be an object in Y. Then the induced map ¢'P(y) — ¢'Q(y) is equivalent
to the map P(g(y)) — Q(g(y)), and is therefore an isomorphism. It follows that ¢'F is
also py-cartesian, and hence ¢' is a morphism of cartesian fibrations. Combining [Lur09a]
propositions 2.4.2.8 and 2.4.2.11 we conclude that p is a cartesian fibration.

Our characterization of p-cartesian morphisms follows from the above characterization of
px-cartesian morphisms together with item (iii) in [Lur09a] proposition 2.4.2.11. O

Notation 4.1.9. Let M be an associative operad. We denote by (Opyy;)|am the fiber of the
projection Opyy — Opasos Over M, and by LMod |y the fiber over M of the projection
LMod — Oppgeos-

Corollary 4.1.10. Let M be an associative operad. Then the projection
LMod |pf = (Oppy)|m x Algbrd(M)

is a two-sided fibration from (Oppy)|m to Algbrd(M).

Proof. By construction, the projection LMod — Algbrd is a morphism of cocartesian fibra-
tions over the functor Op;y — Opagos: 1t follows that the projection in the statement is
a morphism of cocartesian fibrations over (Opyy)|m. Its fiber over a given M-module is
a cartesian fibration, thanks to proposition 4.1.8. Our claim now follows from proposition
9.1.9. O

Proposition 4.1.11. The categories LMod and Arrypiax(Cat) admit finite products. More-
over, all the maps in the diagram of remark 4.1.7 preserve finite products.

Proof. The fact that LMod admits finite products which are preserved by the projection to
Cat x Opy,, follows by the same arguments as those from proposition 3.5.1. One similarly
shows that Arryplax(Cat) admits finite products which are preserved by the projection to
Cat x Cat. It remains to show that the projections from LMod to Arrgpax(Cat) and Algbrd
preserve finite products. Both claims can be proven using similar arguments - below we
present the case of Algbrd.

Observe first that the final object for LMod is the unique object lying above the final
object in Cat x Opyy;. Its image in Algbrd is the unique algebroid lying above the final
object in Cat X Opyyos: Which is indeed the final object of Algbrd.

It remains to show that the projection LMod — Algbrd preserves binary products. Let
M, N be two LM-operads, and let X, Y be two categories. Let (A, P) and (B, Q) be objects
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of LMod lying above (X, M) and (Y,N), respectively. A variant of the discussion from
remark 3.5.4 shows that their product (A, P) X (B, Q) fits into a diagram

(A, P) L4204 P) S470 (4, PYR (B, Q) 252 (B, 0) 222, (B, 0)

where a4 p) and q(p,g) are cocartesian for the projection LMod — Opyy and S 4.p) and
B(,0) are cartesian for the projection LMod — Cat. The image of the above diagram under
the projection to Algbrd recovers a diagram

YRy W RNy NG

where a4 and ap are cocartesian for the projection Algbrd — Opy...s and S4 and fp are
cartesian for the projection Algbrd — Cat. Using remark 3.5.4 we conclude that the above
diagram exhibits W as the product of A and B in Algbrd, as desired. O]

Proposition 4.1.12. Let f : (A, P) — (A',P") be a morphism in LMod and let (B, Q) be
another object of LMod. Denote by p = (p1,p2) the projection LMod — Cat X Opy ;-

(i) If f is pi-cartesian then fXidg is p;-cartesian.
(i) If f is pe-cocartesian then f X idg is ps-cocartesian.

Proof. Follows from the same arguments as those of proposition 3.5.5. O]

4.2 Enrichment of presentable modules

Our next goal is to discuss the procedure of enrichment of presentable modules over presentable
monoidal categories.

Notation 4.2.1. Recall the projection LMod — Arrgp,(Cat) from remark 4.1.7. Note
that we have an inclusion Funct([1], Cat) — Arrepax(Cat) which is surjective on objects,
which arises from straightening the natural transformation Homg,(—, —) — Funct(—, —)
(see proposition 9.2.4). In other words, Funct([1], Cat) is the total category of the maximal
bifibration contained inside the two-sided fibration Arrgp,..(Cat) — Cat x Cat.

We denote by LMod’ the fiber product LMod X ayy, .. Funct([1], Cat). For each M in
Op; we denote by LMod' (M) the fiber over M of the projection LMod' — Opy ;-

Remark 4.2.2. A variation of the argument in 4.1.11 shows that the inclusion of the arrow
category Funct([1], Cat) inside Arropiax(Cat) preserves finite products. It follows that LMod’
admits finite products, which are preserved by its inclusion inside LMod.

Proposition 4.2.3. Let M be a presentable LM-monoidal category (in other words, a pair of

a monoidal category M, and a presentable module M., ). Then LMod' (M) has a final object.
Moreover, a pair (A, P) of an M;-algebroid A with category of objects X and a left A-module
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P in M,, is final if and only if the functor X — M,, underlying P is an equivalence, and
for every pair of objects x,y in X, the action map
Aly,z) @ P(x) = P(y)

exhibits Ay, x) as the Hom object between x and y.

Proof. Note that the composition of the projection m’(M) — Funct([1], @) with the

target map Funct([1], é\at) — Cat is canonically equivalent to the constant functor M,,. It
follows that we have a commutative diagram

éa\t/./\/(m < m/(/\/l)

~N_ 7

Cat

where the left vertical map is the forgetful functor, and the right vertical arrow picks out the
category of objects of the underlying algebroid. Since the right vertical arrow is a cartesian
fibration and the left vertical arrow is a right fibration, we have that the horizontal arrow is
a cartesian fibration.

Let X be a category equipped with a map f : X — M,, and recall Mresentable

LM-monoidal category Mx from the proof of proposition 4.1.8. The fiber of LMod'(M) over
X is the category of LM x-algebras in M,, whose underlying functor X — M,, is f. This
can equivalently be described as the category of associative algebras in (M), equipped with
an action on f (thought of as an object of (Mx),,). By [Hin20a] corollary 6.3.4, we conclude

that (ml(/\/l)) x admits a final object, and moreover a pair (A, P) of an M;-algebroid
with category of objects X and a left A-module P whose underlying functor X — M,, is f
is final if and only if for every pair of objects x,y in X the action map

Ay, =) @ f(z) = f(y)

exhibits A(y, ) as the Hom object between f(z) and f(y).

This description implies that if (A, P) is final in (LMod'(M))x and g : Y — X is a
functor of categories, then (¢'A, ¢'P) is final in (LMod’(M))y. The result now follows from
an application of [Lur09a] proposition 4.3.1.10. ]

Corollary 4.2.4. Let M be a presentable LM-monoidal category. Then the projection
LMod' (M) — Algbrd(M,) is a representable right fibration.

Proof. Combine propositions 4.1.8 and 4.2.3. O
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Notation 4.2.5. Let M be a presentable monoidal category. We denote by

—

LMod’ | M -mod(Prt)

the base change of the projection LMod" — @LM along the inclusion M -mod(Pr*) — (/)Y)LM.

For our next result, we need the notion of representable bifibration (see definition 9.2.7).

Corollary 4.2.6. Let M be a presentable monoidal category. Then the projection
LMod'| v _mod(prty) — M -mod(Pr") x @b\rd(/\/l)

is a representable bifibration from M -mod(Pr") to Afgb\rd(/\/l)

Proof. It follows from corollary 4.1.10 together with the description of cartesian arrows from
proposition 4.1.8 that the projection in the statement is the maximal bifibration contained
inside the base change of the projection from corollary 4.1.10 along the inclusion

M -mod(Pr%) x Algbrd(M) — (Oppag)|am x Algbrd(M).
The fact that it is representable is the content of corollary 4.2.4. O

Our next goal is to study the dependence in M, of the algebroid from proposition 4.2.3.

Construction 4.2.7. Consider the commutative diagram of categories

ml|AlgLM(PrL) 1/—/> Im/ % @d

P!

—

AlgLM(PrL) —Z> O/-pﬁ % OpAssos

where the left square is cartesian. We equip all four categories in the right square with their
cartesian symmetric monoidal structure. By propositions 3.5.1 and 4.1.11 together with
remark 4.2.2 we see that the right square has a canonical lift to a commutative square of
cartesian symmetric monoidal categories. It follows from propositions 3.5.5 and 4.1.12 that p
and ¢ are in fact cocartesian fibrations of operads.

Equip Alg; ,,(Pr") with its canonical symmetric monoidal structure, so that i inherits a
lax symmetric monoidal structure. It follows from the above that p’ has a canonical structure
of cocartesian fibration of operads, and i’ of lax symmetric monoidal morphism.

Using proposition 4.2.3 we see that that p’ admits a fully faithful right adjoint p'®, which
comes equipped with a canonical lax symmetric monoidal structure. We therefore have a
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commutative diagram of symmetric monoidal categories and lax symmetric monoidal functors
as follows:

Alghrd

ri’ /R
/ .
—_—

AlgLM(PrL) L> OpAssos

Note that ji factors through the lax symmetric monoidal inclusion Alg ..., (Pr") — O?A;s,
so we have an induced diagram of symmetric monoidal categories and lax symmetric monoidal
functors

Algbrd|yg, (et

b
AlgLM(PrL) — AlgAssos(PrL)'

Observe that the maps u and ¢’ are cocartesian fibrations of operads. If M, is a presentable
symmetric monoidal category, thought of as a commutative algebra object in Alg,....(Pr*),
we obtain in particular an induced lax symmetric monoidal functor

0 : M-mod(Pr") — Algbrd(M).

Proposition 4.2.8. The map 6’ from construction 4.2.7 is a morphism of cartesian fibrations
over Alg ... (Pr").

Proof. We continue with the notation from construction 4.2.7. Observe that u and ¢’ are
indeed cartesian fibrations. For ¢’ this follows from the adjoint functor theorem combined
with remark 3.3.10, and for u this follows from [Lurl7] corollary 4.2.3.2. The rest of the proof
is devoted to showing that 6’ maps u-cartesian arrows to ¢’-cartesian arrows.

Let F : M — M’ be a u-cartesian arrow in Alg;,;(Pr”), whose components consist of a
morphism of presentable monoidal categories F; : M; — M and an isomorphism of modules
Fo: My, — M.,,. Let (A, P) = p(M) and (A, P") = p'R(M’). The morphism

PRE (A P) = (AP

can be factored as na where « is a p’-cocartesian lift of ', and n : (A, P) — (A, P’) is

the unique map in LMod’(M’) from Fj(A, P) to the final object. Consider the morphism of
algebroids ri'n : (F; A — A’. We have to show that the induced map u : A — (Eff), A’ is an
isomorphism.

Let X and X' be the categories of objects of A and A’, respectively. We have a commutative
square

Fn
M,y 2 M2

r| dl

X 7 4 x
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where the bottom horizontal arrow is the projection of p’®F to Cat. It follows from proposition
4.2.3 that the vertical arrows are equivalences. Since F;, is also an isomorphism, we conclude
that ¢ is an equivalence. It follows that n and p also induce equivalences at the level of
categories of objects. To simplify notation, in the rest of the proof we identify X with M,,
and X’ with M/ via the isomorphisms P and P’.

Let z,y be two objects in M,,. We have to show that the induced map

po + Aly, ) = FFA (Epy, Fra)
is an isomorphism. The morphism 7 induces a commutative square in M/ as follows:

FA(y,2) ® Fpz —— Fpy

lm”r]* ®id lid

A (Fy, Fpx) @ Froo —— Fuy

Applying the (lax symmetric monoidal) right adjoint to F yields a commutative square in
M,,, as follows:

FRA(y,z) @ —— y
lFeri’n*Qaid id
FRA(Fry, Fpz) @ 2 —— y

Composing with the unit map A(y, z) — FF, Ay, x) yields a commutative square

Aly,2) @ x ——— gy

F}RA,<me7 me> QT —— Y

where the top horizontal arrow exhibits A(y, ) as the Hom object between x and y.

It now suffices to show that the bottom horizontal arrow exhibits FEA' (F,y, F,z) as
the Hom object between x and y. This follows from the right adjointability of the following
commutative square of categories:
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Corollary 4.2.9. Let F' : M — M’ be a colimit preserving symmetric monoidal functor
between presentable symmetric monoidal categories. Then there is a commutative square of
symmetric monoidal categories and lax symmetric monoidal functors

o,  ——
M’ -mod (Pr*) —% Algbrd(M’)

lp* |

M-mod(Pr¥) —245 Klghrd(M)

where F* denotes the functor of restriction of scalars along F.

Proof. For each symmetric monoidal category X denote by X® its category of operators.
The map F corresponds to a morphism F® : [1] x Fin, — Alg,....(Pr")® over Fin,. Base
change of #' along F'® yields a commutative diagram

(Algbrd|y, . (pet)) e

9/
y lv:(vl,vz)

Alg(Prh) 5, — " [1] x Fin,

where h and v are cocartesian fibrations. Observe that the maps h and v are also two-sided
fibrations - in other words, the associated functors [1] x Fin, — Cat are right adjointable in
the [1] coordinate. In particular, we see that h; and v; are cartesian fibrations, and h and v
are morphisms of cartesian fibrations over [1]. It follows from proposition 4.2.8 that 0% is a
morphism of cartesian fibrations over [1]. Straightening it yields a commutative square in
Cat /Fin,- 1racing the construction of this square reveals that it is actually a commutative

square of commutative operads, and satisfies the desired conditions. O

Proposition 4.2.10. The lax symmetric monoidal functor

4o PrY = Spc-mod(Prt) — @d(Spc)

Spc

factors through the image of the section s from construction 3.4.1. Furthermore, the composi-

tion of Og,. with the symmetric monoidal projection @b\rd(Spc) — Cat is equivalent to the

forgetful functor Pr — Cat with its canonical laz symmetric monoidal structure.

Proof. Let C be a presentable category. Then fg,.(C) is a Spc-algebroid equipped with a left
module in C which identifies its category of objects with C, and such that for every pair of
objects x,y the map

eépc(c)<y7‘r) Qxr — Yy



CHAPTER 4. MODULES OVER ALGEBROIDS 72

exhibits 0g,.(C)(y,z) as the Hom object between z and y. Inspecting the unit morphism
Home (z,y) — 05,.(C)(y, x) one obtains a commutative square

Home(z,y) @ 2 —— y

N

The top horizontal arrow exhibits Home(z, y) as the Hom object between x and y, so we see
that the unit map Home(z,y) — 05,.(C)(y, ) is an isomorphism. As discussed in the proof
of lemma 3.4.4, this is also the case for the algebroid s(C). It follows that the canonical map
s(C) — 05,.(C) is an equivalence, and therefore g . factors through the image of s.

Consider now the following diagram:

—

Funct([1], Cat) +—*— LMod’ ————— @d

l(to 0 l(auv) l(/iq)

(id (id Sl

Cat X Cat <— Cat X O PLM —> Cat X OP A ssos

We equip all categories above with their cartesian symmetric monoidal structure, so that all
functors inherit a canonical symmetric monoidal structure.

The composition of fg . with the symmetric monoidal projection @d(Spc) — Cat
is equivalent to the lax symmetric monoidal functor obtained by taking the fiber over Spc
of the lax symmetric monoidal functor (3, q)ri'p’®. This is equivalent to the composite lax
symmetric monoidal functor

/R ——— oy — —
Pr = Spc-mod(Pr") « Alg\ (Pr*) “— LMod'y, p,zy = LMod’ 5 Algbrd 5, Cat

which is in turn equivalent to the following composition:

—_—

Pr’ = Spc-mod(Pr") «— Alg;,,(Pr?) LA M'Alg(PrL) 7y IMod' % Funct([1], Cat) 2 Cat

Meanwhile, the lax symmetric monoidal forgetful functor Pr* — Cat can be obtained as the
following composition:

/R —— A —
Pr” = Spc-mod(PrF) < Alg; ,,(Pr*) 2= LMod' yyy(p,1) % LMod’ % Funct([1], Cat) 2 Cat.

We have to show that these agree. Note that they are both obtained by composing the lax
symmetric monoidal functor

F : Pr¥ = Spc-mod(Pr*) < Algyy(Pr*) 7 @’Alg(w) 7 [Mod' % Funct([1], Cat)
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with either ¢y, or ¢;. However, thanks to the characterization of the image of p'f from
proposition 4.2.3, we have that the image of F' belongs to the full subcategory Funct([1], Cat)iso
of Funct([1], Cat) on the isomorphisms. Hence we can factor the lax symmetric monoidal
functor F' as follows:

prt L Funct([1], Cat)iso < Funct([1], Cat).

Our claim now follows from the fact that the restrictions of sy and s; to Funct([1], Cat)iso
are equivalent. O]

Corollary 4.2.11. Let M be a presentable LM-monoidal category, and let v : M=0 — M,,
be the inclusion. Then +'0'(M) is an M;-enriched category.

Proof. We have an equivalence (7o )17'0'(M) = +'(Tm)10/(M). Thanks to corollary 4.2.9 we
have that (7a)i1(6'(M)) is equivalent to 6'(N'), where N is the presentable LM-monoidal
category obtained by restricting the action of M; on M,, along the unit map Spc — M;.
Our claim now follows directly from proposition 4.2.10. m

We now construct a variant of the functor #” which takes values in enriched categories.

Construction 4.2.12. We continue with the notation of construction 4.2.7. Consider the
following commutative diagram:

Algbrd «"— Algbrdg,,

/ l [

—

AlgLM(Pr ) —> OpAssos <— OpAssos

Here Ajgb\rdspC is the full subcategory of Al/gb\rd on those algebroids with a space of objects.
We equip all categories on the right square with their cartesian symmetric monoidal structure.
Note that ¢ and gsp. have canonical structures of cocartesian fibrations of operads, and h is
a morphism of cocartesian fibrations of operads.

We observe that the category Ajggb\rdspC is obtained by base change of the cartesian

fibration Al/gb\rd — Cat along the inclusion S/p\c — Cat. The latter admits a right adjoint,
which implies that h admits a right adjoint A* such that for every object A in ATgEd the
canonical map hhft A — A is cartesian. It follows that the right square in the above diagram
is horizontally right adjointable, so we have a commutative diagram of symmetric monoidal
categories and lax symmetric monoidal functors as follows:

Algbrd SN AlgbrdspC

—

AlgLM(Pr —> OpAssos —> OpAssos
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As before, we observe that ji factors through the lax symmetric monoidal inclusion of

Alg s (PT7) inside O?A;JS, so we have an induced diagram of symmetric monoidal categories
and lax symmetric monoidal functors

— R o
Algbrd|AlgAssos(PrL) — (AlgbrdSpc) |AlgASSOS(PrL)

% lq’ lq'spc
AlgLM<PrL) — AlgAssos<PrL> 1—d> AlgAssos(PrL>'
We denote by
0 : Algpy (Pr") — Algbrdg,,

the lax symmetric monoidal functor obtained by composing A’ and ¢'. It follows from
corollary 4.2.11 that @' factors through the full subcategory of ATgEdSpC on the enriched
categories.

If M, is a presentable symmetric monoidal category, thought of as a commutative algebra
object in Alg,....(Pr”), we obtain in particular a lax symmetric monoidal functor

Op : M-mod(Pr’) — Cat .

Proposition 4.2.13. The map 0 from construction 4.2.12 is a morphism of cartesian
fibrations over Alg ... (Pr").

Proof. Using proposition 4.2.8, we reduce to showing that the morphism
hIR : AlgbrdAlgAssos(PrL) — (AlgbrdSpC)‘AlgAssos(PrL)

is a morphism of cartesian fibrations over Alg, . .(Pr”). This is a direct consequence of the
fact that it is right adjoint to a morphism of cocartesian fibrations. n

Corollary 4.2.14. Let F : M — M’ be a colimit preserving symmetric monoidal functor
between presentable symmetric monoidal categories. Then there is a commutative square of
symmetric monoidal categories and lax symmetric monoidal functors

M’ -mod (Pr*) It Gt

lF* leR
M
M -mod(Pr") _Om, Cat
where F* denotes the functor of restriction of scalars along F'.

Proof. This is deduced from proposition 4.2.13 using similar arguments as those from the
proof of corollary 4.2.9. [
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Proposition 4.2.15. The lax symmetric monoidal functor
Ospe : Pr¥ = Spc-mod(Pr*) — Cat
is equivalent to the (lax symmetric monoidal) forgetful functor Pr¥ — Cat.

Proof. This is a direct consequence of proposition 4.2.10. O]

Notation 4.2.16. Let M be a presentable symmetric monoidal category. We denote by M

the image of the unit of M -mod(Pr") under 6. This is a commutative algebra in Cat
whose underlying symmetric monoidal category is equivalent to M.

In the special case M = Cat we use the notation %at = Cat. This is the symmetric
monoidal 2-category of categories. More generally, for each n > 1 we set néat = nCat. This
is the symmetric monoidal (n + 1)-category of n-categories. We also set wéat = wCat. This
is the symmetric monoidal w-category of w-categories.

We finish by considering a variant of the functor 6, from construction 4.2.12 which
admits a left adjoint.

Notation 4.2.17. Let x be an uncountable regular cardinal. We denote by Pr’ the subcat-
egory of Prl on the k-compactly generated categories and functors which preserve x-compact
objects. We equip Prﬁ with the restriction of the symmetric monoidal structure from Pr”.

Let M be a commutative algebra in Pr’. We denote by LMod'| M-mod(prLy the base change

of the projection LMod" — (/)BLM along the inclusion M -mod(Pr%) — @)LM. We denote by

LMod™ | the full subcategory of LMod'| v noqep,2y consisting of those triples (A, P,C) of

an object C in M -mod(Pr%), a small algebroid A in M with category of objects X, and a
left module P such that for every x in X the object P(z) in C is k-compact.

Proposition 4.2.18. Let k be an uncountable reqular cardinal and let M be a commutative
algebra in Prﬁ. Then the projection

P = (pF,p5) : LMod™ |y — M -mod(Prt) x Algbrd(M)
s a representable bifibration.

Proof. Consider first the projection
LMod' | oqpet) — M -mod(Prk) x Algbrd(M).

This arises by base change from the projection of corollary 4.2.6 so we conclude that it is
a representable bifibration. It follows directly from the definition that LMod™ |y is still a
cocartesian fibration over M -mod(Pr%), and for every C in M-mod(Pr%) the projection
LMod™ |pm(C) — Algbrd(M) is a right fibration. Note that this right fibration is represented
by j'0((C), where j is the inclusion of the full subcategory of r-compact objects inside C.
We conclude that p” is a representable bifibration, as desired. O
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Notation 4.2.19. Let x be an uncountable regular cardinal and let M be a commutative
algebra in Pr’. We denote by

0’5, : M-mod(Pr%) — Algbrd(M).
the functor classifying the projection p” from proposition 4.2.18.

Remark 4.2.20. Let x be an uncountable regular cardinal and let M be a commutative
algebra in PrZ. The functor ¢t can be obtained as the composition

KR K
M -mod(Pr?) W, | Mod™ | =2 Algbrd(M).

Composing (pf)" with the inclusion of LMod™ | inside LMod'| v4_poq(prr) yields a section
of the cocartesian fibration

P LMod'| y_poqepety) — M -mod(Prf).

By corollary 4.2.6 the projection p{* admits a right adjoint. It follows that there is a lax
commutative triangle

K\R
M-mod(Prt) — " 1 Mod™ |,

/
(™)

LMod’ | M -mod(Prk)-

Composing with the projection LMod’ | M-mod(pel) — @d(/\/l) we obtain a natural trans-
formation

/'K /
0% = Ol momoapst)

of functors M -mod(Pr%) — ATg;b\rd(/\/l) For each object C in M -mod(Pr%), the morphism
of algebroids

9.//6[ (C) - H.I/\A’M-mod(Prﬁ)(C)
is cartesian for the projection ATgb\rd(/\/l) — @, and lies above the inclusion of the full

subcategory of k-compact objects inside C.

Notation 4.2.21. Let x be an uncountable regular cardinal and let M be a commutative
algebra in PrZ. Consider the composite functor

M -mod(Prt) 24 Alghrd(M) — Algbrd(M)spe

where the second map is the colocalization functor. It follows from proposition 4.2.15 together
with the description of 0y from remark 4.2.20 that the above composite map factors through
Cat™. We denote by

0%, : M-mod(Pr%) — Cat™

the resulting functor.
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Remark 4.2.22. Let x be an uncountable regular cardinal and let M be a commutative
algebra in PrZ. It follows from remark 4.2.20 that there is a natural transformation

0%, — Oy

such that for every object C in M -mod(Pr%), the functor of enriched categories 6%,(C) —
O (C) exhibits 6%5,(C) as the full subcategory of ,((C) on those objects which correspond to
r-compact objects in C.

Lemma 4.2.23. Let k be an uncountable regular cardinal and let M be a commutative
algebra in Pr%. Then the projection

p5 : LMod™ | oy — Algbrd(M)
preserves colimits.

Proof. Tt follows from a combination of [Lur09a] proposition 5.5.7.10 and [Lurl7] lemma
4.8.4.2 and that Prﬁ is a presentable symmetric monoidal category. Using [Lurl7] corollary
4.2.3.7 we see that M -mod(Pr’) is also presentable.

Using proposition 4.2.18 we see that the fibers of the cocartesian fibration pf are presentable
and for every map F : C — D in M -mod(Pr%) the induced functor

Fy : LMod’y,(C) — LMod{,(D)

preserves colimits. Hence p; admits all relative colimits. Note that the projection map
LMod™ |, — Algbrd(M) sends pf-cocartesian arrows to invertible arrows, and for every C in
M -mod(Pr%) the functor LMod/y,(C) — Algbrd(M) preserves colimits. Applying [Lur09a]
proposition 4.3.1.9 and 4.3.1.10 we have that pf§ itself preserves colimits. O]

Proposition 4.2.24. Let k be an uncountable reqular cardinal and let M be a commutative
algebra in Pr%. Then the functor 0% admits a left adjoint.

