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Abstract

Higher Quasicoherent Sheaves

by

German Stefanich

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor David Nadler, Chair

This thesis consists of two parts. The first half concerns various foundational aspects of
the theory of enriched ∞-categories. We develop the theory of adjunctions and weighted
limits and colimits in enriched ∞-categories. We introduce theories of enriched ∞-props and
operads, which provide a framework for the study of higher algebra in the enriched context.
Finally, we study the theory of monads and monadic adjunctions in enriched (∞, 2)-categories,
and prove an enriched generalization of the Barr-Beck-Lurie monadicity theorem.

The second half of this thesis applies the results of the first half to the study of higher
categorical sheaf theory in derived algebraic geometry. We introduce and study a theory of
quasicoherent sheaves of presentable stable (∞, n)-categories on prestacks, generalizing the
case n = 1 studied in [Gai15]. We prove a universal property for the (∞, n+ 1)-category of
correspondences, generalizing and providing a new approach to the case n = 1 from [GR17],
and use it to show that our higher quasicoherent sheaves give rise to representations of the
higher categories of correspondences of prestacks. We also introduce a notion of n-affineness
for prestacks and provide a simple inductive criterion for checking n-affineness, which allows
one to reduce affineness questions to the case n = 1 studied in [Gai15].
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Chapter 1

Introduction

This thesis consists of two parts. The first part deals with the foundations of the theory of
enriched ∞-categories. The second part applies the material of part I to the study of higher
categorical sheaf theory in derived algebraic geometry.

This work is part of a program aimed at constructing new examples of fully extended
topological field theories. The following introduction explains how this thesis fits into this
broader program. We also refer to the introduction of each part for a more in depth description
of its contents.

1.1 Topological field theory and geometric Langlands

Let n be a nonnegative integer. Then, following [Lur09b] and [CS19], one may define
a symmetric monoidal (∞, n)-category nCob called the (∞, n)-category of (unoriented)
cobordisms, with the following informal description:

• Objects of nCob are finite collections of points, to be thought of as compact 0-
dimensional manifolds.

• A morphism between two compact 0-dimensional manifolds S and T is a 1-dimensional
compact manifold with boundary M equipped with a decomposition ∂M = S t T . In
other words, this is a cobordism from S to T .

• In general, for every 1 ≤ k ≤ n, a k-cell in nCob is in particular a k-dimensional compact
manifold with boundaries and arbitrary codimensional corners, which determines a
cobordism between two pieces of its boundary.

• Composition in nCob is given by gluing of cobordisms along shared boundary compo-
nents.

• The symmetric monoidal structure on nCob is given by taking disjoint unions of
manifolds.
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Let D be a symmetric monoidal (∞, n + 1)-category, whose objects we think about as
being (∞, n)-categories of some sort. A (fully extended, unoriented) (n + 1)-dimensional
topological field theory1 with target D is a symmetric monoidal functor χ : nCob→ D. This
assigns in particular:

• To the empty zero dimensional manifold ∅, the unit 1D in D.

• To the zero dimensional manifold consisting of one point, an object χ(pt) in D.

• To the circle S1, thought of as a cobordism from ∅ to itself, an object χ(S1) in EndD(1D).

• To a closed 2-dimensional manifold M , thought of as a self-cobordism of the empty
1-dimensional cobordism, an object χ(M) in EndEndD(1D)(D).

• In general, to a closed k-dimensional manifold, an object in the “k-fold looping” of D.

The above data is subject to various constraints, which encode the locality of χ: the value of
χ on a manifold can be recovered by expressing the manifold as a composition of cobordisms.

In recent years, topological field theories have been found to provide a powerful framework
that organizes a number of structures arising in geometric representation theory. A central
instance of these interactions is given by the geometric Langlands program. It was observed
by Kapustin and Witten in [KW07] that the geometric Langlands correspondence can be
understood as a consequence of an equivalence between two four dimensional topological field
theories attached to a complex reductive group and its Langlands dual group. Although it
is now understood that geometric Langlands in is usual formulation is more closely related
to conformal field theory rather than topological field theory, Kapustin and Witten’s work
has led to creation of the so-called Betti version of geometric Langlands [BN18], which has
a more topological flavour, and is conjectured to ultimately form part of an equivalence of
four-dimensional topological field theories.

Although the topological field theories in Kapustin and Witten’s work make sense physi-
cally, they do not yet admit a rigorous mathematical formulation. So far, only some traces of
the full structure of a topological field theory have been put in firm mathematical footing.
There is in fact a fairly limited supply of fully extended topological field theories that have
been constructed beyond dimension 2. This raises the following natural question:

Question 1. How do we construct interesting examples of topological field theories, in
particular those which are expected to underlie the Betti geometric Langlands program?

The cobordism hypothesis [Lur09b] provides one possible way to approach this question.
It states roughly speaking that the data of χ can be recovered its value on a point: in fact,
any object d of D gives rise to a unique topological field theory χ such that χ(pt) = d, as

1This is more typically called an n-dimensional topological field theory, as the dimension of the manifolds
is bounded by n. We choose however to use here a terminology that more closely matches how these objects are
named in the physics literature: the reader may think that we are discussing (n+ 1)-dimensional topological
field theories whose values at (n+ 1)-dimensional manifolds diverge.
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long as d satisfies appropriate finiteness conditions, and comes equipped with an O(n)-fixed
point structure.

This essentially reduces the problem to constructing interesting examples of (∞, n)-
categories (or, more generally, objects in a background (∞, n+ 1)-category D). In this thesis,
we begin exploring the idea that higher categorical sheaf theory provides a rich source of
(∞, n)-categories and topological field theories, and gives tools to begin answering question 1.

1.2 Two dimensional field theories via sheaf theory

We now explain the most basic instance of using sheaf theory to produce topological field
theories, which serves as a guide for our categorified story.

Let X be a (quasicompact, quasiseparated) scheme over a field k, and let QCoh(X) be
the dg-category of quasicoherent sheaves on X. We consider QCoh(X) as an object in the
symmetric monoidal (∞, 2)-category 2Vect of presentable dg-categories, described informally
as follows:

• Objects in 2Vect are dg-categories admitting all colimits, satisfying a certain set
theoretical tameness condition called presentability.

• Given two objects C,D in 2Vect, the ∞-category Hom2Vect(C,D) is the full subcategory
of Funct(C,D) on the colimit preserving functors.

• The unit of 2Vect is the dg-category Vect of (chain complexes of) k-vector spaces.

• Given two objects C,D, their tensor product C⊗D is the universal recipient of a functor
C × D → C ⊗D which preserves colimits in each coordinate and coequalizes the action
of Vect on both factors.

It turns out that QCoh(X) is a dualizable object in 2Vect, and can be equipped with
a canonical structure of O(1)-fixed point. The cobordism hypothesis thus guarantees that
QCoh(X) gives rise to a 2-dimensional topological field theory χ with target 2Vect. In physics
language, this is a version of the B-model of X.

By definition, the value of χ at the point recovers QCoh(X). Being a 2-dimensional
topological field theory, it also makes sense to wonder about the value of χ at the circle. The
most robust way to compute this, and in fact understand χ in its entirety, is provided by the
following fundamental result, first proven in [GR17]:

Theorem 1.2.1. The assignment Y 7→ QCoh(Y ) forms part of a symmetric monoidal functor

QCoh : 2Corr(Sch)→ 2Vect2-op .

In the above theorem, 2Vect2-op denotes the (∞, 2)-category obtained from 2Vect by
reversing the orientation of the 2-cells, and 2Corr(Sch) denotes the (∞, 2)-category of corre-
spondences of schemes, described informally as follows:
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• Objects of 2Corr(Sch) are (quasicompact, quasiseparated, derived) schemes over k.

• Given two schemes Y, Z, a morphism from Y to Z in 2Corr(Sch) is a third scheme S
equipped with maps Y ← S → Z.

• Given two composable morphisms Y ← S → Z ← S ′ → W , their composition is given
by Y ← S ×Z S ′ → W .

• Given two parallel morphisms Y ← S → Z and Y ← S ′ → Z, a 2-cell between them is
a commutative diagram of schemes as follows:

S

Y Z

S ′

• Given two schemes Y, Z, the tensor product of Y and Z in 2Corr(Sch) is the object
Y × Z.

Concretely, theorem 1.2.1 associates to each morphism Y
p←− S

q−→ Z in 2Corr(Sch), the
Fourier-Mukai type functor q∗p

∗ : QCoh(Y )→ QCoh(Z). One can think about theorem 1.2.1
as providing an efficient way of encoding the functoriality of the theory of quasicoherent
sheaves. For instance, compatibility with compositions encodes the base change property,
and the functoriality under 2-cells encodes the fact that pushforwards are right adjoint to
pullbacks.

Using theorem 1.2.1 one can give a very concise construction of the topological field theory
χ associated to a fixed scheme X, as a composition of three different symmetric monoidal
functors:

1Cob→ 2Corr(Spcop) −→ 2Corr(Sch)
QCoh−−−→ 2Vect2-op .

Here the first arrow is the functor from cobordisms to cospans in spaces which arises from
considering a cobordism as a cospan between its boundary components. The middle arrow
is induced from the functor X(−) : Spcop → Sch which maps each homotopy type M to the
(derived) scheme XM parametrizing maps from M into X.

The benefit of the above construction is that it provides a fairly direct way of computing
the value of χ on the circle (we refer to [BN13] for more on this theme). Indeed, χ(S1) is the
endofunctor of Vect given by the composition

Vect = QCoh(Spec(k))
π∗−→ QCoh(XS1

)
π∗−→ QCoh(Spec(k)) = Vect

where π : XS1 → Spec(k) denotes the projection. This recovers the endofunctor of Vect given
by tensoring with O(XS1

). We may summarize this by saying that the value of χ on the
circle recovers the space of functions on XS1

.
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The scheme XS1
is called the (derived) loop space of X. Breaking the circle symmetry,

one may present S1 as the suspension of S0, which leads to the description of XS1
as the

fiber product X ×X×X X. In the case when X = Spec(A) is affine, we may further rewrite
this as Spec(A⊗A⊗A A). In other words, the space of functions on XS1

is the chain complex
computing the Hochschild homology of A. This connection with Hochschild invariants makes
the derived loop space an object of central importance in derived algebraic geometry (see
[TV09], [BN12], [Pre15]).

1.3 Higher quasicoherent sheaves

One of the main goals of this thesis is to present a version of the above story which allows
one to produce topological field theories of dimension greater than 2. In order to do so, one
must leave the realm of sheaves with values in vector spaces, and work with sheaves with
values in higher categories - indeed, in order to produce an (n+ 1)-dimensional topological
field theory we need to replace QCoh(X) with some kind of (∞, n)-category.

The first problem to be solved is to construct categorifications of 2Vect. We accomplish
this in chapter 12, where we introduce for each n ≥ 2 a symmetric monoidal (∞, n + 1)-
category (n+1)Vect of k-linear presentable stable (∞, n)-categories. To a first approximation,
we may think about (n+ 1)Vect as follows:

• An object in (n+1)Vect is an (∞, n)-category which admits all colimits, such that all its
Hom (∞, n−1)-categories also admit all colimits, and all the Hom (∞, n−2)-categories
of those admit all colimits, and so on. At the very last level, we require the∞-categories
that arise to admit all colimits, and to come equipped with a k-linear structure on their
Hom spaces.

• Given two objects C,D in (n + 1)Vect, morphisms from C to D are k-linear functors
which preserve colimits at all levels.

• The unit of (n+ 1)Vect is given by nVect.

• Given two objects C,D, their tensor product C ⊗ D is the universal recipient of a
k-bilinear functor C × D → C ⊗ D which preserves colimits (at all levels) in each
coordinate.

Although the above description provides useful intuition, our definition of (n + 1)Vect
proceeds along somewhat different lines. Instead of defining (n + 1)Vect directly as a
subcategory of the (∞, n + 1)-category of k-linear (∞, n)-categories, we first define its
underlying symmetric monoidal ∞-category (n+ 1)Vect, and then produce an (∞, n+ 1)-
categorical enhancement of (n+ 1)Vect.

The definition of (n+1)Vect is inductive. Given a definition of nVect, we define (n+1)Vect
to be a certain tame full subcategory of the∞-category of cocomplete∞-categories equipped
with an action of nVect (we refer to the introduction of part II and to chapter 12 for an
explanation of this tameness condition).
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To construct the (∞, n + 1)-categorical enhancement (n + 1)Vect we make use of the
theory of enriched∞-categories developed in [GH15] and [Hin20a], which we review in chapter
3. This theory allows us to pass from ∞-categories tensored over a symmetric monoidal
∞-categoryM, to∞-categories enriched inM. For our purposes, we need in fact a functorial
strengthening of the procedure of enrichment of tensored ∞-categories, which we develop in
chapter 4.

The theory of higher presentable categories not only serves to define (n + 1)Vect. In
fact, for each commutative k-(dg)-algebra A, one may define a commutative algebra object
A -modn in (n + 1)Vect, which we think about as the k-linear (∞, n)-category of A-linear
presentable stable (∞, n − 1)-categories. As before, in order to define A -modn, one first
defines its underlying module A -modn over nVect. This is done inductively by setting
A -mod0 = A, and A -modn = (A -modn−1) -mod(nVect).

This leads us to the notion of quasicoherent sheaf of higher categories on an affine scheme:

Definition 1.3.1. Let X = Spec(A) be an affine scheme. We let nQCoh(X) = A -modn.
We call this the presentable stable (∞, n)-category of quasicoherent sheaves of presentable
stable (∞, n− 1)-categories on X.

Unpacking the definition, we see that nQCoh(X) corresponds to the data of an nVect-
module nQCoh(X), which is in turn defined inductively starting with QCoh(X) by setting
nQCoh(X) to be (n− 1)QCoh(X) -mod(nVect).

Having the notion of a higher quasicoherent sheaf on an affine scheme, one may formally
extend it to any prestack X by defining nQCoh(X) to be the limit of nQCoh(S) over all
affine schemes S equipped with a map to X.

In the case n = 2, our theory reduces to the theory of sheaves of categories studied in
[Gai15]. A concept of central importance in that case is the notion of 1-affineness. Roughly
speaking, a prestack X is 1-affine if 2QCoh(X) is equivalent to QCoh(X) -mod(2Vect). This
is true by definition for affine schemes, but it also holds for a number of prestacks of interest,
including schemes (see [Gai15]).

In chapter 14 we introduce a notion of (n− 1)-affineness for arbitrary n ≥ 1. Roughly
speaking, a prestack is said to be (n− 1)-affine if there is an equivalence

nQCoh(X) = (n− 1)QCoh(X) -mod(nVect)

as objects in (n + 1)Vect. To make sense of the above, we use the theory of monads and
monadic morphisms in enriched (∞, 2)-categories which we develop in chapter 7, which builds
upon a theory of enriched higher algebra that we introduce in chapter 6.

The following theorem is our main result on the theory of higher affineness. It allows one
to reduce questions of higher affineness to the case n = 2, which was studied in [Gai15].

Theorem 1.3.2. Let X be a prestack, and let n ≥ 3. Assume that the diagonal map
X → X ×X is (n− 2)-affine. Then X is (n− 1)-affine.
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In particular, it is a consequence of theorem 1.3.2 that prestacks with schematic diagonal
are (n− 1)-affine for all n ≥ 3.

The proof of theorem 1.3.2 is given in chapter 14. One of its ingredients is the following
enriched generalization of the Barr-Beck-Lurie monadicity theorem, which we prove in chapter
7:

Theorem 1.3.3. LetM be a presentable symmetric monoidal ∞-category and let G : C → D
be a functor of M-enriched ∞-categories. Then the following are equivalent:

(i) There exists a monad M on D and a structure of M -module on G, such that G presents
C as the Eilenberg-Moore object of M .

(ii) For every M-enriched ∞-category E , the functor of ∞-categories underlying the functor
of M-enriched ∞-categories

G∗ : Funct(E , C)→ Funct(E ,D)

is monadic.

(iii) The functor G admits a left adjoint, is conservative, and creates conical geometric
realizations of G-split simplicial objects.

To formulate the third condition in theorem 1.3.3 we use the theory of conical colimits in
enriched∞-categories which we develop in chapter 5, as part of a general study of adjunctions
and weighted limits in enriched ∞-categories.

1.4 Higher dimensional field theories via higher sheaf theory

Our second main result concerning the theory of higher quasicoherent sheaves is the following
generalization of theorem 1.2.1, which we prove in chapter 14:

Theorem 1.4.1. The assignment Y 7→ nQCoh(Y ) forms part of a symmetric monoidal
functor

nQCoh : (n+ 1)Corr(Sch)→ (n+ 1)Vect(n+1)-op .

In the above theorem, (n+ 1)Vect(n+1)-op denotes the (∞, n+ 1)-category obtained from
(n+ 1)Vect by reversing the orientation of the (n+ 1)-dimensional cells, and (n+ 1)Corr(Sch)
denotes the (∞, n+1)-category of correspondences of schemes, defined informally by induction
as follows:

• Objects of (n+ 1)Corr(Sch) are schemes over k.

• Given two schemes Y, Z, we have an equivalence of (∞, n)-categories

Hom(n+1)Corr(Sch)(Y, Z) = nCorr(Sch/Y,Z).
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Concretely, theorem 1.4.1 associates to each morphism Y ← S → Z in (n+ 1)Corr(Sch)
the functor of nVect-modules nQCoh(Y ) → nQCoh(Z) given by tensoring with the (n −
1)QCoh(Y )−nQCoh(Z)-bimodule (n− 1)QCoh(S). Furthermore, it associates to each 2-cell

S

Y T Z

S ′

p

q

the natural transformation of functors resulting from the morphism of (n− 1)QCoh(Y )−
(n− 1)QCoh(Z)-bimodules

q∗p
∗ : (n− 1)QCoh(S)→ (n− 1)QCoh(S ′).

We may think about theorem 1.4.1 as encoding the functoriality of the theory of higher
quasicoherent sheaves. As n grows, we have more and more functoriality available at our
disposal, having to do with the ability to form Fourier-Mukai transforms, and Fourier-Mukai
transforms between Fourier-Mukai kernels, and so on.

Given a scheme X, we may use theorem 1.4.1 to produce an (n+1)-dimensional topological
field theory χ with target (n+ 1)Vect, by composing three symmetric monoidal functors:

nCob→ (n+ 1)Corr(Spcop)
X(−)

−−−→ (n+ 1)Corr(Sch)
nQCoh−−−−→ (n+ 1)Vect(n+1)op .

Assuming some expected facts2 about the relation between nCob and (n + 1)Corr(Spcop),
one may use the above description of χ to show that its value on a k-dimensional manifold
M can be identified with (n− k)QCoh(XM ). We may think about this as a generalization of
the geometric description of the Hochschild invariants of a commutative algebra.

For many purposes, it is useful to have a generalization of theorem 1.4.1 which applies to
prestacks, and not only schemes. It turns out that when passing to prestacks one loses some
functoriality, so the general statement involves the (∞, n)-category of correspondences rather
than the (∞, n+ 1)-categorical version:

Theorem 1.4.2. The assignment Y 7→ nQCoh(Y ) forms part of a symmetric monoidal
functor

nQCoh : nCorr(PreStk)→ (n+ 1)Vect .

In higher categorical sheaf theory, the relationship between different categorical levels is
arguably just as important as the property of each categorical level on its own. In order to

2The first arrow in this composition is defined by the property that it sends the point to the point.
In order to use this description of χ for computation, one needs to know that the first arrow can also be
recovered by interpreting cobordisms as cospans of spaces.
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organize the functoriality of the theories nQCoh for different values of n, we use in this thesis
the theory of categorical spectra3, which we develop in chapter 13. In the same way that in
stable homotopy theory a spectrum is defined to be a sequence of pointed homotopy types
compatible under looping, a categorical spectrum is a sequence of pointed (∞,∞)-categories
compatible under passage to endomorphisms of the basepoint.

It turns out that one may assemble the sequence of (∞, n)-categories nCorr(PreStk) into
a categorical spectrum Corr(PreStk), called the categorical spectrum of correspondences of
prestacks. Similarly, one may assemble the (∞, n+1)-categories (n+1)Vect into a categorical
spectrum of higher vector spaces. The entire functoriality of the theory of higher quasicoherent
sheaves may be summarized by saying that it gives rise to a morphism of categorical spectra
from Corr(PreStk) to the categorical spectrum of higher vector spaces.

Continuing along these lines, one could say that the subject of higher categorical sheaf
theory consists more generally of the study of the representation theory of the categorical
spectrum of correspondences - the theory of higher quasicoherent sheaves being the most
basic such representation.

The proofs of theorems 1.4.1 and 1.4.2 depend on a universal property for the higher
categories of correspondences, which we establish in chapter 11:

Theorem 1.4.3. Let C be an ∞-category admitting finite limits, and let D be a symmetric
monoidal (∞, n + 1)-category. Then restriction along the inclusion C → (n + 1)Corr(C)
induces an equivalence between the space of symmetric monoidal functors (n+ 1)Corr(C)→ D
and the space of symmetric monoidal functors C → D satisfying the left n-fold Beck-Chevalley
condition.

The left n-fold Beck-Chevalley condition is a minimalistic list of base change properties
that we introduce in chapter 11. In the same way that verifying the usual left Beck-Chevalley
condition for a functor F : C → D involves checking an adjointability statement for every
cartesian square in C, verifying the left n-fold Beck-Chevalley condition involves checking a
series of n different adjointability statements for every such cartesian square.

Our proof of theorem 1.4.3 is inductive, and builds upon the case n = 2. In the case n = 2,
theorem 1.4.3 reduces to the universal property of the (∞, 2)-category of correspondences
established in [GR17]. We provide in chapter 10 of this thesis a new approach to the proof of
this basic case, which builds upon the description of Hom functors for enriched ∞-categories
from [Hin20a], and the theory of two-sided fibrations of ∞-categories which we study in
chapter 9.

1.5 Organization

This thesis consists of two parts. Below we provide a brief description of the contents of
each part. We refer also to the introduction of each part for an expanded description of its

3We first learned about the notion of categorical spectrum from Constantin Teleman, under the name of
anticategory.
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contents.
Part I deals with the foundations of the theory of enriched ∞-categories. We begin in

chapter 3 by presenting a systematic treatment of the basics of the theory, and include back-
ground on the theory of (∞,∞)-categories, which will be used throughout the thesis. Chapter
4 studies the theory of modules over algebroids, and provides a functorial enhancement of the
procedure of enrichment of presentable modules, which forms the basis of our construction
of the theory of higher presentable categories. Chapter 5 studies the theory of adjunctions
between enriched ∞-categories, and introduces a theory of weighted colimits. Chapter 6
introduces a theory of enriched∞-props, and a new approach to enriched∞-operads. Finally,
chapter 7 studies the theories of monads an monadic morphisms in enriched (∞, 2)-categories,
and provides a proof of theorem 1.3.3.

Part II is concerned with the foundations of the higher categorical sheaf theory. We
begin in chapter 9 by discussing the theory of two-sided fibrations, and proving a universal
property for the two-sided fibration of correspondences. In chapter 10 we collect a number
of basic results concerning the (∞, 2)-category of correspondences, and present our proof
of the case n = 2 of theorem 1.4.3, building on the material from chapter 9. In chapter 11
we study the problem of constructing functors out of higher categories of correspondences.
We include here a proof of theorem 1.4.3, as well as an extension theorem which forms the
basis of the passage from affine schemes to prestacks involved in theorem 1.4.2. In chapter
12 we introduce the theory of higher presentable categories, and show that it satisfies the
conditions of the extension theorem from chapter 11. Chapter 13 deals with the theory of
categorical spectra, and discusses its relationship with the theory of symmetric monoidal
higher categories. Finally, in chapter 14 we introduce the theory of higher quasicoherent
sheaves, and supply proofs of theorems 1.3.2, 1.4.1 and 1.4.2.
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Conventions and notation

We use the language of higher category theory and higher algebra as developed in [Lur09a]
and [Lur17]. All of our notions will be assumed to be homotopical or ∞-categorical, and
we suppress this from our notation - for instance, we use the word n-category to mean
(∞, n)-category.