Proof. Thanks to the adjoint functor theorem, it suffices now to show that 6% is accessible
and preserves limits. Since the inclusion Cat™ — Algbrd(M) creates limits and sufficiently
filtered colimits, it suffices to show that the functor 6’ is accessible and limit preserving.
The fact that 0% is accessible follows from the description of 0’y from remark 4.2.20, together
with lemma 4.2.23.

It remains to prove that 6y is limit preserving. Recall that the projection Alghrd(M) —
Cat admits all relative limits. We claim that the composite map

M -mod(Pr%) %, Algbrd(M) — Cat

is limit preserving. Examining the commutative diagram from remark 4.1.7 shows that the
composition of the above map with the inclusion of Cat into Cat admits a factorization as

follows: - -
M -mod(Pr¥) £ Funct([1], Cat) <% Cat
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The map p is such that the composition
M -mod(Prk) & Funct([1], @) My Cat

recovers the canonical projection obtained by composing the following series of forgetful
functors: -
M -mod(Pr%) — PrZ — Cat

The description of 0y from remark 4.2.20 shows that j1evy is the composite functor
M -mod(Prt) — Prl = Cat™®) — Cat

where the middle equivalence is given by passage to k-compact objects ([Lur09a] proposition
5.5.7.8), and the last arrow is the usual forgetful functor. This composition is indeed limit
preserving, so it follows that the composition of 'ty with the forgetful functor to Cat is limit
preserving, as we claimed.

Consider now a limit diagram X< : Z<9 — M -mod(Pr%). Denote by # the initial object
of Z. Let Y be the category of objects for the M-algebroid 0y (X <(x)). In other words, Y’
is the full subcategory of the category underlying the M-module X <(x) on the k-compact
objects.

Note that the composite map

79 X% Memod(Pr) % Algbrd(M) — Cat

factors through Caty,. Therefore we have that ¢ X< factors through Algbrd(M) X g Caty,.
Since the projection Algbrd(M) xca: Caty, — Caty, is a cartesian fibration and Y is initial
there, we have that the fiber of Algbrd(M) over Y is a colocalization of Algbrd(M) x ¢, Caty,.
From this we may construct a diagram

Z<:T% — Algbrdy (M)
equipped with a natural transformation

79 —Z55 Algbrdy (M)

Z
0%, X<

Algbrd(M)

such that the induced map Z<(x) — X (%) is an isomorphism, and for every object ¢ in Z
the morphism of algebroids Z<(i) — X (1) is cartesian over Cat. Using [Lur09a] propositions
4.3.1.9 and 4.3.1.10 we see that in order to show that 6%} X< is a limit diagram it suffices to
show that that Z< is a limit diagram.
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Observe that LMod™ | also has the structure of a cartesian fibration over Cat, and
the projection LMod™ |, — Algbrd(M) is a morphism of cartesian fibrations over Cat.
Repeating the above procedure, we may write Z< as psW< where

|/ AN (LMOdm |M)y
is a diagram which comes equipped with a natural transformation

79 Y2, (LMod™ )y

=
(pf) X~

LN[Od/H |M

such that the induced map W<(x) — (p§)®X <(x) is an isomorphism, and for every object i
in Z the morphism W<(i) — (p§)?X (i) is cartesian over Cat.

We now observe that a diagram in Algbrd, (M) is a limit diagram if and only if its
images in Alghrdy, ,, (M) are limit diagrams for every map {a,b} — Y, where {a, b} denotes
a two-element set. Fix one such map and let U< be the composition of W< with the induced
morphism

(LNIOd”i |M)y — (LMOdm |M){a,b}-

Our task is to show that the composite map

79 %5 (LMod'™ 14 fapy — Algbrdy, (M)

is a limit diagram. Recall now from [Hin20a] that Algbrdy, ;i (M) is the category of algebras
in a certain presentable monoidal category My,p;. The category (LMod™ ) {ap fits into a
pullback square

(LMod™ M) {apy — (LMod™ |M{a,b}>[0]

! !

M -mod(Prt) —— My, -mod(Prl)

where the bottom horizontal arrow maps a M-module C to the M, -module Funct({a, b},C).
We note that the right vertical arrow admits a factorization through the category

M{avb} _mOd(Pré)M{a,b}/
of pointed M, 3-modules. The resulting projection has a fully faithful section
S M{a:b} _m0d<Pr£)M{a,b}/ — (LMOd”{ |M{a,b})[o]

whose image consists of those triples (A4,D, M) of an M,p-module D, an algebra A in
Miapy, and a k-compact A-module M in D for which the structure map A ® M — M
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exhibits A as the endomorphism object of M. The description of endomorphism objects from
[Hin20a] proposition 6.3.1 shows that in fact the composite map

l’]<1 K K
19— (LMOd/ |M){a,b} — (LMOd/ ’M{a,b})[o]

factors through the image of S. Furthermore, the resulting diagram Z< — My, 3 -mod(Pr%)
is the image of X< under the functor

M-mod(Prk) — M,y -mod(Prk)

and is therefore a limit diagram. The fact that ¢, X" is a limit diagram now follows from
the fact that the composite map

S o
M{a»b} -mOd(Prg)M{a,b}/ - (LMOd/ |M{a,b})[0} - Alg(M{avbQ

is the functor that sends a pointed M-module to the endomorphism object of the basepoint,
which admits a left adjoint. ]

Remark 4.2.25. Let k be an uncountable regular cardinal and let M be a commutative
algebra in Pr’. Passing to k-compact objects induces an equivalence between the symmetric
monoidal category Pr’ and the symmetric monoidal category Cat™™ ") of small categories
admitting k-small colimits, and functors which preserve those colimits. In particular, we have
an equivalence between M -mod(Pr) and M <™ _mod(Cat™*"™), where M denotes
the full subcategory of M on the k-compact objects.

From this point of view, the left adjoint to 6%, maps small M-enriched categories into
k-cocomplete categories tensored over M ™P_ We think about this as a version of the
functor of free k-cocompletion in the context of enriched category theory. !

4.3 Bimodules
We now discuss the notion of bimodule between algebroids.

Notation 4.3.1. For each BM-operad M we denote by M; and M, the Assos™ and Assos™
components of M. We denote by M,, the fiber of M over the bimodule object in BM.

Definition 4.3.2. Let M be a BM-operad. Let A, B be algebroids in M; and M, respectively,
with categories of objects X and Y respectively. An A — B-bimodule in M is a BMx y-algebra
in M, whose underlying Assosx and Assosy algebras are identified with A and B.

Remark 4.3.3. Let M be a BM-operad. Let A, B be algebroids in M; and M, respectively,
with categories of objects X and Y respectively. A bimodule P between them assigns to

1We refer the reader to [Hin21] for a characterization of the free cocompletion as the Yoneda embedding.
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each pair of objects (x,y) in X x Y°P an object P(z,y) in M,,. For every n > 0,m > 0, and
every sequence of arrows

/ / / /
Ty =To 4 T, T1, .., Tl $ Tpyy Ty 4= Ty = Tppl

in X and
3/6 = Yo y/17y27 ce Ym—1 y;mym — y:n-y-l = Ym+1

in Y, the bimodule P induces a multimorphism

{A<x/17 561), s 7“4(1:;7 l‘n), P<x;+1> yO)? B(yllv yl)? s 76(3/;;17 ym)} — ,P<x67 ym+1)

in M. In the case when M is a BM-monoidal category (in other words, M, and M, are
monoidal categories and M,, is a bimodule between them), this induces a morphism

Ay, 11) ® .. @ Az, 7n) @ P(2),11,50) @ By, y1) © - .. © By, Ym) = P20, Yme)-

In particular, in the cases when n =1,m =0 or n = 0,m = 1 and all arrows are identities
we obtain, for each pair of objects x1, 25 in X and each pair of objects y1, 72 in Y, a map

A(mlv 1’2) & P(x% yl) — P('Tla yl)
(the left action of A on P) and
P(z2,y1) ® B(y1, y2) — P(z2, y2)-

(the right adjoint of B on P). These actions commute with each other, and are compatible
with the units and composition of A and B, up to homotopy.

Example 4.3.4. Let M be an associative operad. Then every algebroid A : Assosy — M
defines, by precomposition with the projection BMx x — Assosx arising from the equivalence
of example 3.2.8, an A — A-bimodule P in M. This has the following properties:

e For every pair of objects z, 2" in X we have P(z/,z) = A(2', x).
e For every triple of objects x,z’, " in X, the action map
{A(Z", 2", P(2',2)} — P(2", )
is equivalent, under the identifications of the previous item, to the composition map
{A(Z", o), A2, 2)} — A(2",x).
e For every triple of objects x,2’, " in X, the action map
{P(,x), A(z,2")} — P2, 2")
is equivalent, under the identifications of the first item, to the composition map

{A(2, 2), A(z, 2")} — A, 2").
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We call P the diagonal bimodule of A. We will usually use the notation A(—, —) for P, and
in the case when A is an M-enriched category, we instead write Hom 4(—, —).

Remark 4.3.5. Let M be an associative operad. As discussed in [Hin20a|, an M-algebroid
A with category of objects X defines an associative algebra ./I in a certain associative operad
My, and an A — A-bimodule is the same data as an A — A-bimodule in M. Under this
dictionary, the diagonal bimodule of A corresponds to the diagonal bimodule of A. Via
the folding equivalence of [Hin20a] section 3.6, the diagonal bimodule of A defines a left
AR AP-module in M xy xor. If M is a presentable symmetric monoidal category, this defines
a morphism

A@ AP — M

with the property that each pair of objects (y, z) gets mapped to A(y,x). We call this the
Hom functor of A. This determines a morphism of algebroids

A — Funct (AP, M)

which is the Yoneda embedding. It was show in [Hin20a] corollary 6.2.7 that this map is fully
faithful. Note that thanks to proposition 3.5.20 the algebroid Funct(A°, M) is in fact an
enriched category. We conclude that any M-algebroid admits a fully faithful embedding into
an M-enriched category.

Construction 4.3.6. Consider the functor Alggy, () defined by the composition

BM_ _ xid Alg_(—
i Opmy X Opgy g—()> Cat.

Cat®? x Cat® x Opgy;
For each BM-algebroid M we denote by BMod (M) the total category of the cartesian fibration
associated to the functor Alggy; (M) : Cat® x Cat®® — Cat. This comes equipped with a
forgetful functor BMod(M) — Algbrd(M;) x Algbrd(M,). For each pair of algebroids A in
M, and B in M, we denote by 4BModg(M) the fiber over (A, B), and call it the category
of A — B-bimodules. -
The assignment M +— BMod(M) defines a functor BMod(—) : Opgy — Cat. Let BMod
be the total category of the associated cocartesian fibration. Note that this fits into a
commutative square

BMod » Algbrd x Algbrd

l !

Cat x Cat x OpBM — Cat x Cat x OpAssos X OpAssos :

Here the left vertical arrow and right vertical arrow are the two-sided fibrations classified
by the functors Alggy  (—) and Algbrd_(—), and the horizontal arrows are the functors of
“forgetting the bimodule”.
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Proposition 4.3.7. Let M be a presentable BM-monoidal category. Then the projection
BMod(M) — Algbrd(M;) x Algbrd(M,) is a cartesian fibration. Moreover, a morphism
F:(AP,B)— (A, P B) is cartesian if and only if for every pair of objects x in A and y
in B, the induced map P(z,y) — P'(F(x), F(y)) is an equivalence.

Proof. This follows from a variation of the argument of proposition 4.1.8. [
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Chapter 5

Enriched adjunctions and weighted
limits

Let M be a presentable symmetric monoidal category. Let F' : C — D be a functor of
M-enriched categories. Given a functor G : D — C, a natural transformation € : FG — idp
is said to exhibit G as right adjoint to F' if for every pair of objects ¢ in C and d in D the
induced map

Home (¢, G(d)) <2225 Homp (F(c), d)
is an isomorphism.

In 5.1 we study a local version of the notion of right adjoint to F', where the object
G(d) may only be well defined for specific values of d. We prove a criterion guaranteeing
the existence of local adjoints to F' in the case when F' is obtained as the limit of a family
of functors F; : D(i) — D'(i). Given another M-enriched category J and an object d in
Funct(7, D), we show that the right adjoint to F : Funct(J,C) — Funct(J, D) at a functor
d exists provided that the right adjoint to F' at ev; d exists for all j in J.

In 5.2 we study the notion of adjoint functors between M-enriched categories, as a special
case of the notion of adjunction in a 2-category. We show that F' admits a right adjoint if
and only if it admits local right adjoints at every object in D. We also discuss the notion of
localization functors of M-enriched categories.

In 5.3 we specialize to the case when F' is the diagonal map D — Funct(Z, D), where
I is the M-enriched category obtained from a category Z by pushforward along the unit
map Spc — M. A local right adjoint at an object X in Funct(Zpy, D) is called a conical
limit of X. We show that the data of a conical limit defines in particular an extension of
X to a diagram Z3, — D. We study the interactions of the notion of conical limits with
changes in the enriched category - in particular, we are able to conclude that a conical limit
in D defines a limit diagram in the category underlying D. Specializing our discussion of
local adjoints we obtain basic results on the existence of conical limits on limits of enriched
categories, and in enriched categories of functors.
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In 5.4 we study how the notions of enriched adjunctions and conical limits interact with
the procedure of enrichment of presentable modules over M. We show that if F: C — D
is a morphism of presentable modules then the induced functor of M-enriched categories
admits a right adjoint, and it also admits a left adjoint provided that F' admits a left adjoint
which strictly commutes with the action of M. As a consequence, we are able to conclude
that if D is a presentable module of M, then the induced M-enriched category admits all
small conical limits and colimits. In particular, the canonical enrichment of M over itself is
conically complete and cocomplete. We finish by applying this to show that conical limits
are preserved by the Yoneda embedding. This provides in particular a characterization of the
class of conical limits in an M-enriched category C as those limits in the category underlying
C which are preserved by all corepresentable enriched copresheaves.

The theory of conical limits is a particular case of the theory of weighted limits, which we
explore in 5.5. We record here a proof of the fact that left adjoint functors preserve weighted
colimits. Specializing to weighted limits and colimits over the unit M-enriched category
we recover the notions of powers and copowers. We show that in the case of M-enriched
categories arising from presentable modules, powers and copowers exist and are computed in
the expected way.

In 5.6 we prove our main result on the theory of weighted colimits (theorem 5.6.1): an
M-enriched category C admits all weighted colimits if and only if it admits all conical colimits
and copowers, and in this case a functor F': C — D into another M-enriched category D
preserves all weighted colimits if and only if it preserves all conical colimits and copowers.
We use this to show that M-enriched categories arising from presentable M-modules admit
all weighted limits and colimits, and that the Yoneda embedding detects weighted limits.

5.1 Local adjoints

We begin with a general discussion of the notion of locally defined adjoints for functors of
enriched categories.

Definition 5.1.1. Let M be a presentable monoidal category. Let F : D — D' be a functor
of M-categories, and let d' be an object of D'. Let d be an object of D equipped with a
morphism € : F(d) — d' in the category underlying D'. We say that the pair (d,€) is right
adjoint to F' at d' if for every object e in D the composite functor

Homp (e, d) = Homp: (F(e), F(d)) < Homp (F(e), d)

is an equivalence. Dually, we say that a pair (d,n) of an object d in D and a morphism
n:d — F(d) is left adjoint to F' at d' if it is right adjoint to F°P : D°® — D' at d'.

Remark 5.1.2. Let G : M’ — M be a colimit preserving monoidal functor between
presentable monoidal categories. Let F' : D — D’ be a functor of M-categories, and
let (d,€) be right adjoint to F' at an object d’ in D’. Then (d,¢€) is also right adjoint to
(GR)!F : (GR)y'D — (GR)!D’ at d'.
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In the particular case when M’ = Spc and G is the unit map for M in Pr’, the functor
G* is the functor (7a¢); that sends each M-enriched category to its underlying category. We
thus see that (d, €) is right adjoint to (7p)1F at d'.

Let p : £ — [1] be the cocartesian fibration associated to the functor (7,()1F. The pair
(d, €) induces a morphism « between (0,d) and (1,d’) in €. The condition that (d, €) be right
adjoint to (T ) F at d' is equivalent to the condition that o be a p-cartesian morphism. In
particular, we see that the pair (d, €) right adjoint to F' at d’ is unique if it exists.

Proposition 5.1.3. Let M be a presentable monoidal category and let F' : C — D and
G : D — & be functors of M-enriched categories. Let e be an object of £ and assume that G
admits a left adjoint n : e — Gd at e. Let ¢ be an object in C and n' : d — F'c be a morphism.
Then 1 presents ¢ as left adjoint to F at d if and only if the composite map

2 Gd £ GFe
presents ¢ as left adjoint to GF' at c.

Proof. Let ¢ be an object in C and consider the following commutative diagram:

Home(c, ) SEELEEN Homyp(Fe, F') S AN Homyp(d, F'')

N |e- |e-

Homg (GFe,GF() (G Homg (Gd, GF()

(Gl )" l"
Homg (e, GF{).

Since (e, n) is left adjoint to G at e, we have that the composition of the right vertical arrows
is an isomorphism. We therefore have that the composition of the top horizontal arrows is an
isomorphism if and only if the composition of the diagonal arrows is an isomorphism. O

Definition 5.1.4. Let M be a presentable monoidal category and consider a commutative
square of M-enriched categories

DL, p

lT l

Y&

Let d' be an object of D'. We say that the above square is horizontally right adjointable at d' if
there is a pair (d, €) right adjoint to F' at d’', and moreover the induced map T'¢ : GT'd — T'd’
is right adjoint to G at T'd'.

Remark 5.1.5. Let M = Spc and consider a commutative diagram as in definition 5.1.4.
This induces a morphism 7T of cocartesian fibrations over [1] between the fibrations Er, &g
associated to F' and (G. The square is horizontally right adjointable at d’ if there is a nontrivial
cartesian arrow in &r with target d’, whose image under 7 is cartesian.
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We now study the stability of local adjunctions under passage to limits and formation of
functor enriched categories.

Proposition 5.1.6. Let M be a presentable monoidal category and let T be a category. Let
D, D' : T — Cat™ be functors, and let n: D — D' be a natural transformation. Denote by
F :D — D the limit of n. For each i in L let p; : D — D(i) and p; : D' — D'(i) be the
projections. Assume that for each arrow o : 1 — j in L, the square

D(i) —2— D'(i)
D(a)
nj

[

D(j) —— D'(5)
is horizontally right adjointable at pi(d'). Then
(i) There exists a right adjoint to F at d'.

(ii) A pair (d,€) is right adjoint to F' at d' if and only if (p:id, pi(€)) is right adjoint to n; at
pi(d') for every i in Z.

Proof. Consider first the case M = Spc. Passing to cocartesian fibrations of the functors n;
and F', we obtain a diagram
877 1 — (Cat(/:([ch]art){l}/

with limit £r, where the right hand side denotes the undercategory of the category of
cocartesian fibrations and morphisms of cocartesian fibrations over [1], under the cocartesian
fibration {1} — [1].

The adjointability of the square in the statement implies that the composition of &,
with the forgetful functor (Catf™)y, — (Catyp)qy, factors through the subcategory
(Catpy)pyseart of categories over [1] equipped with a cartesian section, and functors which
preserve this section. The case M = Spc of the proposition now follows from the fact that
the projections

(Catp™ )1y, = (Catyp)) gy, < (Catyy)pyee = (Caty)uy

create limits.

We now consider the general case. By virtue of the above and the uniqueness claim from
remark 5.1.2, it suffices to show that if (d, €) is such that (p;d, pje) is right adjoint to n; at
pid' for all i then it is right adjoint to F' at d’. Let e be an object in D. Note that there is a
functor R : Z — Funct([2], M) whose value on each index i is given by

(1) pie
Homp)(pie, pid) RAN Homp () (n;(€), ni(d)) = Hompr ) (mi(e), pid’)
and which has a limit given by

Homp (e, d) 2 Homp: (F(e), F(d)) < Homp (F(e), d).
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For each ¢ in Z the composition of the maps in R(7) is an isomorphism, since (p;d, ple) is
right adjoint to n; at pid’. We conclude that the composition of the maps in limz R is an
isomorphism, which means that (d, €) is right adjoint to F' at d’, as desired. ]

Proposition 5.1.7. Let M be a presentable symmetric monoidal category. Let J be an
M-enriched category F : D — D' be a functor of M-enriched categories. Let d' be an object
in Funct(7,D’) and assume that for all objects j in J there exists a right adjoint to F' at
ev;d. Then

(i) There exists a right adjoint to F, : Funct(J,D) — Funct(J,D’) at d'.

(ii) A pair (d,€) is right adjoint to F at d' if and only if for every j in J the pair (ev;d, ev; €)
is right adjoint to F at ev; d'.

Proof. Let S be the full subcategory of Cat™ on those M-enriched categories J for which
the proposition holds. We claim that S is closed under colimits in Cat™. Let J : Z — S be
a diagram, and let J be its colimit in Cat™. We then have that the functor

F, : Funct(J, D) — Funct(7,D’)
is obtained by passage to the limit of the functors
n; : Funct(J(i), D) — Funct(J(i), D’)

given by composition with F'. Let d’ be an object in Funct(J,D’) and assume that there
exists a right adjoint to F' at ev; d’ for every j in J. The fact that J(i) belongs to S for all
implies that for every arrow « : 7 — 4’ in Z the square

Funct(J(i'), D) — Funct(J ('), D’)

lJ (@) lJ (e)”

Funct(J(i), D) —2— Funct(J(7'), D’)

is horizontally right adjointable at d'| ;. It then follows from proposition 5.1.6 that there
is indeed a right adjoint to F, at d’, and moreover a pair (d, €) is right adjoint to F, at d’
if and only if the associated pair (d| ), €|s@)) is right adjoint to 7, at d'|;q) for all ¢ in Z.
Using again the fact that J(7) belongs to S for every i, we see that this happens if and only
if (ev;d,ev;e) is right adjoint to F' at ev; d’ for every j in J which is in the image of the
map J(i) — J for some ¢ in Z. Since J is the colimit of the objects J(i), we have that the
maps J(i) — J are jointly surjective, so we have that J belongs to S.

Since Cat™ is generated under colimits by cells, our result will follow if we show that for
every m in M the enriched category underlying the cell C,, belongs to S. Let d' : C,,, — D’
be an m-cell in D', with source and target objects dj and d). Let (do, €y) and (dy, €1) be right
adjoint to F' at dj and d respectively.
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We claim that there is a unique enhancement of this data to a pair (d,€) of an m-cell
d : C,, — D and a morphism € : F,d — d'. Indeed, the data of a cell d between d, and
d; corresponds to a map m — Homp(dy,dy). A map e lifting ¢y and €; consists of an
identification of m-cells €1 F,.d = d’eg. The fact that (dy,€;) is right adjoint to F' at d} implies
that there is a unique such pair (d, €), as claimed.

It remains to show that (d, €) is right adjoint to F, at d’. Let e : C,, — D be another
m-cell with source and target objects ey and e;. Recall from corollary 3.5.26 that we have a
cartesian square

HomFunct(Cm,’D) (6, d) L HomD(607 dO)

I l

Homp(e1, d1) ——— Hompm(m, Homp(eo, d1))

where the right and bottom arrows are given by composition with the cells d and e, respectively.
The functor F' induces a map from the above square to the cartesian square

HomFunct(Cm,D’) (F*ea F*d> L HOIH'D/(F&Q, Fdo)

I |

Homp/(Fel, Fdl) E— ,}fomM(m, HOHID/<F60, Fdl))

where the right and bottom arrows are given by composition with F.d and F,e. Finally,
composition with € yields a map from the above to the cartesian square

HomF\mCt(Cm’D/)(F*e, d/) L) HOHID/(FG(), d6)

I 1

Homp (Fey,d)) ——— Homp(m, Homp (Feg, d,))

where the right and bottom arrows are given by composition with d’ and F,e. We thus see
that there is a commutative cube

evo

HomFunct(C’m,'D’) (F*e7 dl)
eFy

> Hompr (Feo, d6)

e F

evo

HomFunct(Cm,D) (67 d) J/ ? HOIIID(€07 do)

evi Homp (Feq, d)) ‘ > A omp(m, Homp (Feg, dy))
el F l y
H

Homp(eq, dy) > Homa(m, Homp(eg, dy))
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with cartesian front and back faces. Since (dy, €) and (dy,€1) are right adjoint to F' at dj,
and d}, the bottom left, bottom right, and top right diagonal arrows are isomorphisms. We
conclude that the top left diagonal arrow is an isomorphism, which means that (d, €) is right
adjoint to F, at d, as desired. O

Corollary 5.1.8. Let M be a presentable symmetric monoidal category. Let J and D be
M-enriched categories. Then a morphism € : d — d' in Funct(J, D) is an isomorphism if
and only if ev; € is an isomorphism for every j in J .

Proof. Specialize proposition 5.1.7 to the case when F' is the identity of D. n

Corollary 5.1.9. Let M be a presentable symmetric monoidal category. Let F : D — D’
be a functor of M-enriched categories, and assume that F admits a right adjoint at d' for
every d' in D'. Then there is a unique functor F¥ : D' — D equipped with a morphism
€ : FFE — idp: such that for every d' in D' the pair (FR(d'),e(d')) is right adjoint to F at D.

Proof. Specialize proposition 5.1.7 to the case when J = D’ and take (F%, ¢) to be right
adjoint to F, at idp. O

5.2 Global adjoints

We now discuss the notion of adjunction between functors of enriched categories. We will
obtain this as a particular case of the general notion of adjunction in a 2-category.

Definition 5.2.1. Let D be a 2-category. An arrow o : d — e in D is said to admit a right
adjoint if there is an arrow o : e — d and a pair of 2-cells n : idg — af'ac and € : aa® — id,
satisfying the following two conditions:

e The composite 2-cell
. ida n R €ida, .
a=auoaid; — ac’ao —> id,a =«
15 equivalent to the identity.

e The composite 2-cell

id re

R ao® == o®id, = o

ot = id, o

R R

nid_r
—
18 equivalent to the identity.

In this situation, we say that o is right adjoint to o, and we call n and € the unit and counit
of the adjunction, respectively. We say that o admits a left adjoint if it admits a right adjoint
as a morphism in D*°P.

Example 5.2.2. In the case D = %at, definition 5.2.1 recovers the usual notion of adjunction
between functors of categories.
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We refer to [RV16] for a proof of the following fundamental theorems.

Theorem 5.2.3. There exists a 2-category Adj equipped with an epimorphism L : [1] — Adj
such that for every 2-category D composition with L induces an equivalence between the space
of functors Adj — D and the space of functors [1] — D which pick out a right adjointable
arrow in D.

Theorem 5.2.4. Let D be a 2-category. Then the following spaces are equivalent:
(i) The space of arrows in D which admit a right adjoint.

(ii) The space of triples (o, a’t,n) of an arrow a: d — e in D, an arrow off : e — d in D,
and a 2-cell 1 : idg — offac which can be extended to an adjunction between o and o't

The equivalence is given by mapping a triple (o, o', n) to a.

We now specialize to the case when D is the 2-category of categories enriched in a
presentable symmetric monoidal category

Notation 5.2.5. Let M be a presentable symmetric monoidal category. We denote by €at™
the image of Cat™ under the composite functor

6 —CatM (r.,), ——Cat —
Cat™ -mod(Prt) —=% Cat Dy Gat ™ < 2Cat.

We call €at™ the 2-category of M-enriched categories. Note that the 1-category underlying
“at™ is equivalent to Cat™.

Example 5.2.6. Let n > 0. Then %at""™ is the 2-category underlying (n + 1)%at.

Remark 5.2.7. Let M be a presentable symmetric monoidal category and let C,D be
M-enriched categories. Then the Hom category Hom,,,m(C, D) is the category underlying
Funct(C, D).

Let F,G : C — D be functors, and n : F' — G be a 2-cell. Let z,y be a pair of objects of
C. Then there is an induced morphism

CHomc(%y) &® CIM — D.

Examining the description of the product of cells from remark 3.5.24 we obtain a commutative
diagram

Home(z,y) — Homp(Fz, Fy)

lG* l”](y) o—

Homp(Gx, Gy) —one) Homp(Fx, Gy).

Definition 5.2.8. Let M be a presentable symmetric monoidal category and let F': C — D
be a functor of M-enriched categories. We say that F' admits a right adjoint if it admits a
right adjoint when thought of as a morphism in the 2-category Gat™.
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Our next goal is to show that a functor of enriched categories admits a right adjoint if
and only if it admits local right adjoints at every point.

Lemma 5.2.9. Let J and D be 2-categories. Let n: F' — G be a morphism in Funct(7, D).
Then n admits a right adjoint if and only if for every morphism « : j — j in J, the
commutative square

F(j) —— G())
lFoa lGa
-/ 5 -/
F() —— G()
1s horizontally right adjointable.

Proof. Combine [Hau20] theorem 4.6 and corollary 3.15. O

Proposition 5.2.10. Let M be a presentable symmetric monoidal category and let F' : C — D
be a functor of M-enriched categories. Then F' admits a right adjoint if and only if for every
object d in D there exists a right adjoint for F at d.

Proof. Assume first that F' admits a right adjoint F'®. Denote by 1 : ide — FFF and
€ : FF® — idp the unit and counit of the adjunction, respectively. Let d be an object in D.
We claim that the morphism

e(d) : FFR(d) — idp(d) = d

exhibits F'%(d) as right adjoint to F' at d. Let ¢ be an object of C. We have to show that the
map V' given by the composition

Home (¢, FR(d)) EiN Homp(F(c), FFE(d)) Ade, Homp(F(c),d)

is an isomorphism. Observe that there is a map W going in the opposite direction, given by
the following composition:

Homp (F(c), d) 2% Home(FEF(c), FR(d)) =% Home (¢, FR(d))

We claim that V' and W are inverse equivalences. Observe that the map WV is given by the
composition

(FFF).

RE O0—0O C
Home(c, F*(d)) 2 Home (FRF(c), FRFFR(d)) —2="%

Home (¢, F(d)).
Thanks to remark 5.2.7, we can rewrite the above as the composition

B(d))o— Re(d)o—
n(F7(d)) Fe(d)

Home (¢, FR(d)) Home (¢, FRFFE(d)) Home (¢, FE(d)).
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This is equivalent to the identity thanks to the second condition in definition 5.2.1. The fact
that VW is equivalent to the identity follows from similar arguments. We conclude that V' is
indeed an isomorphism, so €(d) exhibits F¥(d) as right adjoint to F' at d.

Assume now that for every object d in D there exists a right adjoint for F' at d. To show
that F' admits a right adjoint it suffices to show that its image under the Yoneda embedding

Gat™ — Funct((€at™)°P, Gat)

admits a right adjoint. Applying lemma 5.2.9, we reduce to showing that for every functor
a: J — J' between M-enriched categories, the commutative square of categories

(7am)r Funct(J7,C) —2— (7p¢) Funct(J’, D)

[~ [~

(Tpm)1 Funet (7, C) LN (Tpm)1 Funcet(7, D)

is horizontally right adjointable. Using proposition 5.1.7 together with remark 5.1.2 we see
that the above commutative square of categories is horizontally right adjointable at every
object of (Tp) Funct(J’, D). Our claim now follows from the fact that local and global
adjointability agree for functors between categories. O

We finish with a discussion of localization functors of enriched categories.

Proposition 5.2.11. Let M be a presentable symmetric monoidal category and let F' : C — D
be a functor of M-enriched categories admitting a right adjoint F®. Then the following
conditions are equivalent:

(i) The functor F® is fully faithful.
(i) The counit € : FF® — idp is an isomorphism.

(iii) The functor F is surjective on objects, and for every object ¢ in C, the unit map
c — FEFc is inverted by F.

Proof. The equivalence between items (ii) and (iii) follows directly from the triangle conditions.
It remains to show the equivalence with item (i). Let d,d’ be two objects in D, and consider
the composite map

R
Homp(d, d') = Home(FRd, FEd') £ Homp(FFRd, FFRJ) < Homp(FFRd, d).
By naturality of €, this is equivalent to the morphism
Homp(d, d) < Homp(FF?d, d).

It follows that FF : Homp(d,d') — Home(Ffd, FEd') is an equivalence if and only if
¢ : Homp(d,d') — Homp(FFfd,d') is an equivalence. The result now follows from the fact
that d,d" are arbitrary. ]
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Definition 5.2.12. Let M be a presentable symmetric monoidal category and let F': C — D
be a functor of M-enriched categories admitting a right adjoint F®. We say that F is a
localization functor if it satisfies the equivalent conditions of proposition 5.2.11.

Remark 5.2.13. Let M be a presentable symmetric monoidal category and let F': C — D
be a functor of M-enriched categories admitting a right adjoint F'%. It follows from remark
5.1.2 together with the second characterization of localizations in proposition 5.2.11 that
F'is a localization functor if and only if the functor of categories (7pq)F underlying F is a
localization functor.

Remark 5.2.14. Let M be a presentable symmetric monoidal category. Let F' : C — D
be a localization functor of M-enriched categories, and let C’ be an M-enriched category.
Denote by Funct(C, '), the full subcategory of Funct(C,C’) on those functors that invert
the unit map ¢ — FTFec for every ¢ in C. Then we have functors

F* : Funct(D, C") — Funct(C,C")joc

and
(F®)* - Funct(C, C")ioc — Funct(D,C).

The unit and counit of the adjunction F' 4 F# induce equivalences (F®)*F* = idpunct(n,c1)
and F*(FR)* = idpunct(c,c').- It follows that F* and (FF)* are inverse equivalences. In
particular, we conclude that localization functors are epimorphisms in Cat™.

5.3 Conical limits
We now specialize the notion of local adjoints to obtain a theory of conical limits and colimits.

Notation 5.3.1. Let M be a presentable monoidal category, and Z be a category. We denote
by Zaq the image of Z under the functor Cat — Cat™ induced by pushforward along the unit
map Spc — M. We note that for every M-enriched category D, there is a correspondence
between functors Zyy — D and functors Z — (7)1 D.

Definition 5.3.2. Let M be a presentable symmetric monoidal category. Let T be category
and let D be an M-enriched category. Let X : Tyy — D be a functor. We say that X admits
a conical limit if the functor

A : D = Funct(1r, D) — Funct(Zpy, D)

of precomposition with the projection T — [0] admits a right adjoint at X. In this case, we
call its right adjoint at X the conical limit of X. We say that X admits a conical colimit
if the induced diagram X°P : I°°P — D°® admits a conical limit - in this case we define the
conical colimit of X to be the conical limit of X°P.
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Remark 5.3.3. Let Z be a category and denote by Z< the category obtained from Z by
adjoining a final object. We have a pushout diagram in Cat

yda N SVaC)

| |

0] ——— Z=.

Let M be a presentable symmetric monoidal category. It follows from the above that for
every M-enriched category D there is a pullback diagram of spaces

Homg,m(Z7y, D) —— Homg,m(Ch,,, Funct(Zyy, D))

| |

HomCatM (1./\/17 D) — HomCatM (IM7 D)

where the right vertical arrow is given by evaluation at the source, and to bottom horizontal
arrow is the diagonal map. Hence we see that a pair (d, €) of an object d in D and a morphism
€ : Ad — X in Funct(Z, D) is the same data as a diagram X< :Z37 — D. In particular, we
have that a conical limit for a diagram X : Z,, — D can be identified with a particular kind
of extension of X to a diagram X< :Z7 — D.

Remark 5.3.4. Let M be a presentable symmetric monoidal category and let F': D — D’
be a functor of M-enriched categories. Let Z be a category. Then we have a commutative
square

D —2— Funct(Zy, D)
O
D' —2 Funct(Zy, D).
Let d be an object in D and € : Ad — X be a morphism in Funct(Zy, D), associated to

a diagram X< : 73 — D under the equivalence of remark 5.3.3. Then the induced pair
(Fd, Fye) is associated to F,.X <.

Remark 5.3.5. Let G : M — M’ be a colimit preserving monoidal functor between
presentable symmetric monoidal categories and let D be an M’ enriched category. It follows
from proposition 3.5.27 that we have an equivalence

Funct(—q, (GF)D) = (GF), Funct(—pp, D)
of functors Cat — Cat™. Let T be a category. Evaluating the above equivalence at the
projection Z — [0] we obtain a commutative square

(GR)D — D2 (@R, Funct(Zow, D)

b )

(GE)D ——2—— Funct(Zn, (GR)D).
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Let d be an object in D, and € : Ad — X be a morphism in Funct(Z,y, D). Using the above
square, we can also think about € as a morphism in Funct(Zy, (G®),D). If the pair (d, ¢)
corresponds to a diagram X< : 737, — D under the equivalence of remark 5.3.3, then the
diagram 73, — (G%),D obtained from (d, €) via the above commutative square is equivalent
to the image of X< under the canonical equivalence

HomCatM/ (I.f/I/J D) = HomCatM (I./<\l/l7 (GR)'D)
We now explore the behavior of conical limits under changes in the enriching category.

Proposition 5.3.6. Let G : M — M’ be a colimit preserving symmetric monoidal functor
between presentable symmetric monoidal categories. Let D be an M-enriched category and
let X'<: I3, — D be a conical limit diagram. Then the induced functor X< : I3, — (G*)D
15 a conical limit diagram.

Proof. This is a direct consequence of the discussion in remarks 5.1.2 and 5.3.5. [

Corollary 5.3.7. Let M be a presentable symmetric monoidal category. Let D be an M-
enriched category and X< : I3 — D be a conical limit diagram in D. Then the induced
diagram < — (Tm)/D in the category underlying D, is a limit diagram.

Proof. Apply proposition 5.3.6 to the unit map Spc — M. n

Proposition 5.3.8. Let i : M — M’ be a colimit preserving symmetric monoidal functor
between presentable symmetric monoidal categories. Assume that i s fully faithful and
admits a strictly symmetric monoidal left adjoint. Let D be an M-enriched category and let
X< I3 — D be a conical limit diagram. Then 2 X< : I3, — 4D is a conical limit diagram

Proof. 1t follows from corollary 3.5.29 that we have an equivalence
iy Funct(—aq, D) = Funct(—ar, 01D)

of functors Cat® — Cat™'. Applying it to the projection Z — [0] we obtain a commutative
square

i D —"2 4 Funct(Zp, D)

bk

oD —2— Funct(Zyy, iy D).

Let (d, €) be the right adjoint to A : D — Funct(Zpy, D) at X = X 7|z,,. By virtue of remark
5.1.2, we have that (d, €) is also right adjoint to 4/ A : 4D — 4 Funct(Zx, D). Its image under
the above equivalence is right adjoint to A : ;D — Funct(Zyy, D) at 91X - in other words,
it is a conical limit for X. Our result now follows from the fact that the associated limit
diagram Z3, — 4D is given by 7, X~. ]
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Corollary 5.3.9. Let m > n > 1 and let D be an n-category, thought of as a category
enriched in (n — 1)-categories. Then a diagram X< : Z9 — D is a conical limit diagram
if and only if its image under the inclusion functor ™™ : nCat — mCat is a conical limit
diagram.

Definition 5.3.10. Let M be a presentable symmetric monoidal category and let F' : D — D’
be a functor of M-enriched categories. We say that a conical limit diagram X< : 9 — D is
preserved by F if F X is a conical limit diagram in D’. Similarly, a conical colimit diagram
Y® . I% — D is said to be preserved by F if F'Y" is a conical colimit diagram in D’.

Remark 5.3.11. Let M be a presentable symmetric monoidal category and let F' : D — D'
be a functor of M-enriched categories. Let X< : 3 — D be a conical limit diagram. Then
it follows from remark 5.3.4 that X< is preserved by F' if and only if the commutative square

D —2 Funct(Zy, D)
bk
D' —2 Funct(Zy, D)

is horizontally right adjointable at X.

We now specialize propositions 5.1.6 and 5.1.7 to the case of conical limits.

Proposition 5.3.12. Let M be a presentable symmetric monoidal category and let IC be a
category. Let D : K — Cat™ be a functor, and denote by D its limit. For each j in K denote
by p; - D — D(j) the projection. Let X : Ty — D be a diagram in D. Assume that for every
J in KC the diagram p; X : T — D(j) admits a conical limit, which is preserved by the functor
D(a) : D(j) — D(j') for every arrow o : j — 5" in K. Then

(i) The diagram X admits a conical limit.

(ii) An extension X< : I3 — D is a conical limit diagram if and only if p; X< is a conical
limit diagram in D(j) for every j in K.

Proof. Combine proposition 5.1.6 together with remarks 5.3.4 and 5.3.11. m

Proposition 5.3.13. Let M be a presentable symmetric monoidal category. Let I be a
category, and let J and D be M-enriched categories. Let X : Ty, — Funct(J,D) be a
diagram, and assume that for every object j in J, the diagram ev; X : Iy — D admits a
conical limit. Then

(i) There exists a conical limit for X.

(ii) An extension X< : I3 — Funct(J, D) is a conical limit for X if and only if for every
object j in J the diagram ev; X< is a conical limit.
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Proof. Apply proposition 5.1.7 to the diagonal map A : D — Funct(Z, D). O

Definition 5.3.14. Let M be a presentable symmetric monoidal category and let D be an
M-enriched category. Let T be a category. We say that D admits all conical (co)limits of
shape L if every diagram X : T — D admits a conical (co)limit. We say that D is conically
(co)complete if it admits all conical (co)limits of shape T for every small category Z.

Corollary 5.3.15. Let M be a presentable symmetric monoidal category and let D be an
M-enriched category which admits all conical limits of shape L. Then for every M-enriched
category J, the M-enriched category Funct(J, D) admits all conical limits of shape .

Proof. Follows directly from proposition 5.3.13. O

Corollary 5.3.16. Let M be a presentable symmetric monoidal category and let D be an
Me-enriched category which admits all conical limits of shape Z. Then there is a functor
Funct(Zyg, D) — D which maps each diagram X : T — D to the value of its conical limit at
the cone point of 7.

Proof. Apply corollary 5.1.9 to the diagonal map A : D — Funct(Z, D). ]
For later purposes we record the following basic consequence of proposition 5.3.13.

Proposition 5.3.17. Let M be a presentable symmetric monoidal category. Let D be an
Me-enriched category and let f: J — J' be an epimorphism of M-enriched categories which
is surjective on objects. Let X : Ty — Funct(J, D) be a diagram admitting a conical colimit
I which is preserved by the evaluation functors ev; : Funct(J,D) — D for every object j
in J. Assume that for every arrow « : i — ' in T the morphism X (a) : X (i) — X(j) in
Funct(J,D) belongs to Funct(J', D). Then

(i) The functor & : J — D factors through J'.
(ii) For every object i in I the morphism X (i) — Z belongs to Funct(J', D).
Proof. Note that since the map f is an epimorphism, the map
f* : Funct(J', D) — Funct(J, D)

is indeed a monomorphism. Our assumptions imply that X factors through the image of
f*. Let X' : Ty, — Funct(J’, D) be the induced diagram. Since f is surjective on objects,
we have that for every j in J' the diagram ev; X’ admits a conical colimit. It follows from
(the dual version of) proposition 5.3.13 that X’ can be extended to a conical colimit diagram
XI5, — Funct(J’, D). The diagram f*X'™ is an extension of X whose image under
all evaluation functors is a conical colimit diagram. Applying proposition 5.3.13 again we
conclude that f*X'® is a conical limit diagram in D. Item (i) now follows from the fact that
2 is equivalent to the value of f*X’® at the cone point x in Z%. Item (ii) is a consequence of
the fact that the morphism X (i) — 2" is equivalent to the image under f* of the morphism
X" (i) = X" (x). O
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5.4 The case of presentable modules

We now study the interactions between adjunctions with the procedure of enrichment of
modules over presentable symmetric monoidal categories.

Proposition 5.4.1. Let M be a presentable symmetric monoidal category and let F': C — D
be a morphism in M-mod(Pr"). Then

(i) The functor of enriched categories O (F') : Op(C) — Opq(D) admits a right adjoint.

(ii) Assume that F admits a left adjoint FL, and that the canonical structure of oplax
morphism of M-modules on FL is strict. Then O,(F) admits a left adjoint.

Proof. We first prove item (i). Let F'® : D — C be the right adjoint to the functor underlying
F. Let d be an object in D and let e(d) : FF®(d) — d be the counit of the adjunction at d.
We claim that (F®(d), e(d)) is right adjoint to Oo((F) at d. To see this, we have to show that
for every ¢ in C the composite map

0 F)y e(d
Homy, ¢ (¢, F*(d)) 2% Homy,, ) (F(c), FFR(d)) % Homy, ) (F(c), d)

is an isomorphism. It suffices to show that for every m in M the image of the above
composition under the functor Homa(m, —) is an isomorphism. This is equivalent to
Home (m ® ¢, FR(d)) 5 Homp(m @ F(c), FFR(d)) *% Homp(m © F(c), d)

which is indeed an isomorphism, since (F(d), ¢(d)) is right adjoint to F at d. Item (i) now
follows from proposition 5.2.10.

We now prove item (ii). Let d be an object in D and let n(d) : d — FF%(d) be the counit
of the adjunction at d. We claim that (F(d),n(d)) is left adjoint to Or((F) at d. To see this,
we have to show that for every ¢ in C the composite map

0 )y d
Homg, ) (F*(d), ¢) 2% Homg,, i) (FFE(d), F(c)) 2 Homg,,p)(d, F(c))

is an isomorphism. It suffices to show that for every m in M the image of the above
composition under the functor Homp(m, —) is an isomorphism. This is equivalent to the
composite map

Home(m @ FX(d), c) EEN Homp(m ® FF(d), F(c)) idm &n(d),

Homp(m ® d, F(c)).

To show that the above is an equivalence, it suffices to show that id,, ®n(d) exhibits m® FL(d)
as left adjoint to F' at m ® d. This is implied by the fact that F¥ is a strict morphism of
M-modules. O
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Remark 5.4.2. Let M be a presentable symmetric monoidal category. Then the unit
map Spc — M induces a symmetric monoidal colimit preserving functor of presentable
symmetric monoidal categories i : Cat — Cat™. We can think about this as a morphism
in Cat-mod(Pr"). Applying the functor fc,; yields an enhancement of i to a symmetric
monoidal functor of symmetric monoidal 2-categories i : Gat — %at’™. Tt follows from
proposition 5.4.1 that i admits a right adjoint

(TM)1 : ‘KatM — %Gat.

Proposition 5.4.3. Let M be a presentable symmetric monoidal category. Then the functor
of categories Cat™ — Cat underlying (Tm)r is equivalent to Ta.

Proof. We continue with the notation from remark 5.4.2. Let

€:i(Tm)r — idygm

be the counit of the adjunction. We think about € as a morphism in Funct(%at™, €at™).
Consider the functor

(=)=, : Homgcat(%atM,%atM) — Homgy (Cat™, CatM).
This admits an enhancement to a functor
¢ : Funct(%at™, €at™)=' — Funct(Cat™, Cat™)
induced from the composite map
Cat™ x Funct(at™, €at’™)<! = (Gat™ x Funct(Gat™, Cat™))=! i (Gat™)=' = Cat™.

The image of € under ¢ is a map

) = (((rp)) =t = i((Ta))=" = idggem -

For each object z in Cat™, the morphism

p(e)(@) s i((Ta))=! () = @

can be identified with e(x). Using corollary 5.1.9 we conclude that () exhibits ((7a4)1)=" as
right adjoint to ¢, as desired. [

Corollary 5.4.4. Let M be a presentable symmetric monoidal category, and let F': C — D
be a functor of M-enriched categories. Assume that F admits a right adjoint F®. Then
(T )1(FR) is right adjoint to (T )i(F).

Proof. This follows directly from proposition 5.4.3, since functors of 2-categories preserve
adjunctions. O]
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We now discuss the existence of conical limits and colimits in enriched categories arising
from presentable modules.

Notation 5.4.5. Let M be a presentable monoidal category and let Z be a category. We
denote by 7'y, the image of 7 under the composite functor

Cat = Algbrd(Spc) — Algbrd(M)

where the first map is the functor s from construction 3.4.1, and the second map is given by
pushforward along the unit map Spc — M.

Lemma 5.4.6. Let M be a presentable monoidal category. Let D be a presentable M-module
and let T be a category. Then the projection LMod — Arrgplax(Cat) induces an equivalence

LModz, (D) = Funct(Z, D).

Proof. As in the proof of proposition 4.1.8, we let M7 be the Assos-operad with the universal
map Mz Xagos Assosy — M. Recall from [Hin20a] that this is a presentable monoidal
category which acts on Funct(Z,D). The category LModz, (D) is then the category of
modules for an algebra in Mz. As discussed in [Hin20a] 4.7, this algebra is in fact the unit in
M. We conclude that its category of modules is equivalent to Funct(Z, D), as desired. [J

Lemma 5.4.7. Let M be a presentable monoidal category. Let D be a presentable M-module
and let T be a category. Then restriction of scalars along the canonical map Ty — T,
mduces an equivalence

LModgz, (D) = LModz,, (D).

Proof. We continue with the notation from the proof of lemma 5.4.6. Recall from [Hin20a]
4.4.10 and 4.7.1 that the unit map Spc — M induces a symmetric monoidal functor
Spc; — Mz, where Spc; is defined as Mz. The monoidal category Spc; thus acts on
Funct(Z, D) by restriction of scalars, and the category LModz, (D) is the category of modules
over the algebra in Spcz associated to Zg,.. Similarly, we have that LModz,, (D) is equivalent
to the category of modules in Funct(Z=% D) for the algebra in Spcz<o associated to ZTspe-

It follows that to prove our lemma it suffices to assume that M = Spc. We claim that for
every category & the induced functor

Homgyy (€, LMode\4 (D)) — Homcy (€, LModz,, (D))

is an equivalence. Using proposition 4.2.15 together with [Hin20a] proposition 6.3.7 we see
that the above is equivalent to the canonical map

HomAlgbrd(Spc) (8 x T ) b

spe(D)) — Homaigbraspe) (€ X Ta, 05, (D).

This is an isomorphism thanks to propositions 4.2.10 and 3.4.5. [
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Proposition 5.4.8. Let M be a presentable symmetric monoidal category and let C be a
presentable module over M. Then 0,(C) is conically complete and cocomplete.

Proof. Let T be a small category. We have to show that the diagonal map
A HM(C) — Funct(IM,HM(C))

admits both right and left adjoints.
Let h%, : Algbrd(M) — Algbrd(M)s,. be the colocalization functor. We note that A is
the image under h¥, of the morphism of algebroids

A" 00 (C) — Funct(Zp, 0(C))

of precomposition with the projection Z; — 1. Using the equivalence from [Hin20a]
proposition 6.3.7, we see that the above map can be rewritten as

ij(Amod) : 03\4((?) — HM(LModIM (0))
where:

e The category LModz,,(C) is equipped with the structure of presentable M-module
by virtue of its realization as a category of left modules for an algebra in the Assos™ -
component of the BM-monoidal category Functpy(BMz<o g, C) (where we consider C
as a M — M-bimodule in the canonical way).

e The functor A,,q denotes the functor of restriction of scalars
C = LMod, ,,(C) — LModz,,(C)

along the projection Zn; — 14, equipped with its canonical structure of morphism of
M-modules.

Using lemma 5.4.7 we may rewrite our map as

0.,/\/1 (Ainod

) : 00 (C) = O (LModz; (C))

where Al |, is defined as Ay,0q, except that using the projection T, — 1 instead.
Applying lemma 5.4.6 we see that the above is equivalent to

0 i (Agunct) : 004 (C) — 0 (Funct(Z,C))

where Funct(Z,C) is equipped with its canonical structure of module over M, and Ages
denotes the diagonal functor C — Funct(Z,C).

We conclude that our original map A is equivalent to O (Agunet). This admits both left
and right adjoints thanks to proposition 5.4.1. O]



CHAPTER 5. ENRICHED ADJUNCTIONS AND WEIGHTED LIMITS 103

We finish by giving an alternative characterization of the class of conical limits.