We work with a nested sequence of universes. Objects belonging to the first universe are
called small, objects in the second universe are called large, and objects in the third universe
are called very large.

We denote by Spc and Cat the categories of (small) spaces and categories. For each n ≥ 2
we denote by nCat the category of small n-categories. We denote by Cat the 2-categorical
enhancement of Cat, and in general by nCat the (n+ 1)-categorical enhancement of nCat. If

X is one of those objects (or related), we denote by X̂ its large variant. For instance, Ŝpc
denotes the category of large spaces.

We denote by PrL the category of presentable categories and colimit preserving functors.
We usually consider this as a symmetric monoidal category, with the tensor product con-
structed in [Lur17] section 4.8. By presentable (symmetric) monoidal category we mean a
(commutative) algebra in PrL. In other words, this is a presentable category equipped with a
(symmetric) monoidal structure compatible with colimits.

If C is an n-category and k ≥ 0, we denote by C≤k the k-category obtained from C by
discarding all cells of dimension greater than k, and by ≤kC the k-category obtained from
C by inverting all cells of dimension greater than k. In particular, for each category C we
denote by C≤0 the space of objects of C.

For each category C we denote by HomC(−,−) the Hom-functor of C. We denote by P(C)
its presheaf category. We usually identify C with its image under the Yoneda embedding.

Given a pair of n-categories C,D we denote by Funct(C,D) the n-category of functors
between C and D. When we wish to only consider the space of functors between them we
will use the notation HomnCat(C,D) instead.

Given a right (resp. left) adjointable functor of categories β : C → D, we will usually
denote by βR (resp. βL) its right (resp. left) adjoint. More generally, we use a similar notation
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for adjoint morphisms in a 2-category. We say that a commutative square of categories

C ′ C

D′ D

β′

α′

β

α

is vertically right adjointable if β and β′ admit right adjoints and the induced natural
transformation α′β′R → βRα is an isomorphism. Similarly, we can talk about horizontal
left adjointability, or vertical left / right adjointability. We will at various points use the
connections between adjointability of squares and the theory of two-sided fibrations which we
develop in chapter 9.

We make use at various points of the theory of operads. We use a language for speaking
about these which is close in spirit to the classical language in terms of objects and operations
which satisfy a composition rule. Namely, given an operad O with associated category of
operators p : O⊗ → Fin∗, we call p−1(〈1〉) the category of objects of O, and arrows in O⊗
lying above an active arrow of the form 〈n〉 → 〈1〉 are called operations of O. We will for
the most part work with O without making explicit reference to the fibration p, and make it
clear when we need to refer to the category of operators instead.

We denote by Op the category of operads, and for each operad O we denote by OpO the
category of O-operads. We denote by Assos,LM,BM the operads for associative algebras,
left modules, and bimodules, respectively.
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Part I

Enriched ∞-category theory
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Chapter 2

Introduction to part I

The theory of enriched ∞-categories, introduced in [GH15] and independently in [Hin20a],
provides a unified approach to various important notions in higher category theory. As
particular cases, it recovers the notions of (∞, n)-categories, spectral categories, and dg-
categories. The first goal of part I is to present a roughly complete treatment of the basics
of the subject, adapted to our needs. We include also an introduction to the theory of
(∞,∞)-categories from the point of view of iterated enrichment.

The second goal of part I is to make a number of contributions to the state of the art in
enriched ∞-category theory, including:

• We provide an alternative approach to the definition of the operad which corepresents
enrichment, which we show to be equivalent to previous approaches in the literature.

• We study the functoriality properties of the procedure of enrichment of presentable
modules from [GH15] and [Hin20a].

• We study the theory of adjunctions and weighted limits and colimits in enriched ∞-
categories, and show that an enriched ∞-category admits all weighted colimits if and
only if it admits all conical colimits and copowers.

• We study higher algebra in the enriched context, and introduce a new approach to the
theory of enriched ∞-operads, via enriched ∞-props.

• We study the theory of monads in the setting of enriched (∞, 2)-categories, and prove
an enriched generalization of the Barr-Beck-Lurie monadicity theorem, which provides
a description of monadic functors of enriched ∞-categories.

The material in chapters 3, 4 and 5 is an expansion of the author’s preprint [Ste20b]
(except for its last section which is present in part II of this thesis as chapter 12).

Below we provide a more detailed description of the contents of part I. As usual in this
thesis, we will use the convention where all objects are∞-categorical by default, and suppress
this from our notation from now on.
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2.1 The notion of an enriched category

LetM be a monoidal category. Roughly speaking, an algebroid A inM with space of objects
X consists of

• For every pair of objects x, y in X an object A(y, x) in M.

• For every object x in X a morphism 1M → A(x, x).

• For every triple of objects x, y, z a morphism A(z, y)⊗A(y, x)→ A(z, x).

• Associativity and unit isomorphisms, and an infinite list of higher coherence data.

Given an algebroid A with space of objects X, there is a Segal space underlying A, with
space of objects X and for each pair of objects y, x the space of morphism being given by
HomM(1M,A(y, x)). We say that A is an M-enriched category if its underlying Segal space
is complete.

The theory of enriched categories provides a unified approach to various different notions
in category theory:

• In the case when M = Spc is the cartesian symmetric monoidal category of spaces, an
M-enriched category is simply a category.

• In the case when M = nCat is the cartesian symmetric monoidal category of n-
categories, an M-enriched category is the same as an (n+ 1)-category.

• In the case whenM = Sp is the category of spectra with its smash symmetric monoidal
structure, we obtain a notion of spectrally enriched category. Stable categories are
examples of these.

• In the case when M = Vectk is the category of k-module spectra over a field k, we
obtain a notion of k-linear category. This provides a robust approach to the theory of
dg-categories, which is native to the ∞-categorical world (we refer to [Hau15] for the
comparison with dg-categories).

It is worth noting that the theory of enriched categories not only unifies the above notions,
but it provides a streamlined way of relating them: given a symmetric monoidal functor
F :M→M′ and anM-enriched category A, there is anM-enriched category F!A with the
same space of objects, and such that (F!A)(y, x) = F (A(y, x)) for every pair of objects x, y.
For instance, this allows one to obtain a spectrally enriched category from an (unenriched)
category, by passing to free spectra Hom-wise.

The theory of M-enriched algebroids and categories was introduced in [GH15], and an
alternative approach was provided in [Hin20a]. The definition of M-enriched algebroid is
an instance of the general strategy of corepresenting higher structures. For each space X
the assignment M 7→ AlgbrdX(M) that sends each monoidal category M to the category of
algebroids with space of objects X turns out to be corepresented by a nonsymmetric operad
AssosX , with the following properties:
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• The space of objects of AssosX is X ×X.

• Given n ≥ 0 and a sequence of objects {xi}0≤i≤n of X, there is an operation with source
{(xi, xi+1)}0≤i≤n−1 and target (x0, xn).

In the case when X = [0], the operad AssosX is equivalent to the associative operad - this
reflects the fact that an algebroid with one object is the same as an associative algebra. In
general, we think about AssosX as a many object version of the associative operad.

The approaches to the definition of AssosX from [GH15] and [Hin20a] are somewhat
different, although they both produce equivalent operads, as explained in [Mac21]. In chapter
3 we provide yet another (equivalent) approach to the definition of AssosX , inspired by that
of [Hin20a], but somewhat different in its implementation. We show that the assignment
X 7→ AssosX is corepresented by an associative cooperad C internal to Cat, which is in turn
determined by its underlying associative cooperad Ccl internal to 0-truncated categories. The
cooperad Ccl is classical and it can therefore be defined by specifying a finite amount of
data. It is in fact uniquely characterized by a surprisingly small amount of data: namely the
0-truncated categories of objects and operations, and the cosource and cotarget maps. This
observation allows us to compare our definition to previous approaches in the literature. We
also use similar arguments to provide concise definitions of the operads LMX and BMX that
play a key role in [Hin20a].

The rest of chapter 3 is devoted to presenting the basics of the theory of enriched ∞-
categories. For ease of reference, we include here some results which appear previously in
[GH15] and [Hin20a].

We finish chapter 3 with an introduction to the theory of (∞,∞)-categories, which we
call ω-categories. Although for most of our purposes the ω-categories that we will encounter
will be n-categories for some finite n, we consider the notion of ω-category to provide a
convenient framework for doing higher category theory in cases where the exact bounds on
the dimensions of the cells are irrelevant.

2.2 Enrichment of presentable modules

Let M be a presentable symmetric monoidal category and let C be a presentable module
over M. Given a pair of objects c, c′ in C, there is a Hom object HomC(c, c

′) in M, defined
by the property that it represents the presheaf m 7→ HomC(m⊗ c, c′).

It was shown in [GH15] and [Hin20a] that one may in fact associate to C and M-
enriched category C with the same space of objects as C, and having the property that
HomC(c, c

′) = HomC(c, c
′) for every pair of objects c, c′ in C. This is a key construction in

the theory of enriched categories. For instance, specializing to the case C =M, this allows
one to obtain an M-enriched category M enhancing the category M.
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The main result of chapter 4 provides a functorial enrichment of the assignment C 7→ C.1
We may informally summarize it as follows:

Theorem 2.2.1. Let M be a presentable symmetric monoidal category, and denote by Ĉat
M

the category of large M-enriched categories. Then there is a lax symmetric monoidal functor

θM :M -mod(PrL)→ Ĉat
M

with the following properties:

(i) The composition of θM with the lax symmetric monoidal forgetful functor Ĉat
M
→ Ĉat

recovers the usual lax symmetric monoidal forgetful functor M -mod(PrL)→ Ĉat

(ii) For every presentable module C over M, we have an equivalence θM(C) = C.

This functoriality will be a key ingredient in chapter 12 when we construct the theories of
presentable n-categories. As a more basic consequence, we mention the following:

Corollary 2.2.2. Let M be a presentable symmetric monoidal category. Then there is a
canonical symmetric monoidal structure on M which recovers upon passage to underlying
categories the original symmetric monoidal structure on M.

2.3 Adjunctions and weighted limits

In chapter 5 we generalize the theory of adjunctions and limits to the enriched context.
The concept of adjunction between enriched categories behaves in a similar fashion as its
unenriched counterpart: given a pair of functors of M-enriched categories F : C → D and
G : D → C, a natural transformation η : 1C → GF is said to present G as right adjoint to F
if for each pair of objects c in C and d in D, we have an induced equivalence

HomD(F (c), d) = HomC(c,G(d))

as objects in M. We note that this condition is strictly stronger than the condition that η
be the unit of an adjunction between the categories underlying C and D.

The theory of limits has a somewhat different character in the enriched world. While in
unenriched category theory limits for a diagram F : I → C are particular extensions of F
to the category obtained from I by adjoining an initial object, in enriched category theory
there is a greater variety of kinds of extensions that one may consider: for every copresheaf
W on I, there is an associated cone ICW , and the problem of extending F to ICW leads to the
notion of W -weighted limit.2

1While finishing this work we learned about recent work of H. Heine [Hei20] which yields a similar
functorial strengthening of this procedure.

2We refer also to [Hin21] for a discussion of the related concept of weighted colimits for left modules over
enriched categories. Conjecturally, these two notions should be related via the procedure of enrichment of
presentable modules.
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The simplest cases of weighted limits have their own name. In the case when I is induced
from an unenriched category and the weight W is the constant functor with value 1M, one
speaks about conical limits. This is the kind of limit that one usually works with in unenriched
category theory. The existence of conical limits in an enriched category is often used in
combination with the following result, which is a basic consequence of the stability results for
conical limits which we prove in chapter 5:

Theorem 2.3.1. Let M be a presentable symmetric monoidal category. Let I be a category
and denote by IM the induced M-enriched category. Let D be an M-enriched category
admitting all conical limits and let f : J → J ′ be an epimorphism of M-enriched categories.
Let X : IM → Funct(J ,D) be a functor. Then:

(i) The diagram X admits a conical limit XC which is preserved by the evaluation functors.

(ii) If X factors through Funct(J ′,D) then XC also factors through Funct(J ′,D).

A case of fundamental importance is when M = Cat and f : J → J ′ is the inclusion of
the universal right adjointable arrow in the universal adjunction Adj. In this case theorem
2.3.1 reduces to the assertion that a limit of adjointable arrows in a 2-category with conical
limits is also adjointable, provided that certain base-change conditions are met.

Besides conical limits, another instance of weighted limits of particular importance occurs
in the case when I is the unitM-enriched category, but the copresheaf W is arbitrary. In this
case, a weighted limit is called a power. Our main result concerning the theory of weighted
limits guarantees that one may in fact reduce many questions about weighted limits to the
case of conical limits and powers.

Theorem 2.3.2. Let M be a presentable symmetric monoidal category, and let C be an
M-enriched category. Then C admits all weighted limits if and only if it admits all conical
limits and powers. In this case, a functor of M-enriched categories G : C → D preserves all
weighted limits if and only if it preserves all conical limits and powers.

As a consequence, we are able to conclude that the enriched categories underlying
presentable modules admit all weighted limits and colimits:

Corollary 2.3.3. Let M be a presentable symmetric monoidal category and let C be a
presentable M-module. Then the M-enriched category θM(C) admits all weighted limits and
colimits.

The theory of enriched adjunctions and weighted limits is used in the rest of the thesis in
a fundamental way:

• Theorem 2.3.2 plays a role in our study of monads in chapter 7, where it is used show
that the 2-category of M-enriched categories admits all Eilenberg-Moore objects for
monads. As we shall see, Eilenberg-Moore objects are special kinds of weighted limits,
which are neither conical limits nor powers.
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• The extension theorem for functors out of higher categories of correspondences from
chapter 11 requires the existence of conical colimits in the target n-category - the role
of this hypothesis is in fact mediated by theorem 2.3.1. This is then used in chapter
14 in our study of higher quasicoherent sheaves, where we use the fact, established in
chapter 12, that higher presentable categories admit all conical colimits (and many
conical limits).

2.4 Enriched higher algebra

Let M be a symmetric monoidal category. An M-enriched pre-prop P consists of:

• A space of objects P .

• For every pair {xs}s∈S, {yt}t∈T of finite families of elements of P , an object

HomP({xs}s∈S, {yt}t∈T )

in M of operations in P with source {xs}s∈S and target {yt}t∈T .

• For every triple {xs}s∈S, {yt}t∈T , {zu}u∈U of finite families of elements of P , a composi-
tion map

HomP({xs}s∈S, {yt}t∈T )⊗ HomP({yt}t∈T , {zu}u∈U)→ HomP({xs}s∈S, {zu}u∈U)

• For every object x in P , a unit map 1M → HomP(x, x).

• For every quadruple X = {xs}s∈S, Y = {yt}t∈T , Z = {zu}u∈U , W = {wv}v∈V of finite
families of elements of P , a stacking map

HomP(X, Y )⊗ HomP(Z,W )→ HomP(X ∪ Z, Y ∪W )

• Isomorphisms witnessing unitality and associativity of composition, compatibility with
stacking, and an infinite family of higher coherence data.

An M-enriched pre-prop P has an underlying M-enriched algebroid, whose morphisms
are operations in P with single source and target. We say that P is an M-enriched prop
if its underlying M-enriched algebroid is an M-enriched category. We say that P is an
M-enriched operad if it is an M-enriched prop satisfying an extra condition, which roughly
speaking states that arbitrary operations are determined by single target operations.

The theory of M-enriched props and operads is fundamental in the study of M-enriched
structures admitting operations with multiple sources and targets. In chapter 6 we present
one way of making the above definitions precise.

Our approach is similar in spirit to the approach to the theory of (unenriched) operads
developed in [Lur17]. We may summarize the latter by saying that it studies operads O by



CHAPTER 2. INTRODUCTION TO PART I 20

means of their categories of operators. The key insight is that, in the classical context, an
(1, 1)-operad can be recovered from its category of operators, as a (1, 1)-category over Fin∗
satisfying a number of properties. One then defines an operad to be a category over Fin∗
satisfying analogous conditions. This has the advantage of reducing the study of operads to
questions in category theory, and furthermore allowing direct access to various constructions
of interest.

In our case, whenM is not cartesian there is not a good notion of categories of operations:
classically, the category of operators of an (1, 1)-operad is the free semicartesian monoidal
category on it, and this is a notion that only makes sense in the cartesian context. Instead, we
will accessM-enriched operads by means of their enveloping symmetric monoidalM-enriched
algebroids, which are simply defined as commutative algebras in the symmetric monoidal
category Algbrd(M)Spc. More precisely, we will define M-enriched operads and props as
commutative algebra objects in Algbrd(M)Spc equipped with a subspace of their space of
objects, subject to a number of conditions.

Our approach differs from the previous approach to enriched operads from [CH20], where
enriched operads are defined as objects of a localization of a certain category of presheaves.
Our methods have the benefit of making the relations between enriched operads, props and
symmetric monoidal categories explicit, allowing one to reduce questions about M-enriched
operads to questions about symmetric monoidal M-enriched algebroids.

In our approach, we are able to show that the category of symmetric monoidalM-enriched
categories is equivalent to a subcategory of the category of M-enriched operads. We can
thus think about symmetric monoidal M-enriched categories as being M-enriched operads
satisfying a certain representability condition. This gives access to a robust notion of lax
symmetric monoidal functors in the enriched setting. Furthermore, the inclusion of symmetric
monoidal M-enriched categories into M-enriched operads admits a left adjoint, which we
can think about as sending each M-enriched operad to its enveloping symmetric monoidal
M-enriched category.

2.5 Monadicity

The notions of monads and monadic functors are fundamental in category theory. Of central
importance is the monadicity theorem:

Theorem 2.5.1 ([Lur17] theorem 4.7.3.5). Let G : D → C be a functor of categories. The
following conditions are equivalent:

(i) The functor G is monadic: in other words, G admits a left adjoint F , and G is equivalent
to the forgetful functor LModA(C)→ C for A the endomorphism monad of G.

(ii) There exists an algebra A in the monoidal category of endofunctors of C such that G is
equivalent to the forgetful functor LModA(C)→ C.

(iii) The functor G is conservative and creates geometric realizations of G-split simplicial
objects.
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The notion of monadic functor only depends on the 2-categorical structure of Cat. We
can therefore think about theorem 2.5.1 (in particular, the equivalence between the first two
and the last item) as providing a characterization of monadic morphisms in Cat.

In chapter 7 we extend the theory of monads and monadic morphisms to (possibly
enriched) 2-categories. The main result of this chapter is the following enriched generalization
of theorem 2.5.1, which provides a characterization of monadic morphism in the 2-category
of categories enriched over a presentable symmetric monoidal category.3

Theorem 2.5.2. Let M be a presentable symmetric monoidal category and let G : C → D
be a functor of M-enriched categories. Then the following are equivalent:

(i) There exists a monad M on D and a structure of M -module on G, such that G presents
C as the Eilenberg-Moore object of M .

(ii) For every M-enriched category E, the functor of categories underlying the functor of
M-enriched categories

G∗ : Funct(E , C)→ Funct(E ,D)

is monadic.

(iii) The functor G admits a left adjoint, is conservative, and creates conical geometric
realizations of G-split simplicial objects.

2.6 Organization

We now describe the contents of part I in more detail. We refer the reader also to the
introduction of each chapter for an expanded outline of its contents.

Chapter 3 is a general introduction to enriched category theory. We begin by describing
our approach to the definition of the operad AssosX , and the closely related operads LMX

and BMX,Y . We then review the notions of algebroids and enriched categories, and the
general functoriality and multiplicativity properties of the theory. We finish this section with
an introduction to the theory of n-categories and ω-categories via iterated enrichment.

Chapter 4 deals with the theory of left modules and bimodules over algebroids. The bulk
of this section is devoted to the construction of a functorial enhancement of the procedure of
enrichment of modules over presentable categories. We also outline here the construction of
the Yoneda embedding via diagonal bimodules, following [Hin20a].

In chapter 5 we study the theory of adjunctions between enriched categories, and weighted
limits and colimits in enriched categories. We introduce the notion of local right adjoint to
a functor between enriched categories, and show that a right adjoint exists if and only if
all local adjoints exist. We also establish stability results for adjunctions under limits and
passage to functor categories. We then use the theory of adjunctions to study the theory of

3We refer to [Dub70] for a discussion of the monadicity theorem in the setting of classical enriched
category theory.
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weighted limits and colimits, and the important special case of conical limits and colimits. We
finish this chapter by proving theorem 2.3.2, which we use to show that enriched categories
that arise from presentable modules admit all weighted limits and colimits.

In chapter 6 we discuss a number of topics concerning higher algebra in the enriched
setting. We discuss the theory of cartesian symmetric monoidal enriched categories, and
show that it is equivalent to the theory of symmetric monoidal enriched categories with finite
products. We introduce 2-categories of O-monoidal enriched categories for any operad O,
and discuss their enrichment in the case when M is cartesian. We finish this chapter by
introducing a theory of enriched props and operads.

In chapter 7 we study the theory of monads and monadic morphisms in enriched 2-
categories. We provide here a proof of theorem 2.5.2. Specializing to the caseM = ωCat, we
recover notions of monads and monadic morphisms in arbitrary ω-categories.
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Chapter 3

Enriched category theory

Let M be a monoidal category. An algebroid A in M with space of objects X consists of

• For every pair of objects x, y an object A(y, x) in M.

• For every object x in X a morphism 1M → A(x, x).

• For every triple of objects x, y, z a morphism A(z, y)⊗A(y, x)→ A(z, x).

• Associativity and unit isomorphisms, and an infinite list of higher coherence data.

Given an algebroid A with space of objects X, there is a Segal space underlying A, with
space of objects X and for each pair of objects y, x the space of morphism being given by
HomM(1M,A(y, x)). We say that A is an M-enriched category if its underlying Segal space
is complete. Our goal in this chapter is to review the theory of algebroids and enriched
categories, and the approach to n-category theory via iterated enrichment.

For each space X the assignment M 7→ AlgbrdX(M) that sends each monoidal category
M to the category of algebroids with space of objects X turns out to be corepresented by a
nonsymmetric operad AssosX , to be thought of as a many object version of the associative
operad. The assignment X 7→ AssosX determines a functor from spaces to the category of
associative operads, which is in turn corepresented by an associative cooperad C internal to
the category Cat.

We begin in 3.1 by reviewing the notion of internal operads and cooperads, and presenting
the definition of the cooperad C. This is defined starting from a cooperad Ccl in the (classical)
category of posets, which can be specified by a finite amount of data, namely the posets of
objects and operations, with source, target, unit, and composition maps. We show that Ccl

is in fact uniquely determined from its categories of objects and operations, together with
source and target maps - this uniqueness criterion allows us later on to compare our approach
to enrichment with other approaches in the literature.

In 3.2 we give the definition of the associative operad AssosX for an arbitrary category
X. Although for the purposes of enriched category theory the category X will always be a
space, we will use this extra generality later on to give a direct description of the equivalence
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between Cat and the category of categories enriched in Spc. We also give definitions of the
related operads LMX and BMX,Y which corepresent left modules and bimodules.

In 3.3 we review the definition and functoriality of the category of algebroids Algbrd(M)
in an associative operad M. We pay special attention to the case when M is a presentable
monoidal category - in this case we have that Algbrd(M) is also presentable. We introduce
two basic examples of algebroids: the trivial algebroid, and the cells - together these generate
Algbrd(M).