Proposition 5.4.9. Let M be a presentable symmetric monoidal category and let Z be a
category. Let D be an M-enriched category and denote by i : D — Funct(D®, M) the Yoneda
embedding. Then a functor X< : I3, — D is a conical limit diagram if and only if iX< is a
conical limit diagram.

Proof. If iX< is a conical limit diagram, then X< is a conical limit diagram, since ¢ is
fully faithful. It remains to show the converse. Denote by * the cone point of Z< and let
X = X9z, Let x = X“(x), and let € : Az — X be the morphism presenting x as the
conical limit of X.

It follows from [Hin20a] proposition 6.3.7 that Funct(D°?, M) belongs to the image of 6,4,
and therefore by proposition 5.4.8, we see that Funct(D°?, M) admits all conical limits. Let
¢ 1y — 1X be the conical limit for iX, and let « : iz — y be the unique morphism equipped
with an identification € A,a = i,e. We need to show that « is an isomorphism.

To see this, it suffices to show that for every object z in D, the morphism

Q- HomFunct(DOP,ﬂ) (227 Z[L’) — HomFunct(DOP,m) (ZZ’ y)
is an isomorphism. This fits into a commutative diagram

O

Homg e (por ) (42, i) > Hompy e (po» o1y (12, Y)

I N
. . (A*a)* .
HomFunct(IM,Funct(DORH)) (AZZJ AZ‘T) HomFunct(ZM,Funct(DOP,M)) (AZZ7 Ay>

[ |+

L. id L.
Hompyeq(z,., punce(por 3y (A2, 1X) ——— Hompyey iz, punce(per a)) (12, 1.X).

Since (y,€') is a conical limit diagram, the composition of the right vertical arrows is an
isomorphism. Since (x,¢€) is a conical limit diagram and i is fully faithful, the composition
of the left vertical arrows is an isomorphism. Since the bottom horizontal arrow is an
isomorphism, we have that the top horizontal arrow is an isomorphism as well, as desired. [

Corollary 5.4.10. Let M be a presentable symmetric monoidal category and let T be a
category. Let D be an M-enriched category and let X< : I3 — D be a diagram. Then X< is
a conical limit diagram in D if and only if for every d in D the composite map

Homp(d,~)

M

4 X<
Ay D
15 a conical limit diagram.

Proof. This follows from proposition 5.4.9 together with proposition 5.3.13, by using the fact
that M admits all conical limit diagrams. m
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Remark 5.4.11. Let M be a presentable symmetric monoidal category. Since M admits
all conical colimits, we have that a left cone in M is a conical limit diagram if and only if the
associated left cone in M is a limit diagram. We can thus informally summarize corollary
5.4.10 by saying that a conical limit in an M-enriched category D is the same as a limit in
the category underlying D which is preserved under all enriched corepresentable copresheaves.

5.5 Weighted limits and colimits

We begin by discussing the notion of join of enriched categories.

Notation 5.5.1. Let M be a presentable symmetric monoidal category and let Z,Z’ be
M-algebroids with categories of objects X and X', respectively. Let W : BMx x» — M be
an Z — Z’-bimodule in M. We denote by Z *ﬁ}gbrd 7' the operadic left Kan extension of W
along the inclusion BMx x» — Assosxux.

In the case when Z and Z' are M-enriched categories, we will denote by Z %y Z' the
Me-enriched category underlying Z *{},lgbrd 7'. We call this the join of Z and Z' weighted by
Ww.

Remark 5.5.2. Let M be a presentable symmetric monoidal category and let Z,Z" be
M-algebroids with categories of objects X and X', respectively. Let W : BMx x» = M be
an Z — Z’-bimodule in M. Then the M-algebroid Z *ﬁ,lgbrd 7' has category of objects X U X",
and comes equipped with fully faithful morphisms of algebroids

T Ty T T

which are cartesian lifts of the inclusions X — X U X’ + X',

The unit map W — 7 *évlgbrd 7' presents the bimodule W as the restriction of scalars of
the diagonal bimodule of 7 *{}[}gbrd 7' along i and i'. Furthermore, for each pair of objects x

in Z and 2’ in 7', we have that Z x;p2” Z/(2/, ) is the initial object of M.

Remark 5.5.3. Let T : M — M’ be a morphism of commutative algebras in Pr’. Let
X, X’ be categories, and consider the commutative square of categories

AlgAssosXUX/ (M) — AlgBMX’X/ (M)

AlgAssosXUX/ (M/) - AlgBMKX/ (M)

where the horizontal arrows are the restriction maps. Since T preserves all operadic colimits
involved in the construction of free algebras, we have that the above commutative square is
horizontally left adjointable.

Let Z,7" be M-algebroids with categories of objects X, X’ respectively. Let W be an
7 — 7’-bimodule in M, and let YW be the induced T:.Z — T\Z-bimodule in M’. It follows

from the above that we have an equivalence of M’-algebroids

T(T *y™™ T') = (TT) ™ (TT).
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When Z,7" are M-enriched categories, the above induces an equivalence of M’-enriched

categories
T(T +w I') = (T\T) »row (TLL").

Of particular importance is the case when one of the two categories in the join is the unit
M-enriched category.

Notation 5.5.4. Let M be a presentable symmetric monoidal category. Let Z be an M-
enriched category and let W be a presheaf on Z, which we think about as an 1, —Z-bimodule.
We denote by Zy;, the join of the unit M-enriched category and Z, weighted by W. Similarly,
if W’ is a copresheaf on Z, we denote by Z;j, the join of Z and the unit Z-enriched category,
weighted by W’. We call Zi;, (resp. Zyj,) the right (resp. left) cone of Z weighted by W (resp.
w’).

Example 5.5.5. Let M be a presentable symmetric monoidal category and let Z be the
initial M-enriched category (in other words, Z is the unique M-enriched algebroid with an
empty space of objects). Let W be the unique presheaf on Z. Then Zj;, is the unit M-enriched
category.

Example 5.5.6. Let M be a presentable symmetric monoidal category and let m be an
object of M. Let Z be the unit M-enriched category and let W : Z°? — M be the map that
picks out the object m. Then (Z)}, is the enriched category underlying the m-cell C,.

Example 5.5.7. Let M = Spc equipped with its cartesian symmetric monoidal structure,
and let Z be a category. Let W : Z°° — Spc be the terminal presheaf. Then the cone point
of Z;, is a final object. Let Z% be the category obtained from Z by freely adjoining a final
object. Then the functor 75 — Z;, induced from the inclusion Z — Zj;, is an equivalence.

Remark 5.5.8. Let T : M — M’ be a morphism of commutative algebras in Pr”. Let
be an M-enriched category and let W be a presheaf on M. Denote by TiW the presheaf on
T\Z defined by adjunction from the composite map

70 Y\ B — TFRT.
Then it follows from remark 5.5.3 that there is an equivalence (T\Z)%y, = Ti(Zy).

Example 5.5.9. Let M be a presentable symmetric monoidal category. Let Z be a category
and let W be the presheaf on Z,, induced from the presheaf Z°? — M which is constant 1.
Then it follows from a combination of remarks 5.5.3 and 5.5.8 together with example 5.5.7
that Zj;, is equivalent to (Z%) .

We now discuss the notion of weighted limits and colimits.

Definition 5.5.10. Let M be a presentable symmetric monoidal category and let Z,C be
M-enriched categories. Let W : I°® — M be a presheaf on I, and let X : T — C be a functor.
A right cone for X weighted by W (or W-weighted right cone, for short) is an extension
Xy Ly, — C for X. Dually, a left cone for X weighted by a copresheaf W' is an extension
Xy Iy = C for X.
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Notation 5.5.11. Let M be a presentable symmetric monoidal category and let X : Z — C
be a functor of M-enriched categories. We denote by Hx : C — Funct(Z°?, M) the functor
induced from the composite functor

TP @ ¢ X8, pop g ¢ HomeC), TR
Remark 5.5.12. Let M be a presentable symmetric monoidal category and let Z,C be
M-enriched categories. Then the assignment X +— Hy forms part of a functor

H(_y : Funct(Z, ) — Funct(C, Funct(Z°?, M)).

Assume now given another M-enriched category D and a functor G : C — D. Then the
natural transformation G, : Home(—, —) — Homp(G—, G—) induces a natural transformation

G* : H(,) — Hg(,) o(d
of functors Funct(Z,C)°? — Funct(C, Funct(Z°P, M)).

Remark 5.5.13. Let M be a presentable symmetric monoidal category and let Z,C be
M-enriched categories. Let W : Z°° — M be a presheaf on Z, and let X : Z — C be a
functor. Then the space of right cones for X weighted by W is equivalent to the space of
pairs of an object x in C, and a morphism of presheaves

n:W(=)— Hx(z).

Assume now given another M-enriched category D and a functor G : C — D. Let
Xy« Iy, — C be a right cone for X weighted by W, associated to a pair (x,n) as above.
Then GXY;, is a right cone for GX weighted by W, which corresponds under the above
identification to the pair (Gx,n'), where 1’ is given by the composite map

W(=) 2 Hy(z) < Hox(Ga).

Definition 5.5.14. Let M be a presentable symmetric monoidal category and let Z,C be
M-enriched categories. Let W : I°? — M be a presheaf on I, and let X : T — C be a
functor. Let Xy, be a right cone for X weighted by W, associated to an object x in C and a
morphism of presheaves n: W — Hx(x). We say that X3}, is a colimit for X weighted by W
(or W -weighted colimit, for short) if n presents x as left adjoint to Hx at W. Dually, given
a copresheaf W' on I, we say that a left cone X3, for X weighted by W' is a limit for X
weighted by W' (or W'-weighted limit, for short) if (X)) is a colimit for X°P weighted by
w'.

Example 5.5.15. Let M be a presentable symmetric monoidal category and let Z be the
initial M-enriched category. Let W be the unique presheaf on Z, so that Zj;, is the unit
M-enriched category (see example 5.5.5).
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Let C be an M-enriched category and let X : Z — C be the unique functor. A right
cone for X weighted by W is the same data as an object x of C. This defines a colimit of
X weighted by W if and only if z is initial (in other words, Home(z,y) is a final object in
M for every y in C). Dually, we have that a limit for X weighted by W is the same a final
object in C.

Example 5.5.16. Let M be a presentable symmetric monoidal category and let Z be the
unit M-enriched category. Let m be an object in M and let W be the associated presheaf
on Z, so that Z;, is the M-enriched category underlying the m-cell (see example 5.5.6).

Let C be an M-enriched category and let X : Z — C be a functor that picks out an
object x in C. A right cone for X weighted by W consists of a pair of an object y in C and a
morphism « : m — Home(z,y). This is a colimit for X weighted by W if it has the property
that for every object z in C the composite map

m ® Home(y, 2) o, Home(z,y) ® Home(y, 2) — Home(z, 2)

induces an isomorphism Home/(y, 2) = S#om(m, Home(z, 2)). In this case, we say that «
presents y as the copower (or tensor) of x by m. Passing to opposites we obtain the dual
notion of power (or cotensor) of an object in C by an object in M.

Example 5.5.17. Let M = Spc. Let Z be a category and let W be the terminal presheaf
on Z. Then a diagram Zj;, — C is a W-weighted colimit if and only if it is a colimit diagram.

Example 5.5.18. Let M be a presentable symmetric monoidal category and let Z be an
M-enriched category. Let j be an object in Z and let W = Homz(—, j) be the corresponding
representable presheaf. The equivalence W = Homz(—, j) induces a functor

r:Iy > T

which is a retraction for the inclusion ¢ : Z — Zj},, and maps the cone point to j. Observe
that the equivalence ri = idz presents i as left adjoint to r.

Let C be an M-enriched category and let X : Z — C be a functor. Then Xr is a right
cone for X weighted by W. Unwinding the definitions, we see that this is the right cone
which corresponds to the object X (j) in C and the natural transformation

n:W(=) = Home(X(=), X(j))

is induced by the identity in Home(X (), X(j)). It now follows from the Yoneda lemma that
Xr is a colimit for X weighted by W.

We conclude from the above discussion that M-enriched categories admit all colimits
weighted by a representable presheaf.

Remark 5.5.19. Let T': M — M’ be a colimit preserving symmetric monoidal functor
between presentable symmetric monoidal categories. Let Z be an M-enriched category and
let W be a presheaf on Z. Let C be an M'-enriched category and let

X" (M) — C
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be a weighted colimit diagram. Then the induced diagram X" : Zf;, — TC is a weighted
colimit diagram.

Recall that, in unenriched category theory, left adjoint functors preserve all colimits. We
now discuss an enriched generalization of this fact.

Definition 5.5.20. Let M be a presentable symmetric monoidal category and let Z,C be
Me-enriched categories. Let W : I°° — M be a presheaf on Z, and let X : T — C be a
functor. Let G : C — C' be a functor of M-enriched categories. We say that a colimit Xy,

for X weighted by W is preserved by G if GXy;, is a colimit for GX weighted by X. Passing
to opposites, we similarly define the notion of a functor preserving a weighted limit.

Example 5.5.21. Let M be a presentable symmetric monoidal category and let Z be an
M-enriched category. Let j be an object in Z and let W = Homz(—, j) be the corresponding
representable presheaf. It follows from the description of W-weighted colimits from example
5.5.18 that these are preserved under all functors of M-enriched categories. We may summarize
this by saying that colimits weighted by representable presheaves are examples of absolute
colimits.

Notation 5.5.22. Let M be a presentable symmetric monoidal category and let G : C — D
be a functor of M-enriched categories. Let D’ be the full subcategory of D on those objects
d such that G admits a left adjoint at d. It follows from proposition 5.1.7 that the functor

G, : Funct(D’,C) — Funct(D’, D)

admits a left adjoint at the inclusion ¢ : D' — D. We will usually denote the resulting functor
GL D' — C and call it the (partially defined) left adjoint of G. We call D’ the domain of
definition of G*.

Remark 5.5.23. Let M be a presentable symmetric monoidal category and let G : C — D
be a functor of M-enriched categories. Then G* is characterized by the property that it
comes equipped with a unit natural transformation 7 : i — GG such that n(d) presents
GE(d) as left adjoint to G at d for each d in D'. In the case when G admits a left adjoint
then D’ = D and 7 presents G* as left adjoint to G.

Proposition 5.5.24. Let M be a presentable symmetric monoidal category. Let T be an M-
enriched category and let W be a presheaf on L. Let G : C — D be a functor of M-enriched
categories and let X : T — D be a functor admitting a W-weighted colimit X* : Iy, — D.
Assume that G admits a left adjoint at X (i) for all i in Z. Then GLX admits a W -weighted
colimit if and only if G admits a left adjoint at X* (x). Furthermore, in this case GEX" is a
W -weighted colimit for GFX.

Proof. Let D' be the domain of definition of G*, and let n be the unit for the partial
adjunction between G* and G. Let x = X" (%) and let p : W — Hy(x) be the induced
natural transformation which presents x as left adjoint to Hy at W.
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Note that the composite natural transformation

is an isomorphism. It follows from proposition 5.1.3 that HxG admits a left adjoint at W if
and only if G admits a left adjoint at x. Since HxG is equivalent to Hqsry, we conclude that
GFX admits a colimit weighted by W if and only if G admits a left adjoint at z, as desired.

Assume now that G admits a left adjoint at 2. We need to show that G preserves the
colimit of X weighted by W. The weighted cone G*X®> corresponds to the pair of the object
G'z and the composite map

W5 Hy(x) o, Heox (GEo).

Composing with the isomorphism Hgrx = HxG described above we obtain the composite
natural transformation

W5 Hy(x) o, Herx (GRo) G, Heorx (GGE) N Hx(GG"z).

To show that G* preserves the W-weighted colimit of X, we have to show that p/ presents
Gz as left adjoint to HxG at W.

The natural transformation p’ is obtained by composing x with the natural transformation
Hx(z) — Hx(GGYz) induced from the composite natural transformation

L *
Homp (—, —) <% Homp(GGL—, GGE—) s Homp(—, GGL—).
The naturality of 1 implies that the above is equivalent to
ns : Homp/(—, =) — Homp(—,GGL—)

see remark 5.2.7). Hence we see that ' is equivalent to the composite map
1

WA Hy() 29 go(GGE ().

Using proposition 5.1.3 we see that the above presents G*x as left adjoint to HxG at W, as
desired. O]

Corollary 5.5.25. Let M be a presentable symmetric monoidal category. Let G : C — D be
a functor of M-enriched categories, and assume that C admits all weighted colimits. Then
the full subcategory of D on those objects d such that G admits a left adjoint at d, is closed
under weighted colimits.

Corollary 5.5.26. Let M be a presentable symmetric monoidal category. Let G : C — D
be a functor of M-enriched categories admitting a left adjoint G*. Then G preserves all
weighted colimits that exist in D.
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Our next goal is to prove that enriched categories arising from presentable modules admit
powers and copowers, which are computed in the expected way.

Proposition 5.5.27. Let M be a presentable symmetric monoidal category and let C be a
presentable M-module. Let x be an object in C and let m be an object in M. Then

(i) The morphism m — Homy, c)(z,m ® ) induced from the identity of m ® x presents
m & x as the copower of x by m in the M-enriched category 0,(C).

(ii) Let ™ be the object representing the presheaf Home(m @ —, ). Then the morphism
m — Homy, ,¢)(z™, x) induced from the canonical map m @ x™ — x presents ™ as the
power of x by m in the M-enriched category 0,(C).

Proof. We first prove item (i). We need to show that for every object y in C, the induced
map

m @ Homg ,c(m ® z,y) = Homy, c(x,m ® x) ® Homy,,c(m ® z,y) — Homy, c(z,y)

presents Homy,,c(m ® x,y) as the Hom object s€omp(m,Homg,,c(x,y)). Unwinding the
definitions, we see that the above is equivalent to the map

n:m® Home(m  x,y) — Home(z,y)

induced from the evaluation map ev : Fome(m ® z,y) @ m @ © — y. Our task is to show
that n presents JZome(m ® x,y) as the Hom object J€omu(m, #ome(x,y)). This is a
consequence of proposition 5.1.3 applied to the functors

M2 M
We now prove item (ii). We need to show that for every object z in C, the induced map
Homy,,c(z,2™) ® m — Homy, ,c(z,2™) ® Homy, ,c(z™, ) — Homy,,c(2, x)

presents Homy, c(z,2™) as the Hom object s€om(m, Homg,,c(2z,x)). We can identify the
above map with the map

n' :m® Home(z,2™) = Home(z, )
induced by composing the evaluation maps

m® z® Home(z,2") > m 2" — x.
Our task is to show that 1’ induces an equivalence

Home(z,x™) = Homam(m, Home(z, x)).
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Consider the following commutative square of categories:

-®
_—®=,

M C
lm®— lm®—
M C

-®
_—®=,

The evaluation maps m ® 2™ — x and Home(z,2™) ® z — 2™ are right adjoint to the
right vertical and top horizontal maps at x and 2™, respectively. Using proposition 5.1.3
(in its dual form) we see that the composite evaluation map m ® z @ FHomp(z,2™) — x is
right adjoint to the diagonal map M MEZ2 € at 2. The result now follows from another
application of proposition 5.1.3, this time to the bottom horizontal and left vertical arrows in

the above diagram. O

5.6 Weighted colimits via conical colimits and copowers

Our next goal is to give a proof of the following fundamental result, which allows one to
reduce many questions in the theory of weighted colimits to questions about conical colimits
and copowers.

Theorem 5.6.1. Let M be a presentable symmetric monoidal category and let C be an
M-enriched category.

(i) Let Z be a category and X" : I%, — C be a functor. Then X% is a conical colimit
diagram if and only if it is a colimit diagram weighted by the presheaf W induced from
the functor Z°° — M which is constant 1.

(ii) The M-enriched category C admits all weighted colimits if and only if it admits all
conical colimits and copowers.

(iii) Let G : C — D be a functor of M-enriched categories, and assume that C admits all
weighted colimits. Then G preserves all weighted colimits if and only if it preserves
conical colimits and copowers.

Corollary 5.6.2. Let M be a presentable symmetric monoidal category and let C be a
presentable module over M. Then 0,,(C) admits all weighted limits and colimits.

Proof. This is a direct consequence of theorem 5.6.1, by virtue of propositions 5.4.8 and
5.5.27. 0

Corollary 5.6.3. Let M be a presentable symmetric monoidal category. Let T be an M-
enriched category and let W be a copresheaf on L. Let C be an M-enriched category and denote
by i : C — Funct(C°P, M) the Yoneda embedding. Then a weighted left cone X< : I, — C is
a weighted limit diagram if and only if i.X< is a weighted limit diagram.
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Proof. Lemma 5.6.6 below shows that this corollary holds under the additional hypothesis
that Funct(C°?, M) admits all weighted limits. It follows from corollary 5.6.2 that this
hypothesis always holds, since Funct(C°?, M) belongs to the image of 6, (see [Hin20a]
proposition 6.3.7). O

Our proof of theorem 5.6.1 will need a few preliminary lemmas.

Lemma 5.6.4. Let M be a presentable symmetric monoidal category and let G : C — D be
a functor of M-enriched categories. Assume that C admits all conical colimits. Then the full
subcategory of D on those objects on which the left adjoint to G is defined, is closed under
conical colimits.

Proof. Let T be a category and X : Zy; — D be a functor admitting a conical colimit with
underlying object z. Assume that for every i in Z, there exists a left adjoint to G at X (7).
We have to show that there exists a left adjoint to G at x.

Consider the following commutative square of M-enriched categories:

C ¢ s D

| |

Funct(Z, C) ——= Funct(Znq, D).

Thanks to proposition 5.1.7, the bottom horizontal arrow in the above square admits a left
adjoint at X. Since C admits all conical colimits, the left vertical arrow admits a left adjoint.
Applying proposition 5.1.3 we conclude that the induced functor C — Funct(Zy, D) admits
a left adjoint at X. Our claim now follows from another application of proposition 5.1.3. [

Lemma 5.6.5. Let M be a presentable symmetric monoidal category and let C be a presentable
M-module. Let T be a small full subcategory of O, (C) and assume that the family of
copresheaves {Homy,,c)(i, —) }icz detects isomorphisms. Then the closure of T under conical
colimits and copowers is the entire O, (C).

Proof. Denote by D the smallest subcategory of C closed under colimits, the action of M,
and containing the objects of Z. By a combination of proposition 5.5.27 and proposition
5.4.8, it suffices to show that D is the entire C.

Let x be a regular cardinal such that M is k-compactly generated. Observe that D is
generated under colimits by objects of the form m ® ¢ with 7 in Z and m a k-compact object
of M. This is a small collection of objects. Since C is presentable, we conclude that D is
presentable as well. Hence the inclusion of D inside C admits a right adjoint which presents
D as a colocalization of C.

Let ¢ be an object in C and let d be its image under the colocalization map. We claim
that the counit map € : d — ¢ is an isomorphism. To see this, it suffices to show that for
every object ¢ in Z, the induced morphism

€. : Homg, (7, d) — Homy, (7, c)
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is an isomorphism. The above is equivalent to the map #Zome¢(i,d) — Fome(i,c) induced
from the composite map

Home(i,d) @i = d = c.
It suffices then to show that for every object m in M, the composite morphism of spaces

(eev)x

Hom y(m, #ome(i,d)) N Home(m ® i,m ® Home(i,d)) —— Home(m ® i, ¢)

is an isomorphism. This follows from the fact that €, : Home(m ® i,d) — Home(m ® i, ¢) is
an isomorphism, together with the fact that the composite map of spaces

Hom y(m, #ome(i,d)) N Home(m ® i,m ® Some(i,d)) == Home(m @ i, d)
is an isomorphism. O

Lemma 5.6.6. Let M be a presentable symmetric monoidal category. Let I be an M-
enriched category and let W be a copresheaf on Z. Let C be an M-enriched category and
denote by i : C — Funct(C°?, M) the Yoneda embedding. Assume that Funct(C°?, M) admits
all weighted limits.! Then a weighted left cone X : I3, — C is a weighted limit diagram if
and only if iX< is a weighted limit diagram.

Proof. Let 7= Funct(Z, M). Given an M-enriched category D and a functor F' : Z — D,
we denote by H' : D°® — T the functor induced from the composite map

Do o T 9EF, pop o p Homp (—,—) M.

Let © = X9(x) and let n: W(—) — H%(x) be the natural transformation induced by X*.
It follows from a dual version of the discussion in remark 5.5.13 that the weighted cone X<
is associated to the pair (iz,n'), where ' is given by the composition

W (=) 2% Hi () = Hiy(iz).
Note that since ¢ is fully faithful, the second morphism above is an equivalence.
Let X = X 9|7 and let
p:W(=) = Hix(y)
be the limit of ¢+ X weighted by W. Let « : iz — y be the unique morphism equipped with an
identification ' = a*pu.
Let z be an object of C and consider the following commutative diagram:

Home(z, x) W Homz(HY (x), Hy (%)) S NN Homs(W(—), Hy (2))

L | |

/%

HomFunct(COP,ﬂ)(i’Z?ix) Z—X)> Homz(H;x (ix), Hx (iz)) o Homz(W (—), Hix(iz))

l‘l* lHix(oc)* lid

. Hix)« . * :
HomFunct(COP,ﬂ) (ZZ7 y) —X> Homf(Hz/X<y)7 Hz/X (ZZ)> M—> HOHlf(W(—)7 HZIX<ZZ))

Tt is a consequence of theorem 5.6.1 that this condition is always verified, see corollary 5.6.3.
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Here the top vertical arrows are the isomorphisms which arise from the fully faithfulness of .
The composition of the bottom horizontal arrows is an equivalence, since p presents y as left
adjoint to Hy at W. The composition of the right vertical arrows is also an equivalence,
since both arrows are an equivalence.