In 3.4 we review the case of Spc-algebroids with a space of objects, and its equivalence
with the category of Segal spaces. We then define the category of M-enriched categories
CatM as the full subcategory of Algbrd(M) on those algebroids with a space of objects and
whose underlying Segal space is complete and reprove the basic fact that if M is presentable
monoidal then CatM is an accessible localization of Algbrd(M).

In 3.5 we discuss the canonical symmetric monoidal structure in the category of algebroids
over a symmetric monoidal category. In the presentable setting, this gives access in particular
to a notion of functor algebroids and functor enriched categories. We prove here a basic
result describing Hom objects in functor algebroids when the source algebroid is a cell,
which will later on be used as a starting point for establishing various facts about general
functor algebroids. We finish by studying the behavior of functor algebroids as we change
the enriching category.

In 3.6 we review the approach to n-categories as categories enriched in (n− 1)-categories.
We discuss the various functors relating the categories nCat for different values of n. In
the limit as n tends to infinity we recover the category ωCat of ω-categories. Although for
our purposes all of the ω-categories we will encounter will be n-categories for some finite n,
the theory of ω-categories provides a convenient setting in which to work with n-categories
in cases where the exact value of n is irrelevant or may vary. We show that the theory of
ω-category is in fact a fixed point under enrichment: there is an equivalence between ωCat
and the category of categories enriched in ωCat.

Remark 3.0.1. The theory of algebroids and enriched categories was introduced in [GH15]
and [Hin20a]. In this thesis we introduce a new approach to the subject based on the internal
cooperad C, and show that this approach arrives at the same theory as that from [Hin20a].

Some of the basic facts about algebroids and enriched categories that we discuss in
3.3-3.5 (for instance, claims about presentability, existence of symmetric monoidal structures,
functoriality of the theory) appear already in some way in the references. We chose to include
statements and proofs of most of those facts for completeness and ease of reference, as our
notation and conventions differ from other sources.

Another reason why we opted for a systematic treatment of the subject is that in many
cases we in fact need tools that go beyond those which appear in the literature. For instance,
in 3.5 we show that the category of algebroids over a symmetric operad admits the structure
of a symmetric operad, and that this structure is functorial under morphisms of operads -
this functoriality will be necessary in chapter 12 to construct the realization functor ψn. We
also pay special attention throughout the chapter to enriched cells. We are able to obtain a
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good understanding of products and functor categories for cells, which is a basic building
block for proving results for arbitrary functor categories later on. In particular, this will be
crucial in chapter 5 when we discuss adjunctions between functor enriched categories.

3.1 The internal cooperad C

We begin with a general discussion of the procedure of internalization of objects of arbitrary
presentable categories.

Definition 3.1.1. Let D be a presentable category and let C be a complete category. A
D-object internal to C is a limit preserving functor F : Dop → C. We denote by D(C) the full
subcategory of Funct(Dop, C) on the internal D-objects.

Example 3.1.2. Let D be a presentable category. Then it follows from [Lur09a] proposition
5.5.2.2 that D(Spc) is equivalent to D.

Example 3.1.3. Let C be a complete category. Then Spc(C) is equivalent to C. More
generally, if D′ is a small category then (P(D′))(C) is equivalent to Funct(D′op, C).

Remark 3.1.4. Let D be a presentable category and let C be a locally small complete
category. It follows from [Lur09a] proposition 5.5.2.2 that a functor F : Dop → C is limit
preserving if and only if it has a left adjoint. In this context, the data of F is equivalent to
the data of a functor G : Cop → D such that for every d in D the presheaf HomD(d,G(−))
on C is representable. If C is presentable then this condition is equivalent to G preserving
limits, and so we conclude that D(C) = C(D). In other words, if C and D are presentable
then D-objects internal to C are the same as C-objects internal to D. Indeed, in this case the
category D(C) = C(D) admits a symmetric presentation as C ⊗ D (see [Lur17] proposition
4.8.1.17).

Remark 3.1.5. Let L : D1 → D2 be a localization functor between presentable categories
and let C be a locally small complete category. Then the functor D2(C)→ D1(C) given by
precomposition with L is a fully faithful embedding. A D1-object F : Dop

1 → C belongs to
D2(C) if and only if the associated functor G : Cop → D1 factors through D2.

Remark 3.1.6. Let D be a presentable category and let C be a classical locally small
complete category. Let D≤0 be the full subcategory of D on the 0-truncated objects and
denote by τ≤0 : D → D≤0 the truncation functor. Then it follows from remark 3.1.5 that
precomposition with τ≤0 induces an equivalence D≤0(C) = D(C).

Example 3.1.7. Let C be a classical locally small complete category. Then Set(C) is
equivalent to C. If C is presentable then C(Set) is also equivalent to C.

Remark 3.1.8. Let D be a presentable category. Let D′ be a small category equipped with
a localization functor L : P(D′) → D, so that the right adjoint to L embeds D as a full
subcategory of P(D′). Let C be a locally small complete category. Then it follows from a
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combination of example 3.1.3 and remark 3.1.5 that D(C) is equivalent to the full subcategory
of Funct(D′op, C) on those functors F such that the presheaf HomC(c, F (−)) belongs to D for
every c in C.

We now specialize the above discussion to the case of internal operads.

Notation 3.1.9. Denote by Op the category of operads. For each operad O we denote by
OpO the category of operads over O.

Definition 3.1.10. Let O be an operad, and C be a complete category. An O-operad internal
to C is an OpO-object internal to C. If C ′ is a cocomplete category then an O-cooperad internal
is an C ′ is an O-operad internal to (C ′)op.

Remark 3.1.11. Let O be an operad, and C be a presentable category. Then following
remark 3.1.4, we see that an O-cooperad internal to C is the same data as an accessible, limit
preserving functor G : C → OpO.

Remark 3.1.12. Let O be an operad and C be a classical locally small complete category.
Then by virtue of remark 3.1.6 we have an equivalence OpO(C) = (OpO)≤0(C). In other
words, O-operads internal to C are the same as 0-truncated O-operads internal to C.

Assume now that O is a 0-truncated object of Op, so that it has a set V of objects, and
a set M of operations. Consider the full subcategory D′ of (OpO)≤0 on the following objects:

• The trivial O-operad vo for each o in V .

• For every operation m in M , the free O-operad fm containing an m-operation.

• For every operation m in M with source objects {oi}i∈S, and every family of operations
{mi}i∈S where the target object of mi is oi, the O-operad fmi,m defined as the pushout(⊔

i∈S

fmi

) ⋃
⊔
i∈S voi

fm.

Then (OpO)≤0 is a localization of the category of set valued presheaves on D′. Using
remark 3.1.8 are able to obtain a concrete description of the category OpO(C). Namely, an
O-operad O′ internal to C consist of the following data:

• For each o in V an object O′(vo) in C.

• For each m in M with source objects {oi}i∈S and target object o, an object O′(fm) in
C, equipped with source and target maps

∏
i∈S O′(voi)← O′(fm)→ O′(vo).

• For each o in V a unit map O′(vo) → O′(fido), where ido denotes the identity 1-ary
operation of o.
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• For each m in M with source objects {oi}i∈S, and every family of operations {mi}i∈S
where the target object of mi is oi, a composition map∏

i∈S

O′(fmi)×∏
i∈S O′(voi ) O

′(fm)→ O(fl).

where l denotes the composite in O of family of operations {mi}i∈S with m.

The above data is required to satisfy a finite list of standard compatibility conditions
mimicking those of the category of 0-truncated O-operads, built so that the data obtained
from the above by applying a corepresentable functor C → Set defines an O-operad in Set.
In other words:

• Composition and unit maps are required to be compatible with sources and targets.

• Units are required to be compatible with compositions.

• Composition is required to be associative.

• For every o in V the unit map induces an isomorphism between O′(vo) and the subobject
of isomorphisms inside O′(fido).

Example 3.1.13. Let C be a locally small complete category and let Assos be the operad
governing associative algebras. Then Assos-operads internal to C will be called internal
nonsymmetric operads. By virtue of remark 3.1.12, in the case when C is classical we can
specify a nonsymmetric operad internal to C by giving a finite amount of information. Namely,
a nonsymmetric operad O internal to C consists of the following data:

• An object V in C parametrizing objects of O.

• For each n ≥ 0 an object Mn in C parametrizing n-ary operations in O, equipped with
source and target maps V n ←Mn → V .

• A unit map V →M1.

• For each n ≥ 0 and each sequence {ni}1≤i≤n of nonnegative integers with sum N a
composition map ∏

1≤i≤n

Mni ×V n Mn →MN

subject to the conditions described in remark 3.1.12.

We now present the construction of the internal nonsymmetric cooperad in strict categories
Ccl which underlies the assignment X 7→ AssosX . As discussed in example 3.1.13, we can do
this by specifying a finite amount of information.
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Construction 3.1.14. Let Cat≤0 be the category of 0-truncated categories. In other words,
this is the category of strict categories with no nontrivial isomorphisms. We define a
nonsymmetric cooperad Ccl internal to Cat≤0 as follows:

• The category V of objects of Ccl is the set with two elements {t, s}.

• For each n ≥ 0 the category Mn of n-ary operations of Ccl is in fact a poset, and has
objects ti, si for 0 ≤ i ≤ n+ 1, with t0 = s0 and tn+1 = sn+1, and arrows si ← ti+1 for
0 ≤ i ≤ n. We depict this as follows:

t0 = s0 t1 s1 t2 . . . sn tn+1 = sn+1

• The cosource map V qn →Mn maps the i-th copy of t and s to ti and si respectively.
The cotarget map Mn ← V maps t, s to t0 and sn+1 respectively.

• The counit map M1 → V maps t0 and t1 to t and s1 and s2 to s.

• Let n ≥ 0 and let {nj}1≤j≤n be a sequence of nonnegative integers with sum N . Denote
the objects of

⊔
jMnj by tjk, s

j
k, where 1 ≤ j ≤ n and 0 ≤ k ≤ nj + 1. The poset( ⊔

1≤i≤n

Mni

) ⋃
V qn

Mn

has two extra objects which are in the image of the cotarget map Mn ← V . We denote
these by t′0 and s′n+1. The cocomposition map

MN →

(⊔
i

Mni

) ⋃
V qn

Mn

sends t0, sN+1 to t′0 and s′n+1, and for i 6= 0, N sends ti and si to tjk and sjk respectively,
where (j, k) is the unique pair with 1 ≤ k ≤ nj such that (

∑
1≤l<j nl) + k = i.

Remark 3.1.15. For each n ≥ 0 the cosource and cotarget maps V n →Mn ← V are jointly
surjective. It follows from this, that Ccl is characterized uniquely by the first three items of
construction 3.1.14. In other words, there is a unique way in which we could have defined the
counit and cocomposition maps for Ccl once we are given the data of V,Mn and the cosource
and cotarget maps.

Remark 3.1.16. The internal nonsymmetric cooperad Ccl defines a colimit preserving functor
(OpAssos)≤0 → Cat≤0 which we continue denoting by Ccl. Composing this with the inclusion
∆ → (Cat)≤0 → (OpAssos)≤0 we obtain a cosimplicial 0-truncated category ∆ → Cat≤0.
This satisfies the Segal conditions, and is in fact a cocategory object in Cat≤0. Inspecting
construction 3.1.14 reveals that this is the functor that sends [n] to the poset [n]

⊔
[n]op.
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Our next task is to extend Ccl to a nonsymmetric cooperad internal to Cat.

Proposition 3.1.17. There is a unique internal cooperad C : OpAssos → Cat whose categories
of objects and operations are 0-truncated, and making the following triangle commute

OpAssos Cat

Cat≤0

C

Ccl

τ≤0

where τ≤0 is left adjoint to the inclusion.

Proof. Recall the presentation of OpAssos in terms of complete Segal operads from [Bar18], as
a localization of the presheaf category on the category ∆O of trees. This identifies OpAssos with
the full subcategory of P(∆O) on those presheaves satisfying suitable Segal and completeness
conditions. Let L : P(∆O) → OpAssos be the localization functor, and i : ∆O → P(∆O) be
the inclusion. Let v be the terminal associative operad, thought of as an object of ∆O, and
for each n ≥ 0 let fn be the free associative operad on an operation of arity n, again thought
of as an object of ∆O.

Since L is a localization, and in particular an epimorphism, it suffices to show that there
is a unique colimit preserving functor C′ : P(∆O)→ Cat which factors through OpAssos, maps
the objects v and f to 0-truncated categories, and makes the following triangle commute:

P(∆O) Cat

Cat≤0

C′

CclL

τ≤0

For this it suffices to show that there is a unique functor G : ∆O → Cat which satisfies the
dual Segal and completeness conditions, maps v and f to 0-truncated categories, and makes
the following triangle commute:

∆O Cat

Cat≤0

G

CclLi

τ≤0

Let j : Cat≤0 → Cat be the inclusion. We claim that G0 = jCclLi satisfies the dual Segal
and completeness conditions. The fact that G0 satisfies the dual completeness conditions
follows from the description of the simplicial category underlying G0 from 3.1.16. The fact
that G0 satisfies the dual Segal conditions follows from the fact that j preserves the pushouts
involved in them.

Note that G0 comes equipped with an identification ε : τ≤0G0 = CclLi given by the
counit of the adjunction τ≤0 a j. It now suffices to show that pair (G, ρ) of a functor G
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and an identification ρ : τ≤0G = CclLi as above is canonically equivalent to (G0, ε). Let
η : G→ jτ≤0G be the unit map. The fact that G maps v and fn to 0-truncated categories
implies that η is an isomorphism on the full subcategory of ∆O on the objects v and fn. Since
both G and jτ≤0G = G0 satisfy the dual Segal conditions, we conclude that (jρ) ◦ η gives us
an isomorphism G = G0. Our claim now follows from the fact that the diagram of functors
and natural isomorphisms

τ≤0G τ≤0jτ≤0G τ≤0G0

CclLi

ρ

τ≤0η τ≤0jρ

ε

commutes in a natural way.

Corollary 3.1.18. Let C : OpAssos → Cat be an internal associative cooperad. Assume that
the category of objects and category of operations of C are equivalent to those of C, with an
equivalence that commutes with the cosource and cotarget maps. The C is equivalent to C.

Proof. By remark 3.1.15 we have that τ≤0C is equivalent to Ccl. The claim now follows from
proposition 3.1.17.

Remark 3.1.19. Recall that Cat and OpAssos come equipped with involutions (−)op and
(−)rev, which correspond to actions of Z/2Z on both categories. The internal cooperad
Ccl : OpAssos → Cat≤0 can be given a Z/2Z- equivariant structure, by switching the role of
t and s in the category of objects, and of si, ti with tn+1−i and sn+1−i in the categories of
operations. It follows from proposition 3.1.17 that the internal cooperad C inherits a Z/2Z
equivariant structure. In particular, we have a commutative square

OpAssos Cat

OpAssos Cat .

rev

C

op

C

3.2 The operad AssosX

We now introduce the operad AssosX that corepresents the assignment M 7→ AlgbrdX(M).

Notation 3.2.1. Let Assos− : Cat → OpAssos be the right adjoint to C. This sends each
category X to an associative operad AssosX .

Remark 3.2.2. In the case when X is the terminal category, the operad AssosX coincides
with the associative operad Assos. In general, we think about AssosX as a many object
version of Assos. The category of objects of AssosX is X × Xop. Given a nonempty
sequence {(yi, xi)}1≤i≤n of source objects, and a target object (y, x), a multimorphism
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{(yi, xi)}1≤i≤n → (y, x) consists of a series of arrows xi ← yi+1 for 1 ≤ i < n, and arrows
xn ← x and y ← y1. A multimorphism from the empty sequence of objects to (y, x) consists
of an arrow y ← x.

Remark 3.2.3. In [Hin20a], Hinich works in the language of categories of operators, and
defines an assignment AssosH− : Cat → OpAssos to be corepresented by a certain functor
F : ∆/∆op → Cat≤0. This functor is the categories of operators incarnation of the internal
nonsymmetric cooperad C.

Indeed, note that the functor AssosH− is accessible and preserves limits, so by virtue of
remark 3.1.11 it is corepresented by an internal nonsymmetric cooperad CH : OpAssos → Cat.
Direct inspection of the definition of F reveals that the category of objects and operations
of CH agree with those of Ccl, in a way which is compatible with source and target maps.
As observed in corollary 3.1.18 this implies that CH is equivalent to C. It follows that the
functor AssosH defined in [Hin20a] is equivalent to our functor Assos.

Example 3.2.4. Let X = {a, b} be the set with two elements a, b. Then the associative
operad AssosX is classical, and can be computed explicitly from the definitions. We note that
it has objects (a, a), (b, b), (a, b), (b, a). The objects (a, a) and (b, b) are algebras in AssosX .
The object (a, b) is an (a, a)− (b, b) bimodule and the object (b, a) is a (b, b)− (a, a) bimodule.

As we shall see below, for each pair of categories X, Y , the category X×Y op has compatible
(weak) actions of the associative operads AssosX and AssosY on the left and on the right.
This is the basis for the theory of bimodules over algebroids.

Notation 3.2.5. Denote by BM,LM,RM be the associative operads governing bimodules
left modules, and right modules, respectively. Recall that we have canonical inclusions
LM→ BM← RM. We denote by Assos+ and Assos− the copies of the associative operad in
BM contained in LM and RM, respectively.

Construction 3.2.6. Let X and Y be categories. Consider the projection X t Y → {a, b}
from the disjoint union of X and Y into the set with two elements a, b, that maps X
to a and Y to b. Applying the functor Assos− we obtain a map of associative operads
AssosXtY → Assos{a,b}. We let BMX,Y be the BM-operad obtained by pullback of AssosXtY
along the map BM → Assos{a,b} corresponding to the (a, a) − (b, b) bimodule (a, b) (see
example 3.2.4). The assignment X 7→ BMX,Y is functorial in X and Y . We denote by
BM−,− : Cat×Cat→ OpBM the corresponding functor.

Remark 3.2.7. Let X, Y be categories. The functor Assos− preserves limits since it is a
right adjoint. Applying it to the cartesian square

X X t Y

{a} {a, b}
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we conclude that the Assos−-component of BMX,Y coincides with AssosX . This equivalence
is natural in X.

Similarly, from the cartesian square

Y X t Y

{b} {a, b}

we see that the Assos+-component of BMX,Y coincides with AssosY .
Consider now the cartesian square

(BMX,Y )m AssosXtY

{(a, b)} Assos{a,b}

where the category (BMX,Y )m is the fiber of BMX,Y over the universal bimodule m in BM.
Applying the (limit preserving) forgetful functor OpAssos → Cat we obtain a cartesian square

(BMX,Y )m (X ×Xop) t (Y × Y op) t (X × Y op) t (Y ×Xop)

{(a, b)} {(a, a), (b, b), (a, b), (b, a)}.

We conclude that the category (BMX,Y )m is equivalent to X × Y op. This equivalence is also
natural in X, Y .

Example 3.2.8. Let X be a category. Then we have an equivalence

Assos(X tX) = Assos(X × {a, b}) = Assos(X)× Assos({a, b})

which is natural in X. It follows that we have an equivalence BMX,X = AssosX ×BM, which
is natural in X.

Notation 3.2.9. Let X be a category. Denote by BMX the associative operad BMX,[0]. Let
LMX be the LM-operad obtained by pullback of BMX along the inclusion LM→ BM. We
denote by BM− : Cat→ OpBM the functor that assigns to each category X the BM-operad
BMX , and by LM− the composition of BM− with the functor of base change to LM.

Remark 3.2.10. In [Hin20a], Hinich defines an assignment BMH
− : Cat → OpBM in the

language of categories of operators, by declaring it to be corepresented by a certain functor

FBM : ∆/(∆/[1])
op → Cat .
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The functor BMH
− is accessible and preserves limits, and therefore by remark 3.1.11 it is

corepresented by an internal BM-cooperad CHBM : OpBM → Cat.
Likewise, our functor BM− can be obtained as the composite functor

Cat = Cat/{a}
−t{b}−−−→ Cat/{a,b}

Assos−−−−−→ (OpAssos)/Assos{a,b}

(a,a)(a,b)(b,b)−−−−−−−→ (OpAssos)/BM = OpBM

and each of the functors in the composition preserves limits and is accessible, so we have
that BM− is also corepresented by an internal BM-cooperad CBM : OpBM → Cat. Direct
inspection of the functor FBM reveals that CBM and CHBM have equivalent categories of objects
and operations, in a way compatible with sources and target. A variation of the arguments
in proposition 3.1.17 and corollary 3.1.18 (where we work with (∆O)/BM ) shows that the
cooperads CBM and CHBM are equivalent, and thus our functor BM− is equivalent to the functor
BMH

− from [Hin20a].

3.3 Algebroids

We now present the definition of an algebroid in an associative operad (also known as
categorical algebras in [GH15] and enriched precategories in [Hin20a]) and review the basic
funtoriality properties of the theory.

Definition 3.3.1. Let M be an associative operad and X be a category. An algebroid on M
with category of objects X is an AssosX-algebra in M.

Remark 3.3.2. Let M be an associative operad. An algebroid with category of objects
[0] is an algebra in M. In general, we think about an algebroid A in M as a many-object
associative algebra. Indeed, an algebroid with category of objects X assigns to each pair of
objects y, x in X an object A(y, x) in M and to every n ≥ 0 and every sequence of arrows
y0 = x0 ← y1, x1 ← y2, . . . , xn−1 ← yn, xn ← yn+1 = xn+1 it assigns a multimorphism

{A(y1, x1),A(y2, x2), . . . ,A(yn, xn)} → A(y0, xn+1)

in M. In the case when M is a monoidal category, this is the same as a morphism

A(y1, x1)⊗A(y2, x2)⊗ . . . ,⊗A(yn, xn)→ A(y0, xn+1).

Specializing to the case n = 0 we obtain for every pair of objects x, y a map

HomX(y, x)→ HomM(1M,A(y, x)).

In particular, starting from the identity in HomX(x, x) we obtain a map 1M → A(x, x) (the
unit at x).

In the case when n = 2 and all the arrows are identities we obtain a map

A(z, y)⊗A(y, x)→ A(z, x)

(the composition map) for every triple of objects x, y, z in M. It follows from the definition
of the composition rule in the cooperad C that these maps satisfy the usual unitality and
associativity rules up to homotopy.
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Construction 3.3.3. Let X be a category and M be an associative operad. We de-
note by AlgbrdX(M) the category of AssosX-algebras in M. Denote by Algbrd−(−) :
Catop×OpAssos → Cat the composite functor

Catop×OpAssos

Assosop
− × id

−−−−−−−→ Opop
Assos×OpAssos

Alg−(−)
−−−−−→ Cat .

For each M in OpAssos we denote by Algbrd(M) the total category of the cartesian fibration
associated to the functor Algbrd−(M) : Catop → Cat. We call Algbrd(M) the category of
algebroids in M.

The assignment M 7→ (Algbrd(M)→ Cat) yields a functor

Algbrd(−) : OpAssos → Ĉat

equipped with a natural transformation to the constant functor Cat. We denote by Algbrd
the total category of the cocartesian fibration associated to Algbrd(−). This comes equipped
with a projection Algbrd → Cat×OpAssos whose fiber over a pair (X,M) is the category
AlgbrdX(M). This is the two-sided fibration associated to the functor Algbrd(−)−.1

Notation 3.3.4. Let i : X → Y be a functor of categories, and let j :M→N be a map of
associative operads. We denote by i! : AlgbrdY (M)→ AlgbrdX(M) the functor induced by
i, and by j! : Algbrd(M)→ Algbrd(N ) the functor induced by j.