The composition of the top horizontal arrows is an equivalence if and only if X< is a
weighted limit diagram. By the commutativity of the outer square, this happens if and only
if v, is an isomorphism. The Yoneda lemma implies that this happens if and only if « is an
isomorphism. This is equivalent to (iz,n) being a weighted limit, as desired. ]

Lemma 5.6.7. Let M be a presentable symmetric monoidal category. Let I be an M-
enriched category and let W be a presheaf on L. Let G,G" : C — D be functors of M-enriched
categories, and let i : G — G’ be a natural transformation. Assume that G and G’ preserve
W -weighted colimits. Then the space of objects x in C such that p(x) is an isomorphism, is
closed under W -weighted colimits.

Proof. Let C' be the full subcategory of C on those objects = for which p(z) is an isomorphism.
Let X : Z — C be a functor which factors through C’, and assume that X admits a W -weighted
colimit, corresponding to an object x in C and a natural transformation n : W — Hx(z). We
need to show that = belongs to C’.

Let y be an object in D. Let P(Z) = Funct(Z°°, M) and consider the following commuta-
tive diagram:

Homp(G'(z), ) pe) » Homp(G(z),y)
w}
(Hgrx ) Homp(z)(Haox (G' (7)), Hax (y)) (Hex )«
WQD))*
Homp(z)(Herx (G'(2)), Harx (v)) (1)* Hompz)(Heax (G(x)), Hax (y))
(GL)* Hompz)(Hex (G'(x)), Hax (y)) (G
Homyp(z) (Hx (), Horx (y) o » Homp(r(Hx (2), Hox(y)
n* n*
Homp(z) (W, Harx (y)) Sk » Homp(z) (W, Hax (y))

Here the diagonal squares commute thanks to the naturality of u. The composition of the
left vertical arrows is an isomorphism since G’ preserves W-weighted colimits. Similarly, the
composition of the right vertical arrows is an isomorphism since G preserves W-weighted
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colimits. The bottom horizontal arrow is an isomorphism since X factors through C’. We
conclude that the top horizontal arrow is an isomorphism. Since this happens for all y in C,
we conclude that p(x) is an isomorphism, as desired. ]

Lemma 5.6.8. Let M be a presentable symmetric monoidal category, and let C,D be two
M-enriched categories. Let F: C — D and G : D — C be functors, and let p : ide - GF
be a natural transformation. Let T be an M-enriched category and W be a presheaf on L.
Assume that C admits all W-weighted colimits and that F preserves W -weighted colimits.
Then the space of objects x in C such that p(x) presents F(x) as left adjoint to G at x, is
closed under W -weighted colimits.

Proof. Let C' be the full subcategory of C on those objects where the left adjoint to G is
defined, and let C” be the full subcategory of C on those objects x such that n(x) presents
F(x) as left adjoint to G at z. Note that C” is contained in C’. Let o : G¥ — F|e be the
unique natural transformation equipped with an identification n*G.(«) = . Then for each z
in ¢’ we have that «(z) is an isomorphism if and only if « belongs to C”. The lemma now
follows from a combination of lemma 5.6.7 and corollary 5.5.25. [

Proof of theorem 5.6.1. We first show that the existence of conical colimits and copowers
implies the existence of all weighted colimits. Assume that C admits conical colimits and
copowers. Let Z be an M-enriched category and let X : Z — C be a functor. We need to
show that Hx admits a left adjoint. Thanks to example 5.5.18, we have that Hx admits a
left adjoint at every representable presheaf. Using lemma 5.6.4 and proposition 5.5.24, we
reduce to showing that the closure of the representable presheaves under conical colimits and
copowers is the entire Funct(Z°, M). This follows from a combination of the Yoneda lemma
and lemma 5.6.5.

We now prove item (i). It follows from propositions 5.4.8 and 5.5.27 that Funct(C, M)°P
admits all conical colimits and copowers. By the above, we also know that it has all weighted
colimits. Applying proposition 5.4.9 and lemma 5.6.6 we reduce to showing that W-weighted
colimit diagrams and conical colimit diagrams agree when the target is Funct(C, M)°P. Using
remark 5.5.19 and corollary 5.3.7, we reduce to the case when M = Spc. This is example
5.5.17.

Item (ii) now follows, since we have already showed that the existence of conical colimits
and copowers implies the existence of weighted colimits.

It remains to prove item (iii). Let & : Funct(Z°?, M) — C be the left adjoint to Hy, and
let n be the unit of the adjunction. Consider the composite natural transformation

. Goid
1+ ipynercon o) > Hxé ——> Hax GE.

To show that GG preserves weighted colimits we need to show that u is the unit of an adjunction
between G¢ and Hgx.

Since ¢ is a left adjoint, we have that it preserves all weighted colimits that exist in
Funct(Z°?, M), thanks to corollary 5.5.26. This implies in particular that ¢ preserves all
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conical colimits and copowers. Since G preserves all conical colimits and copowers, we have
that G¢ preserves all conical colimits and copowers.

It follows from the discussion in example 5.5.21 that G preserves colimits weighted by
representable presheaves, and hence p(W) presents GE(W) as left adjoint to Hgx at W for
every representable . By lemma 5.6.8 we have that this is also the case for W in the closure
of the representable presheaves under conical colimits and copowers. Our claim now follows
from another application of lemma 5.6.5. O
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Chapter 6

Enriched higher algebra

Let M be a symmetric monoidal category. An M-enriched pre-prop P consists of:

e A space of objects P.

For every pair {zs}scs, {v: }ter of finite families of elements of P, an object

Homp ({xs}ses, {ut }ier)

in M of operations in P with source {x;}scs and target {y; }ier.

For every triple {zs}ses, {yt}er, {2u}ucy of finite families of elements of P, a composi-
tion map

Homp ({25 }ses, {tter) ® Homp ({y: }rers {7utuer) — Homp ({24 }ses, {2utuecr)

e For every object x in P, a unit map 1,y — Homp(z, z).

e For every quadruple X = {z,}ses, Y = {yi hier, Z = {zu}uev, W = {w, }vey of finite
families of elements of P, a stacking map

Homp(X,Y) ® Homp(Z, W) — Homp(X U Z, Y UW)

Isomorphisms witnessing unitality and associativity of composition, compatibility with
stacking, and an infinite family of higher coherence data.

An M-enriched pre-prop P has an underlying M-enriched algebroid, whose morphisms
are operations in P with single source and target. We say that P is an M-enriched prop
if its underlying M-enriched algebroid is an M-enriched category. An M-enriched operad
is an M-enriched prop P satisfying an extra condition, which roughly speaking states that
arbitrary operations are determined by single target operations.

The goal of this chapter is to discuss a number of topics in enriched higher algebra, and
to provide a way of making the above notions precise.
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We begin in 6.1 with a preliminary discussion on the theory of cartesian monoidal
categories over an operad. This is a generalization of the theory of cartesian symmetric
monoidal categories from [Lurl7] section 2.4.1. Recall that each category with finite products
carries a unique cartesian symmetric monoidal structure. We prove here a generalization
of this fact: for any operad O, there is an equivalence between the category of cartesian
O-symmetric monoidal categories and the category of cartesian (O ® Comm)-symmetric
monoidal categories.

In 6.2 we introduce, for a cartesian symmetric monoidal category M, a notion of cartesian
O-monoidal M-enriched category, and provide an enriched generalization of the results from
6.1. In particular, this provides an ample source of cartesian symmetric monoidal M-enriched
categories: any M-enriched category with finite conical products carries a unique such
structure.

In 6.3 we discuss the canonical enrichment on the category of O-algebras on a cartesian
symmetric monoidal category C enriched over a cartesian closed presentable category M.
We define this as an enriched analogue of the category of O-monoids from [Lurl7] section
2.4.2. We prove here two basic results that allow one to understand enriched categories
of algebras over some simple operads. As a particular case of this theory, we are able to
define an M-enriched 2-category of O-monoidal M-enriched categories. We prove that when
M = Spc this agrees with the 2-category of O-monoidal categories defined as a subcategory
of the 2-category of categories over the category of operators of O.

In 6.4 we discuss the notion of prop enriched over a presentable symmetric monoidal
category M. We show that the category of symmetric monoidal M-enriched categories is
a subcategory of the category of M-enriched props, and that this inclusion admits a left
adjoint, which we think about as sending each M-enriched prop to its symmetric monoidal
envelope.

In 6.5 we discuss the notion of operad enriched over a presentable symmetric monoidal
category M. We show that every enriched operad admits an universal enveloping enriched
prop, and that every enriched prop has an underlying enriched operad. We show that the
category of M-enriched operads contains the category of M-enriched symmetric monoidal
categories as a subcategory. We finish by proving that our approach recovers in the case
M = Spc the usual notion of operad.

6.1 Cartesian O-monoidal categories

We begin by introducing the notion of cartesian O-monoidal category for an arbitrary operad

0.

Notation 6.1.1. Denote by Catgy proa the subcategory of Cat on the categories with finite
products, and finite product preserving functors. We equip Catgy proa With its cartesian
symmetric monoidal structure, and the inclusion Catgy, proa — Cat with its unique symmetric
monoidal structure.
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Definition 6.1.2. Let O be an operad and let £ be an O-monoidal category. We say that €
is cartesian if the associated morphism of operads O — Cat factors through Catgy proa. We
call Algy(Catan proa) the category of cartesian O-operads.

Remark 6.1.3. Let O be an operad and let £ be an O-monoidal category. Unwinding the
definitions, we see that & is cartesian if and only if the following two conditions hold:

e For every object x in O the category £(x) admits finite products.

e For every operation in O with source {z,}cs and target z, the induced functor

[[£@) — @)

seS

preserves finite products.

Assume now that £ is cartesian, and let F' : £ — & be a morphism of O-monoidal
categories, with £ also cartesian. Then F' defines a morphism in Alge, (Catgy proa) if and only
if for every object x in O the induced functor £(x) — &£'(x) preserves finite products.

The following proposition singles out a minimalistic collection of products that need to
be preserved for an O-monoidal category to be cartesian.

Definition 6.1.4. Let O be an operad. A collection of operations {(1;};es of O is said to be
dense if its closure under compositions (and identities) is the entire collection of operations

of O.

Proposition 6.1.5. Let O be an operad and let A = {u;}jes be a dense collection of
operations in O. Let & be an O-monoidal category. Then & is cartesian if and only if the
following conditions hold:

e For every object x in O the category E(x) admits finite products.

e For every operation p in A with source {xs}ses and target z, the induced functor

pe: [ €@s) = E)

sES

preserves terminal objects.

e Let pu be an operation in A with source {xs}ses and target x. Let sy be an index in
S and denote by by iy, : E(xg,) = [[,eqE(xs) the functor induced from the identity
E(xs,) = E(xs,) and the terminal maps E(xs,) — E(xs) for s # so. Then the composite
functor .

E(xs) ~% [[E(@s) £ E(x)
seS

preserves binary products.
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e Let 1 be an operation in A with source {xs}scs and target x, and let e = {e,}ses be a
family of objects with e, in E(xy). For each i in S let e = {egi)}seg be the family of
objects given by 62@ =e; and el = le(z,) otherwise. Then the projection maps e — e
induce an isomorphism
ple) =[] ™).

€8

Proof. Tt follows from remark 6.1.3 that if £ is cartesian then the four conditions in the
statement hold. Assume now that the four conditions above hold. By virtue of remark 6.1.3,
we need to show that for every operation p with source {z,}cs and target x the induced

functor
po: [ €(s) = E)
seS

preserves finite products. Since A is dense, it suffices to assume p belongs to A. The second
item in the statement guarantees that this functor preserves final objects, so it remains to
show that it preserves binary products.

Let e = {e,}ses and €' = {€/},es be two objects in [, ¢ E(x,), and let e, e') be as in
the statement. Then for each i in S we have a commutative diagram

ple) «——— plex ') ——— pu(¢)

| | |

ple®) e (e x &0) — p(e'),

Using the fourth condition in the statement we see that as we range over all ¢ in S, the
vertical arrows present the upper row as the product of the lower rows. Our claim now follows
from the fact that the lower row presents u(e® x €/¥) as the product of p(e®) and p(e’®),
which is itself a consequence of the third condition in the statement. O

Example 6.1.6. The operad Comm admits a dense collection of operations consisting of
the unique operations with arity 0 and 2. It follows that a symmetric monoidal category & is
a cartesian Comm-monoidal category if and only if the following two conditions hold:

e The unit object of £ is final.

e Let e, e be two objects of £. Then the maps

ide @,/ ’
e=eRlg+———e®e

Te®id,/ ’ ’
— 1le®e =e
present e ® €’ as the product of e and €.

In other words, £ is cartesian in the sense of definition 6.1.2 if and only if its symmetric
monoidal structure is cartesian.
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Example 6.1.7. The operad CAlgMod governing pairs of a commutative algebra and a left
module over it admits a dense collection of operations consisting of the two operations of
arity 2, and the unique operation of arity 0.

Let £ be a symmetric monoidal category and let C be a category tensored over &£, so that
the pair (€,C) defines a monoidal category over the operad CAlgMod. Then it follows from
proposition 6.1.5 that (€,C) is cartesian if and only if the following conditions hold:

e The symmetric monoidal structure on &£ is cartesian.
e The category C admits finite products.

e For every pair of objects e in £ and ¢ in C the maps

.de®c e®.dc
eR 1 & e@e S e @c=c

present e ® ¢ as the product of e ® 1¢ and c.

e The map — ® 1¢ : £ — C preserves finite products.

It turns out in fact that the fourth condition is a consequence of the first three. Indeed, if
e, e are objects of £, then the pair of morphisms

(ide XTre/)®idlc (WeXidE/)®idlc
<__—_

(6 X 15) ® 1e (6 X 6,) ® 1e (15 X 6/) ® 1e

is equivalent to

ide ®ﬂ'e/®1c 7Te®ide/ ®1c
il s M bt

e® le e® (e @ 1c) e€®l1e

which is a product diagram thanks to the third condition.

Recall from [Lurl7| corollary 2.4.1.9 that the category CAlg(Catgy proa) Of cartesian
symmetric monoidal categories is equivalent to Catgy proqa. The following proposition provides
a generalization of this fact.

Proposition 6.1.8. Let O be an operad. Then restriction along the morphism of operads
O =0®|[0] - O® Comm induces an equivalence of categories

Alg@(catﬁl’l prod) = Alg@@Comm(Catﬁn prod)-

Proof. Recall that Catgy, proa is equivalent to the full subcategory CAlg,,.(Cat) of CAlg(Cat)
on the cartesian symmetric monoidal categories. Since the cartesian symmetric monoidal
structure on CAlg(Cat) is also cocartesian, we conclude that the same holds for Catgy prod-
Therefore precomposition with [0] — Comm induces an equivalence of symmetric monoidal
categories

Algcomm (Catfin proa) = Algjg)(Catgn proa) = Catfin prod -

The result now follows from the above by passing to categories of O-algebras. [
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Corollary 6.1.9. Let co > n > 0. Then precomposition with the unique map [0] — E,
induces an equivalence
AlgEn<Catﬁn prod) = Catﬁn prod -

Proof. Consider the commutative square of operads

[0] —— [0] ® Comm

| |

E, —— E, ® Comm

obtained by tensoring the unique map [0] — E,, with the unique map [0] — Comm. This
induces a commutative square of categories

AlgEn (Catﬁn prod) E— AlgEnc@Comm(Catﬁn prod)

| /

Alg[o](catﬁn prod) — Alg[O]@Comm<Catﬁn prod)-

It follows from proposition 6.1.8 that the horizontal arrows are equivalences. Since F, ®
Comm = [0] ® Comm = Comm we have that the right vertical arrow is an equivalence as
well, and the result follows. O

Corollary 6.1.10. Let co > n > 1 and let O = LMod UpgosEn be the operad governing
pairs of an E,-algebra and a left module over it. Then there is an equivalence

Alg,(Catay proa) = Funct([1], Catsn proa)-
Proof. Note that we have equivalences of operads

O ® Comm = (LMod ® Comm) Uagsos @ Comm (Frn ® Comm)
= (LMod ® Comm) Ugomm Comm
= LMod ® Comm .

The result now follows from proposition 6.1.8 using the fact that LMod ® Comm and [1] ®
Comm are equivalent. O

Remark 6.1.11. Let co > n > 1 and let O = LMod U E, be the operad governing pairs
of an E,-algebra and a left module over it. Inspecting the proof of 6.1.10 reveals that the
equivalence between cartesian O-monoidal categories and morphisms in Catgy proa is such
that:

e To each pair (€,C) of a cartesian E,-monoidal category £ and a cartesian module C
over it, it assigns the finite product preserving functor

—®1C:8—>C.
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e To each product preserving functor F': £ — C between categories with finite products,
it assigns the pair (£,C), where C is seen as an £-module by restriction of scalars along
F.

6.2 Cartesian O-monoidal enriched categories

We now review the notion of O-monoidal enriched category.

Definition 6.2.1. Let M be a symmetric monoidal category and let O be an operad. An
O-monoidal M-enriched category is an O-algebra in the symmetric monoidal category Cat™.
We call Alg,,(Cat™) the category of O-monoidal M-enriched categories.

Given an O-monoidal M-enriched category C, its image under the functor

(Tam)r 2 Algy(Cat™) — Alg,(Cat)

induced from Ty, is called the O-monoidal category underlying C. Given an O-operad O, we
define the category of O'-algebras in C to be the category Algo 0((Ta)1)C) of O'-algebras in
the O-monoidal category underlying C.

Remark 6.2.2. Let M be a symmetric monoidal category. Specializing definition 6.2.1 to
the case O = Comm (resp. O = Assos) we obtain categories of symmetric monoidal (resp.
monoidal) M-enriched categories, and commutative algebras (resp. associative algebras) in
those.

Example 6.2.3. Let M be a presentable symmetric monoidal category. Let O be an operad
and let C be an O-algebra in M -mod(Pr"). Composing with the lax symmetric monoidal
functor

Or( : M-mod(Pr") — Cat "

we obtain an O-monoidal M-enriched category 0,(C), whose underlying O-monoidal cat-
egory is equivalent to the image of C under the lax symmetric monoidal forgetful functor
M -mod(Pr%) — Cat.

In particular, taking C to be the unit commutative algebra in M -mod(Pr*) we obtain a
symmetric monoidal M-enriched category M whose underlying symmetric monoidal category

is M.

We now specialize to the case when M is cartesian symmetric monoidal. In this case,
M-enriched categories with conical finite products provide examples of symmetric monoidal
Me-enriched categories.

Definition 6.2.4. Let M be cartesian symmetric monoidal category. Let C be a symmetric
monoidal M-enriched category. We say that C is cartesian if the symmetric monoidal category
underlying C is cartesian, and C admits all conical finite products.
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Example 6.2.5. Let M be a cartesian closed presentable category, equipped with its
cartesian symmetric monoidal structure. It follows from proposition 5.4.8 that the symmetric
monoidal M-enriched category M is cartesian.

Remark 6.2.6. Let M be a cartesian symmetric monoidal category and let C be a symmetric
monoidal M-enriched category. We denote by 1¢ the unit object of C, and by —®— : C®C — C
the tensoring map. Then C is cartesian if and only if the following two conditions hold:

e For every object ¢ in C we have that Home(c, 1¢) is a final object of M. In other words,
1c is a conical final object of C.

e Let ¢, d in C be a pair of objects of C, and denote by 7. : ¢ — 1¢ and 7y : d — 1¢ the
unique maps. Then the morphisms

c:c®1c@c®dmlc®d:d

exhibit ¢ ® d as a conical product of ¢ and d.

Notation 6.2.7. Let M be a cartesian symmetric monoidal category. We denote by
CAlg,,..(Cat™) the full subcategory of CAlg(Cat™) on the cartesian symmetric monoidal
Me-enriched categories. We denote by (CatM)ﬁn prod the subcategory of Cat™ on those M-
enriched categories admitting all conical finite products, and conical finite product preserving
functors.

Theorem 6.2.8. Let M be cartesian symmetric monoidal category. Then the forgetful
functor CAlg(Cat™) — Cat™ restricts to an equivalence

CAlgcart(CatM> = (CatM)ﬁn prod-

Our proof of theorem 6.2.8 will need some preliminaries.

Construction 6.2.9. Let M be a cartesian symmetric monoidal category. Consider the

functor
H : M°" — Funct(M, Spc)

induced from the Hom functor Homp(—, —) : M x M — Spc. We have that H fac-
tors through the full subcategory Funct™ (M, Spc) of Funct(M, Spc) on the finite product
preserving functors.

Let O be an operad, and consider the composite functor

Algy (M) x M°P 1dxH, Alg, (M) x Funct™ (M, Spc) — Alg,(Spe)
where the second arrow is composition. We denote by

tom : Algn(M) — Funct(M°P, Alg,(Spe))

the associated functor.
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Lemma 6.2.10. Let M be a cartesian symmetric monoidal category and let O be an operad.
Then the functor to m from construction 6.2.9 is fully faithful.

Proof. Let O% be the category of operators of @. Consider the composite functor

id xH

Funct(O%, M) x M —= Funct(O®, M) x Funct(M, Spc) — Funct(O%, Spc)
where the right arrow is composition. This induces a functor
Lo : Funct (0%, M) — Funct(M°P, Funct (O, Spc)).
Observe that the above is equivalent to the functor
Funct (0%, M) — Funct(O%, Funct(M°P, Spc))

of composition with the Yoneda embedding M — Funct(M°P Spc). In particular, we have
that 1\, is fully faithful.
We have a commutative square of categories

Algy(M) —22 5 Funct(M°P, Alg,(Spc))

L, |

Funct(O®, M) BCEN Funct(M°P, Funct(O%, Spc))

where the left vertical arrow is the inclusion, and the right vertical arrow is induced from
the inclusion of Alg,(Spc) inside Funct(O®, Spc). Our result now follows from the fact that
both vertical arrows and the bottom horizontal arrow are fully faithful. O

Construction 6.2.11. Let M be a cartesian symmetric monoidal category. Consider the
composite functor

idxH

Algbrd(M) x M —— Algbrd(M) x Funct™ (M, Spc) — Algbrd(Spc)

where the second arrow is induced by functoriality of algebroids under change of enrichment.
We denote by
LAlghrd, M © Algbrd(M) — Funct(M°P, Algbrd(Spc))

the induced functor.

Lemma 6.2.12. Let M be a cartesian symmetric monoidal category. Then the functor
Lalgbrd, M from construction 6.2.11 is fully faithful and preserves finite products.

Proof. Observe that the functor

Algbrd(M) x M° — Algbrd(Spc)
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from construction 6.2.11 can be upgraded to a functor of cartesian fibrations over Cat. In
particular, we have a commutative square of categories

Algbrd(M) x M° —— Algbrd(Spc)

| |

Cat x M ——— Cat

where the vertical arrows are the projections, and the bottom horizontal arrow is the projection
to the first factor. The above induces a commutative square of categories

Algbrd(M) 22 Punct (MOP, Algbrd(Spc))

| l

Cat 2 > Funct(M°P, Cat)

Since M admits a final object, we have that M°P is contractible, and in particular the bottom
horizontal arrow is fully faithful. To show that ¢aighra, i is fully faithful it suffices therefore
to show that the induced functor

Algbrd(M) — Funct(M®P, Algbrd(Spc)) X punct(mer,cat) Cat

is fully faithful. The above has the structure of morphism of cartesian fibrations over Cat, so
it suffices to show that for every category X the functor

Algbrd y (M) — Funct(M°P, Algbrd(Spc)) X car {X}
is fully faithful. The above is equivalent to the functor
Lassosy . M - Algbrd y (M) — Funct(M°P, Algbrd y (Spc))

which is fully faithful thanks to lemma 6.2.10.
It remains to show that tajghea,am preserves finite products. It suffices for this to show
that for every m in M the composite functor

Algbrd(M) 224 Funct(MP, Algbrd(Spe)) < Algbrd(Spe)
preserves finite products. The above is equivalent to the functor
H(m), : Algbrd(M) — Algbrd(Spc)

induced from the symmetric monoidal functor H(m) : M — Spc. Our claim now follows
from the functoriality of the symmetric monoidal structures on categories of algebroids from
construction 3.5.6, together with proposition 3.5.8. O
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Notation 6.2.13. Let M be a cartesian symmetric monoidal category. We denote by
ta: Cat™ — Funct(M©P, Cat)
the composite functor
Cat™ — Algbrd(M)sgpe —2, Punct (M, Algbrd(Spe)spe) Loy Funct(M®P, Cat)

where the last arrow is induced by the localization functor L : Algbrd(Spc)s,. — Cat.

Lemma 6.2.14. Let M be a cartesian symmetric monoidal category. Then the functor
from notation 6.2.13 is fully faithful and preserves finite products.

Proof. Tt follows from a combination of propositions 3.5.8 and 3.5.9 that the localization
functor L : Algbrd(Spc)spe — Cat preserves finite products.The fact that taq preserves finite
products is a consequence of the fact that taignra 1 preserves finite products, together with
the fact that Cat™ is closed under finite products inside Alghrd(M )spe.

It remains to show that ¢ is fully faithful. Let C,D be a pair of M-enriched categories.
We need to show that the morphism

(eam)s : Homgyenm (C, D) — Hompynermor, cat) (taCs taaD)
is an equivalence. Thanks to lemma 6.2.12, we reduce to showing that the map
L, : HomFunct(MOP,Algbrd(Spc)Spc)(LAlgbrd,/\/lca LAlgbrd,./\/lD) — HomFunct(MOP,Cat) ([//Vlca LMD)

is an equivalence. The above fits into a commutative triangle of spaces

HomFunct(MOP,Cat) (LMC7 LMD>

e

HomFunct(MOP ,Algbrd(Spc)spc) (LAlgbrd,/\/lC » LAlgbrd, M D)

\

HomFunct(./\/lOP ,Algbrd(Spc)spc) (LAlgbrd,MC y LM D)

where the vertical arrow is induced by precomposition with the unit n¢ : taigbra, mMC — tamC,
and the lower diagonal arrow is induced by composition with the unit 7p : taigbra P — tmD.
Note that the right vertical arrow is an equivalence. Hence it suffices to show that the lower
diagonal arrow is an equivalence.