Example 3.3.5. LetM be a monoidal category. Then the unit 1M has an algebra structure,
and therefore defines an algebroid with category of objects [0]. Since 1M is initial in
Algbrd[0](M), the functor Algbrd(M) → Spc corepresented by 1M is equivalent to the
restriction along the projection Algbrd(M)→ Cat of the functor Cat→ Spc corepresented
by [0]. In particular, for every M-algebroid A with category of objects X, the space
HomAlgbrd(M)(1M,A) is equivalent to the space underlying X.

Example 3.3.6. Let M be monoidal category, and let m be an object in M. Assume that
M admits an initial object which is compatible with the monoidal structure. Let X = {a, b}
be the set with two elements. Then we may form the free AssosX-algebra Cm inM equipped
with a map m→ Cm(a, b). The description of free algebras from [Lur17] definition 3.1.3.1
yields the following description of Cm:

• Cm((a, a)) = Cm((b, b)) = 1M.

• Cm(a, b) = m.

• Cm(b, a) is the initial object of M.

1We refer to chapter 9 for background on the theory of two-sided fibrations and bifibrations, and a general
discussion of the Grothendieck construction which relates these to bifunctors into Cat.
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We call the algebroids of the form Cm cells. These come equipped with two maps
1M → Cm, which pick out the objects (a, a) (the target) and (b, b) (the source). These maps
can be combined into a single map out of the coproduct 1M t 1M in Algbrd(M) (note that
this coproduct indeed exists and is given by the initial object in Algbrd{a,b}(M), which agrees
with the cell associated to the initial object in M).

The formation of cells is functorial in m: it underlies a colimit preserving functor

C− :M→ Algbrd{a,b}(M)

given by operadic left Kan extension along the inclusion {(a, b)} → Assos{a,b}. This assignment
is furthermore functorial in M. In other words, given another monoidal category M′ with
compatible initial object and a monoidal functor F :M→M′ which preserves initial objects,
then the commutative square of categories

Algbrd{a,b}(M) M

Algbrd{a,b}(M′) M′

F!

ev(a,b)

F

ev(a,b)

is horizontally left adjointable.

Remark 3.3.7. Let u : OpAssos → Cat be the colocalization functor that attaches to each
associative operad its category of objects. It follows from 3.1.16 that we have an equivalence
uAssos− = id×(id)op as endofunctors of Cat. In particular, for every category X and
associative operad M we have a functor

AlgbrdX(M)→ Funct(X ×Xop,M)

which is natural in X and M. We think about this as the functor which attaches to each
algebroid A with category of objects X, the hom-functor of A restricted to X.

Remark 3.3.8. Recall from remark 3.1.19 that the cooperad C intertwines the order reversing
involution (−)rev of OpAssos and the passing to opposites involution of Cat. It follows that the
same is true for the functor Assos− : Cat→ OpAssos. We thus see that the functor Algbrd−(−)
admits the structure of a fixed point for the involution (−)op×(−)rev on Catop×OpAssos, which
implies that there is an involution (−)op on Algbrd and an enhancement of the projection
Algbrd→ Cat×OpAssos to a Z/2Z-equivariant map.

In particular, for every category X and associative operad M, we have an equivalence
AlgbrdX(M) = AlgbrdXop(Mrev). In the case when X is a space and M is the associative
operad underlying a symmetric operad, then the pair (X,M) is has the structure of fixed
point for the involution (−)op×(−)rev. It follows that the involution (−)op : Algbrd→ Algbrd
restricts to an involution on AlgbrdX(M). In other words, ifM underlies a symmetric operad,
then any M-algebroid A with a space of objects X has attached to it another M-algebroid
Aop with space of objects X. Examining the fixed point structure on Ccl from remark 3.1.19
reveals that for every pair of objects y, x in X one has Aop(y, x) = A(x, y).
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Example 3.3.9. Let M be a symmetric monoidal category compatible with initial object
and let m be an object ofM. Then the cell Cm is equivalent to its opposite. This equivalence
interchanges sources and targets - namely, there is a commutative diagram of M-algebroids

1M
⊔

1M Cm

1M
⊔

1M (Cm)op.

((a,a),(b,b))

id =

((b,b),(a,a))

In general, for any M-algebroid A we can think about Aop as being obtained from A by
reversing the direction of the cells.

Remark 3.3.10. Let M,M′ be associative operads. Then for every category X there is a
functor

AlgM(M′)× AlgbrdX(M)→ AlgbrdX(M′).

This is natural in X and therefore defines a functor

AlgM(M′)× Algbrd(M)→ Algbrd(M′)

which enhances the functoriality of construction 3.3.3 to take into account natural transfor-
mations between morphisms of associative operads. This is compatible with composition:
namely, given a third associative operad M′′, there is a commutative square

AlgM′(M′′)× AlgM(M′)× Algbrd(M) AlgM′(M′′)× Algbrd(M′)

AlgM(M′′)× Algbrd(M) Algbrd(M′′).

This is part of the data that would arise from an enhancement of Algbrd(−) to a functor of 2-
categories. We do not construct this enhancement here; however note that the above property
is already enough to conclude that if M,M′ are monoidal categories and F :M→M′ is
a monoidal functor admitting a (lax monoidal) right adjoint FR, then we have an induced
adjunction

F! : Algbrd(M)� Algbrd(M′) : (FR)!.

By working with monoidal envelopes and passing to presheaf categories, one can often
reduce questions in enriched category theory to the case when the enriching category is a
presentable monoidal category. We now study some of the features of this setting.

Remark 3.3.11. In construction 3.3.3 we implicitly assumed that all operads and categories
were small. Passing to a larger universe, one can similarly discuss categories of algebroids in
presentable monoidal categories. Given a presentable monoidal category M, we will denote
by Algbrd(M) the category of algebroids in M with a small category of objects. Its version

where we allow large categories of objects will be denoted by Âlgbrd(M).
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Proposition 3.3.12. Let M be a presentable category equipped with a monoidal structure
which is compatible with colimits. Then

(i) The category Algbrd(M) is presentable, and the projection Algbrd(M) → Cat is a
limit and colimit preserving cartesian and cocartesian fibration.

(ii) For every colimit preserving monoidal functor F :M→M′ into another presentable
monoidal category, the induced functor F! : Algbrd(M) → Algbrd(M′) preserves
colimits.

Proof. We note that item (ii) is a direct consequence of remark 3.3.10 together with the adjoint
functor theorem. We now prove item (i). It follows from [Lur17] corollary 3.2.3.5 that for every
category X the category AlgbrdX(M) is presentable. Moreover, using [Lur17] corollary 3.1.3.5
we see that for every functor i : X → Y the induced functor i! : AlgbrdY (M)→ AlgbrdX(M)
admits a left adjoint, so that the projection Algbrd(M) → Cat is both a cartesian and a
cocartesian fibration. Since the functors Assos− and Alg−(M) are accessible, we conclude
from [GHN17] theorem 10.3 that Algbrd(M) is a presentable category. The fact that the
projection to Cat preserves limits and colimits is now a consequence of [Lur09a] corollary
4.3.1.11.

Notation 3.3.13. For each associative operadM denote by Algbrd(M)Spc the full subcate-
gory of Algbrd(M) on those algebroids which have a space of objects.

Remark 3.3.14. Let M be a presentable monoidal category. Let κ be a regular cardinal
and let {mi}i∈I be a small family of κ-compact generators ofM. Then the cells Cmi together
with the unit algebroid 1M are a family of κ-compact generators of Algbrd(M)Spc.

3.4 Enriched categories

Our next goal is to review the notion of enriched category. In order to do this, we will first
need to study the category of algebroids in the case M = Spc equipped with its cartesian
monoidal structure.

Construction 3.4.1. Let M = Spc be the category of spaces, equipped with its cartesian
monoidal structure. Then for every category X the category AlgbrdX(Spc) is presentable
([Lur17] corollary 3.2.3.5), and in particular admits an initial object. Since the projection
Algbrd(Spc)→ Cat is a cartesian fibration, there is a unique section s : Cat→ Algbrd(Spc)
such that for every category X we have that s(X) is initial in AlgbrdX(Spc).

Consider the cartesian square

Algbrd(Spc)Spc Algbrd(Spc)

Spc Cat .

i′

p′ p

i
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Since p is a cartesian fibration and i admits a right adjoint, we have that the above square is
horizontally right adjointable. The right adjoint i′R : Algbrd(Spc)→ Algbrd(Spc)Spc maps
an algebroid A : AssosX → Spc to the algebroid defined by the composite map

AssosX≤0 → AssosX
A−→ Spc .

Denote by ρ : Cat→ Algbrd(Spc)Spc the composite map (i′)Rs.

Example 3.4.2. The algebroid ρ([0]) is the unit algebroid 1Spc.

Example 3.4.3. Examining the description of free algebras from [Lur17] definition 3.1.3.1
yields the following description of ρ([1]):

• ρ([1]) has a set of objects with two elements 0, 1.

• ρ([1])(0, 0) = ρ([1])(1, 1) = ρ([1])(1, 0) are the singleton set.

• ρ([1])(0, 1) is empty.

In other words, we have that ρ([1]) is equivalent to the cell C[0].

Lemma 3.4.4. The section s from construction 3.4.1 admits a left adjoint.

Proof. We continue with the notation from construction 3.4.1. It follows from remark 3.3.14
that Algbrd(Spc)Spc is generated under colimits by the cell C[0] and the trivial algebroid 1Spc.
To obtain a set of generators for Algbrd(Spc) it suffices to add the algebroid s([1]). Since
Cat admits all colimits, in order to show that s has a left adjoint, it suffices to show that for
each generator G, there is a category C and a morphism η : G → s(C) such that for every
category D the composite map

HomCat(C,D)
s∗−→ HomAlgbrd(Spc)(s(C), s(D))

η∗−→ HomAlgbrd(Spc)(G, s(D))

is an equivalence. Note that the section s is fully faithful, so the first map in the above
composition is always an isomorphism. Since 1Spc and s([1]) belong to the image of s, the
identity maps of 1Spc and s([1]) satisfy the desired condition.

It remains to consider the case of the generator C[0]. We take C = [1], and the map
η : C[0] → s(C) to be the morphism of algebroids associated to the image of the map
1Spc → s([1])(1, 0) induced by the unique arrow 1 ← 0 in [1]. Let D be a category and
consider the commutative triangle

HomCat(C,D) HomAlgbrd(Spc)(C[0], s(D))

D≤0 ×D≤0

η∗s∗
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where the diagonal maps are the source and target maps. In order to show that η∗s∗ is an
equivalence, it suffices to show that it is an equivalence when restricted to the fiber over any
point (x, y) in D≤0×D≤0. This restriction recovers the map HomD(x, y)→ s(D)(y, x) which
assigns to each arrow y ← x : α in D, the image of the induced map 1Spc → s(D)(y, x). Our
claim now follows from the fact that s(D) is the free AssosD-algebra in Spc on the unique
algebra over the empty operad, together with the description of free algebras from [Lur17]
definition 3.1.3.1.

The following proposition is a slight rephrasing of [GH15] theorem 4.4.7 and the discussion
in [Hin20a] section 5.

Proposition 3.4.5. There is a unique equivalence between Algbrd(Spc)Spc and the category
P(∆)Seg of Segal spaces which intertwines the map ρ and the canonical inclusion of Cat into
P(∆)Seg as the subcategory of complete Segal spaces.

Proof. First we note that this equivalence is unique, if it exists. Indeed, the same method
of proof of [Lur09a] theorem 5.2.9.1 shows that the space of automorphisms of the category
P(∆)Seg is a two element set, consisting of the identity and the orientation reversing auto-
morphism. It follows that the space of automorphisms of P(∆)Seg that restrict to the identity
on Cat is contractible.

The existence of an equivalence F : Algbrd(Spc)Spc → P(∆)Seg is the subject of [GH15]
theorem 4.4.7. Denote by i : Cat→ P(∆)Seg the inclusion. It remains to show that we have
an equivalence Fρ = i. Note that by virtue of lemma 3.4.4, the map ρ admits a left adjoint.
It therefore suffices to show that there is an equivalence iL = ρLF−1.

Both iL and ρLF−1 are colimit preserving functors P(∆)Seg → Cat, and so they are
determined by the data of a Segal cosimplicial category. In the case of iL, this is the canonical
inclusion ∆→ Cat. The proof of lemma 3.4.4 shows that ρL maps 1Spc to [0] and C[0] to [1],
in a way compatible with the source and target maps. Moreover, inspecting the construction
of the equivalence F from [GH15] reveals that F−1 maps [0] to 1Spc and [1] to C[0], in a
way compatible with source and target maps. It follows that the Segal cosimplicial category
induced by ρLF−1 is the identity on the full subcategory of ∆ on the objects [0] and [1].
The Segal conditions imply that ρLF−1([n]) is equivalent to iL([n]) for all [n], and it is in
particular a 0-truncated category. Our claim now follows from the fact that the source and
target maps [0]→ [1]← [0] are jointly surjective, using the same arguments as those that
establish corollary 3.1.18

Remark 3.4.6. It follows from remark 3.3.8 that Algbrd(Spc)Spc comes equipped with an
involution (−)op. The map ρ intertwines the involutions (−)op on Cat and Algbrd(Spc)Spc.
It follows from the uniqueness statement in proposition 3.4.5 that the equivalence between
P(∆)Seg and Algbrd(Spc)Spc admits a Z/2Z-equivariant structure.

We now review the definition ofM-enriched categories. These areM-algebroids satisfying
a suitable completeness condition.
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Notation 3.4.7. LetM be an associative operad and equip Spc with its cartesian monoidal
structure. We denote by τM :M→ Spc the morphism of associative operads which maps
each object m in M to the space of operations from the empty list into m.

Remark 3.4.8. Let M be monoidal category. If M is presentable monoidal then the lax
symmetric monoidal functor τM : M → Spc is right adjoint to the unit map Spc → M.
In general, τM can be obtained as the composition of the symmetric monoidal embedding
M→ P(M) together with the lax symmetric monoidal map τP(M) : P(M)→ Spc.

Definition 3.4.9. LetM be an associative operad. An object A in Algbrd(M) is said to be an
enriched category if it has a space of objects, and the induced object (τM)!A in Algbrd(Spc)Spc

belongs to the image of ρ. We denote by CatM the full subcategory of Algbrd(M) on the
enriched categories. Given an M-enriched category A and a pair of objects x, y in A, we will
usually use the notation HomA(x, y) instead of A(y, x).

In other words, an M-enriched category is a M-algebroid whose underlying Segal space
is a complete Segal space.

Example 3.4.10. Let M be a monoidal category such that the monoid EndM(1M) does
not have nontrivial invertible elements (for instance, if M is a cartesian closed presentable
category). Then the unit algebroid 1M is an M-enriched category. If in addition M has an
initial object which is compatible with the monoidal structure, and the space of maps from
the unit to the initial object is empty, then for every m inM the cell Cm from example 3.3.6
is an M-enriched category.

Remark 3.4.11. It follows from remark 3.4.6 that an algebroid A is an enriched category if
and only if Aop is an enriched category. In other words, the involution (−)op restricts to an
involution on the full subcategory of Algbrd on the enriched categories.

Proposition 3.4.12. Let M be a presentable monoidal category. Then

(i) The inclusion CatM → Algbrd(M)Spc exhibits CatM as an accessible localization of
Algbrd(M)Spc. In particular, CatM is presentable.

(ii) Let F : M →M′ be a colimit preserving monoidal functor into another presentable
monoidal category. Then the functor F! : Algbrd(M)Spc → Algbrd(M′)Spc descends to

a functor CatM → CatM
′
.

Proof. Recall that Cat embeds into the category of Segal spaces as the full subcategory of
local objects for the projection α from the walking isomorphism to the terminal category.
Since the lax monoidal functor τM is right adjont to the unit map 1M : Spc→M, we obtain
an adjunction

(1M)! : Algbrd(Spc)Spc Algbrd(M)Spc : (τM)! .

It follows that CatM is the full subcategory of Algbrd(M)Spc of i!α local objects, which
proves item (i). Item (ii) now follows from the fact that F!(1M)!α is equivalent to (1M′)!α,
which becomes an isomorphism upon projection to CatM

′
.
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Remark 3.4.13. Let M be a monoidal category. Then Algbrd(M)Spc is a full subcategory
of Algbrd(P(M))Spc, and moreover CatM is the intersection of Algbrd(M)Spc with CatP(M).
Let C be an object in Algbrd(M)Spc and let C ′ be its image in CatP(M). It follows from
the description of local equivalences from [GH15] corollary 5.6.3 that C ′ belongs to CatM.
It follows that CatM is a localization of Algbrd(M)Spc, and moreover a map A → A′ in
Algbrd(M)Spc is local if and only if it is fully faithful (i.e., cartesian for the projection
Algbrd(M)Spc → Cat) and surjective on objects.

Example 3.4.14. Let M be a presentable monoidal category. As a consequence of proposi-
tion 3.4.12 the unit map 1M : Spc →M induces a functor (1M)! : Cat = CatSpc → CatM.
In other words, any category defines an M-enriched category.

Remark 3.4.15. Let i : M → M′ be a colimit preserving monoidal functor between
presentable monoidal categories. Assume that i is fully faithful, so that the functor i! :
Algbrd(M)→ Algbrd(M′) is fully faithful. Then for every M-algebroid A with a space of
objects, the Segal space underlying i!A is equivalent to the Segal space underlying A. In
particular, A is an M-enriched category if and only if i!A is an M′-enriched category. This
implies that the commutative square

Algbrd(M)Spc CatM

Algbrd(M′)Spc CatM
′

i!
i!

arising from proposition 3.4.12 item (ii), is horizontally right adjointable.
Assume now that i admits a left adjoint, so that M is a localization of M′. Then

for every space X the functor i! : AlgbrdX(M) → AlgbrdX(M′) preserves limits and is
accessible. It follows from [Lur09a] proposition 4.3.1.9 together with the fact that the
projection Algbrd(M′)Spc → Spc is both a cartesian and a cocartesian fibration, that the
functor i! : Algbrd(M)→ Algbrd(M′) preserves limits and is accessible. It now follows from
the adjoint functor theorem that the above square is in fact also vertically left adjointable.
In particular, we have that CatM is a localization of CatM

′
.

We can describe this in more concrete terms. Let A be an M′-enriched category. Then
A belongs to the image of i! if and only if for every pair of objects x, y in A we have that
HomA(x, y) belongs to M. Equivalently, for every object m′ in M′, the map

HomM′(ii
Lm′,HomA(x, y))→ HomM′(m

′,HomA(x, y))

given by precomposition with the unit m′ → iiLm′, is an equivalence. It follows that A
belongs to the image of i! if and only if it is local for the class of maps Cm′ → CiiLm′ . Note
that we can simplify this further: we may take m′ to belong to a set of generators of M′.

3.5 Multiplicativity

We now discuss the notion of tensor product of algebroids and enriched categories.
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Proposition 3.5.1. The category Algbrd has finite products, which are preserved by the
projection to Cat×OpAssos.

Proof. Let X be a category. Then the functor AlgbrdX(−) : OpAssos → Cat is limit preserving.
It follows from [Lur09a] corollary 4.3.1.15, that the total category AlgbrdX of the associated
cocartesian fibration has all finite products, which are preserved by the projection to OpAssos.
Furthermore, if {Ai}i∈I is a finite family of objects of AlgbrdX lying above a finite family
of associative operads {Mi}i∈I , then its product is the unique object A in AlgbrdX(

∏
Mi)

equipped with cocartesian arrows to Ai lifting the projection
∏
Mi →Mi, for all i in I.

Assume now given a functor of categories f : Y → X. Then f !A is an object in
AlgbrdY (

∏
Mi) which comes equipped with cocartesian arrows to f !Ai lifting the projections∏

Mi →Mi, for all i in I. It follows that f ! preserves finite products. By a combination of
[Lur09a] propositions 4.3.1.9 and 4.3.1.10 we conclude that the projection Algbrd→ Cat has
all relative finite products, which are preserved by the map Algbrd → Cat×OpAssos. Our
result now follows from the fact that Cat has all finite products.

Remark 3.5.2. It follows from proposition 3.5.1 that the final object of Algbrd is the unique
algebroid lying above the final object of Cat×OpAssos. In other words, this is the unit
algebroid of the final monoidal category.

Notation 3.5.3. Let A,B be objects of Algbrd. We denote by A � B their product in
Algbrd.

Remark 3.5.4. Let X, Y be categories and M,N be associative operads. Let A,B be
objects in AlgbrdX(M) and AlgbrdY (N ), respectively. Denote by p1, p2 the projections from
Algbrd to Cat and OpAssos, respectively. It follows from the proof of proposition 3.5.1 that
the span

A ← A� B → B

is the unique lift of the span

(X,M)← (X × Y,M×N )→ (Y,N )

such that its left and right legs can be written as the composition of a p2-cocartesian followed
by a p1-cartesian morphism.

It follows that A� B is the algebroid defined by the map

AssosX×Y = AssosX ×AssosY
A×B−−−→M×N

and the projections to A and B are induced from the following commutative diagram:

AssosX AssosX ×AssosY AssosY

M M×N N
A A×B B
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In particular, A� B is an (M×M′)-algebroid with category of objects X × Y , and for
every pair of objects (x′, y′), (x, y) we have an equivalence

(A� B)((x′, y′), (x, y)) = (A(x′, x),B(y′, y)).

The composition maps for A � B are obtained by taking the product of the composition
maps of A and B.

Proposition 3.5.5. Let f : A → A′ be a morphism in Algbrd and let B be another object
of Algbrd. Denote by p = (p1, p2) the projection Algbrd→ Cat×OpAssos.

(i) If f is p1-cartesian then f � idB is p1-cartesian.

(ii) If f is p2-cocartesian then f � idB is p2-cocartesian.

Proof. Denote by X,X ′, Y the categories of objects of A,A′ and B, respectively, and let
M,M′,N be their underlying associative operads. Consider the following commutative
diagram in Cat×OpAssos:

(X × Y,M×N ) (X × Y,M) (X,M)

(X ′ × Y,M′ ×N ) (X ′ × Y,M′) (X ′,M′)

(p1f×id,p2f×id)

(id,pM)

(p1f×id,p2f)

(pX ,idM)

(p1f,p2f)

(id,pM′ ) (pX′ ,id)

This admits a lift to a commutative diagram

A� B A A

A′ � B A′ A′
f�idB µ f

where the horizontal rows are the factorizations of the projections as p2-cocartesian maps
followed by p1-cartesian maps.

Similarly, the commutative diagram

(X × Y,M×N ) (X × Y,N ) (Y,N )

(X ′ × Y,M′ ×N ) (X ′ × Y,N ) (Y,N )

(p1f×id,p2f×id)

(id,pN )

(p1f×id,id)

(pY ,id)

(id,id)

(id,pN ) (pY ,id)

admits a lift to a commutative diagram

A� B B B

A′ � B B̃ B

f�idB ν id
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where the horizontal rows consist of a p2-cocartesian followed by a p1-cartesian map.
Assume now that f is p1-cartesian, so that M = M′. Then µ and ν are p1-cartesian.

Write f � idB = αη where α is p1-cartesian and η is such that (p1, p2)η is invertible. We have

µ = (pM)!(f � idB) = (pM)!(α)(pM)!(η).