It follows from [Lur09a] proposition 3.1.2.1 that the projection

p : Funct(M°P, Algbrd(Spc)spe) — Funct(M°P, Spc)
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is a cartesian fibration, and 7p is a cartesian arrow. Hence we have a pullback square of
spaces

Px
HomFunct(MOP,Algbrd(Spc)SpC) (LAlgbrd,Mca LAIgbrd,MD) - HomFunct(MOP,Spc) (pLAlgbrd,MCJ pbAlgbrd,MD)

l(nv)* l(mv)*

Px
HomFunct(./\/l"P,Algbrd(Spc)SpC) ([/Algbrd,./\/lc7 [/MD) — HomFunct(M‘)p,Spc) (p[/Algbrd,Mca pLMD)

To show that the left vertical arrow is an equivalence it suffices to show that the right vertical
arrow is an equivalence.

Note that peaighra mC and peaighra, mD belong to the image of the diagonal map A : Spc —
Funct(M°P, Spc). Note that since M°P has an initial object it is contractible, and hence A
is fully faithful and admits a right adjoint given by evaluation at the initial object 1. It
therefore suffices to show that the composition of the map

Homgpe(ptaigbrd, mMC (1), DLatgbra, mP(1ar)) = Hompunce(ater spe) (PLatgbra,mC Dlatgbra,mD)

induced by A with the map

HomFunct(MOP,Spc) (pLAlgbrd,Mca pLAlgbrd,./\/lD) — HomFunct (Mo°P Spc) (pLAlgbrd,MC> p[’MD)

induced by pnp, is an equivalence. In other words, we have reduced our task to showing that
PN presents paighed mMD(1a) as right adjoint to A at puaD. This is equivalent to showing
that pnp(1n) is an isomorphism.

We claim that in fact np(1,4) is an isomorphism. This is a morphism

o (Im)  tatgbrd MP(Im) = tamD (1)

that presents tpD(1p) as the category underlying taighra mD(1ae). It follows from the
definitions that ¢aighra mD(1r1) is the Segal space underlying D. Our claim now follows from
the fact that D is an M-enriched category. O

Proof of theorem 6.2.8. It follows from lemma 6.2.14 that we have a commutative square of
categories

CAlg(Cat™) » Cat™M

l(w)* l”‘/’

CAlg(Funct(M°P, Cat)) —— Funct(M°P, Cat).

where the horizontal arrows are the forgetful functors, and the vertical arrows are fully
faithful.

The restriction of 1y to (CatM)ﬁn prod factors through Funct(M®P, Catgy, proa). Further-
more, the restriction of (1), to CAlg,,..(Cat™) factors through the image of the subcategory
Funct(M°P, CAlg.,,.(Cat)) across the equivalence

Funct(M°P, CAlg(Cat)) = CAlg(Funct(M°P, Cat)).
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It follows that we have a commutative square of categories

CAlgcart(CatM) > (CatM)ﬁn prod

lum* lLM

Funct(M°, CAlg,,.(Cat)) —— Funct(M®P, Caty prod)

where the horizontal arrows are the forgetful functors. Note that the vertical arrows are still
fully faithful. The bottom horizontal arrow is an equivalence thanks to [Lurl7] corollary
2.4.1.9. Therefore the top horizontal arrow is fully faithful as well.

It remains to show that the top horizontal arrow is surjective. Let C be an M-enriched
category admitting conical finite products. It follows from the above discussion that ¢ (C)
admits an enhancement to a commutative algebra 1((C)*™" in Funct(M°P, Cat) whose image
under all evaluation functors is a cartesian symmetric monoidal category. Since tp((C) lies in
the image of ¢y, we have that 1, (C)®™ may be written as (1x().C™ for some symmetric
monoidal M-enriched category C"" with underlying M-enriched category C. Note that the
symmetric monoidal category underlying C™ is equivalent to ¢x(C)®™*(14). This is cartesian
symmetric monoidal, and hence C*™" provides the desired cartesian symmetric monoidal
structure on C. O

We now provide an enriched generalization of the theory of cartesian O-monoidal categories
from 6.1.

Definition 6.2.15. Let O be an operad and let M be a cartesian symmetric monoidal
category. An O-monoidal M-enriched category C is said to be cartesian if the underlying
O-monoidal category (Tpm)C is cartesian, and for every object x in O the M-enriched category
C(x) admits all conical finite products.

Remark 6.2.16. Let O be an operad and let M be a cartesian symmetric monoidal category.
Unwinding the definition, we have that an (O-monoidal M-enriched category C is cartesian if
and only if the following conditions are satisfied:

e For every object x in O the M-enriched category C(x) admits all conical finite products.

e For every operation in O with source {z}scs and target z, the induced functor

[[c@) = c)
seS

preserves conical finite products.

As before, the second condition may be reduced to a smaller list of assertions by applying
proposition 6.1.5.
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Remark 6.2.17. Let M be a cartesian symmetric monoidal category. Equip Caty! prod
with its cartesian symmetric monoidal structure, and the inclusion Cat;’ prod — Cat™ with
its unique symmetric monoidal structure. Let O be an operad, and C be an O-monoidal
M-enriched category. Then it follows from remark 6.2.16 that C is cartesian if and only if

the associated morphism O — Cat™ factors through Caty prod-

Definition 6.2.18. Let O be an operad and let M be a cartesian symmetric monoidal category.
We call Alg,,(Caty! orod) the category of cartesian O-monoidal M-enriched categories.

Remark 6.2.19. Let O be an operad and let M be a cartesian symmetric monoidal category.
Then Alg,(Caty’ orod) 18 the subcategory of Alg,(Cat™) defined by the following conditions:

e An O-monoidal M-enriched category C belongs to Alg,,(Caty! oroa) if and only if it is
cartesian.

e An morphism F' : C — C’ between two cartesian O-monoidal M-enriched categories

belongs to Alg,(Cat! proa) if and only if for every object z in O the induced functor

C(xz) — C'(x) preserves conical finite products.

In the particular case when O = Comm, we have an equivalence

The following proposition is a joint generalization of proposition 6.1.8 and theorem 6.2.8.

Proposition 6.2.20. Let O be an operad and let M be a cartesian symmetric monoidal
category. Equip Catfi\ﬁ prod With its cartesian symmetric monoidal structure. Then restriction
along the morphism of operads O = O®[0] — O ® Comm induces an equivalence of categories

Alg@(cati{'i\;[ prod) = AlgO®Comm(Cat£ﬁ prod)'

Proof. Since the cartesian symmetric monoidal structure on CAlg(Cat™) is also cocartesian,
we have that the same holds for its full subcategory CAlg,, . (Cat™). Thanks to theorem
6.2.8, this is also the case for the category Catﬁﬁ prod-  Lherefore precomposition with the
map [0] - Comm induces an equivalence of symmetric monoidal categories

AlgComm<Cat£ﬁ prod) = Alg[O] (C&té\ﬁ prod) = Catﬁﬁ prod *
The result now follows from the above by passing to categories of O-algebras. m

Corollary 6.2.21. Let M be a cartesian symmetric monoidal category and let oo > n > 0.
Then precomposition with the unique map [0] — E,, induces an equivalence

AlgEn (Catgﬁ prod) = Cat% prod *
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Proof. This follows from proposition 6.2.20 by the same arguments as in the proof of corollary
6.1.9. 0

Corollary 6.2.22. Let M be a cartesian symmetric monoidal category. Let oo >n > 1 and
let O = LMod Upgos En be the operad governing pairs of an E,-algebra and a left module over
it. Then there is an equivalence

AlgO(CatQﬁ prod) = FunCt([1]7 Catgﬁ prod)'

Proof. This follows from proposition 6.2.20 by the same arguments as in the proof of corollary
6.1.10. ]

6.3 Enriched categories of O-algebras

Given a cartesian symmetric monoidal enriched category C, the category O-algebras in C
from definition 6.2.1 admits a canonical enrichment.

Notation 6.3.1. Let O be an operad with category of operators O%. Let M be a cartesian
closed presentable category. We equip M with its cartesian symmetric monoidal structure.
Let C be a cartesian symmetric monoidal M-enriched category. We denote by Alg(C) the full
subcategory of Funct((O%®) 4, C) on those functors whose associated functor O% — (7p()C is
an O-algebra in C.

Definition 6.3.2. Let O be an operad. Let M be a cartesian closed presentable category
and let C be a cartesian symmetric monoidal M-enriched category. We call Alg,(C) the
M-enriched category of O-algebras in C.

Remark 6.3.3. Let O be an operad. Let M be a cartesian closed presentable category and
let C be a cartesian symmetric monoidal M-enriched category. Then the category underlying
Alg,(C) is the category of O-algebras in C from definition 6.2.1.

Our next goal is to give a description of Alg,(C) for special values of O.

Proposition 6.3.4. Let M be a cartesian closed presentable category and let C be a cartesian
symmetric monoidal M-enriched category. Let T be a category and let O be the image of T
under the embedding Cat — Op. Let O% be the category of operators of O and F : T — O%
be the inclusion of the fiber of O% over (1). Then restriction along F induces an equivalence

Alg,(C) = Funct(Zy,C).
Our proof of proposition 6.3.4 will need a preliminary lemma.

Lemma 6.3.5. Let £ be a presentable category. FEquip £ with its cartesian symmetric
monotidal structure. Let T be a category and let O be the image of I under the embedding
Cat — Op. Let O% be the category of operators of O and F : T — O% be the inclusion of
the fiber of O% over (1). Then:
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(1) The inclusion Alg,(E) — Funct(O%, E) admits a left adjoint L.

(ii) The restriction map
F* : Funct(O®, ) — Funct(Z, €)

factors through the localization functor L.

Proof. Ttem (i) is a direct consequence of the fact that Alg,(€) is closed under limits and
filtered colimits in Funct(O%, ), together with the adjoint functor theorem.
We now prove item (ii). Passing to right adjoints, we reduce to showing that the functor

Funct(Z, £) — Funct(O%, )

of right Kan extension along F', factors through the full subcategory on the O-algebras. Let
X = {X,}ses be an object in O, corresponding to a family of objects in Z indexed by a
finite set S. Then the overcategory Zx, has no nontrivial morphisms, and its space of objects
is the set S, where each index s in S corresponds to the inert arrow X — X;.

It follows that a functor G : O® — & belongs to the right Kan extension of F if and only
if the induced maps G(X) — G(X;) present G as the product of the objects G(X;). This
agrees with the condition of being an O-monoid in &, as desired. [

Proof of proposition 6.3.4. Note that the functor of categories underlying F* : Alg,(C) —
Funct(Z,C) is equivalent to the functor

Algy((tm))C) — Funct(Z, (tpm)iC).

of precomposition with F. This is an equivalence by [Lurl7] example 2.1.3.5. It follows in
particular that F™* is surjective. It remains to show that it is fully faithful.

Let i : C — Funct(C°, M) be the Yoneda embedding and consider the commutative
square of M-enriched categories

Alg,(C) L > Funct(Zy, C)

li* li*

Alg,, (Funct(CP, M)) —— Funct(Z,, Funct(CP, M)).

The vertical arrows are fully faithful since ¢ is fully faithful. Hence it suffices to show that
the bottom horizontal arrow in the above diagram is fully faithful. Thanks to [Hin20a)]
proposition 6.3.7, this is equivalent to the restriction to Algy,(Funct(C°P, M)) of the functor

F* : Funct(0%,, a(LModcer (M))) — Funct(Zay, O (LModeor (M))).
As in the proof of proposition 5.4.8, we may identify the above with the functor

O (F*) 2 Opq(Funct(O®, LModcor (M))) — Oa(Funct(Z, LModcor (M))).
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It therefore suffices to show that if A, B are two O-algebras in the cartesian symmetric
monoidal category LModeer (M), then the induced map

c%ﬂomFunct(o&LModcop (M) (A, B) - %OmFunct(I,LModcop (M))(F*A, F*B)

is an equivalence, where the Hom objects are taken with respect to the action of M. This is
equivalent to the assertion that for every object m in M the morphism of spaces

Hompunct (0 Lvodgop (M) (M @ A, B) — HoMpynet(7,LModeop (M) (M @ F*A, F*B)
is an equivalence. Let
L : Funct(O%, LModcor (M)) — Algp(LModeor (M))
be the localization functor. Since the functor
F* : Funct(O®, LModgor (M)) — Funct(Z, LModeos (M))

is fully faithful on the full subcategory of O-algebras, we reduce to showing that the image
under F* of the unit m ® A — L(m ® A) is invertible. This is a consequence of lemma
6.3.5. =

Proposition 6.3.6. Let M be a cartesian closed presentable category and let C be a cartesian
symmetric monoidal M-enriched category. Let Ey be the category of operators of the Ep-
operad and let F : [1] — E§ be the functor that picks out the active arrow (0) — (1). Then
precomposition with F' induces an equivalence between Algy, (C) and the full subcategory of
Funct([1] s, C) on those arrows in C with source 1c.

Our proof of proposition 6.3.6 will need a preliminary lemma.

Lemma 6.3.7. Let £ be a presentable category. FEquip £ with its cartesian symmetric
monoidal structure. Let F : [1] — ES be as in the statement of proposition 6.5.6. Then right
Kan extension along F' sends arrows in £ with source lg to Ey-algebras in €.

Proof. Let n > 0. Then the overcategory [1],y, has n + 2 objects, namely:
e The inert map a : (n) — (0).
e For each 1 <i < n the inert map b; : (n) — (1).
e The active map ¢ : (n) — (1), obtained by composing a with the active map (0) — (1).

The only nontrivial map in [1],y, is the map a — c. Note that the full subcategory of [1](,y,
on the objects a and b; is final.
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Assume now given a functor A : [1] — &€ which picks out an arrow with source 1¢, and let
G : EY — & be the right Kan extension of A along F. It follows from the above description
of [1](ny, that we have an isomorphism

G((m) = A(0) x I Aty =TT Acw).

1<i<n 1<i<n

In particular, we have G((1)) = A((1)). The above equivalence then becomes an isomorphism

G(m) = [ cu).

1<i<n

Tracing the identifications, we see that the above is induced by the maps b;. This means that
G is an Fjy-algebra in £, as desired. m

Proof of proposition 6.3.6. Note that the functor of categories underlying F* : Algy, (C) —
Funct([1] s, C) is equivalent to the functor

Alg g, ((Tam)C) — Funct([1], (Ta)iC)

of precomposition with F. It follows from [Lurl7] proposition 2.1.3.9 that the above is an
equivalence with the full subcategory of Funct([1], (7a¢):C) on those arrows in (7),C with
source le. In particular, we have that the image of F* consists of those arrows in C with
source 1.

It remains to show that F™* is fully faithful. As in the proof of 6.3.4, we reduce to proving
that if A, B are two Fy-algebras in LModcer (M) and m is an object of M, then the morphism
of spaces

Homg,net(52 LModcop vy (m @ A, B) = Hompuney([1] LModcop (M) (M @ F*A, F* B)
is an equivalence. Denote by
L : Funct(Eg, LModcor (M) — Alg g, (LModcer (M)

the localization functor. To complete the proof it suffices to show that the image under F*
of the unit map m ® A — L(m ® A) is left orthogonal to F*B. This follows from lemma
6.3.7. =

We now specialize the above theory to obtain an enrichment of the category of O-monoidal
enriched categories from definition 6.2.1.

Definition 6.3.8. Let M be a cartesian closed presentable category. Equip the M-enriched
2-category Cat™ with its cartesian symmetric monoidal structure. Let © be an operad. We
call Alg,(Cat™) the M-enriched 2-category of O-monoidal M-enriched categories.
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Remark 6.3.9. Let M be a cartesian closed presentable category and let O be an operad.

It follows from remark 6.3.3 that the category underlying AlgO(CatM) is equivalent to the
category Algy,(Cat™) of O-monoidal M-enriched categories from definition 6.2.1.

Remark 6.3.10. Let M be a cartesian closed presentable category. Specializing definition
6.3.8 to the case O = Comm (resp. O = Assos) we obtain an M-enriched 2-category of
symmetric monoidal (resp. monoidal) M-enriched categories.

In the case M = Spc, definition 6.3.8 supplies a 2-category Alg,(%at) of O-monoidal
categories for any operad . We finish by showing that this is equivalent to an alternative
definition as a sub-2-category of the 2-category of categories over O%.

Construction 6.3.11. Let B be a category. Consider the pullback functor
— x B:Cat — Cat/p.

Equip Cat and Cat,z with their cartesian symmetric monoidal structures, and — x B
with its unique symmetric monoidal structure. Restriction of scalars along it endows Cat gz
with the structure of category tensored over Cat.

For each category Z, we have an equivalence

(IxB)xg—=71x—

of functors Cat,z — Catg, and in particular we see that (Z x B) xp — is colimit preserving.
It follows that Cat,z is a presentable module over Cat. We let

%at/g = HCat(Cat/B).
We call this the 2-category of categories over B.

Remark 6.3.12. Let B be a category and let p : C — B and ¢ : D — B be two categories
over B. Then for each category Z we have an equivalence

Homg,(Z, Homaut (C,D)) = HomCat/B(I x C, D) = Homeat(Z X C, D) Xtomey, (zxc,B) 0]

where the map [0] — Homc,(Z x C, B) picks the composition of the projection map ZxC — C
and p. The above equivalence is natural in Z, and it therefore induces an equivalence

Homa (C, D) = Funct(C, D) Xpunct(c,8) [0] = Functs(C, D).

Notation 6.3.13. Let B be a category. We denote by %at?%cart the sub 2-category of %at z
on the cocartesian fibrations over B, the morphisms of cocartesian fibrations, and all 2-cells.
We call this the 2-category of cocartesian fibrations over B.

Proposition 6.3.14. Let B be a category. Then there is an equivalence
%at;%cart = Funct(B, %at)

which recovers the usual straightening equivalence Cat‘}%cart = Funct(B, Cat) upon passage to
underlying categories.
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Proof. Recall from [Hin20a] proposition 6.3.7 that there is an equivalence of 2-categories
Funct(B, 6at) = Ocar(LModg(Cat)).

Combining lemmas 5.4.6 and 5.4.7, as in the proof of proposition 5.4.8, we conclude that
there is an equivalence of 2-categories

Funct(B, ¢at) = 6c(Funct(B, Cat))

where Funct(B, Cat) is a B-module by restriction of scalars along the diagonal map Cat —
Funct(B, Cat). Our claim now follows from the fact that the cartesian symmetric monoidal
functor Cat — Funct(B, Cat) is equivalent to the functor — x B : Cat — Cat . O

Notation 6.3.15. Let O be an operad, with category of operators O%. We denote by
Op)o the 2-subcategory of €at,pe with objects the O-operads, morphisms the morphisms
of O-operads, and all 2-cells. We call Op,o the 2-category of O-operads. In the case when
O = Comm we will use the notation Op and call it the 2-category of operads.

Corollary 6.3.16. Let O be an operad. Then the 2-category Alg,(%at) is equivalent to the
2-subcategory of Op,o on the O-monoidal categories and the strictly O-monoidal functors.

Proof. Let O% be the category of operators of . Using proposition 6.3.14 we obtain an
equivalence ¢at oo = Funct(O®, €at). The result now follows by restricting this equivalence
to the full subcategories on the O-monoidal categories. O

6.4 Enriched props

The notions of enriched prop and operad will be particular cases of the notion of enriched
envelope, which we now introduce.

Definition 6.4.1. Let M be a presentable symmetric monoidal category. An M-enriched
pre-envelope is a pair (P, P) of a commutative algebra P in Algbrd(M)spe, together with a
subspace P of the space of objects of P. We say that an M-enriched pre-envelope (P, P) is
an M-enriched envelope if the full subalgebroid of P on P is an M-enriched category.

Warning 6.4.2. Let M be a presentable symmetric monoidal category and let (P, P) be
an M-enriched envelope. Then P is in general only a (symmetric monoidal) M-enriched
algebroid - completeness is only required for its full subalgebroid on P.

Notation 6.4.3. Let M be a presentable symmetric monoidal category. For each object
A in Algbrd(M)gp. we will denote by A=? the space of objects of A. If A is the algebroid
underlying a commutative algebra object in Algbrd(M)s,., we will equip A= with its
structure of commutative algebra in spaces arising from the symmetric monoidal structure of
the projection Algbrd(M)s,. — Spc.
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Let Spcg,, be the full subcategory of the arrow category Funct([1], Spc) on the monomor-
phisms. Let preEnvlp(M) be the category arising as the pullback

preEnvlp(M) —— CAlg(Algbrd(M)sy.)

1 Jor
> Spc.

Spc o

sub
We call preEnvlp(M) the category of M-enriched pre-envelopes. We will typically denote by
q : preEnvlp(M) — CAlg(Algbrd(M)spc)
the projection. This admits a section
s : CAlg(Algbrd(M)spe) — preEnvlp(M)

which is induced by pullback of the section of ev; obtained by corestriction of the diagonal
map A : Spc — Funct([1], Spc).

We denote by Envlp™ the full subcategory of preEnvlp(M) on the M-enriched envelopes.
We call this the category of M-enriched envelopes.

Remark 6.4.4. Let M be a presentable symmetric monoidal category and let (P, P) and
(P', P') be a pair of M-enriched pre-envelopes. Then a morphism from (P, P) to (P’, P’)
in preEnvlp(M) is the same data as a symmetric monoidal functor F' : P — P’ with the
property that F'(P) is contained in P’.

The projection ¢ maps a pair (P, P) to P. We call P the symmetric monoidal envelope
of (P, P). The section s maps a symmetric monoidal M-enriched algebroid P to the pair
(P, (P)="). We call this the M-enriched pre-envelope underlying P. Observe that the identi-
fication ¢s = idoalg(Algbra(M)s,.) Presents s as right adjoint to ¢, so that CAlg(Algbrd(M)sp.)
is a localization of preEnvlp(M). It follows that we have a localization

¢ : Envlp™ £— CAlg(Cat™) : Slcalg(CatM)

where the left adjoint ¢’ is the composition of the localization map ¢ with the localization
functor CAlg(Algbrd(Spc)sp.) — CAlg(Cat). For each M-enriched envelope (P, P), we call
¢ (P, P) its symmetric monoidal envelope. Given a symmetric monoidal M-enriched category
P, we call s(P) the M-enriched envelope underlying P.

Remark 6.4.5. The inclusion Spcg,,, — Funct([1], Spc) preserves filtered colimits, and has a
left adjoint which sends a morphism of spaces f : X — Y to the pair (Y,im(f)). In particular
we see that Spc,, is an accessible localization of the presentable category Funct([1], Spc),
and hence Spc,,, is itself presentable.

Let M be a presentable symmetric monoidal category. Note that the projection (—)=Y :
CAlg(Algbrd(M)spc) — Spc admits a left adjoint, given by the composition

Spc — Algbrd(Spc)spe — Algbrd(M)gpe — CAlg(Algbrd(M)spe)
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where the first arrow is the canonical inclusion, the second arrow is induced by the unit map
Spc — M, and the third arrow is given by taking free commutative algebras. Furthermore,
the projection Spc,,, —+ Spc also admits a left adjoint, given by the diagonal map.

We therefore see that the commutative square from notation 6.4.3 takes place in Pr. In
particular, preEnvlp(M) is a presentable category.

For later purposes, we record the following result which allows one to construct functors
into the category of pre-envelopes.

Proposition 6.4.6. Let T be a category and let F' : T — Spc be a functor. Assume given for
each object i in I a subspace P(i) of F(i), with the property that for every arrow o :i — j in
T the image of P(i) under F(a) is contained in F(j). Then there exists a unique lift of F
along the projection u : Spcg,, — Spc to a functor

sub

Fe™t . 7 — Spe

sub
such that Fe (i) = (F(i), P(i)) for alli.
Proof. Tt follows from our hypothesis that the composite functor

AF : 7 — Spc

sub

admits a subfunctor which maps each object i in Z to the pair (F(i), P(¢)). This shows the
existence of lift of F' with the desired conditions.

Assume now given such a lift °"". Consider the natural transformation Fe™® — AyFenh =
AF induced from the unit of the adjunction u 4 A. This presents F*"" as a subfunctor of
AF which maps each object i in Z to the pair (F'(i), P(i)). Our claim now follows from the
fact that there is a unique such subfunctor. n

Corollary 6.4.7. Let M be a presentable symmetric monoidal category. Let T be a category
and let F' : T — CAlg(Algbrd(M)s,c) be a functor. Assume given for each object i in T a
subspace P(i) of the space of objects of F(i), with the property that for every arrow « :i — j
in Z the image of P(i) under F(«) is contained in F(j). Then there exists a unique lift of F
along q to a functor

Femh T — preEnvip(M)

such that F (i) = (F(i), P(i)) for alli.

Example 6.4.8. Let M be a presentable symmetric monoidal category. Consider the
commutative square of categories

CAlg(Algbrd(M)spe) —— Algbrd(M)spe

lCAlg((—)SO) l(*)SO

CAlg(Spc) > Spc




CHAPTER 6. ENRICHED HIGHER ALGEBRA 139

where the horizontal arrows are the forgetful functors. It follows from proposition 3.3.12 that
the above square is horizontally left adjointable. Let

Sym : Algbrd(M)gp. — CAlg(Algbrd(M)sp.)

be the left adjoint to the forgetful functor. Note that for each object A in Algbrd(M)g,. the
space of objects of Sym(.A) is the free commutative algebra in spaces on A=°. An application
of corollary 6.4.7 shows that Sym admits a unique lift to a functor

Sym®™™" : Algbrd(M)spe — preEnvip(M)

which maps each object A to (Sym(A), AS?).

Observe that Sym®™" is fully faithful. Let (P, P) be an M-enriched pre-envelope, and
denote by A the full subalgebroid of P on P. Then the morphism Sym®"(A) — (P, P)
induced from the inclusion A — P presents A as right adjoint to Sym®" at (P, P). We call
A the M-algebroid underlying (P, P).

We may summarize this by saying that the category of M-algebroids with a space of
objects is a colocalization of the category of M-enriched pre-envelopes. Note that this
restricts to a colocalization

Sym®™™ |, v : Cat™M — Envlp™.

Remark 6.4.9. Let M be a presentable symmetric monoidal category and let I be the
walking isomorphism inside Algbrd(Spc)spe. Then the M-enriched envelopes sit inside
preEnvlp(M) as the objects which are local for the morphism Sym®™® (I () — Sym®™® (1)
induced from the projection I — [0], where Sym®" is as in example 6.4.8. It follows from
this, together with remark 6.4.5 that Envlp™ is an accessible localization of preEnvlp(M).

In particular, Envlp™ is presentable.
We now introduce the notion of M-enriched prop.

Definition 6.4.10. Let M be a presentable symmetric monoidal category. We say that
an M-enriched pre-envelope (P, P) is an M-enriched pre-prop if the inclusion P — P=°
presents P=Y as the free commutative algebra in spaces on the space P. We say that (P, P)
is an M-enriched prop if it is an M-enriched pre-prop and an M enriched envelope.

Notation 6.4.11. Let M be a presentable symmetric monoidal category. We denote by
preProp(M) the full subcategory of preEnvip(M) on the M-enriched pre-props. We call
this the category of M-enriched pre-props. We let Prop™ = preProp(M) N Envlp™, and
call it the category of M-enriched props.

Remark 6.4.12. Let M be a presentable symmetric monoidal category and let (P, P) be
an M-enriched pre-envelope. Then it follows from the characterization of free algebras from
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[Lurl?7] definition 3.1.3.1 that the pair (P, P) is an M-enriched pre-prop if and only if the
maps PS5 2 P=0 induce an equivalence

<0 __ : S

where Fin=" denotes the space of finite sets.

If (P, P) is an M-enriched pre-prop we will usually identify objects of P with finite
families of objects of P. We call P the space of objects of (P, P). Given a pair of finite sets
S, T and families {z;}scs and {y; }+er of objects of P, we call

Homp ({74 }ses, {¥i}eer)
the object of operations in (P, P) with source {z}scs and target {ys}ses.

Definition 6.4.13. Let M be a presentable symmetric monoidal category. We say that a
morphism of M-enriched pre-envelopes F : (P, P) — (P', P') is a P-equivalence if F' induces
an equivalence of spaces P = P’, and for every pair of finite families {xs}ses and {y; }rer of
objects of P = P’, the induced morphism

F. : Homp (@ 5, X) yt> — Homp: <® 75, Q) yt>

seS teT seS teT
s an equivalence.

Remark 6.4.14. Let M be a presentable symmetric monoidal category and let F': (P, P) —
(P', P') be a P-equivalence of M-enriched pre-envelopes. If (P’, P’) is an M-enriched envelope
then (P, P) is also an M-enriched envelope.

Proposition 6.4.15. Let M be a presentable symmetric monoidal category. The inclusion
i : preProp(M) — preEnvlp(M) admits a right adjoint i®. Furthermore, a morphism of
M-enriched pre-envelopes is inverted by i if and only if it is a P-equivalence.

Proof. It follows from proposition 3.5.5 that the projection
(=)= : Algbrd(M)sp. — Spe

admits the structure of cartesian fibration of operads. Hence we have that the induced
projection

CAlg((—)=°) : CAlg(Algbrd(M)s,.) — CAlg(Spc)

is a cartesian fibration. Furthermore, a morphism of commutative algebras in Algbrd(M)gp.
is cartesian for CAlg((—)=") if and only if the underlying morphism in Algbrd(M)sy. is
cartesian for (—)=C (in other words, fully faithful).
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Let CAlg(Spc)sup be the category arising as the pullback

CAlg(Spc)suy, — CAlg(Spce)

| |

Spe.;, ————— Spc.

sub

where the right vertical arrow is the forgetful functor. We have a pullback square

preEnvlp(M) —— CAlg(Algbrd(M)sp.)

lp lCAlg((—ﬁO)

CAlg(Spc)suy — CAlg(Spe).

Since the right vertical arrow is a cartesian fibration, we have that the left vertical arrow
p is a cartesian fibration as well. Furthermore, a morphism of M-enriched pre-envelopes
is cartesian for p if and only if the underlying functor of symmetric monoidal M-enriched
categories is fully faithful.

Let Sym : Spc — CAlg(Spc) be the left adjoint to the forgetful functor. By propo-
sition 6.4.6, this admits a unique lift Sym®™ : Spc — CAlg(Spc)sy, along the projection
CAlg(Spc)su, — CAlg(Spc), such that Sym®™(X) corresponds to Sym(X) together with the
inclusion X — Sym(X).

Observe that Sym®" is fully faithful. Furthermore, for every pair (X,Y") of a commutative
algebra in spaces X and a subspace Y in X, the morphism of commutative algebras Sym(Y’) —
X induced from the identity on Y presents Y as right adjoint to Sym®™" at (X,Y). It follows
in particular that Sym® admits a right adjoint. Since p is a cartesian fibration, we conclude
that the inclusion

J © SPC X cAlg(Spe)en, CAIg(Algbrd(M)spe)sub — preEnvlp(M)

admits a right adjoint as well, which maps an M-enriched pre-envelope (P, P) to the source
of the p-cartesian lift of the unit map Sym(P) — (P)=°.

Observe that j is in fact equivalent to the inclusion i : preProp(M) — preEnvip(M).
Hence i admits a right adjoint. The characterization of morphisms which are inverted by
ift follows from the above description of j%, together with the description of p-cartesian
arrows. O

Corollary 6.4.16. Let M be a presentable symmetric monoidal category. The inclusion
i’ : Prop™ — Envlp™ admits a right adjoint . Furthermore, a morphism of M-enriched
envelopes is inverted by ' if and only if it is a P-equivalence.

Proof. Tt follows from remark 6.4.14 together with proposition 6.4.15 that the functor
it : preEnvlp(M) — preProp(M) maps M-enriched envelopes to M-enriched props. Hence
it restricts to provide a right adjoint to i’ O
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Corollary 6.4.17. Let M be a presentable symmetric monoidal category. Then an M-
enriched (pre-) envelope (P, P) is an M-enriched (pre-) prop if and only if for every P-
equivalence of M-enriched (pre-) envelopes F : (P', P') — (P", P"), the induced morphism
of spaces

F* : HompreEnvlp(M)((P7 P)7 (Pla PI)) — HompreEnvlp(M)<<P7 P)7 (Pﬂu PH))
s an equivalence.

Example 6.4.18. Let M be a presentable symmetric monoidal category. It follows from
corollary 6.4.17 that for any A in Algbrd(M )sp., the M-enriched pre-envelope Sym®™"(A)
from example 6.4.8 is an M-enriched pre-prop. We therefore see that Algbrd(M)sp. (resp.
Cat™) sits inside preProp(M) (resp. Prop™) as a colocalization.

Example 6.4.19. Let M be a presentable symmetric monoidal category. Let S,T be two

finite sets, and let m be an object in M. Let Sy = (14)"* and T = (1x¢)"7, and denote

by Sym : Algbrd(M)g,. — CAlg(Algbrd(M)s,.) the left adjoint to the forgetful functor.
We let Cg 7, be the symmetric monoidal M-algebroid obtained as the pushout

’ l

Sym(C,,) ————— Csrm

where the left vertical arrow is induced from the source-target map 1, U 15y — C,,, and the
top horizontal arrow is induced from the map 1, U 1y — Sym(Sy U Thq) which picks out
the objects {s}ses and {t}ier.
We equip Cs 1, with the subspace of its space of objects obtained as the image of the
composite map
SUT — (Sym(SM ([ TM))SO — (ng'nm)go.

It follows from corollary 6.4.17 that Cs 1, is an M-enriched pre-prop. Observe that for every
Me-enriched pre-prop (P, P), the data of a morphism Cgr,, — (P, P) is equivalent to the
data of a pair of finite families {s}ses, {y: her of objects of P together with a map

m — Homp ({xs }ses, {yt brer)-

We think about Cgr,, as the universal M-enriched pre-prop with an m-operation of arity
S, T.

Remark 6.4.20. Let M be a presentable symmetric monoidal category and let m be an
object in M. Then in the case when S, T" are singleton sets, the M-enriched pre-prop Cg 7,
from example 6.4.19 recovers Sym®™"*(C,,).
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Remark 6.4.21. Let M be a presentable symmetric monoidal category, and let x be a regular
cardinal such that M is k-compactly generated. Then a morphism F : (P, P) — (P, P') of
M-enriched pre-envelopes is a P-equivalence if and only if the following two conditions are
satisfied:

e Composition with F' induces an equivalence

F, : Hompremmtpvn) (Sym®™ (1u), (P, P)) — Homprepavipvy (Sym®™ (1), (P, P')).

e For every pair of finite sets S, T and every k-compact object m in M, composition with
F induces an equivalence

F* : HompreEnvlp(M) (CS,T,ma (Pa P)) — HompreEnvlp(M)<CS,T,m7 (Ply Pl))

It follows from this together with remark 6.4.5 that preProp(,M) is presentable, and generated
under colimits by the objects Sym®™ (1) and Cs.1 .

As in remark 6.4.9, we have that Prop™ sits inside preProp(M) as the objects which are
local for the morphism Sym™ (I () — Sym®™"(1,). We conclude that Prop™ is an accessible
localization of preProp™, and in particular it is also presentable.

Our next goal is to show that the category of M-enriched symmetric monoidal categories
can be identified with a subcategory of the category of M-enriched props.

Definition 6.4.22. Let M be a presentable symmetric monoidal category and let (P, P) be an
M-enriched pre-envelope. We call its image under the colocalization map i¥ : preEnvlp(M) —
preProp(M) the M-enriched pre-prop underlying (P, P).

Remark 6.4.23. Let M be a presentable symmetric monoidal category. It follows from a
combination of remark 6.4.4 and proposition 6.4.15 that there is an adjunction

qi : preProp(M) £—= CAlg(Algbrd(M)s,.) : i%s.

Given an M-enriched pre-prop (P, P), we call ¢i(P, P) its symmetric monoidal envelope.
Given a symmetric monoidal M-algebroid P, we call if's(P) the M-enriched pre-prop
underlying C. It follows from corollary 6.4.16 that we also have an adjunction

q'i - PropM AN CAIg(CatM) : i/R3|CA1g(CatM)-

Proposition 6.4.24. Let M be a presentable symmetric monoidal category and let P be
an M-enriched symmetric monoidal category. Then the counit map ¢'i'i"%sP — P is a
localization functor.

Our proof of proposition 6.4.24 will use the following lemma:



CHAPTER 6. ENRICHED HIGHER ALGEBRA 144

Lemma 6.4.25. Let M be a presentable symmetric monoidal category and let F': C — D be
a functor of M-enriched categories. Assume given a subspace D of the space of objects of C
such that F(D) = D= and for every object ¢ in C and every object d in D the morphism

F, : Home(c,d) — Homp(Fe, Fd)
15 an isomorphism. Then F' is a localization functor.

Proof. Let D’ be the full subcategory of C on D. The conditions guarantee that F'|p : D' — D
is an equivalence. Let G : D — C be the composition of the inverse of F|p and the inclusion
D’ — D. Then we have an equivalence € : FG = idp. The conditions in the statement imply
that € presents G as right adjoint to F'. Hence F' admits a fully faithful right adjoint, as
desired. O

Proof of proposition 6.4.24. The counit ¢'i'i'"®sP — P is the morphism of M-enriched cat-
egories underlying the P-equivalence € : /i''sP — sP obtained from the counit of the
adjunction ¢ 4 4'%. The result follows from an application of lemma 6.4.25, where we equip
q'"i'"'sP with the subspace P=°. O

Corollary 6.4.26. Let M be a presentable symmetric monoidal category and let P be an M-
enriched symmetric monoidal category. Then the counit map ¢'i'i"FsP — P is an epimorphism
of M-enriched symmetric monoidal categories.

Proof. Combine remark 5.2.14, proposition 6.4.24, and lemma 11.2.7. O
Proposition 6.4.27. Let M be a presentable symmetric monoidal category. Then the functor
"] calg(carr) © CAlg(Cat™) — Prop™

from remark 6.4.23 is the inclusion of a subcategory.

Proof. Let C,D be two M-enriched symmetric monoidal categories. We have to show that
the functor
(i"s). : Homgpyy(caprt)(C, D) = Homp, o a (iC, i sD)

is a monomorphism, and surjective on isomorphisms. Since ¢'i’ is left adjoint to i'%s, we have
that the composite map

. . q't, . "y . .
Homp,,m (7sC, i"*sD) = Homgm (¢'i'isC, ¢'i'i"sD) < Homegoan (¢'d'i"sC, D)

is an isomorphism, where the second arrow is induced by the counit of the adjunction. The
induced map

€.(q'")+ ("), : Homgpyy(caity(C, D) = Home,om(¢'d'd"sC, D)

is equivalent to the map given by precomposition with the unit ¢/i'i’"®sC — C. Applying
corollary 6.4.26 we conclude that (i"%s), is a monomorphism.
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It remains to show that (i'fs), is surjective on isomorphisms. In other words, we have
to show that if we have an isomorphism of props « : i'#sC — i"sD, the induced morphism
of M-enriched symmetric monoidal categories e : ¢'i'i"®sC — D factors through C. By
lemma 11.2.7, it suffices to show that the underlying functor of M-enriched categories factors
through C. Observe that we have a commutative square of M-enriched categories

C —— ¢i'i"%sC

| b

D —— ¢i'i"®sD

where the horizontal arrows are the inclusions of the categories underlying the M-enriched
props i'®sC and i'fsD, and the vertical arrows are isomorphisms. Examining the proof
of lemma 6.4.25, we see that the functor ea : ¢'i'i'"*sC — D is left adjoint to the bottom
horizontal arrow. Our claim now follows from the horizontal left adjointability of the above
square. ]

6.5 Enriched operads

We now discuss the notion of enriched operads.

Definition 6.5.1. Let M be a presentable symmetric monoidal category. We say that a
morphism of M-enriched pre-envelopes F' : (P, P) — (P, P') is an O-equivalence if F' induces
an equivalence of spaces P = P’ and for every finite family {x,}scs of objects of P = P’ and
every object y in P = P’, the induced morphism

F, : Homp <® xs,y> — Homp: (® $S7y>

ses ses

is an equivalence. We say that an M-enriched pre-envelope (P", P") is an M-enriched
pre-operad if for every O-equivalence F : (P, P) — (P, P") of M-enriched pre-envelopes, the
morphism

F,: HompreEnvlp(M)((P”) P”): (P7 P)) — HompreEnvlp(M)((P”; P”); (Pla P,))

induced by composition with F, is an isomorphism. We say that an M-enriched pre-operad
1s an M-enriched operad if it is an M-enriched envelope.

Notation 6.5.2. Let M be a presentable symmetric monoidal category. We denote by
preOp(M) the full subcategory of preEnvlp(M) on the M-enriched pre-operads. We call
this the category of M-enriched pre-operads. We let Op™ = preOp(M) N Envlp™ and call
it the category of M-enriched operads.
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Remark 6.5.3. Let M be a presentable symmetric monoidal category. Then P-equivalences
of M-enriched pre-envelopes are also O-equivalences. It follows that M-enriched (pre-)
operads are also M-enriched (pre-) props.

Remark 6.5.4. Let M be a presentable symmetric monoidal category and let F': (P, P) —
(P', P") be an O-equivalence of M-enriched pre-envelopes. If (P’ P') is an M-enriched
envelope then (P, P) is also an M-enriched envelope.

Example 6.5.5. Let M be a presentable symmetric monoidal category. Then for any A in
Algbrd(M)sgpe, the M-enriched pre-envelope Sym®"(A) from example 6.4.8 is an M-enriched
pre-operad. We therefore see that Alghrd(M)s,. (resp. Cat™) sits inside preOp(M) (resp.
Op™) as a colocalization.

Example 6.5.6. Let M be a presentable symmetric monoidal category. Let S be a finite
set and let m be an object in M. Specializing example 6.4.19 to the case where T is the
singleton set we obtain an M-enriched pre-operad Cg. . We think about Cg, ,, as the
universal M-enriched pre-operad with an m-operation of arity .S.

Remark 6.5.7. Let M be a presentable symmetric monoidal category, and let x be a regular
cardinal such that M is k-compactly generated. Then a morphism F' : (P, P) — (P, P')
of M-enriched pre-props is an O-equivalence if and only if the following two conditions are
satisfied:

e Composition with F' induces an equivalence

F* : HompreEnVIp(M) (Symenh(l./\/l)a (P> P)) — HompreEnvlp(M)(Symenh(l/\/l)a (Pla P,))

e For every finite set S and every x-compact object m in M, composition with F' induces
an equivalence

F* : HompreEnle(M) (CS,*,mu (P7 P)) — HompreEnvlp(M)(CS,*,mv (Pla Pl))

It follows from this together with remark 6.4.5 that preOp(M) is presentable, and
generated under colimits by the objects Sym®™" (1) and Cg.,,,. Moreover, the inclusion
j : preOp(M) — preEnvlp(M) admits a right adjoint j%, and a morphism of M-enriched
pre-envelopes is inverted by j# if and only if it is an O-equivalence.

As in remark 6.4.9, we have that Op™ sits inside preOp(M) as the objects which are
local for the morphism Sym®™® (1) — Sym®™"(1,,). We conclude that Op™ is an accessible
localization of Op™, and in particular it is also presentable. It follows from remark 6.5.4 that
7% maps M-enriched envelopes to M-enriched operads, and therefore it restricts to provide
a right adjoint to the inclusion j : Op™ — Envip™.

Our next goal is to show that the category of M-enriched symmetric monoidal categories
can be identified with a subcategory of the category of M-enriched operads.
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Definition 6.5.8. Let M be a presentable symmetric monoidal category and let (P, P)
be an M-enriched pre-envelope. We call its image under the colocalization map ;% :
preEnvlp(M) — preOp(M) the M-enriched pre-operad underlying (P, P).

Remark 6.5.9. Let M be a presentable symmetric monoidal category. It follows from
remarks 6.4.4 and 6.5.7 that there is an adjunction

¢j : preOp(M) = CAlg(Algbrd(M)sc) : j's.

Given an Me-enriched pre-operad (P, P), we call ¢j(P, P) its symmetric monoidal envelope.
Given a symmetric monoidal M-algebroid P, we call j%s(P) the M-enriched pre-operad
underlying C. Note that we also have an adjunction

¢j : OpM £ CAlg(Cat™) :j/RSICAlg(CatM)'

Proposition 6.5.10. Let M be a presentable symmetric monoidal category and let P be
an M-enriched symmetric monoidal category. Then the counit map ¢'j'j'%sP — P is a
localization functor.

Proof. This follows from lemma 6.4.25, in the same way as proposition 6.4.24. O

Corollary 6.5.11. Let M be a presentable symmetric monoidal category and let P be an M-
enriched symmetric monoidal category. Then the counit map ¢'j' 5P — P is an epimorphism
of M-enriched symmetric monoidal categories.

Proof. Combine remark 5.2.14, proposition 6.5.10, and lemma 11.2.7. O

Corollary 6.5.12. Let M be a presentable symmetric monoidal category. Then the functor
77l carg(cary : CAlg(Cat™) — Op™
from remark 6.5.9 is the inclusion of a subcategory.

Proof. This follows from corollary 6.5.11, using similar arguments to those in proposition
6.4.27. []

We now show that, in the case M = Spc, our notion of operad recovers the usual notion.
The key ingredient is supplied by the theory of monoidal envelopes from [Lurl7] section 2.2.4.

Notation 6.5.13. We denote by
Env : Op — CAlg(Cat)

the left adjoint to the forgetful functor from symmetric monoidal categories to operads. For
each operad O, we let P(Q) be the subspace of Env(QO) obtained as the image of the unit
map O — Env(O). Note that for every morphism of operads o : O — O’ we have that the
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image of P(O) under Env(«) is contained in P(O’). It follows from corollary 6.4.7, that we
have a unique lift
Env®™® : Op — preEnvlp(Spc)

of Env along ¢ such that Env®™(Q) = (Env(0), P(O)) for every operad O.

Proposition 6.5.14. The functor Env®™ from notation 6.5.13 is fully faithful, and its image

is Op™P°.

Our proof of proposition 6.5.14 will need some preliminary lemmas.
Lemma 6.5.15. Let O be an operad. Then Env™(O) is a Spc-enriched operad.

Proof. We first show that Env®™"(0) is a Spc-enriched prop. Since Env(0) is a symmetric
monoidal category (as opposed to algebroid), we have that Env™ is a Spc-enriched envelope.
The category underlying Env(O) is given by the wide subcategory 0%, of the category of
operators O% on the active morphisms. The embedding O — Env(O) is given, at the level
of underlying categories, by the embedding of the fiber p~'(({1)) inside O2,. Given a finite
set S and a collection of objects xs of O indexed by S, the image of this collection under
the tensoring map Env(Q)% — Env(0) is given by the object {7, }.cs in OF,. It now follows
from remark 6.4.12 that Env®®(0O) is a Spc-enriched prop, as claimed.

We now show that Env®™(0O) is a Spc-enriched operad. Let F : (P, P') — (P”, P") be

an O-equivalence of Spc-enriched envelopes. We have to show that the induced map of spaces
I—IOInEnvlpSPC (Envenh(0)7 (Pl7 Pl)) £> I—IornEnvlpsPC (Envenh(o)7 (P”a P”))

is an equivalence.

Let P’ and P” be the symmetric monoidal categories underlying P’ and P”. The functor of
Spc-algebroids P’ — P’ is fully faithful, and moreover its restriction to the full subalgebroid of
P’ on P’ is a fully faithful functor of categories, which means that it induces a monomorphism
on spaces. Hence we can see P’ as a subspace of =’ Similarly, we can see P” as a subspace
of 7=, Denote by

F:(P,P)— (P",P")
the induced morphism of Spc-enriched envelopes. Note that this fits into a commutative
square of Spc-enriched envelopes

(P, P') —= (P",P")

| J

(P',P') —= (P",P").

Here the vertical arrows are P-equivalences and therefore the bottom horizontal arrow is an
O-equivalence.
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We now have a commutative square of spaces

Homy,,yse (Buve™(O), (P!, P')) —— Homy,,psee (Env™(O), (P", P"))

| |

Homg,,p soe (Env™(0), (7, P')) —— Homy,, soe (Enve™(0), (P7, P")).

Since Envenh(O) is a Spc-enriched prop, we have that the vertical arrows are equivalences.
To show that the top horizontal arrow is an equivalence it suffices to show that the bottom
horizontal arrow is an equivalence.

Let O" and O” be the full suboperads of P’ and P” on P’ and P”, respectively. The map
F induces a morphism of operads f : @' — O”. The bottom horizontal arrow in the above
diagram is equivalent to the map

[+« : Homg, (O, 0") — Homge, (O, O").

Since F is an O-equivalence, we have that f is an equivalence of operads. Hence f, is an
equivalence, and the lemma follows. O

Lemma 6.5.16. Let (P, P) be a Spc-enriched operad. Then (P, P) belongs to the image of
Enve,

Proof. Let P be the category underlying P. As in the proof of lemma 6.5.15 we may see
P as a subspace of P and we have an induced P-equivalence of Spc-enriched envelopes
(P, P) — (P, P). Let O be the full suboperad of P on P. Then the inclusion O — P induces
an O-equivalence of Spc-enriched envelopes f : Env™™(0) — (P,P). Since Env™(0)
is a Spc-enriched prop, we may lift f to an O-equivalence of Spc-enriched envelopes f :
Enve™(©) — (P, P). The claim now follows from lemma 6.5.15 since O-equivalences between
Spc-enriched operads are necessarily isomorphisms. O

Proof of proposition 6.5.14. Combining lemmas 6.5.15 and 6.5.16 we see that the image of
Env®™" consists of the Spc-enriched operads. It remains to show that Enve™ is fully faithful.
Let O, O’ be a pair of operads. We have maps of spaces

enh
Env§

HomOP (Ov OI) E— HompreEnVIp(Spc) (EnVenh (O) R Envenh (O/))

and
Homy,egnvip(spe) (Envenh (0), Enve™® (O") 25 Homg Alg(Cat) (Env(O), Env(0))

whose composition recovers the map Env, induced by Env. Observe that ¢, presents
HompreEm,lp(SpC)(Envenh((’)), Env®™ (")) as the subspace of Homcaig(cat) (Env(O), Env(0"))
on those morphisms of symmetric monoidal categories which map objects in P(O) to ob-
jects in P(Q"). To show that Env®™ is fully faithful, it suffices to show that Env, presents
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Homp, (O, O') as the same subspace. This follows from the fact that Env, is equivalent to

the map
Homg, (O, 0') = Homg, (O, Env(O'))

of composition with the unit O — Env(Q’), which is a fully faithful morphism of operads. [
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Chapter 7

Monadicity

The notions of monads and monadic functors are fundamental in category theory. Of central
importance is the monadicity theorem:

Theorem 7.0.1 ([Lurl7] theorem 4.7.3.5). Let G : D — C be a functor of categories. The
following conditions are equivalent:

(i) The functor G is monadic: in other words, G admits a left adjoint I, and G is equivalent
to the forgetful functor LMod4(C) — C for A the endomorphism monad of G.

(ii) There exists an algebra A in the monoidal category of endofunctors of C such that G is
equivalent to the forgetful functor LMod4(C) — C.

(iii) The functor G is conservative and creates geometric realizations of G-split simplicial
objects.

The notion of monadic functor only depends on the 2-categorical structure of at. We
can therefore think about theorem 7.0.1 (in particular, the equivalence between the first two
and the last item) as providing a characterization of monadic morphisms in %at.

Our goal in this chapter is to extend the theory of monads and monadic morphisms to
(possibly enriched) 2-categories, and prove a generalization of theorem 7.0.1 which characterizes
monadic morphisms in the 2-category of M-enriched categories for an arbitrary presentable
symmetric monoidal category M.

We begin in 7.1 with a general discussion of the theory of enriched categories of modules
over an associative algebra in M. We show here that if D is an M-enriched category and y is
an object of D, then the representable functor Homp(—, y) admits a canonical enhancement
to a functor into the M-enriched category of modules over Endp(y).