Since (pM)! is a morphism of cartesian fibrations, we have that (pM)!(α) is cartesian and there-
fore (pM)!(η) is an isomorphism. Similarly, we can conclude that (pN )!(η) is an isomorphism.
Item (i) now follows from the fact that the projections

AlgbrdX×Y (N )
(pN )!←−−− AlgbrdX×Y (M×N )

(pM)!−−−→ AlgbrdX×Y (M)

are jointly conservative.
We now prove item (ii). In this case, f is p2-cocartesian, so that X = X ′. We therefore

have that ν is invertible. Furthermore, we have that µ = p!
Xf is p2-cocartesian. As before,

write f � idB = ηα where α is p2-cocartesian and η is such that (p1, p2)η is invertible. The
composition of η with the p2-cocartesian map pA′ : A′ � B → A′ is a lift of the projection
(idX×Y , pM′) whose composition with the p2-cocartesian map α is p2-cocartesian. It follows
that pA′η is p2-cocartesian, and therefore we have that (pM′)!η is an isomorphism. A similar
argument shows that (pN )!η is an isomorphism. Our result now follows from the fact that
the projections

AlgbrdX×Y (N )
(pN )!←−−− AlgbrdX×Y (M′ ×N )

(pM′ )!−−−→ AlgbrdX×Y (M′)

are jointly conservative.

Construction 3.5.6. We equip Algbrd and Cat×OpAssos with their cartesian symmetric
monoidal structures, so that the projection Algbrd → Cat×OpAssos inherits a canonical
symmetric monoidal structure by proposition 3.5.1. It follows from proposition 3.5.5 that the
projection Algbrd→ OpAssos is a cocartesian fibration of operads, which straightens to a lax

symmetric monoidal structure on the functor Algbrd(−) : OpAssos → Ĉat. Given M and N
two associative operads, this produces a functor

Algbrd(M)× Algbrd(N )→ Algbrd(M×N )

which sends a pair of algebroids A,B to A� B.
Let M be a symmetric monoidal category. We can think about M as a commutative

algebra object in Alg(Cat), and hence as a commutative algebra object in OpAssos. It follows
that Algbrd(M) inherits a symmetric monoidal structure. We will usually denote by

⊗ : Algbrd(M)× Algbrd(M)→ Algbrd(M)

the resulting functor. We note that the assignmentM 7→ (Algbrd(M),⊗) is part of a functor

CAlg(Cat)→ CAlg(Ĉat).
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Remark 3.5.7. Let M be a symmetric monoidal category. The unit of the symmetric
monoidal structure on Algbrd(M) is the unit algebra in M, thought of as an algebroid with
category of objects [0]. The tensor product functor on Algbrd(M) can be computed as the
composition

Algbrd(M)× Algbrd(M)
�−→ Algbrd(M×M)

m!−→M
where m :M×M→M is the tensoring map. In particular, if A and B have category of
objects X and Y respectively then A⊗ B has category of objects X × Y . Moreover, if x, x′

are objects in X and y, y′ are objects in Y , we have an equivalence

(A⊗ B)((x′, y′), (x, y)) = A(x′, x)⊗A(y′, y).

Proposition 3.5.8. LetM be a category admitting finite products, equipped with the cartesian
symmetric monoidal structure. Then the symmetric monoidal structure on Algbrd(M) given
by construction 3.5.6 is cartesian.

Proof. As observed in remark 3.5.7, the unit 1Algbrd(M) of Algbrd(M) is the unit algebra in
M. To check that 1Algbrd(M) is final in Algbrd(M) we have to see that for every category
X, the algebroid π!

X1Algbrd(M) is final in AlgbrdX(M), where πX : X → [0] denotes the
projection. Indeed, for every pair of objects x, y in X we have

π!
X1Algbrd(M)(y, x) = 1Algbrd(M)(πXy, πXx) = 1M

which is final in M. The fact that π!
X1Algbrd(M) is final then follows from [Lur17] corollary

3.2.2.5.
It remains to check that for every pair of algebroids A,B in M, the projections

A = A⊗ 1Algbrd(M) ← A⊗B → 1Algbrd(M) ⊗ B = B

exhibit A⊗B as the product of A and B in Algbrd(M). Let X, Y be the category of objects
of A,B respectively. We have to show that for every category Z equipped with functors
j : Z → X and j′ : Z → Y , the projections

j!A ← (j × j′)!(A⊗ B)→ j′!B

exhibit (j × j′)!(A ⊗ B) as the product of j!A and j′!B in the category AlgbrdZ(M). Let
z, w be objects in Z. The induced diagram

j!A(z, w)← (j × j′)!(A⊗ B)(z, w)→ j′!B(z, w)

is the equivalent to the diagram

A(jz, jw) = A(jz, jw)⊗ 1M ← A(jz, jw)⊗ B(j′z, j′w)→ 1M ⊗ B(j′z, j′w) = B(j′z, j′w)

and therefore it exhibits (j × j′)!(A ⊗ B)(z, w) as the product of j!A(z, w) and j′!B(z, w).
Our result now follows from another application of [Lur17] corollary 3.2.2.5.
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The symmetric monoidal structure on algebroids from construction 3.5.6 restricts to
algebroids with a space of objects. The next proposition shows that this induces a symmetric
monoidal structure on enriched categories.

Proposition 3.5.9. Let M be a symmetric monoidal category. Then the localization functor
Algbrd(M)Spc → CatM is compatible with the restriction of the symmetric monoidal structure
of construction 3.5.6.

Proof. Recall that a morphism F : A → B in Algbrd(M)Spc is local for the localization in
the statement if and only if it is fully faithful and surjective on objects. Equivalently, this
means that F is p1-cartesian and surjective on objects.

Let A′ be another object of Algbrd(M)Spc. It follows from propositions 3.5.1 and 3.5.5
that

F � idA′ : A�A′ → B �A′

is still fully faithful and surjective on objects. Therefore the map F ⊗ idA′ = m!(F � idA′) is
also fully faithful and surjective on objects, so it is local for the localization in the statement,
as desired.

Corollary 3.5.10. Let M be a symmetric monoidal category. Then CatM inherits a sym-
metric monoidal structure from Algbrd(M)Spc, and the localization Algbrd(M)Spc → CatM

has a canonical symmetric monoidal structure.

Example 3.5.11. LetM be a category admitting finite products, equipped with its cartesian
symmetric monoidal structure. Then it follows from proposition 3.5.8 that the induced
symmetric monoidal structure on CatM is cartesian.

For later purposes, we will need a generalization of the functoriality of construction 3.5.6
which deals with lax symmetric monoidal functors between symmetric monoidal categories.
In fact, it turns out that for any symmetric operad M one can give Algbrd(M) and CatM

the structure of a symmetric operad, in a way that depends functorially on M.

Construction 3.5.12. Denote by Env : Op → CAlg(Cat) the functor that sends each
symmetric operad to its enveloping symmetric monoidal category - in other words, this is left
adjoint to the inclusion CAlg(Cat)→ Op. Consider now the composite functor

ξ : Op
Env−−→ CAlg(Cat)

Algbrd(−)−−−−−−→ CAlg(Ĉat).

Note that the composition of ξ with the forgetful functor CAlg(Ĉat) → Ĉat receives a

natural transformation η from the functor Algbrd(−)|Op : Op→ Ĉat. For each symmetric
operad M, this induces a functor

η(M) : Algbrd(M)→ ξ(M) = Algbrd(Env(M)).

Since the unit map M→ Env(M) is an inclusion of symmetric operads, we have that η(M)
is fully faithful. Its image consists of those Env(M)-algebroids A such that A(y, x) belongs
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to M for each pair of objects y, x in A. Since Algbrd(Env(M)) has a symmetric monoidal
structure, the full subcategory Algbrd(M) inherits the structure of a symmetric operad. This
is compatible with morphisms of symmetric operads, so we obtain a lift of Algbrd(−)|Op to a
functor

(Algbrd(−)|Op)enh : Op→ Ôp.

The following proposition shows that construction 3.5.12 extends the functoriality of the
theory of algebroids on symmetric monoidal categories from construction 3.5.6.

Proposition 3.5.13. The restriction of the functor (Algbrd(−)|Op)enh to CAlg(Cat) factors

through CAlg(Ĉat), and coincides with the functor arising from construction 3.5.6.

Proof. Let M be a symmetric monoidal category. Then the inclusion M → Env(M)
exhibits M as a symmetric monoidal localization of Env(M). It follows that the inclusion
Algbrd(M)→ Env(M) exhibits Algbrd(M) (with its symmetric monoidal structure from
construction 3.5.6) as a symmetric monoidal localization of Algbrd(Env(M)). This shows that
the operadic structure on Algbrd(M) from construction 3.5.12 coincides with the operadic
structure underlying the symmetric monoidal structure given to in construction 3.5.6.

Assume now given a symmetric monoidal functor F : M → M′ between symmetric
monoidal categories. We have a commutative square of symmetric monoidal categories and
symmetric monoidal functors

Algbrd(Env(M)) Algbrd(Env(M′))

Algbrd(M) Algbrd(M′).

Env(F )!

F!

This is vertically right adjointable. Passing to right adjoints of the vertical arrows yields a
commutative diagram of symmetric monoidal categories and lax symmetric monoidal functors

Algbrd(Env(M)) Algbrd(Env(M′))

Algbrd(M) Algbrd(M′).

Env(F )!

F!

It follows that the structures of morphism of symmetric operads on F! arising from construc-
tions 3.5.6 and 3.5.12 agree. In particular, we conclude that the restriction of (Algbrd(−)|Op)enh

to CAlg(Cat) factors through CAlg(Ĉat).
Consider now the lax commutative triangle

CAlg(Cat) CAlg(Cat)

CAlg(Ĉat)

Env

Algbrd(−)
Algbrd(−)
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obtained by applying Algbrd(−) to the counit of the defining adjunction for Env. Passing to
right adjoints yields a commutative triangle

CAlg(Cat) CAlg(Cat)

Ôp.

Env

Algbrd(−)
Algbrd(−)

This identifies the diagonal arrow with the restriction of (Algbrd(−)|Op)enh to CAlg(Cat).

Remark 3.5.14. Let F :M→M′ be a symmetric monoidal functor between symmetric
monoidal categories. Assume that F admits a right adjoint FR, and equip FR with its natural
lax symmetric monoidal structure. Then F and FR induce a symmetric monoidal adjunction

Env(F ) : Env(M) Env(M′) : Env(FR).

This in turn induces a symmetric monoidal adjunction

Env(F )! : Algbrd(Env(M)) Algbrd(Env(M′)) : Env(FR)!

which restricts to an adjunction with symmetric monoidal left adjoint

F! : Algbrd(M) Algbrd(M′) : FR
! .

It follows from this that the lax symmetric monoidal structure on FR
! arising from construction

3.5.12 is equivalent to the one arising by passing to adjoints the symmetric monoidal structure
on F!.

Remark 3.5.15. Let F :M→M′ be a lax symmetric monoidal functor between symmetric
monoidal categories. Then the lax symmetric monoidal functor

F! : Algbrd(M)→ Algbrd(M′)

restricts to a lax symmetric monoidal functor

F! : Algbrd(M)Spc → Algbrd(M′)Spc

which in turn induces a lax symmetric monoidal functor F! : CatM → CatM
′
. This forms

part of a functor

(Cat(−) |CAlg(Cat)lax)enh : CAlg(Cat)lax → CAlg(Ĉat)lax

where CAlg(Cat)lax denotes the category of symmetric monoidal categories and lax symmetric
monoidal functors.
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We now study the presentable symmetric monoidal case. The following result follows
from a version of [GH15] corollary 4.3.16 - we refer the reader there for a proof.

Proposition 3.5.16. LetM be a presentable symmetric monoidal category. Then the induced
symmetric monoidal structures on Algbrd(M) and CatM are compatible with colimits.

Corollary 3.5.17. Let M be a cartesian closed presentable category. Then Algbrd(M) and
CatM are cartesian closed.

Proof. Combine proposition 3.5.16 with example 3.5.11.

Notation 3.5.18. Let M be a presentable symmetric monoidal category. We denote by

Funct(−,−) : Algbrd(M)op × Algbrd(M)→ Algbrd(M)

the internal Hom for the closed symmetric monoidal category Algbrd(M).

Proposition 3.5.19. Let M be a presentable symmetric monoidal category. Then the
category Algbrd(M)Spc is both a symmetric monoidal localization and a symmetric monoidal
colocalization of Algbrd(M).

Proof. Consider the pullback square

Algbrd(M)Spc Algbrd(M)

Spc Cat .

i′

p′ p

i

Recall from proposition 3.3.12 that p is both a cartesian and cocartesian fibration. Since i
has both left and right adjoints, we conclude that i′ has both left and right adjoints as well.

Concretely, given anM-algebroid A with category of objects X, the unit A → i′i′LA is a
p-cocartesian lift of the map X → ≤0X from X into its geometric realization, and the counit
i′i′RA → A is a p-cartesian lift of the map X≤0 → X which includes the space of objects of
X inside X.

It remains to show that the adjoints to i′ are compatible with the symmetric monoidal
structure on Algbrd(M). Let A and B be a pair ofM-algebroids with category of objects X
and Y , respectively. Denote by ηA : A → i′i′LA and εA : i′i′RA → A the localization and
colocalization of A.

Applying propositions 3.5.1 and 3.5.5 together with remark 3.5.7 we see that the map

idB⊗εA : B ⊗ i′i′RA → B ⊗A

is p-cartesian and lies above an iR-colocal map. This implies that it is i′R-colocal, and
therefore we have that Algbrd(M)Spc is a symmetric monoidal colocalization of Algbrd(M).
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Consider now the map

idB⊗ηA : B ⊗A → B ⊗ i′i′LA.

Its image under p is iL-local by a combination of proposition 3.5.1 and remark 3.5.7, together
with the fact that iL preserves products. To prove that it idB⊗ηA is i′-local it now suffices
to show that it is p-cocartesian. Using [GH15] lemma 3.6.15 we see that

idB�ηA : B �A → B � i′i′LA

is cocartesian for the projection Algbrd(M×M)→ Cat. In other words, idB�ηA exhibits
B � i′i′LA as the free AssosY×(≤0X)-algebra on the AssosY×X-algebra B �A. Our claim now
follows from the fact that the multiplication map m :M×M→M preserves the operadic
colimits involved in the description of this free algebra.

Proposition 3.5.20. Let M be a presentable symmetric monoidal category and let A,B be
two M-algebroids.

(i) If B has a space of objects then Funct(A,B) has a space of objects.

(ii) If B is an enriched category then Funct(A,B) is an enriched category.

Proof. Item (i) follows directly from the fact that Algbrd(M)Spc is a symmetric monoidal
localization of Algbrd(M). Similarly, item (ii) follows from proposition 3.5.9.

Corollary 3.5.21. Let M be a presentable symmetric monoidal category. The functors
Funct(−,−)|Algbrd(M)op

Spc×Algbrd(M)Spc
and Funct(−,−)|(CatM)op×(CatM) are equivalent to the

internal Homs of Algbrd(M)Spc and CatM, respectively.

Proof. This is a direct consequence of proposition 3.5.20.

Remark 3.5.22. The involution (−)op : Algbrd→ Algbrd is product preserving. It follows
that if M is a symmetric monoidal category, then the involution (−)op on Algbrd(M)
respects the symmetric monoidal structure. In particular, given M-algebroids A,B, there is
an equivalence

Funct(Aop,Bop)op = Funct(A,B).

Our next goal is to provide a concrete description of the product of cells, and use it to
study functor algebroids in the case when the source is a cell.

Notation 3.5.23. LetM be a monoidal category with an initial object compatible with the
monoidal structure and let m,m′ be objects in M. Let X = {a, b, c} be the set with three
elements. Let Cm,m′ be the free AssosX-algebra equipped with maps m → Cm,m′(b, c) and
m′ → Cm,m′(a, b). This is characterized by the following properties:

• Cm,m′(a, a) = Cm,m′(b, b) = Cm,m′(c, c) = 1M.
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• Cm,m′(a, b) = m′

• Cm,m′(b, c) = m.

• Cm,m′(a, c) = m⊗m′

• Cm,m′(b, a) = Cm,m′(c, a) = Cm,m′(c, b) is the initial object of M.

We note that Cm,m′ fits into a pushout

1M Cm

Cm′ Cm,m′

where the top horizontal arrow and left vertical arrows pick out the target and source objects,
respectively.

Remark 3.5.24. Let M be a symmetric monoidal category with compatible initial object,
and let m,m′ be objects inM. Then the algebroid Cm⊗Cm′ has objects (i, j) for 0 ≤ i, j ≤ 1.
Its morphisms can be depicted schematically as follows:

(0, 0) (1, 0)

(0, 1) (1, 1)

m

m′
m⊗m′

m′

m

Every Hom-object which is not associated to an arrow in the above diagram is the initial
object in M. Note that Cm ⊗ Cm′ fits into a commutative square

Cm⊗m′ Cm,m′

Cm′,m Cm ⊗ Cm′

where:

• The right vertical arrow picks out the m-cell between (0, 0) and (1, 0) and the m′-cell
between (1, 0) and (1, 1).

• The bottom horizontal arrow picks out the m′-cell between (0, 0) and (0, 1) and the
m-cell between (0, 1) and (1, 1).

• The cell Cm,⊗m′ → Cm ⊗ Cm′ the m⊗m′-cell between (0, 0) and (1, 1).
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Proposition 3.5.25. LetM be a symmetric monoidal category with compatible initial object,
and let m,m′ be objects in M. Then the commutative square of M-algebroids

Cm⊗m′ Cm,m′

Cm′,m Cm ⊗ Cm′

from remark 3.5.24, is a pushout square.

Proof. Observe first that the induced square at the level of objects is given by

{(0, 0), (1, 1)} {(0, 0), (1, 0), (1, 1)}

{(0, 0), (0, 1), (1, 1)} {0, 1} × {0, 1}

k

l j

i

and is indeed a pushout square. Consider the following M-algebroids:

Cm⊗m′ = (jk)!Cm⊗m′

Cm,m′ = j!Cm,m′

Cm′,m = i!Cm′,m

Here we denote with (−)! the functors induced from the fact that the projection map
Algbrd(M) → Cat is a cocartesian fibration. In other words, the above algebroids are
obtained from the previous ones by adding extra objects so that they all have set of objects
{0, 1}2, where the new Hom objects are declared to be the initial object of M. Combining
proposition 3.3.12 with [Lur09a] proposition 4.3.1.9, we reduce to showing that the induced
square

Cm⊗m′ Cm,m′

Cm′,m Cm ⊗ Cm′

is a pushout square in Algbrd{0,1}2(M). Our claim now follows from the fact that the
images of the above square under the evaluation functors Algbrd{0,1}2(M)→M are pushout
squares.

Corollary 3.5.26. Let M be a presentable symmetric monoidal category and let m be an
object in M. Let A be an M-algebroid and let µ, ν : Cm → A be two m-cells in A. Denote
by HomM the internal Hom functor for M. Then there is a pullback square

Funct(Cm,A)(ν, µ) A(ν(0), µ(0)))

A(ν(1), µ(1)) HomM(m,A(ν(1), µ(0)))



CHAPTER 3. ENRICHED CATEGORY THEORY 53

where the top horizontal and left vertical arrows are given by the source and target maps, and
the right horizontal and bottom vertical arrows are induced by composition with the cells ν
and µ, respectively.

Proof. Let m′ be another object ofM. The pushout square of remark 3.5.24 can be enhanced
to a colimit diagram

1M t 1M Cm t 1M

1M t Cm Cm⊗m′ Cm,m′

Cm′,m Cm ⊗ Cm′

where map 1M t 1M → Cm⊗m′ picks out the source and target objects, and the maps
1M t Cm → Cm′,m and Cm t 1M → Cm,m′ pick out the m-cell and the object which is not
contained in it.

Let X be the category of objects of A. We have an induced limit diagram of spaces

X≤0 ×X≤0 Hom(Cm,A)×X≤0

X≤0 × Hom(Cm,A) Hom(Cm⊗m′ ,A) Hom(Cm,m′ ,A)

Hom(Cm′,m,A) Hom(Cm ⊗ Cm′ ,A)

where all Homs are taken in Algbrd(M).
Consider now the commutative diagram of spaces

[0] [0] [0]

X≤0 × HomAlgbrd(M)(Cm,A) X≤0 ×X≤0 HomAlgbrd(M)(Cm,A)×X≤0

(µ(0),ν) (µ(0),ν(1)) (µ,ν(1))

where the bottom left horizontal arrow is the target map, and the bottom right horizontal
arrow is the source map. Pulling back our previous diagram along this yields a cartesian
square of spaces

HomM(m′,HomM(m,A(ν(1), µ(0)))) HomM(m′,A(ν(1), µ(1)))

HomM(m′,A(ν(0), µ(0))) HomM(m′,Funct(Cm,A)(ν, µ)).

Our claim now follows from the fact that the above square is natural in m′.



CHAPTER 3. ENRICHED CATEGORY THEORY 54

We finish by studying the behavior of functor algebroids under changes in the enriching
categories.

Proposition 3.5.27. Let G :M→M′ be a colimit preserving symmetric monoidal functor
between presentable symmetric monoidal categories. Let C be an M-algebroid and let D be an
M′ algebroid. There is an equivalence of M-algebroids

Funct(C, (GR)!D) = (GR)! Funct(G!C,D)

which is natural in C and D.

Proof. Let E be another M-algebroid. Then we have a chain of equivalences

HomAlgbrd(M)(E ,Funct(C, (GR)!D)) = HomAlgbrd(M)(E ⊗ C, (GR)!D)

= HomAlgbrd(M′)(G!(E ⊗ C),D)

= HomAlgbrd(M′)(G!E ⊗G!C,D)

= HomAlgbrd(M′)(G!E ,Funct(G!C,D))

= HomAlgbrd(M)(E , (GR)! Funct(G!C,D)).

Our claim follows from the fact that the above equivalences are natural in E , C and D.

Proposition 3.5.28. Let i : M → M′ be a lax symmetric monoidal functor between
presentable symmetric monoidal categories. Assume that i is fully faithful and admits a left
adjoint which is strictly symmetric monoidal. Let C be an M′-algebroid, and D be an M
algebroid. Then Funct(C, i!D) belongs to the image of i! : Algbrd(M)→ Algbrd(M′).

Proof. Our conditions guarantee that i! : Algbrd(M) → Algbrd(M′) is fully faithful, and
admits a symmetric monoidal left adjoint. To show that Funct(C, i!D) belongs to the image
of i!, it suffices to show that it is local for the maps qE : E → i!i

L
! E , for each M′-algebroid E .

Indeed, the map

HomAlgbrd(M′)(i!i
L
! E ,Funct(C, i!D))→ HomAlgbrd(M′)(E ,Funct(C, i!D))

of precomposition with qE is equivalent to the map

HomAlgbrd(M′)(i!i
L
! E ⊗ C, i!D)→ HomAlgbrd(M′)(E ⊗ C, i!D)

of precomposition with qE ⊗ idC. It therefore suffices to show that the induced map

iL! (E ⊗ C)→ iL! (i!i
L
! E ⊗ C)

is an equivalence. This follows from the fact that iL! is a symmetric monoidal localization.

Corollary 3.5.29. Let i :M→M′ be a symmetric monoidal functor between presentable
symmetric monoidal categories. Assume that i is fully faithful and has a left adjoint which
is strictly symmetric monoidal. Let C,D be M-algebroids. Then there is an equivalence
i! Funct(C,D) = Funct(i!C, i!D), which is natural in C,D.

Proof. This is a direct consequence of proposition 3.5.28, as i! Funct(C,D) and Funct(i!C, i!D)
both corepresent the same functor on Algbrd(M).
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3.6 ω-categories

The theory of n-categories can be obtained as a special case of the general notion of enriched
categories. We refer the reader to [GH15] and [Hin20a] for proofs that the following definition
agrees with other models for the theory of n-categories.

Definition 3.6.1. Let 1Cat be the category of categories. We inductively define for each
n ≥ 2 the cartesian closed presentable category nCat of n-categories to be the category
Cat(n−1)Cat of categories enriched in the cartesian closed presentable category (n− 1)Cat.

Construction 3.6.2. Let i : Spc→ Cat be the inclusion. This admits a left adjoint, and in
particular it has a canonical symmetric monoidal structure, where we equip Spc and Cat with
their cartesian symmetric monoidal structures. Specializing the discussion of remark 3.4.15
we obtain a commutative square of presentable categories and colimit preserving morphisms

Algbrd(Spc)Spc Cat

Algbrd(Cat)Spc 2Cat

i! i!

which is both horizontally right adjointable and vertically left adjointable, and whose vertical
arrows are fully faithful.

Denote by i1,2 the functor i! : Cat→ 2Cat. Arguing by induction, we obtain for all n ≥ 2
a commutative square of presentable categories and colimit preserving functors

Algbrd((n− 1)Cat)Spc nCat

Algbrd(nCat)Spc (n+ 1)Cat

(in−1,n)! in,n+1

which is both horizontally right adjointable and vertically left adjointable, and whose vertical
arrows are fully faithful. In particular, we have a sequence of presentable categories and left
adjointable colimit preserving fully faithful functors

0Cat
i0,1−−→ Cat

i1,2−−→ 2Cat
i2,3−−→ 3Cat . . .

where we set 0Cat = Spc and i0,1 = i. For each pair m ≥ n denote by in,m : nCat→ mCat
the corresponding inclusion.

Example 3.6.3. Let C0 be the terminal object in Spc, and C1 be the arrow category [1]. We
inductively define for each n ≥ 2 an n-category Cn as the cell associated to the (n−1)-category
Cn−1. We call Cn the n-cell. It follows by induction that the category nCat is compactly
generated by the object Cn. Note that for each 0 ≤ k < n there are source and target maps
ik,nCk → Cn.
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In practice, we usually identify n-categories with their images under the functors in,m. In
other words, many times we implicitly work in the direct limit of the categories nCat.

Notation 3.6.4. Let ωCat be the direct limit in PrL of the sequence of construction 3.6.2.
We call it the category of ω-categories. For each n ≥ 0 denote by in,ω : nCat → ωCat the
induced map.

Remark 3.6.5. We can alternatively think about ωCat as the limit of the categories nCat
under the functors (in,n+1)R : (n + 1)Cat → nCat. In other words, an ω-category is a
compatible family of n-categories for all n ≥ 0. The resulting projections ωCat→ nCat are
right adjoint to the maps in,ω.

Note that in,n+1 preserves compact objects for every n ≥ 0. Therefore ωCat is compactly
generated and the maps in,ω preserve compact objects. In particular, we have that the
projections (in,ω)R preserve filtered colimits.

Remark 3.6.6. The sequence of categories from construction 3.6.2 yields a functor

(−)Cat : N→ Cat

where N is the poset of natural numbers. Let p : E → N be the associated cocartesian
fibration. Since the functors in,n+1 admit right adjoints, this is also a cartesian fibration. By
virtue of remark 3.6.5, the category ωCat is the category of cartesian sections of p. Note
that E is a full subcategory of the product N× (

⋃
n≥0 nCat). It follows that ωCat is the full

subcategory of the functor category Funct(N,
⋃
n≥0 nCat) on those sequences of objects

C0
i0−→ C1

i1−→ . . .

such that Cn is an n-category for each n ≥ 0, and the map (in,n+1)Rin is an isomorphism for
each n ≥ 0.

Proposition 3.6.7. For each n ≥ 0 the inclusion in,ω : nCat → ωCat is fully faithful and
admits both a left and a right adjoint.

Proof. The existence of a right adjoint was already observed in remark 3.6.5. By the same
argument as in remark 3.6.6, we have an equivalence between ωCat and the full subcategory
of the functor category Funct(N≥n,

⋃
m≥nmCat) on those sequences

Cn
in−→ Cn+1

in+1−−→ . . .

such that Cm is an m-category for each m ≥ n, and the map (im,m+1)Rim is an isomorphism
for each m ≥ n. In this language, the projection (in,ω)R is given by the corestriction to nCat
of the composite map

ωCat ↪→ Funct(N≥n,
⋃
m≥n

mCat)
evn−−→

⋃
m≥n

mCat .
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The left adjoint to evn is given by left Kan extension along the inclusion {n} → N≥n, and
is fully faithful. The fact that in,ω is fully faithful follows from the fact that the left adjoint
to evn maps an n-category C to the constant diagram

C → C → . . .

and this belongs to ωCat.
It remains to show that in,ω admits a left adjoint. We have that in,ω is given by the

corestriction to ωCat of the composite map

nCat ↪→
⋃
m≥n

mCat→ Funct(N≥n,
⋃
m≥n

mCat)

where the second arrow is the functor of precomposition with the projection N≥n → {n}.
The composition of the two arrows above is limit and colimit preserving. Furthermore, the
inclusion ωCat→ Funct(N≥n,

⋃
m≥nmCat) is accessible and limit preserving. We conclude

that in,ω is accessible and limit preserving, and the adjoint functor theorem guarantees that
it admits a left adjoint, as desired.

Notation 3.6.8. Let n ≥ 0. We denote by (−)≤n and ≤n(−) the right and left adjoints to
the inclusion in,ω. We think about these as the functors that discard (resp. invert) cells of
dimension greater than n.

Remark 3.6.9. We have a diagram

i0,ω(−)≤0 → i1,ω(−)≤1 → i2,ω(−)≤2 → . . .→ idωCat

of endofunctors of ωCat, where the transitions are induced by the counits of the adjunctions
in,n+1 a (in,n+1)R. We note that for every n ≥ 0 the composition of the above sequence with
the functor (−)≤n is eventually constant, and is therefore a filtered colimit diagram.

Recall from remark 3.6.5 that ωCat is the limit of the sequence of categories

0Cat
(i0,1)R←−−−− 1Cat

(i1,2)R←−−−− 2Cat
(i2,3)R←−−−− . . .← ωCat .

Each of the transition functors above preserve filtered colimits. We conclude that idωCat is
the colimit of the endofunctors in,ω(−)≤n. In other words, every ω-category is the colimit of
its truncations.

Proposition 3.6.10. The category ωCat is cartesian closed.

Proof. Let D be an ω-category and let XB : IB → ωCat be a colimit diagram for X = XB|I .
We have to show that the induced diagram XB × D is also a colimit diagram. For each
n ≥ 0 let XBn be an extension of in,ω(X≤n) to a colimit diagram in ωCat. Thanks to remark
3.6.9, we have XB = colimnX

B
n . Since ωCat is compactly generated we have that products

distribute over filtered colimits, and therefore we have

XB ×D = colimn(XBn ×D).
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It suffices to show that XBn × D is a colimit diagram for each n ≥ 0. Using remark 3.6.9
again, we have

XBn ×D = colimm(XBn × im,ωD≤m).

It therefore suffices to show that for each n,m ≥ 0, the diagram XBn × im,ωD≤m is a colimit
diagram in ωCat. This follows from the fact that (max(n,m))Cat is cartesian closed and
closed under products and colimits inside ωCat.

Notation 3.6.11. We denote by

Funct(−,−) : ωCatop×ωCat→ ωCat

the internal Hom of ωCat.

Remark 3.6.12. Equip the category ωCat with its cartesian symmetric monoidal structure.
For each category X we have that AlgbrdX(ωCat) is equivalent to the limit of the categories
AlgbrdX(nCat) under the transition functors (in,n+1)R! . Integrating over all such X we see
that Algbrd(ωCat) is the limit of the categories Algbrd(nCat) under the functors (in,n+1)R! .

Using proposition 3.6.7 we see that the inclusion i0,ω is the unit map for the presentable
monoidal category ωCat. It follows that that an object in Algbrd(ωCat) is an enriched
category if and only if its image in Algbrd(nCat) is an enriched category for all n ≥ 0.
Therefore the category CatωCat is the limit of the categories CatnCat under the transition
functors (in,n+1)R! . Passing to left adjoints we conclude that the colimit in PrL of the diagram

CatSpc i0,1!−−→ CatCat i1,2!−−→ Cat2Cat i2,3!−−→ . . .

is CatωCat. The above is however equivalent to the diagram in construction 3.6.2. It follows
that there is an equivalence

CatωCat = ωCat

which makes the following diagram commute for all n ≥ 0:

CatnCat CatωCat

(n+ 1)Cat ωCat

=

in,ω!

in+1,ω

In other words, an ω-category can be thought of as a category enriched in ω-categories, in
a way which is compatible with the definition of (n + 1)-categories as categories enriched
in n-categories. In particular, the internal Hom functor for ωCat fits into the framework of
functor enriched categories from 3.5.

Proposition 3.6.13. The functor ≤n(−) : ωCat → nCat preserves finite products for all
n ≥ 0.
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Proof. We first observe that the final object of ωCat is the image of the final object of nCat
under the (limit preserving) inclusion in,ω. Hence ≤n(−) preserves final objects.

We now show that ≤n(−) preserves binary products. Let C,D be two ω-categories. Thanks
to remark 3.6.9, we can write C = colimm≥0 Cm and D = colimm≥0Dm where Cm and Dm are
m-categories for each m ≥ 0. Since products commute with filtered colimits in ωCat, we have

C × D = colimm≥0 Cm ×Dm.

Since ≤n(−) preserves colimits, we reduce to showing that for each m ≥ n the left adjoint to
the inclusion in,m preserves products. Arguing inductively, we may furthermore reduce to
the case n = 0, m = 1, which follows from the fact that the geometric realization functor
Cat→ Spc preserves finite products.

Corollary 3.6.14. Let C and D be ω-categories, and assume that D is an n-category for
some n ≥ 0. Then Funct(C,D) is an n-category. Moreover, if C is also an n-category then
Funct(C,D) can be identified with the internal Hom between C and D in nCat.

Proof. Combine proposition 3.6.13, proposition 3.5.28 and corollary 3.5.29.

Remark 3.6.15. Let n ≥ 0. Passing to right adjoints in the commutative diagram of remark
3.6.12 yields a commutative square

CatnCat CatωCat

(n+ 1)Cat ωCat .

=

(−)≤n!

(−)≤n+1

It follows that for every ω-category C, the category underlying C (thought of as an object
of CatωCat) is C≤1. In particular, its space of objects is C≤0. Furthermore, for each par of
objects x, y in C, we have an equivalence

HomC≤n+1(x, y) = HomC(x, y)≤n.

Similarly, passing to left adjoints in the commutative diagram of remark 3.6.12 yields a
commutative square

CatnCat CatωCat

(n+ 1)Cat ωCat .

=

≤n(−)!

≤n+1(−)

It follows that for every ω-category C, the (n+ 1)-category ≤n+1C is the image under the
localization functor Algbrd(nCat)Spc → (n + 1)Cat of an algebroid ≤n+1Cpre with space of
objects C≤0, and such that for every pair of objects x, y in C≤0 we have an equivalence

Hom≤n+1Cpre(x, y) = ≤nHomC(x, y).
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Example 3.6.16. Let m > n ≥ 1. It follows by induction that ≤nCm is the singleton set.
On the other hand, C≤nm is the boundary of the (n+ 1)-cell ∂Cn+1, defined inductively by the
fact that ∂C0 is empty, and for n ≥ 1 we have ∂Cn = C∂Cn−1 .

Remark 3.6.17. Looking at the unit of the adjunction i(n+1),ω a (−)≤n+1 through the
equivalence given by the first commutative square in remark 3.6.15 shows that an ω-category
C is an (n + 1)-category for some n ≥ 0 if and only for every pair of objects x, y in C, the
ω-category HomC(x, y) is an n-category.

Remark 3.6.18. Recall from remarks 3.3.8 and 3.4.11 that we have an involution (−)op on
the full subcategory of Algbrd on the enriched categories, which restricts to an involution on
the category of algebroids over any symmetric operad. In particular, for each n ≥ 1 we have
an induced involution on nCat by virtue of its description as Cat(n−1)Cat.

It follows by induction that nCat comes equipped with n commuting involutions (−)k-op

for 1 ≤ k ≤ n. We think about (−)k-op as the involution that inverts the direction of all
k-cells. These involutions are compatible with the inclusions in,n+1, and they therefore induce
an infinite family of commuting involutions on the category ωCat.
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Chapter 4

Modules over algebroids

Let M be a monoidal category and let C be a category left tensored over M. A left module
in C for an M-algebroid A consists of:

• For each object x in A an object P(x) in C.

• For every pair of objects x, y in A a morphism A(y, x)⊗ P(x)→ P(y).

• An infinite list of compatibility data between the above morphisms and the structure
maps for A.

More generally, assume given another monoidal category M′, and an M−M′-bimodule
category C. If A and B are algebroids in M and M′ respectively, an A− B-bimodule in C
consists of:

• For each pair of objects x in A and y in B, an object P(x, y) in C.

• For every pair of objects x, x′ in A and object y in B, a morphism

A(x′, x)⊗ P(x, y)→ P(x′, y).

• For every pair of objects y, y′ in B and object x in A, a morphism

P(x, y)⊗ B(y, y′)→ P(x, y′)

• An infinite list of compatibility data between the above morphisms and the structure
maps for A and B.

Our goal in this chapter is to review the theory of left modules and bimodules, and
provide a functorial enhancement of the procedure of enrichment of presentable modules over
presentable monoidal categories.

We begin in 4.1 by using the operads LMX from 3.2 to define the category of left modules
over an algebroid. We show that there is a well behaved procedure of restriction of scalars
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along morphisms of algebroids. We record here two basic results regarding the multiplicativity
properties of the theory of left modules, analogous the ones obtained in 3.5 for the theory of
algebroids.

In 4.2 we construct, for each presentable symmetric monoidal categoryM, a lax symmetric
monoidal functor

θM :M -mod(PrL)→ Ĉat
M
.

For each presentable M-module C, the enriched category θM(C) has C as its underlying
category, and for each pair of objects x, y in C one has an isomorphism between HomθM(C)(x, y)
and the Hom object HomC(x, y) obtained from the action of M on C. We show that the
functor θM is compatible with changes in the enriching category. In the particular case when
M is the category of spaces with its cartesian symmetric monoidal structure, we prove that
the functor θM is equivalent, as a lax symmetric monoidal functor, to the usual forgetful
functor from M -mod(PrL) to Ĉat. As a first consequence of the existence and properties of
θM we show that M admits a canonical enrichment over itself. This allows us in particular
to construct an (n+ 1)-category of n-categories for each n ≥ 0, and in the limit it provides a
definition of the ω-category of ω-categories.

In 4.3 we review the notion of bimodule over an algebroid. We recall here the approach
to the construction of the Yoneda embedding via the diagonal bimodule and the folding
construction from [Hin20a], and record a basic result regarding the procedure of restriction
of scalars in the context of bimodules over algebroids.

4.1 Left modules

We begin by reviewing the concept of left module over an algebroid.

Notation 4.1.1. For each LM-operad M we denote by Ml the its Assos-component, and
by Mm the fiber of M over the module object in LM.

Definition 4.1.2. Let M be a LM-operad. Let A be an algebroid in Ml with category of
objects X. A left A-module is a LMX-algebra in M, whose AssosX-component is identified
with A.

Remark 4.1.3. Let M be a LM-operad. Let A be an algebroid in Ml with category of
objects X. A left A-module P assigns to each object x in X an object P(x) in Mm. For
every n ≥ 0 and every sequence of objects and arrows

y0 = x0 ← y1, x1 ← y2, . . . , xn−1 ← yn, xn ← yn+1

in X, the left A- module P induces a multimorphism

{A(y1, x1), . . . ,A(yn, xn),P(yn+1)} → P(y0)

in M. In the case when M is a LM-monoidal category (in other words, Ml is a monoidal
category and Mm is a left module for it), this induces a morphism

A(y1, x1)⊗ . . .⊗A(yn, xn)⊗ P(yn+1)→ P(y0).
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In particular, in the case when n = 1 and the arrows are identities we obtain, for every pair
of objects x0, x1 in X a map

A(x0, x1)⊗ P(x1)→ P(x0).

This is compatible with the units and composition of A, up to homotopy.

Example 4.1.4. Let X be a category and let x be an object of X. Then the functor
(id, x) : X t [0]→ X induces a morphism of associative operads LMX → AssosX . It follows
that for every associative operad M and every M-algebroid A with category of objects X,
we have an induced left module P in M. This has the following properties:

• For every object x′ in X we have P(x′) = A(x′, x).

• For every pair of objects x′, x′′ in X the action map

{A(x′′, x′),P(x′)} → P(x′′)

is equivalent, under the identifications of the previous item, to the composition map

{A(x′′, x′),A(x′, x)} → A(x′′, x).

We call P the left module corepresented by x. We will usually use the notation A(−, x) for
P , and in the case when A is an M-enriched category, we instead write HomA(x,−).

Construction 4.1.5. Consider the functor AlgLM−(−) defined by the composition

Catop×OpLM

LM−× idOpLM−−−−−−−−→ Opop
LM×OpLM

Alg−(−)
−−−−−→ Cat .

For each object M in OpLM we denote by LMod(M) the total category of the cartesian
fibration associated to the functor AlgLM−(M) : Catop → Cat. This comes equipped with
a forgetful functor LMod(M) → Algbrd(Ml). For each algebroid A in Ml we denote by
LModA(M) the fiber of LMod(M) over A, and call it the category of left A-modules.

The assignment M 7→ LMod(M) defines a functor LMod(−) : OpBM → Ĉat. Let LMod
be the total category of the associated cocartesian fibration. In other words, LMod is the
total category of the two-sided fibration associated to AlgLM−(−).

Warning 4.1.6. Our usage of the terminology LMod(M) conflicts with that of [Lur17].
There only left modules over associative algebras are considered - this corresponds to the
fiber of the projection LMod(M)→ Cat over [0].

Remark 4.1.7. The category LMod fits into a commutative square

Arroplax(Cat) LMod Algbrd

Cat×Cat Cat×OpLM Cat×OpAssos .
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Here the vertical arrows are the two-sided fibrations classified by the functors Funct(−,−),
AlgLM−(−) and Algbrd−(−), and the horizontal arrows are the functors of “forgetting the
algebra” and “forgetting the left module”.

Proposition 4.1.8. Let M be a LM-operad. Then the projection

p : LMod(M)→ Algbrd(Ml)

is a cartesian fibration. Moreover, a morphism F : (A,P) → (B,Q) in LMod(M) is p-
cartesian if and only if for every object x in A the induced map P(x) → Q(F (x)) is an
isomorphism.

Proof. Let Env(M) be the LM-monoidal envelope of M, and let P(Env(M)) be the image
of Env(M) under the symmetric monoidal functor P : Cat→ PrL. We have a commutative
square of categories

LMod(M) LMod(P(Env(M)))

Algbrd(Ml) Algbrd(P(Env(M))l).

Note that the horizontal arrows are fully faithful. Our result would follow if we are able to
show that the right vertical arrow is a cartesian fibration, and that cartesian morphisms are
given by the condition in the statement. In other words, it suffices to prove the result in the
case when M is a presentable LM-monoidal category. We assume that this is the case from
now on.

Let X be a category. Recall from [Hin20a] that LMX is a flat LM-operad. It follows that
there is a universal LM-operad MX equipped with a morphism of LM-operads

MX ×LM LMX →M.

In particular, we have equivalences

AlgLMX
(M) = AlgLM(MX)

and
AlgbrdX(M) = AlgAssos((MX)l).

The projection pX : AlgLMX
(M)→ AlgbrdX(Ml) becomes identified, under this dictionary,

with the canonical projection

p′X : AlgLM(MX)→ AlgAssos((MX)l).

As discussed in [Hin20a] corollary 4.4.9, MX is a presentable LM-monoidal category. It
now follows from [Lur17] corollary 4.2.3.2 that pX is a cartesian fibration, and moreover a
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morphism F : (A,P)→ (B,Q) in AlgLMX
is pX-cartesian if and only if for every object x in

X the induced map P(x)→ Q(x) is an isomorphism.
Assume now that F is pX-cartesian and let g : Y → X be a functor of categories. Consider

the induced morphism
g!F : (g!A, g!P)→ (g!B, g!Q)

in AlgLMY
(M). Let y be an object in Y . Then the induced map g!P(y)→ g!Q(y) is equivalent

to the map P(g(y)) → Q(g(y)), and is therefore an isomorphism. It follows that g!F is
also pY -cartesian, and hence g! is a morphism of cartesian fibrations. Combining [Lur09a]
propositions 2.4.2.8 and 2.4.2.11 we conclude that p is a cartesian fibration.

Our characterization of p-cartesian morphisms follows from the above characterization of
pX-cartesian morphisms together with item (iii) in [Lur09a] proposition 2.4.2.11.

Notation 4.1.9. Let M be an associative operad. We denote by (OpLM)|M the fiber of the
projection OpLM → OpAssos over M, and by LMod |M the fiber over M of the projection
LMod→ OpAssos.

Corollary 4.1.10. Let M be an associative operad. Then the projection

LMod |M → (OpLM)|M × Algbrd(M)

is a two-sided fibration from (OpLM)|M to Algbrd(M).

Proof. By construction, the projection LMod→ Algbrd is a morphism of cocartesian fibra-
tions over the functor OpLM → OpAssos. It follows that the projection in the statement is
a morphism of cocartesian fibrations over (OpLM)|M. Its fiber over a given M-module is
a cartesian fibration, thanks to proposition 4.1.8. Our claim now follows from proposition
9.1.9.

Proposition 4.1.11. The categories LMod and Arroplax(Cat) admit finite products. More-
over, all the maps in the diagram of remark 4.1.7 preserve finite products.

Proof. The fact that LMod admits finite products which are preserved by the projection to
Cat×OpLM follows by the same arguments as those from proposition 3.5.1. One similarly
shows that Arroplax(Cat) admits finite products which are preserved by the projection to
Cat×Cat. It remains to show that the projections from LMod to Arroplax(Cat) and Algbrd
preserve finite products. Both claims can be proven using similar arguments - below we
present the case of Algbrd.

Observe first that the final object for LMod is the unique object lying above the final
object in Cat×OpLM. Its image in Algbrd is the unique algebroid lying above the final
object in Cat×OpAssos, which is indeed the final object of Algbrd.

It remains to show that the projection LMod→ Algbrd preserves binary products. Let
M,N be two LM-operads, and let X, Y be two categories. Let (A,P) and (B,Q) be objects
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of LMod lying above (X,M) and (Y,N ), respectively. A variant of the discussion from
remark 3.5.4 shows that their product (A,P)� (B,Q) fits into a diagram

(A,P)
β(A,P)←−−− (A,P)

α(A,P)←−−−− (A,P)� (B,Q)
α(B,Q)−−−→ (B,Q)

β(B,Q)−−−→ (B,Q)

where α(A,P) and α(B,Q) are cocartesian for the projection LMod → OpLM and β(A,P) and
β(B,Q) are cartesian for the projection LMod→ Cat. The image of the above diagram under
the projection to Algbrd recovers a diagram

A βA←− A αA←− W
αB−→ B βB−→ B

where αA and αB are cocartesian for the projection Algbrd → OpAssos and βA and βB are
cartesian for the projection Algbrd→ Cat. Using remark 3.5.4 we conclude that the above
diagram exhibits W as the product of A and B in Algbrd, as desired.

Proposition 4.1.12. Let f : (A,P) → (A′,P ′) be a morphism in LMod and let (B,Q) be
another object of LMod. Denote by p = (p1, p2) the projection LMod→ Cat×OpLM.

(i) If f is p1-cartesian then f � idB is p1-cartesian.

(ii) If f is p2-cocartesian then f � idB is p2-cocartesian.

Proof. Follows from the same arguments as those of proposition 3.5.5.

4.2 Enrichment of presentable modules

Our next goal is to discuss the procedure of enrichment of presentable modules over presentable
monoidal categories.