In 7.2 we discuss the notions of monads and modules over a monad in an arbitrary
2-category D. We discuss the notion of endomorphism monad of a morphism in D, and show
that morphisms admitting left adjoints admit an endomorphism monad. We study here the
functoriality of the categories of modules over a monad.
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In 7.3 we discuss the notion of Eilenberg-Moore object for a monad, as a classifying object
for modules. We prove here a basic result on the equivalence of various notions of monadic
morphism in D, which generalizes the equivalence between items (i) and (ii) in theorem 7.0.1.

In 7.4 we specialize the notions of the previous section to the case when D is the 2-category
of categories enriched in a presentable symmetric monoidal category M. We prove here our
main result (theorem 7.4.10), which generalizes the description of monadic morphisms in Gat
provided by item (iii) of theorem 7.0.1. Specializing to the case M = wCat, we obtain a
monadicity theorem for functors of w-categories, which reduces to theorem 7.0.1 in the case
when the w-categories in question are 1-categories.

In 7.5 we generalize the notions of monads and monadic morphisms to an arbitrary
enriched 2-category, and provide various equivalent conditions for a morphism to be monadic.
We finish by specializing to the case of enrichment over wCat to obtain a theory of monads
and monadic morphisms in an arbitrary w-category.

7.1 Enriched categories of modules

We now discuss the canonical enrichment of the category of modules over an associative
algebra in a presentable symmetric monoidal category.

Notation 7.1.1. Let M be a presentable symmetric monoidal category and let A be an
associative algebra object in M. We denote by By A the image of A under the composite
functor

Alg(M) = Algbrdg (M) — Algbrd(M)spe — Cat™

where the second arrow is the inclusion, and the last arrow is the localization map.

Let C be an M-enriched category. We denote by A-mod'(C) the M-enriched category
Funct(BuA,C). We call this the M-enriched category of left A-modules in C. We also set
A-mod"(C) = A°"-mod'(C) and call it the M-enriched category of right A-modules in C.

Remark 7.1.2. Let M be a presentable symmetric monoidal category and let C be a
presentable module over M. Let A be an algebra in M. It follows from [Hin20a] proposition
6.3.7 that there is an equivalence

A-mod'(0,,(C)) = Opi(A-mod'(C))

where on the right we equip A-mod'(C) with its canonical structure of presentable M-module.
In particular, we see that the category underlying A-mod'(6,((C)) is given by A-mod'(C).
Assume now that C = M, so that 0,(C) = M is the canonical M-enrichment of M.
Then A-mod'(M) provides an M-enrichment of the category of left A-modules in M. In
particular, when M = wCat we obtain w-categories of modules over a monoidal w-category.

Construction 7.1.3. Let M be a presentable symmetric monoidal category. Let D be an
M-enriched category, and let y be an object in D. We equip the object Endp(y) with the
structure of associative algebra in M arising from its presentation as the object underlying
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the single object algebroid i;D, where ¢, is the inclusion of y inside the space of objects of D.
Note that By, Endp(y) is the full subcategory of D on those objects isomorphic to y.
Let Homp(—, )" be the composite functor

D — Funct(D, M) — Funct(By Endp(y), M) = Endp(y)-mod’ (M)

where the first arrow is the Yoneda embedding, and the second arrow is given by restriction
along the embedding B Endp(y) — D. Observe that the composition of Homp(—, y)™® with
the forgetful functor Endp(y)-mod' (M) — M recovers the functor D — M represented
by .

We conclude that for every object z in D there is a structure of left Endp(y)-module on
Homp(x,y), which is contravariantly functorial in x. Unpacking the definitions, we see that
the action map

Homp(z,y) ® Endp(y) — Homp(z, y)

is given by composition in D.

Remark 7.1.4. Let M be a cartesian closed presentable category, and equip M with its
cartesian symmetric monoidal structure. Let A be an associative algebra in M. ategory, and
equip M with its cartesian symmetric monoidal structure. Denote by LMod (M) the fiber
over A of the projection

AlgLMod (M) — AlgAssos (./V)

induced by restriction along the inclusion Assos — LMod. Then there is an equivalence of
Me-enriched categories o o
LMod (M) = A-mod'(M).

which upon passage to underlying categories recovers the canonical equivalence
(Tam)1 LMod 4 (M) = LMod 4(M) = (7)1 A-mod' (M).

In particular, in the case M = Cat we see that the 2-categories of modules arising
from notation 7.1.1 agree with the usual 2-categories of categories tensored over a monoidal
category.

7.2 Monads in a 2-category

We now discuss the notion of monad and module over a monad in an arbitrary 2-category.

Definition 7.2.1. Let D be a 2-category and let y be an object in D. The category of monads
on y 1is the category Alg(Endp(y)) of associative algebras in the monoidal category Endp(y).
Given a monad M on y, a module for M is a pair of an object x in D and an M-module in
the Endp(y)-module category Homp(x,y).
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Definition 7.2.2. Let D be a 2-category. An endomorphism monad' for a morphism
g:x — y in D is an endomorphism object for g, thought of as an object in the Endp(y)-
module category Homp(x,y).

Remark 7.2.3. Let D be a 2-category. Let g : © — y be a morphism in D, admitting an
endomorphism monad End(g). Then g has the structure of End(g)-module. Furthermore,
for any monad M on y, restriction of scalars provides an equivalence between the space of
morphisms of monads M — End(g) and the space of M-module structures on g.

Adjunctions in D provide an abundant source of monads.

Proposition 7.2.4. Let D be a 2-category and let g : x — y be a morphism in D. Assume
that g admits a left adjoint g* : y — x. Then g admits an endomorphism monad, whose
underlying object of Endp(y) is given by gg*, and the action map ggtg — g is induced from
the unit map gg — id,.

Proof. Consider the adjunction of categories
g* : Endp(y) & Homp(z,y) : (¢")*

obtained from the adjunction g* - ¢ by applying the functor D°P — €at represented by y.
For each object h in Endp(y) we have an induced isomorphism of spaces

HomEndD(y) (ha .ggL) = HomHomD(x,y) (hga g)

The above is obtained as the composite map

HomEndD(y) (ha ggL) — HomHomD(z’,y) (hg7 gng) — HomHomD(x,y) (hgv g)

where the first map is given by composition with g, and the second map is induced by the
counit of the adjunction g* - g. We conclude that the morphism gg“g — ¢ presents gg” as
the Hom object from ¢ to g, and our result follows. n

Remark 7.2.5. Let D be a 2-category. Let M be a monad on an object y of D, and let
g : v — y be a module for M. Assume that g admits a left adjoint g* so that there is an
endomorphism monad End(g) for g with underlying endomorphism gg*. Then the morphism
in Endp(y) underlying the induced morphism of monads M — End(g) can be written as the
composition

M — Mgg" — gg*

where the first map is induced by the unit of the adjunction ¢* - g and the second map is
induced by the structure map Mg — g.

We now study the functoriality properties of the categories of modules over a monad.

L An alternative name for this concept would have been codensity monad.
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Construction 7.2.6. Let D be a 2-category and let y be an object in D. Specializing
construction 7.1.3 we obtain a functor of 2-categories

Homenh( ,y) . plop _ EndD(y> —mOdl (Cgat)

whose composition with the forgetful functor Endp(y)-mod'(%at) — %at recovers the functor
Dl°P — %uat represented by y. We can think about Homenh( ,y) as a functor D¥°P —
Alg; voa(€at) whose composition with the forgetful functor Algp,q(%at) — Alg,...(Gat)
recovers the constant functor with value Endp(y). Composing with the functor
Al
Algy g (Gat) — Oppaioa(Gat) 22D, oy
induces a functor
F': D = Gat) g, (Endp(y))

which sends each object x in D to the category whose objects are pairs of a monad on y and
a module for it in Hom$™ (x, y).

Observe that restriction along the inclusion of the module object in LMod induces a
natural transformation

F— HOHID(—, y) X AlgAssos(EndD<y))‘
Proposition 7.2.7. Let D be a 2-category and let y be an object in D. Then the functor

F DY — Gt nig, .. (Endp ()

from construction 7.2.6 factors through ‘KatigfigASSOS(End )"

Proof. For each object z in D, we have that F(z) is the category Alg;yoq(HomS™ (z,y)),

equipped with its canonical forgetful functor to Alg,..s(Endp(y)). This is a cartesian fibration
thanks to [Lurl7] corollary 4.2.3.2. Assume now given a morphism « : x — 2’ in D. Then we
have a commutative square of categories

enh ( enh (

Alg; voa(HomP" (27 y)) BECHIN Alg; vioa(Hom$

| |

Homp(2',y) o > Homp(z,y).

z,y))

where the vertical arrows are the forgetful functors. The top horizontal arrow is equivalent to
the image of F'(a)) under the forgetful functor

Cat/ Algy .o (Bndp(y)) — Cat.

Using [Lurl7] corollary 4.2.3.2 we have that the vertical arrows create cartesian arrows for
F(2') and F(z). We conclude that F(«) is a morphism of cartesian fibrations, and our result
follows. O
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Construction 7.2.8. Let D be a 2-category. Composing the functor F' from construction
7.2.6 with the straightening equivalence we obtain a functor

DP — Funct(Alg ... (Endp(y))°P, at).

This induces a functor
(=) -mod (Hom$" (—, ) : D7 x (Algy(Endp(y))™ — €at.

Observe that the above comes equipped with a natural transformation

(=) -mod'(Hom$%™(—, y)) — Homp(—, y).

In particular, for each monad M on y we have a functor
M -mod'(Hom$3" (—, y)) : D — Cat

equipped with a natural transformation into the representable presheaf Homp(—, y).

Remark 7.2.9. Let D be a 2-category and let M be a monad on an object y of D. Tracing
the definitions reveals that the functor M -mod'(Hom$3" (—, y)) from construction 7.2.8 assigns
to each object = in D the category of M-modules in the Endp(y)-module category Homp(x, y).
Furthermore, the natural transformation

M -mod'(Hom3®" (-, y)) — Homp(—, y)

recovers the canonical forgetful functor into Homp(x,y).
We can summarize the situation informally by saying that the assignment

z +— M -mod' (Hom%™ (z, y))

is functorial on x, and this functoriality is compatible with the usual functoriality of the
assignment x — Homp(z,y).

Assume now given a morphism of monads p : M — M’. Then construction 7.2.8 supplies
a commutative square of presheaves on D as follows:

M’ —modl(Hom%lh(—, Y)) L M‘mOdl<HOm%lh(—a y))

! |

HOHl'D(_, y) ik ” HOH]D(—, y)

Evaluating at an object x in D recovers a commutative square

M’ -mod' (Hom$%™" (x, y)) AN M -mod' (Hom$%™" (x, y))

| |

Homp(x,y) id » Homp(x,y)

where the vertical arrows are the forgetful functors, and the top horizontal arrow is given by
restriction of scalars along p.
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7.3 Eilenberg-Moore objects and monadic morphisms
We now study the notion of Eilenberg-Moore object for a monad.

Definition 7.3.1. Let D be a 2-category. Let M be a monad on an object y of D and let
g :x — y be a module for M. We say that g presents x as the Filenberg-Moore object of M
if for every object z in D, the functor

¢ : Homp(z, x) — M -mod'(Homp(z,v))

induced by composition with g using the functoriality of M-modules from construction 7.2.8,
18 an equivalence.

Remark 7.3.2. Let D be a 2-category. Let M be a monad on an object y of D and let
x be another object of D. Then the data of an M-module g : * — y is equivalent to the
data of a morphism in Funct(D°P, 6ut) from the representable presheaf Homp(—, z) to the
presheaf M -mod'(Hom$™"(—,y)) from construction 7.2.8. Such an M-module presents z as

the Eilenberg-Moore object of M if and only if the induced morphism
Homp(—, ) — M -mod'(Hom$™" (-, y))

is an isomorphism of presheaves on D. In other words, an Eilenberg-Moore object is a
representing object for the presheaf from construction 7.2.8. In particular, we have that
Eilenberg-Moore objects are unique if they exist.

Remark 7.3.3. Let U be the monoidal envelope of the associative operad and let U, be
the U-module arising from the LMod-monoidal envelope of the LMod-operad. Let Bc, be
the 2-category with one object and monoidal category of endofunctors U, and let W be the
copresheaf on B U associated to U,,.

Let D be a 2-category, let M be a monad on an object y of D, and let g : x — y be an
M-module. The monad M defines a functor of 2-categories F' : Boatd — D. Furthermore, g
defines a morphism 7 from W to the copresheaf Homp(z, F—). The M-module ¢ presents z
as the Eilenberg-Moore object of M if and only if 1 presents x as the limit of I’ weighted by
W.

Definition 7.3.4. Let D be a 2-category. We say that D admits Filenberg-Moore objects if
for all monads M in D, there exists an Eilenberg-Moore object for M.

Remark 7.3.5. Let C be a presentable Cat-module. It follows from corollary 5.6.2 together
with remark 7.3.3 that the 2-category fc,:(C) admits Eilenberg-Moore objects. In particular,
we conclude that for every presentable symmetric monoidal category M, the 2-category Cat™
of M-enriched categories admits Eilenberg-Moore objects.

Remark 7.3.6. Let C be a category and let M be a monad on C. Let G : D — C be
an M-module which exhibits D as the Eilenberg-Moore object of M. Then we have an
equivalence

D = Homey ([0], D) = M -mod'(HomZ2([0],C)) = M -mod’(C).
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where on the right hand side we take modules over M with respect to the canonical Ende,(C)-
module structure on C. The above equivalence maps the functor G : D — C to the forgetful
functor M -mod'(C) — C.

We may summarize this by saying that for every monad M on C, the forgetful functor
M -mod'(C) — C admits a structure of M-module which presents it as the Eilenberg-Moore
object for M.

Proposition 7.3.7. Let D be a 2-category. Let M be a monad on an object y of D and let
g:x —y be a module for M. Assume that g presents x as the Filenberg-Moore object for
M. Then g admits a left adjoint, and the induced morphism of monads M — End(g) is an
1somorphism.

Proof. To show that g admits a left adjoint, it suffices to show that for every morphism
«a: z — w in D, the commutative square of categories

Homp (w, 2) —“— Homp(z, z)

"
Homp(w,y) —— Homp(z,y)

is vertically left adjointable. The above square is equivalent to the outer square in the
commutative diagram

*

[0}

Homp(w, x) » Homp(z, x)

l enh l enh
* *

M -mod'(Homp(w, y)) —=— M -mod‘(Homp(z, y))

| |

HOHl'D (U}, y) > HOIIlD(Z, y)

which is induced from the pair of natural transformations
Homp(—,z) — M -mod'(Hom$&™" (—, y)) — Homp(—, y)

described in remarks 7.2.9 and 7.3.2. Since g presents = as an Eilenberg-Moore object for M,
we have in fact that the top vertical arrows in the above diagram are equivalences. We thus
reduce to showing that the commutative square of categories

M -mod' (Homp(w, y)) —=— M -mod‘(Homp(z,y))

| |

HOIH'D(w, y) = > Hom'D<Z7 y)
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is vertically left adjointable.

The existence of a left adjoint to the vertical arrows is guaranteed by the existence of
free M-modules in Endp(y)-module categories (see [Lurl7] proposition 4.2.4.2). Assume now
given a morphism h : w — y, and let  : h — A’ be a morphism in Homp(w, y) presenting an
M-module h' : w — y as a free M-module on h. In other words, denoting by u: M @ h' — R’
the structure map, we have that the composite map

M@ h 2% M
is an equivalence in Homp(w, y). Composing with o we see that the composite map

M @ a*h E v e ol S o R

is an equivalence in Homp(z,y). Observe that a*h’ has the structure of an M-module,
and a*u is its structure map. We conclude that a*n : a*h — a*h’ presents h' as the free
M-module on a*h. This shows that our commutative square is vertically left adjointable at h.
Since h was arbitrary, we conclude that our commutative square is vertically left adjointable,
as desired.

It remains to show that the induced morphism of monads M — End(g) is an isomorphism.
Denote by g” the left adjoint to g. Then by virtue of remark 7.2.5, the underlying morphism
in Endp(y) to our map of monads is given by the composition

M—)MggL—>ggL

where the first arrow is induced by the unit of the adjunction ¢* - ¢, and the second arrow
is induced by composition with the structure map Mg — ¢g. To show that the above is
an isomorphism, it suffices to check that the unit 7 : id, — gg” presents gg" as the free
M-module on id, in the monoidal category Endp(y). The map 7 is the same as the unit at
id, for the adjunction
g. : Homp(y, 2) —— Homp(y,y) : g~.

Since g presents = as the Eilenberg-Moore object of M, the above adjunction is equivalent to
the free-forgetful adjunction

M -mod' (Homp(y, y)) =—= Homp(y,y).

We conclude that the map 1 presents gg” as the free M-module on id,, as desired. O

Proposition 7.3.8. Let D be a 2-category and let g : x — y be a morphism in D. The
following are equivalent:

(i) There exists a monad M on y and an M-module structure on g, such that g presents x
as the Filenberg-Moore object of M.
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(ii) The morphism g admits a left adjoint, and g presents x as the Eilenberg-Moore object
of the monad End(g).

(iii) The morphism g admits a left adjoint, and for every object z in D the functor of
categories
g« : Homp(z,z) — Homp(z,y)

18 monadic.

Proof. The equivalence between (i) and (ii) follows directly from proposition 7.3.7. Assume
now that (i) holds. Then for every object z in D we can write the morphism

g« : Homp(z,2) — Homp(z,y)

as the composite map

enh

Homp(z, ) Z— M -mod!(Homp(z,y)) — Homp(z, y)

where the first arrow is given as in definition 7.3.1, and the second arrow is the forgetful
functor. By assumption, the first arrow is an isomorphism. Furthermore, [Lurl7] theorem
4.7.3.5 guarantees that the second arrow is monadic. Hence we conclude that (iii) holds.
It remains to show that (iii) implies (ii). Let z be an object of D. We have to show that
the induced map
¢ : Homp(z, #) — End(g) -mod'(Homp(z,y))

is an equivalence. Note that the composition of the above with the (monadic) forgetful
functor
u : End(g) -mod'(Homp (2, y)) — Homp(z,y)

recovers the functor
g« : Homp(z,2) — Homp(z,y)

which is monadic by our assumption. Since g, is conservative we have that ¢ is conservative

as well.
Let C be the full subcategory of End(g)-mod'(Homp(z,y)) on those objects for which

the left adjoint to g™ is defined and the unit is an isomorphism. To show that g™ is an

equivalence, it suffices to show that that C is the entire End(g)-mod'(Homp(z,y)).
We first show that C contains the image of uX. Let a be an object in Homp(z,y), and let

pula — ¢ gl be the morphism induced by adjunction from the unit

n:o— ugdgla = g.gla.

It follows from proposition 5.1.3 that u presents g=a as left adjoint to g™ at u*a.

We claim that 7 presents g,gZa as the free End(g)-module on a. To see this, we have to
verify that the composition

idEnd(g) n

End(g)a End(g)g.9Fa — g.gfa
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is an equivalence, where the last morphism is induced by composition with the structure
map End(g)g — ¢g. This is a consequence of the description of End(g) from proposition 7.2.4,
together with the triangle identities for the adjunction g  g.

It follows from the above that 7 presents ¢**"gFa as left adjoint to u at a. Hence the
map 4 is in fact an isomorphism. This shows that the image of u! is indeed contained in C.

By virtue of [Lurl7] proposition 4.7.3.14, it suffices now to show that C is closed under
u-split geometric realizations. Let F™ : (A°?)> — End(g)-mod'(Homp(z,%)) be an u-split
geometric realization diagram, and assume that F' = F™| s factors through C. Then (ge"h)EF
is defined, and we have that

(") F = g™ (08" F = wF

enh

is a split simplicial object. We conclude that (¢°™)LF is a g,-split simplicial object in
Homp(z,z). Since g, was assumed to be monadic, (¢"")*F admits a geometric realiza-
tion. An application of proposition 5.5.24 shows that ¢g°™® admits a left adjoint at F"™(x).

Furthermore, (gc"")*F™ is a geometric realization diagram which is g,-split, and therefore

g (geh)EF™ s also a geometric realization diagram. Since F factors through C we have that

enh

the natural transformation F' — ¢ge"(ge™®)L " induced from the unit of the (partially defined)

adjunction (ge"")Fge™® is an isomorphism. This implies that the natural transformation

F> — genb(genh)L B> induced from the unit is also an isomorphism, which means that £
factors through C, as desired. O]

Definition 7.3.9. Let D be a 2-category. A morphism g : x — y in D is said to be monadic
if it satisfies the equivalent conditions of proposition 7.3.8.

For later purposes we record the following basic stability property of monadic morphisms.

Proposition 7.3.10. Let D be a 2-category. Let L be a category and let F' : T — Funct([1], D)
be a functor. Assume that:

e For every object i in I the morphism F(i) is monadic.
e For every arrow « : i — j in L, the induced commutative square

F(i,0) 2% F(j,0)

lF (@) lF )

F(i,1) 228 F(,)

15 vertically left adjointable.
o The functors evg F,evy F : T — D admit conical limits.

Then the conical limit of F' is a monadic morphism.
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Proof. Denote by ¢ : x — y the limit of F. For each ¢ in Z denote by p; : © — F(7,0) and
¢ - y — F(i,1) the projections.

The fact that g has a left adjoint follows from an application of proposition 5.3.17. It
remains to show that for any object z in D the functor

g« : Homp(z,2) — Homp(z,y)
is monadic. Note that g, is the limit over Z of the monadic functors
F(i), : Homp(z, F(i,0)) — Homp(z, F(i,1)).

We verify the hypothesis of the monadicity theorem for g,. Note that g, admits a left
adjoint since ¢ itself admits a left adjoint. The conservativity of g, follows from the fact that
it is the limit of a sequence of conservative functors.

Assume now given a g,-split simplicial object S : A°® — Homp(z,x). For every i in Z we
have that

is a split simplicial object in Homp(z, F'(i,1)). Hence (p;).S is S(i).-split, and it therefore
admits a geometric realization

((p:)+S)" : (A°P)* — Homp(z, F(i,0))

which is preserved by S(7)..
For every arrow « : i — 7 in Z we have

F(5)+F(a,0).((pi)«S)" = Fa, 1), F (1) ((pi)+5)"

The right hand side is the image under F'(«, 1), of the geometric realization of a split simplicial
object, hence it is a colimit diagram. It follows from this that F'(c,0).((p;)«S)" is a colimit
diagram in Homp(z, F'(7,0)). In other words, the geometric realization of (p;).S is preserved
under F(«,0).

The geometric realizations of (p;).S therefore pass to the limit to give a geometric
realization S* : (A°?)* — Homp(z,z) for S. It remains to show that the augmented
simplicial object ¢,S" is a colimit diagram. This follows from the fact that for every i in Z
the diagram

(4)+g+8" = F(i)u(pi)S"

is the geometric realization of a split simplicial object. O]

7.4 Monadic functors of enriched categories

We now specialize the above theory to obtain a notion of monadic functor of enriched
categories.
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Notation 7.4.1. Let M be a presentable symmetric monoidal category. We denote by €at™
the 2-category of M-enriched categories (see notation 5.2.5 for a definition).

Definition 7.4.2. Let M be a presentable symmetric monoidal category. A functor G : D —
D' between M-enriched categories is said to be monadic if the associated morphism in Gat’™
18 monadic.

Remark 7.4.3. Let M be a presentable symmetric monoidal category. Unpacking definition
7.4.2 we see that a functor G : D — D’ between M-enriched categories is monadic if and
only if it admits a left adjoint and for every M-enriched category Z the functor of categories

G, : Funct(Z, D)<' — Funct(Z, D')=!

is monadic.

Remark 7.4.4. A straightforward application of the monadicity theorem [Lurl7] theorem
4.7.3.5 shows that in the case when M = Spc equipped with its cartesian symmetric monoidal
structure, definition 7.4.2 recovers the usual notion of monadic functor of categories.

Remark 7.4.5. Let M be a presentable symmetric monoidal category and let G : D — D’
be a functor of M-enriched categories. Let £ and J be M-enriched categories. Then the
map

Funct (7, Funct(€, D))=' — Funct(J, Funct(€,D’))=!

induced by G is equivalent to the functor
Funct(J x &, D)= — Funct(J x &€, D')=!
induced by G. It follows that if G is monadic then the induced functor
G, : Funct(€, D) — Funct(€,D')

is also monadic.

Our next goal is to give a characterization of monadic functors between enriched categories,
generalizing the usual description provided by the monadicity theorem.

Definition 7.4.6. Let M be a presentable symmetric monoidal category. We say that a
functor G : D — D' of M-enriched categories is conservative if the functor of categories
(TAMNWG = (Tm) D — (Tm)/ D' is conservative.

Notation 7.4.7. Let A_ be the wide subcategory of A on the morphisms which preserve
minimums. Let 7 : A — A_, be the functor that maps each nonempty totally ordered finite
set O to the totally ordered set {—oo} UO obtained from O by adjoining a minimum element.
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Definition 7.4.8. Let M be a presentable symmetric monoidal category and let D be an
M-enriched category. A simplicial object in D is a functor S : ATy — D. We say that S
admits a conical geometric realization if it admits a conical colimit. We say that S is split if
it admits an extension along the inclusion i : ATy — (A ) pm. Given a functor G : D — D,
we say that S is G-split if GS is split.

Remark 7.4.9. Let M be a presentable symmetric monoidal category and let D be an M-
enriched category. Let S : A} — D be a split simplicial object in D, and let T : (A® ))pg — D
be an extension of S. Consider the inclusion j : A< — A_ which extends ¢ and maps the
cone point to the initial object of A_,,. Then it follows from corollary 5.4.10 together with
[Lur09a] lemma 6.1.3.16 that the augmented simplicial object obtained by restricting 7" along
J is a conical colimit diagram for S. In particular, we see that split simplicial objects admit
conical geometric realizations which are preserved by arbitrary functors