Notation 4.2.1. Recall the projection LMod → Arroplax(Cat) from remark 4.1.7. Note
that we have an inclusion Funct([1],Cat) → Arroplax(Cat) which is surjective on objects,
which arises from straightening the natural transformation HomCat(−,−) → Funct(−,−)
(see proposition 9.2.4). In other words, Funct([1],Cat) is the total category of the maximal
bifibration contained inside the two-sided fibration Arroplax(Cat)→ Cat×Cat.

We denote by LMod′ the fiber product LMod×Arroplax
Funct([1],Cat). For each M in

OpLM we denote by LMod′(M) the fiber over M of the projection LMod′ → OpLM.

Remark 4.2.2. A variation of the argument in 4.1.11 shows that the inclusion of the arrow
category Funct([1],Cat) inside Arroplax(Cat) preserves finite products. It follows that LMod′

admits finite products, which are preserved by its inclusion inside LMod.

Proposition 4.2.3. LetM be a presentable LM-monoidal category (in other words, a pair of

a monoidal category Ml and a presentable module Mm). Then L̂Mod′(M) has a final object.
Moreover, a pair (A,P) of an Ml-algebroid A with category of objects X and a left A-module
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P in Mm is final if and only if the functor X →Mm underlying P is an equivalence, and
for every pair of objects x, y in X, the action map

A(y, x)⊗ P(x)→ P(y)

exhibits A(y, x) as the Hom object between x and y.

Proof. Note that the composition of the projection L̂Mod′(M)→ Funct([1], Ĉat) with the

target map Funct([1], Ĉat)→ Ĉat is canonically equivalent to the constant functor Mm. It
follows that we have a commutative diagram

Ĉat/Mm L̂Mod′(M)

Ĉat

where the left vertical map is the forgetful functor, and the right vertical arrow picks out the
category of objects of the underlying algebroid. Since the right vertical arrow is a cartesian
fibration and the left vertical arrow is a right fibration, we have that the horizontal arrow is
a cartesian fibration.

Let X be a category equipped with a map f : X → Mm and recall the presentable

LM-monoidal categoryMX from the proof of proposition 4.1.8. The fiber of L̂Mod′(M) over
X is the category of LMX-algebras in Mm whose underlying functor X →Mm is f . This
can equivalently be described as the category of associative algebras in (MX)l equipped with
an action on f (thought of as an object of (MX)m). By [Hin20a] corollary 6.3.4, we conclude

that (L̂Mod′(M))X admits a final object, and moreover a pair (A,P) of an Ml-algebroid
with category of objects X and a left A-module P whose underlying functor X →Mm is f
is final if and only if for every pair of objects x, y in X the action map

A(y, x)⊗ f(x)→ f(y)

exhibits A(y, x) as the Hom object between f(x) and f(y).

This description implies that if (A,P) is final in (L̂Mod′(M))X and g : Y → X is a

functor of categories, then (g!A, g!P) is final in (L̂Mod′(M))Y . The result now follows from
an application of [Lur09a] proposition 4.3.1.10.

Corollary 4.2.4. Let M be a presentable LM-monoidal category. Then the projection

L̂Mod′(M)→ Âlgbrd(Ml) is a representable right fibration.

Proof. Combine propositions 4.1.8 and 4.2.3.
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Notation 4.2.5. Let M be a presentable monoidal category. We denote by

L̂Mod′|M -mod(PrL)

the base change of the projection L̂Mod′ → ÔpLM along the inclusionM -mod(PrL)→ ÔpLM.

For our next result, we need the notion of representable bifibration (see definition 9.2.7).

Corollary 4.2.6. Let M be a presentable monoidal category. Then the projection

L̂Mod′|M -mod(PrL) →M -mod(PrL)× Âlgbrd(M)

is a representable bifibration from M -mod(PrL) to Âlgbrd(M).

Proof. It follows from corollary 4.1.10 together with the description of cartesian arrows from
proposition 4.1.8 that the projection in the statement is the maximal bifibration contained
inside the base change of the projection from corollary 4.1.10 along the inclusion

M -mod(PrL)× Âlgbrd(M)→ (ÔpLM)|M × Âlgbrd(M).

The fact that it is representable is the content of corollary 4.2.4.

Our next goal is to study the dependence in Ml of the algebroid from proposition 4.2.3.

Construction 4.2.7. Consider the commutative diagram of categories

L̂Mod′|AlgLM(PrL) L̂Mod′ Âlgbrd

AlgLM(PrL) ÔpLM ÔpAssos

i′

p′
p

r

q

i j

where the left square is cartesian. We equip all four categories in the right square with their
cartesian symmetric monoidal structure. By propositions 3.5.1 and 4.1.11 together with
remark 4.2.2 we see that the right square has a canonical lift to a commutative square of
cartesian symmetric monoidal categories. It follows from propositions 3.5.5 and 4.1.12 that p
and q are in fact cocartesian fibrations of operads.

Equip AlgLM(PrL) with its canonical symmetric monoidal structure, so that i inherits a
lax symmetric monoidal structure. It follows from the above that p′ has a canonical structure
of cocartesian fibration of operads, and i′ of lax symmetric monoidal morphism.

Using proposition 4.2.3 we see that that p′ admits a fully faithful right adjoint p′R, which
comes equipped with a canonical lax symmetric monoidal structure. We therefore have a
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commutative diagram of symmetric monoidal categories and lax symmetric monoidal functors
as follows:

Âlgbrd

AlgLM(PrL) ÔpAssos

q

ji

ri′p′R

Note that ji factors through the lax symmetric monoidal inclusion AlgAssos(PrL)→ ÔpAssos,
so we have an induced diagram of symmetric monoidal categories and lax symmetric monoidal
functors

Âlgbrd|AlgAssos(PrL)

AlgLM(PrL) AlgAssos(PrL).

q′

u

θ′

Observe that the maps u and q′ are cocartesian fibrations of operads. IfMl is a presentable
symmetric monoidal category, thought of as a commutative algebra object in AlgAssos(PrL),
we obtain in particular an induced lax symmetric monoidal functor

θ′M :M -mod(PrL)→ Âlgbrd(M).

Proposition 4.2.8. The map θ′ from construction 4.2.7 is a morphism of cartesian fibrations
over AlgAssos(PrL).

Proof. We continue with the notation from construction 4.2.7. Observe that u and q′ are
indeed cartesian fibrations. For q′ this follows from the adjoint functor theorem combined
with remark 3.3.10, and for u this follows from [Lur17] corollary 4.2.3.2. The rest of the proof
is devoted to showing that θ′ maps u-cartesian arrows to q′-cartesian arrows.

Let F :M→M′ be a u-cartesian arrow in AlgLM(PrL), whose components consist of a
morphism of presentable monoidal categories Fl :Ml →M′

l and an isomorphism of modules
Fm :Mm →M′

m. Let (A,P) = p′R(M) and (A′,P ′) = p′R(M′). The morphism

p′RF : (A,P)→ (A′,P ′)

can be factored as ηα where α is a p′-cocartesian lift of F , and η : F!(A,P) → (A′,P ′) is

the unique map in L̂Mod′(M′) from F!(A,P) to the final object. Consider the morphism of
algebroids ri′η : (Fl)!A → A′. We have to show that the induced map µ : A → (FR

l )!A′ is an
isomorphism.

LetX andX ′ be the categories of objects ofA andA′, respectively. We have a commutative
square

Mm M′
m

X X ′

Fm

P

g

P ′
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where the bottom horizontal arrow is the projection of p′RF to Cat. It follows from proposition
4.2.3 that the vertical arrows are equivalences. Since Fm is also an isomorphism, we conclude
that g is an equivalence. It follows that η and µ also induce equivalences at the level of
categories of objects. To simplify notation, in the rest of the proof we identify X with Mm

and X ′ with M′
m via the isomorphisms P and P ′.

Let x, y be two objects in Mm. We have to show that the induced map

µ∗ : A(y, x)→ FR
l A′(Fmy, Fmx)

is an isomorphism. The morphism η induces a commutative square in M′
m as follows:

FlA(y, x)⊗ Fmx Fmy

A′(Fmy, Fmx)⊗ Fmx Fmy

ri′η∗⊗id id

Applying the (lax symmetric monoidal) right adjoint to F yields a commutative square in
Mm as follows:

FR
l FlA(y, x)⊗ x y

FR
l A′(Fmy, Fmx)⊗ x y

FRl ri
′η∗⊗id id

Composing with the unit map A(y, x)→ FR
l FlA(y, x) yields a commutative square

A(y, x)⊗ x y

FR
l A′(Fmy, Fmx)⊗ x y

µ∗⊗id id

where the top horizontal arrow exhibits A(y, x) as the Hom object between x and y.
It now suffices to show that the bottom horizontal arrow exhibits FR

l A′(Fmy, Fmx) as
the Hom object between x and y. This follows from the right adjointability of the following
commutative square of categories:

Ml Mm

M′
l M′

m

Fl

−⊗x

Fm

−⊗Fmx
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Corollary 4.2.9. Let F : M → M′ be a colimit preserving symmetric monoidal functor
between presentable symmetric monoidal categories. Then there is a commutative square of
symmetric monoidal categories and lax symmetric monoidal functors

M′ -mod(PrL) Âlgbrd(M′)

M -mod(PrL) Âlgbrd(M)

θ′M′

F ∗ FR!

θ′M

where F ∗ denotes the functor of restriction of scalars along F .

Proof. For each symmetric monoidal category X denote by X⊗ its category of operators.
The map F corresponds to a morphism F⊗ : [1] × Fin∗ → AlgAssos(PrL)⊗ over Fin∗. Base
change of θ′ along F⊗ yields a commutative diagram

(Âlgbrd|AlgAssos(PrL))
⊗
F⊗

AlgLM(PrL)⊗F⊗ [1]× Fin∗

v=(v1,v2)

h=(h1,h2)

θ′
F⊗

where h and v are cocartesian fibrations. Observe that the maps h and v are also two-sided
fibrations - in other words, the associated functors [1]× Fin∗ → Cat are right adjointable in
the [1] coordinate. In particular, we see that h1 and v1 are cartesian fibrations, and h and v
are morphisms of cartesian fibrations over [1]. It follows from proposition 4.2.8 that θ′F⊗ is a
morphism of cartesian fibrations over [1]. Straightening it yields a commutative square in

Ĉat/Fin∗ . Tracing the construction of this square reveals that it is actually a commutative
square of commutative operads, and satisfies the desired conditions.

Proposition 4.2.10. The lax symmetric monoidal functor

θ′Spc : PrL = Spc -mod(PrL)→ Âlgbrd(Spc)

factors through the image of the section s from construction 3.4.1. Furthermore, the composi-

tion of θ′Spc with the symmetric monoidal projection Âlgbrd(Spc)→ Ĉat is equivalent to the

forgetful functor PrL → Ĉat with its canonical lax symmetric monoidal structure.

Proof. Let C be a presentable category. Then θ′Spc(C) is a Spc-algebroid equipped with a left
module in C which identifies its category of objects with C, and such that for every pair of
objects x, y the map

θ′Spc(C)(y, x)⊗ x→ y
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exhibits θ′Spc(C)(y, x) as the Hom object between x and y. Inspecting the unit morphism
HomC(x, y)→ θ′Spc(C)(y, x) one obtains a commutative square

HomC(x, y)⊗ x y

θ′Spc(C)(y, x)⊗ x y.

ev

id

The top horizontal arrow exhibits HomC(x, y) as the Hom object between x and y, so we see
that the unit map HomC(x, y)→ θ′Spc(C)(y, x) is an isomorphism. As discussed in the proof
of lemma 3.4.4, this is also the case for the algebroid s(C). It follows that the canonical map
s(C)→ θ′Spc(C) is an equivalence, and therefore θ′Spc factors through the image of s.

Consider now the following diagram:

Funct([1],Cat) L̂Mod′ Âlgbrd

Ĉat× Ĉat Ĉat× ÔpLM Ĉat× ÔpAssos

(t0,t1)

v r

(α,p) (β,q)

(id,w) (id,j)

We equip all categories above with their cartesian symmetric monoidal structure, so that all
functors inherit a canonical symmetric monoidal structure.

The composition of θ′Spc with the symmetric monoidal projection Âlgbrd(Spc) → Ĉat
is equivalent to the lax symmetric monoidal functor obtained by taking the fiber over Spc
of the lax symmetric monoidal functor (β, q)ri′p′R. This is equivalent to the composite lax
symmetric monoidal functor

PrL = Spc -mod(PrL) ↪→ AlgLM(PrL)
p′R−−→ L̂Mod′Alg(PrL)

i′−→ L̂Mod′
r−→ Âlgbrd

β−→ Ĉat

which is in turn equivalent to the following composition:

PrL = Spc -mod(PrL) ↪→ AlgLM(PrL)
p′R−−→ L̂Mod′Alg(PrL)

i′−→ L̂Mod′
v−→ Funct([1],Cat)

t0−→ Ĉat

Meanwhile, the lax symmetric monoidal forgetful functor PrL → Ĉat can be obtained as the
following composition:

PrL = Spc -mod(PrL) ↪→ AlgLM(PrL)
p′R−−→ L̂Mod′Alg(PrL)

i′−→ L̂Mod′
v−→ Funct([1],Cat)

t1−→ Ĉat.

We have to show that these agree. Note that they are both obtained by composing the lax
symmetric monoidal functor

F : PrL = Spc -mod(PrL) ↪→ AlgLM(PrL)
p′R−−→ L̂Mod′Alg(PrL)

i′−→ L̂Mod′
v−→ Funct([1],Cat)
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with either t0 or t1. However, thanks to the characterization of the image of p′R from
proposition 4.2.3, we have that the image of F belongs to the full subcategory Funct([1],Cat)iso

of Funct([1],Cat) on the isomorphisms. Hence we can factor the lax symmetric monoidal
functor F as follows:

PrL
F ′−→ Funct([1],Cat)iso ↪→ Funct([1],Cat).

Our claim now follows from the fact that the restrictions of s0 and s1 to Funct([1],Cat)iso

are equivalent.

Corollary 4.2.11. Let M be a presentable LM-monoidal category, and let γ :M≤0
m →Mm

be the inclusion. Then γ!θ′(M) is an Ml-enriched category.

Proof. We have an equivalence (τM)!γ
!θ′(M) = γ!(τM)!θ

′(M). Thanks to corollary 4.2.9 we
have that (τM)!(θ

′(M)) is equivalent to θ′(N ), where N is the presentable LM-monoidal
category obtained by restricting the action of Ml on Mm along the unit map Spc →Ml.
Our claim now follows directly from proposition 4.2.10.

We now construct a variant of the functor θ′ which takes values in enriched categories.

Construction 4.2.12. We continue with the notation of construction 4.2.7. Consider the
following commutative diagram:

Âlgbrd ÂlgbrdSpc

AlgLM(PrL) ÔpAssos ÔpAssos

q

h

qSpc

ji

ri′p′R

id

Here ÂlgbrdSpc is the full subcategory of Âlgbrd on those algebroids with a space of objects.
We equip all categories on the right square with their cartesian symmetric monoidal structure.
Note that q and qSpc have canonical structures of cocartesian fibrations of operads, and h is
a morphism of cocartesian fibrations of operads.

We observe that the category ÂlgbrdSpc is obtained by base change of the cartesian

fibration Âlgbrd → Ĉat along the inclusion Ŝpc → Ĉat. The latter admits a right adjoint,

which implies that h admits a right adjoint hR such that for every object A in Âlgbrd the
canonical map hhRA → A is cartesian. It follows that the right square in the above diagram
is horizontally right adjointable, so we have a commutative diagram of symmetric monoidal
categories and lax symmetric monoidal functors as follows:

Âlgbrd ÂlgbrdSpc

AlgLM(PrL) ÔpAssos ÔpAssos

q

hR

qSpc

ji

ri′p′R

id
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As before, we observe that ji factors through the lax symmetric monoidal inclusion of

AlgAssos(PrL) inside ÔpAssos, so we have an induced diagram of symmetric monoidal categories
and lax symmetric monoidal functors

Âlgbrd|AlgAssos(PrL) (ÂlgbrdSpc)|AlgAssos(PrL)

AlgLM(PrL) AlgAssos(PrL) AlgAssos(PrL).

q′

h′R

q′Spc

u

θ′

id

We denote by

θ : AlgLM(PrL)→ ÂlgbrdSpc

the lax symmetric monoidal functor obtained by composing h′R and θ′. It follows from

corollary 4.2.11 that θ′ factors through the full subcategory of ÂlgbrdSpc on the enriched
categories.

IfMl is a presentable symmetric monoidal category, thought of as a commutative algebra
object in AlgAssos(PrL), we obtain in particular a lax symmetric monoidal functor

θM :M -mod(PrL)→ Ĉat
M
.

Proposition 4.2.13. The map θ from construction 4.2.12 is a morphism of cartesian
fibrations over AlgAssos(PrL).

Proof. Using proposition 4.2.8, we reduce to showing that the morphism

h′R : ÂlgbrdAlgAssos(PrL) → (ÂlgbrdSpc)|AlgAssos(PrL)

is a morphism of cartesian fibrations over AlgAssos(PrL). This is a direct consequence of the
fact that it is right adjoint to a morphism of cocartesian fibrations.

Corollary 4.2.14. Let F :M→M′ be a colimit preserving symmetric monoidal functor
between presentable symmetric monoidal categories. Then there is a commutative square of
symmetric monoidal categories and lax symmetric monoidal functors

M′ -mod(PrL) Ĉat
M′

M -mod(PrL) Ĉat
M

θM′

F ∗
FR!

θM

where F ∗ denotes the functor of restriction of scalars along F .

Proof. This is deduced from proposition 4.2.13 using similar arguments as those from the
proof of corollary 4.2.9.
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Proposition 4.2.15. The lax symmetric monoidal functor

θSpc : PrL = Spc -mod(PrL)→ Ĉat

is equivalent to the (lax symmetric monoidal) forgetful functor PrL → Ĉat.

Proof. This is a direct consequence of proposition 4.2.10.

Notation 4.2.16. Let M be a presentable symmetric monoidal category. We denote by M
the image of the unit of M -mod(PrL) under θM. This is a commutative algebra in Ĉat

M

whose underlying symmetric monoidal category is equivalent to M.
In the special case M = Cat we use the notation Cat = Cat. This is the symmetric

monoidal 2-category of categories. More generally, for each n ≥ 1 we set nCat = nCat. This
is the symmetric monoidal (n+ 1)-category of n-categories. We also set ωCat = ωCat. This
is the symmetric monoidal ω-category of ω-categories.

We finish by considering a variant of the functor θM from construction 4.2.12 which
admits a left adjoint.

Notation 4.2.17. Let κ be an uncountable regular cardinal. We denote by PrLκ the subcat-
egory of PrL on the κ-compactly generated categories and functors which preserve κ-compact
objects. We equip PrLκ with the restriction of the symmetric monoidal structure from PrL.

LetM be a commutative algebra in PrLκ . We denote by L̂Mod′|M -mod(PrLκ ) the base change

of the projection L̂Mod′ → ÔpLM along the inclusion M -mod(PrLκ )→ ÔpLM. We denote by

LMod′κ |M the full subcategory of L̂Mod′|M -mod(PrLκ ) consisting of those triples (A,P , C) of

an object C in M -mod(PrLκ), a small algebroid A in M with category of objects X, and a
left module P such that for every x in X the object P(x) in C is κ-compact.

Proposition 4.2.18. Let κ be an uncountable regular cardinal and let M be a commutative
algebra in PrLκ . Then the projection

pκ = (pκ1 , p
κ
2) : LMod′κ |M →M -mod(PrLκ )× Algbrd(M)

is a representable bifibration.

Proof. Consider first the projection

L̂Mod′|M -mod(PrLκ ) →M -mod(PrLκ )× Âlgbrd(M).

This arises by base change from the projection of corollary 4.2.6 so we conclude that it is
a representable bifibration. It follows directly from the definition that LMod′κ |M is still a
cocartesian fibration over M -mod(PrLκ), and for every C in M -mod(PrLκ) the projection
LMod′κ |M(C)→ Algbrd(M) is a right fibration. Note that this right fibration is represented
by j!θ′M(C), where j is the inclusion of the full subcategory of κ-compact objects inside C.
We conclude that pκ is a representable bifibration, as desired.
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Notation 4.2.19. Let κ be an uncountable regular cardinal and let M be a commutative
algebra in PrLκ . We denote by

θ′κM :M -mod(PrLκ )→ Algbrd(M).

the functor classifying the projection pκ from proposition 4.2.18.

Remark 4.2.20. Let κ be an uncountable regular cardinal and let M be a commutative
algebra in PrLκ . The functor θ′κM can be obtained as the composition

M -mod(PrLκ )
(pκ1 )R

−−−→ LMod′κ |M
pκ2−→ Algbrd(M).

Composing (pκ1)R with the inclusion of LMod′κ |M inside L̂Mod′|M -mod(PrLκ ) yields a section
of the cocartesian fibration

p′κ1 : L̂Mod′|M -mod(PrLκ ) →M -mod(PrLκ ).

By corollary 4.2.6 the projection p′κ1 admits a right adjoint. It follows that there is a lax
commutative triangle

M -mod(PrLκ ) LMod′κ |M

L̂Mod′|M -mod(PrLκ ).

(pκ1 )R

(p′κ1 )R

Composing with the projection LMod′ |M -mod(PrLκ ) → Âlgbrd(M) we obtain a natural trans-
formation

θ′κM → θ′M|M -mod(PrLκ )

of functors M -mod(PrLκ )→ Âlgbrd(M). For each object C in M -mod(PrLκ ), the morphism
of algebroids

θ′κM(C)→ θ′M|M -mod(PrLκ )(C)

is cartesian for the projection Âlgbrd(M) → Ĉat, and lies above the inclusion of the full
subcategory of κ-compact objects inside C.
Notation 4.2.21. Let κ be an uncountable regular cardinal and let M be a commutative
algebra in PrLκ . Consider the composite functor

M -mod(PrLκ )
θ′κM−−→ Algbrd(M) −→ Algbrd(M)Spc

where the second map is the colocalization functor. It follows from proposition 4.2.15 together
with the description of θ′κM from remark 4.2.20 that the above composite map factors through
CatM. We denote by

θκM :M -mod(PrLκ )→ CatM

the resulting functor.
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Remark 4.2.22. Let κ be an uncountable regular cardinal and let M be a commutative
algebra in PrLκ . It follows from remark 4.2.20 that there is a natural transformation

θκM → θM

such that for every object C in M -mod(PrLκ), the functor of enriched categories θκM(C)→
θM(C) exhibits θκM(C) as the full subcategory of θM(C) on those objects which correspond to
κ-compact objects in C.

Lemma 4.2.23. Let κ be an uncountable regular cardinal and let M be a commutative
algebra in PrLκ . Then the projection

pκ2 : LMod′κ |M → Algbrd(M)

preserves colimits.

Proof. It follows from a combination of [Lur09a] proposition 5.5.7.10 and [Lur17] lemma
4.8.4.2 and that PrLκ is a presentable symmetric monoidal category. Using [Lur17] corollary
4.2.3.7 we see that M -mod(PrLκ ) is also presentable.

Using proposition 4.2.18 we see that the fibers of the cocartesian fibration pκ1 are presentable
and for every map F : C → D in M -mod(PrLκ ) the induced functor

F! : LMod′κM(C)→ LMod′κM(D)

preserves colimits. Hence pκ1 admits all relative colimits. Note that the projection map
LMod′κ |M → Algbrd(M) sends pκ1-cocartesian arrows to invertible arrows, and for every C in
M -mod(PrLκ) the functor LMod′κM(C)→ Algbrd(M) preserves colimits. Applying [Lur09a]
proposition 4.3.1.9 and 4.3.1.10 we have that pκ2 itself preserves colimits.

Proposition 4.2.24. Let κ be an uncountable regular cardinal and let M be a commutative
algebra in PrLκ . Then the functor θκM admits a left adjoint.

Proof. Thanks to the adjoint functor theorem, it suffices now to show that θκM is accessible
and preserves limits. Since the inclusion CatM → Algbrd(M) creates limits and sufficiently
filtered colimits, it suffices to show that the functor θ′κM is accessible and limit preserving.
The fact that θ′κM is accessible follows from the description of θ′κM from remark 4.2.20, together
with lemma 4.2.23.

It remains to prove that θ′κM is limit preserving. Recall that the projection Algbrd(M)→
Cat admits all relative limits. We claim that the composite map

M -mod(PrLκ )
θ′κM−−→ Algbrd(M)→ Cat

is limit preserving. Examining the commutative diagram from remark 4.1.7 shows that the
composition of the above map with the inclusion of Cat into Ĉat admits a factorization as
follows:

M -mod(PrLκ )
µ−→ Funct([1], Ĉat)

ev0−−→ Ĉat
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The map µ is such that the composition

M -mod(PrLκ )
µ−→ Funct([1], Ĉat)

ev1−−→ Ĉat

recovers the canonical projection obtained by composing the following series of forgetful
functors:

M -mod(PrLκ )→ PrLκ → Ĉat

The description of θ′κM from remark 4.2.20 shows that µ ev0 is the composite functor

M -mod(PrLκ )→ PrLκ = Catrex(κ) → Ĉat

where the middle equivalence is given by passage to κ-compact objects ([Lur09a] proposition
5.5.7.8), and the last arrow is the usual forgetful functor. This composition is indeed limit
preserving, so it follows that the composition of θ′κM with the forgetful functor to Cat is limit
preserving, as we claimed.

Consider now a limit diagram XC : IC →M -mod(PrLκ). Denote by ∗ the initial object
of I. Let Y be the category of objects for the M-algebroid θ′κM(XC(∗)). In other words, Y
is the full subcategory of the category underlying the M-module XC(∗) on the κ-compact
objects.

Note that the composite map

IC XC

−−→M -mod(PrLκ )
θ′κM−−→ Algbrd(M)→ Cat

factors through CatY/. Therefore we have that θ′κMX
C factors through Algbrd(M)×Cat CatY/.

Since the projection Algbrd(M)×Cat CatY/ → CatY/ is a cartesian fibration and Y is initial
there, we have that the fiber of Algbrd(M) over Y is a colocalization of Algbrd(M)×CatCatY/.
From this we may construct a diagram

ZC : IC → AlgbrdY (M)

equipped with a natural transformation

IC AlgbrdY (M)

Algbrd(M)

ZC

θ′κMXC

such that the induced map ZC(∗)→ XC(∗) is an isomorphism, and for every object i in I
the morphism of algebroids ZC(i)→ XC(i) is cartesian over Cat. Using [Lur09a] propositions
4.3.1.9 and 4.3.1.10 we see that in order to show that θ′κMX

C is a limit diagram it suffices to
show that that ZC is a limit diagram.
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Observe that LMod′κ |M also has the structure of a cartesian fibration over Cat, and
the projection LMod′κ |M → Algbrd(M) is a morphism of cartesian fibrations over Cat.
Repeating the above procedure, we may write ZC as pκ2W

C where

WC : IC → (LMod′κ |M)Y

is a diagram which comes equipped with a natural transformation

IC (LMod′κ |M)Y

LMod′κ |M

WC

(pκ1 )RXC

such that the induced map WC(∗)→ (pκ1)RXC(∗) is an isomorphism, and for every object i
in I the morphism WC(i)→ (pκ1)RXC(i) is cartesian over Cat.

We now observe that a diagram in AlgbrdY (M) is a limit diagram if and only if its
images in Algbrd{a,b}(M) are limit diagrams for every map {a, b} → Y , where {a, b} denotes
a two-element set. Fix one such map and let UC be the composition of WC with the induced
morphism

(LMod′κ |M)Y → (LMod′κ |M){a,b}.

Our task is to show that the composite map

IC UC

−−→ (LMod′κ |M){a,b} → Algbrd{a,b}(M)

is a limit diagram. Recall now from [Hin20a] that Algbrd{a,b}(M) is the category of algebras
in a certain presentable monoidal category M{a,b}. The category (LMod′κ |M){a,b} fits into a
pullback square

(LMod′κ |M){a,b} (LMod′κ |M{a,b})[0]

M -mod(PrLκ ) M{a,b} -mod(PrLκ )

where the bottom horizontal arrow maps aM-module C to theM{a,b}-module Funct({a, b}, C).
We note that the right vertical arrow admits a factorization through the category

M{a,b} -mod(PrLκ )M{a,b}/

of pointed M{a,b}-modules. The resulting projection has a fully faithful section

S :M{a,b} -mod(PrLκ )M{a,b}/ → (LMod′κ |M{a,b})[0]

whose image consists of those triples (A,D,M) of an M{a,b}-module D, an algebra A in
M{a,b}, and a κ-compact A-module M in D for which the structure map A ⊗ M → M
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exhibits A as the endomorphism object of M . The description of endomorphism objects from
[Hin20a] proposition 6.3.1 shows that in fact the composite map

IC UC

−−→ (LMod′κ |M){a,b} → (LMod′κ |M{a,b})[0]

factors through the image of S. Furthermore, the resulting diagram IC →M{a,b} -mod(PrLκ )
is the image of XC under the functor

M -mod(PrLκ )→M{a,b} -mod(PrLκ )

and is therefore a limit diagram. The fact that θ′κMX
C is a limit diagram now follows from

the fact that the composite map

M{a,b} -mod(PrLκ )M{a,b}/
S−→ (LMod′κ |M{a,b})[0] → Alg(M{a,b})

is the functor that sends a pointed M-module to the endomorphism object of the basepoint,
which admits a left adjoint.

Remark 4.2.25. Let κ be an uncountable regular cardinal and let M be a commutative
algebra in PrLκ . Passing to κ-compact objects induces an equivalence between the symmetric
monoidal category PrLκ and the symmetric monoidal category Catrex(κ) of small categories
admitting κ-small colimits, and functors which preserve those colimits. In particular, we have
an equivalence between M -mod(PrLκ ) and Mκ-comp -mod(Catrex(κ)), where Mκ-comp denotes
the full subcategory of M on the κ-compact objects.

From this point of view, the left adjoint to θκM maps small M-enriched categories into
κ-cocomplete categories tensored over Mκ-comp. We think about this as a version of the
functor of free κ-cocompletion in the context of enriched category theory. 1

4.3 Bimodules

We now discuss the notion of bimodule between algebroids.

Notation 4.3.1. For each BM-operadM we denote byMl andMr the Assos− and Assos+

components of M. We denote by Mm the fiber of M over the bimodule object in BM.

Definition 4.3.2. LetM be a BM-operad. Let A,B be algebroids inMl andMr respectively,
with categories of objects X and Y respectively. An A−B-bimodule in M is a BMX,Y -algebra
in M, whose underlying AssosX and AssosY algebras are identified with A and B.

Remark 4.3.3. LetM be a BM-operad. Let A,B be algebroids inMl andMr respectively,
with categories of objects X and Y respectively. A bimodule P between them assigns to

1We refer the reader to [Hin21] for a characterization of the free cocompletion as the Yoneda embedding.
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each pair of objects (x, y) in X × Y op an object P(x, y) inMm. For every n ≥ 0,m ≥ 0, and
every sequence of arrows

x′0 = x0 ← x′1, x1, . . . , xn−1 ← x′n, xn ← x′n+1 = xn+1

in X and
y′0 = y0 ← y′1, y2, . . . , ym−1 ← y′m, ym ← y′m+1 = ym+1

in Y , the bimodule P induces a multimorphism

{A(x′1, x1), . . . ,A(x′n, xn), P (x′n+1, y0),B(y′1, y1), . . . ,B(y′m, ym)} → P(x′0, ym+1)

in M. In the case when M is a BM-monoidal category (in other words, Ml and Mr are
monoidal categories and Mm is a bimodule between them), this induces a morphism

A(x′1, x1)⊗ . . .⊗A(x′n, xn)⊗ P (x′n+1, y0)⊗ B(y′1, y1)⊗ . . .⊗ B(y′m, ym)→ P(x′0, ym+1).

In particular, in the cases when n = 1,m = 0 or n = 0,m = 1 and all arrows are identities
we obtain, for each pair of objects x1, x2 in X and each pair of objects y1, y2 in Y , a map

A(x1, x2)⊗ P(x2, y1)→ P(x1, y1)

(the left action of A on P) and

P(x2, y1)⊗ B(y1, y2)→ P(x2, y2).

(the right adjoint of B on P). These actions commute with each other, and are compatible
with the units and composition of A and B, up to homotopy.

Example 4.3.4. Let M be an associative operad. Then every algebroid A : AssosX →M
defines, by precomposition with the projection BMX,X → AssosX arising from the equivalence
of example 3.2.8, an A−A-bimodule P in M. This has the following properties:

• For every pair of objects x, x′ in X we have P(x′, x) = A(x′, x).

• For every triple of objects x, x′, x′′ in X, the action map

{A(x′′, x′),P(x′, x)} → P(x′′, x)

is equivalent, under the identifications of the previous item, to the composition map

{A(x′′, x′),A(x′, x)} → A(x′′, x).

• For every triple of objects x, x′, x′′ in X, the action map

{P(x′, x),A(x, x′′)} → P(x′, x′′)

is equivalent, under the identifications of the first item, to the composition map

{A(x′, x),A(x, x′′)} → A(x′, x′′).
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We call P the diagonal bimodule of A. We will usually use the notation A(−,−) for P , and
in the case when A is an M-enriched category, we instead write HomA(−,−).

Remark 4.3.5. Let M be an associative operad. As discussed in [Hin20a], an M-algebroid

A with category of objects X defines an associative algebra Ã in a certain associative operad
MX , and an A−A-bimodule is the same data as an Ã − Ã-bimodule in MX . Under this
dictionary, the diagonal bimodule of A corresponds to the diagonal bimodule of Ã. Via
the folding equivalence of [Hin20a] section 3.6, the diagonal bimodule of Ã defines a left

Ã� Ãop-module inMX×Xop . IfM is a presentable symmetric monoidal category, this defines
a morphism

A⊗Aop →M

with the property that each pair of objects (y, x) gets mapped to A(y, x). We call this the
Hom functor of A. This determines a morphism of algebroids

A → Funct(Aop,M)

which is the Yoneda embedding. It was show in [Hin20a] corollary 6.2.7 that this map is fully
faithful. Note that thanks to proposition 3.5.20 the algebroid Funct(Aop,M) is in fact an
enriched category. We conclude that any M-algebroid admits a fully faithful embedding into
an M-enriched category.

Construction 4.3.6. Consider the functor AlgBM−,−(−) defined by the composition

Catop×Catop×OpBM

BM−,−× idOpBM−−−−−−−−−−→ Opop
BM×OpBM

Alg−(−)
−−−−−→ Cat .

For each BM-algebroidM we denote by BMod(M) the total category of the cartesian fibration
associated to the functor AlgBM−,−(M) : Catop×Catop → Cat. This comes equipped with a
forgetful functor BMod(M)→ Algbrd(Ml)×Algbrd(Mr). For each pair of algebroids A in
Ml and B in Mr we denote by ABModB(M) the fiber over (A,B), and call it the category
of A− B-bimodules.

The assignment M 7→ BMod(M) defines a functor BMod(−) : OpBM → Ĉat. Let BMod
be the total category of the associated cocartesian fibration. Note that this fits into a
commutative square

BMod Algbrd×Algbrd

Cat×Cat×OpBM Cat×Cat×OpAssos×OpAssos .

Here the left vertical arrow and right vertical arrow are the two-sided fibrations classified
by the functors AlgBM−,−(−) and Algbrd−(−), and the horizontal arrows are the functors of
“forgetting the bimodule”.
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Proposition 4.3.7. Let M be a presentable BM-monoidal category. Then the projection
BMod(M) → Algbrd(Ml) × Algbrd(Mr) is a cartesian fibration. Moreover, a morphism
F : (A,P ,B)→ (A′,P ′,B′) is cartesian if and only if for every pair of objects x in A and y
in B, the induced map P(x, y)→ P ′(F (x), F (y)) is an equivalence.

Proof. This follows from a variation of the argument of proposition 4.1.8.
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Chapter 5

Enriched adjunctions and weighted
limits

Let M be a presentable symmetric monoidal category. Let F : C → D be a functor of
M-enriched categories. Given a functor G : D → C, a natural transformation ε : FG→ idD
is said to exhibit G as right adjoint to F if for every pair of objects c in C and d in D the
induced map

HomC(c,G(d))
ε(d)◦F∗(−)−−−−−−→ HomD(F (c), d)

is an isomorphism.
In 5.1 we study a local version of the notion of right adjoint to F , where the object

G(d) may only be well defined for specific values of d. We prove a criterion guaranteeing
the existence of local adjoints to F in the case when F is obtained as the limit of a family
of functors Fi : D(i) → D′(i). Given another M-enriched category J and an object d in
Funct(J ,D), we show that the right adjoint to F∗ : Funct(J , C)→ Funct(J ,D) at a functor
d exists provided that the right adjoint to F at evj d exists for all j in J .

In 5.2 we study the notion of adjoint functors betweenM-enriched categories, as a special
case of the notion of adjunction in a 2-category. We show that F admits a right adjoint if
and only if it admits local right adjoints at every object in D. We also discuss the notion of
localization functors of M-enriched categories.

In 5.3 we specialize to the case when F is the diagonal map D → Funct(IM,D), where
IM is the M-enriched category obtained from a category I by pushforward along the unit
map Spc → M. A local right adjoint at an object X in Funct(IM,D) is called a conical
limit of X. We show that the data of a conical limit defines in particular an extension of
X to a diagram ICM → D. We study the interactions of the notion of conical limits with
changes in the enriched category - in particular, we are able to conclude that a conical limit
in D defines a limit diagram in the category underlying D. Specializing our discussion of
local adjoints we obtain basic results on the existence of conical limits on limits of enriched
categories, and in enriched categories of functors.



CHAPTER 5. ENRICHED ADJUNCTIONS AND WEIGHTED LIMITS 85

In 5.4 we study how the notions of enriched adjunctions and conical limits interact with
the procedure of enrichment of presentable modules over M. We show that if F : C → D
is a morphism of presentable modules then the induced functor of M-enriched categories
admits a right adjoint, and it also admits a left adjoint provided that F admits a left adjoint
which strictly commutes with the action of M. As a consequence, we are able to conclude
that if D is a presentable module of M, then the induced M-enriched category admits all
small conical limits and colimits. In particular, the canonical enrichment of M over itself is
conically complete and cocomplete. We finish by applying this to show that conical limits
are preserved by the Yoneda embedding. This provides in particular a characterization of the
class of conical limits in anM-enriched category C as those limits in the category underlying
C which are preserved by all corepresentable enriched copresheaves.

The theory of conical limits is a particular case of the theory of weighted limits, which we
explore in 5.5. We record here a proof of the fact that left adjoint functors preserve weighted
colimits. Specializing to weighted limits and colimits over the unit M-enriched category
we recover the notions of powers and copowers. We show that in the case of M-enriched
categories arising from presentable modules, powers and copowers exist and are computed in
the expected way.

In 5.6 we prove our main result on the theory of weighted colimits (theorem 5.6.1): an
M-enriched category C admits all weighted colimits if and only if it admits all conical colimits
and copowers, and in this case a functor F : C → D into another M-enriched category D
preserves all weighted colimits if and only if it preserves all conical colimits and copowers.
We use this to show that M-enriched categories arising from presentable M-modules admit
all weighted limits and colimits, and that the Yoneda embedding detects weighted limits.

5.1 Local adjoints

We begin with a general discussion of the notion of locally defined adjoints for functors of
enriched categories.

Definition 5.1.1. Let M be a presentable monoidal category. Let F : D → D′ be a functor
of M-categories, and let d′ be an object of D′. Let d be an object of D equipped with a
morphism ε : F (d) → d′ in the category underlying D′. We say that the pair (d, ε) is right
adjoint to F at d′ if for every object e in D the composite functor

HomD(e, d)
F∗−→ HomD′(F (e), F (d))

ε−→ HomD′(F (e), d′)

is an equivalence. Dually, we say that a pair (d, η) of an object d in D and a morphism
η : d′ → F (d) is left adjoint to F at d′ if it is right adjoint to F op : Dop → D′op at d′.

Remark 5.1.2. Let G : M′ → M be a colimit preserving monoidal functor between
presentable monoidal categories. Let F : D → D′ be a functor of M-categories, and
let (d, ε) be right adjoint to F at an object d′ in D′. Then (d, ε) is also right adjoint to
(GR)!F : (GR)!D → (GR)!D′ at d′.
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In the particular case when M′ = Spc and G is the unit map for M in PrL, the functor
GR is the functor (τM)! that sends each M-enriched category to its underlying category. We
thus see that (d, ε) is right adjoint to (τM)!F at d′.

Let p : E → [1] be the cocartesian fibration associated to the functor (τM)!F . The pair
(d, ε) induces a morphism α between (0, d) and (1, d′) in E . The condition that (d, ε) be right
adjoint to (τM)!F at d′ is equivalent to the condition that α be a p-cartesian morphism. In
particular, we see that the pair (d, ε) right adjoint to F at d′ is unique if it exists.

Proposition 5.1.3. Let M be a presentable monoidal category and let F : C → D and
G : D → E be functors of M-enriched categories. Let e be an object of E and assume that G
admits a left adjoint η : e→ Gd at e. Let c be an object in C and η′ : d→ Fc be a morphism.
Then η′ presents c as left adjoint to F at d if and only if the composite map

e
η−→ Gd

G∗η′−−→ GFc

presents c as left adjoint to GF at c.

Proof. Let c′ be an object in C and consider the following commutative diagram:

HomC(c, c
′) HomD(Fc, Fc′) HomD(d, Fc′)

HomE(GFc,GFc
′) HomE(Gd,GFc

′)

HomE(e,GFc
′).

F∗

(GF )∗
G∗

η′∗

G∗

(G∗(η′)η)∗

(G∗(η′))∗

η∗

Since (e, η) is left adjoint to G at e, we have that the composition of the right vertical arrows
is an isomorphism. We therefore have that the composition of the top horizontal arrows is an
isomorphism if and only if the composition of the diagonal arrows is an isomorphism.

Definition 5.1.4. Let M be a presentable monoidal category and consider a commutative
square of M-enriched categories

D D′

E E ′

F

T T ′

G

.

Let d′ be an object of D′. We say that the above square is horizontally right adjointable at d′ if
there is a pair (d, ε) right adjoint to F at d′, and moreover the induced map T ′ε : GTd→ T ′d′

is right adjoint to G at T ′d′.

Remark 5.1.5. Let M = Spc and consider a commutative diagram as in definition 5.1.4.
This induces a morphism T of cocartesian fibrations over [1] between the fibrations EF , EG
associated to F and G. The square is horizontally right adjointable at d′ if there is a nontrivial
cartesian arrow in EF with target d′, whose image under T is cartesian.
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We now study the stability of local adjunctions under passage to limits and formation of
functor enriched categories.

Proposition 5.1.6. Let M be a presentable monoidal category and let I be a category. Let
D,D′ : I → CatM be functors, and let η : D → D′ be a natural transformation. Denote by
F : D → D′ the limit of η. For each i in I let pi : D → D(i) and p′i : D′ → D′(i) be the
projections. Assume that for each arrow α : i→ j in I, the square

D(i) D′(i)

D(j) D′(j)

ηi

D(α) D′(α)

ηj

is horizontally right adjointable at p′i(d
′). Then

(i) There exists a right adjoint to F at d′.

(ii) A pair (d, ε) is right adjoint to F at d′ if and only if (pid, p
′
i(ε)) is right adjoint to ηi at

p′i(d
′) for every i in I.

Proof. Consider first the case M = Spc. Passing to cocartesian fibrations of the functors ηi
and F , we obtain a diagram

Eη : I → (Catcocart
/[1] ){1}/

with limit EF , where the right hand side denotes the undercategory of the category of
cocartesian fibrations and morphisms of cocartesian fibrations over [1], under the cocartesian
fibration {1} → [1].

The adjointability of the square in the statement implies that the composition of Eη
with the forgetful functor (Catcocart

/[1] ){1}/ → (Cat/[1]){1}/ factors through the subcategory
(Cat/[1])[1]/cart of categories over [1] equipped with a cartesian section, and functors which
preserve this section. The case M = Spc of the proposition now follows from the fact that
the projections

(Catcocart
/[1] ){1}/ → (Cat/[1]){1}/ ← (Cat/[1])[1]/cart → (Cat/[1])[1]/

create limits.
We now consider the general case. By virtue of the above and the uniqueness claim from

remark 5.1.2, it suffices to show that if (d, ε) is such that (pjd, p
′
jε) is right adjoint to ηi at

p′id
′ for all i then it is right adjoint to F at d′. Let e be an object in D. Note that there is a

functor R : I → Funct([2],M) whose value on each index i is given by

HomD(i)(pie, pid)
(ηi)∗−−→ HomD′(i)(ηi(e), ηi(d))

p′iε−→ HomD′(i)(ηi(e), p
′
id
′)

and which has a limit given by

HomD(e, d)
F∗−→ HomD′(F (e), F (d))

ε−→ HomD′(F (e), d′).
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For each i in I the composition of the maps in R(i) is an isomorphism, since (pid, p
′
iε) is

right adjoint to ηi at p′id
′. We conclude that the composition of the maps in limI R is an

isomorphism, which means that (d, ε) is right adjoint to F at d′, as desired.

Proposition 5.1.7. Let M be a presentable symmetric monoidal category. Let J be an
M-enriched category F : D → D′ be a functor of M-enriched categories. Let d′ be an object
in Funct(J ,D′) and assume that for all objects j in J there exists a right adjoint to F at
evj d

′. Then

(i) There exists a right adjoint to F∗ : Funct(J ,D)→ Funct(J ,D′) at d′.

(ii) A pair (d, ε) is right adjoint to F∗ at d′ if and only if for every j in J the pair (evj d, evj ε)
is right adjoint to F at evj d

′.

Proof. Let S be the full subcategory of CatM on those M-enriched categories J for which
the proposition holds. We claim that S is closed under colimits in CatM. Let J : I → S be
a diagram, and let J be its colimit in CatM. We then have that the functor

F∗ : Funct(J ,D)→ Funct(J ,D′)

is obtained by passage to the limit of the functors

ηi : Funct(J(i),D)→ Funct(J(i),D′)

given by composition with F . Let d′ be an object in Funct(J ,D′) and assume that there
exists a right adjoint to F at evj d

′ for every j in J . The fact that J(i) belongs to S for all i
implies that for every arrow α : i→ i′ in I the square

Funct(J(i′),D) Funct(J(i′),D′)

Funct(J(i),D) Funct(J(i′),D′)

ηi′

J(α)∗ J(α)∗

ηi

is horizontally right adjointable at d′|J(i′). It then follows from proposition 5.1.6 that there
is indeed a right adjoint to F∗ at d′, and moreover a pair (d, ε) is right adjoint to F∗ at d′

if and only if the associated pair (d|J(i), ε|J(i)) is right adjoint to ηi at d′|J(i) for all i in I.
Using again the fact that J(i) belongs to S for every i, we see that this happens if and only
if (evj d, evj ε) is right adjoint to F at evj d

′ for every j in J which is in the image of the
map J(i)→ J for some i in I. Since J is the colimit of the objects J(i), we have that the
maps J(i)→ J are jointly surjective, so we have that J belongs to S.

Since CatM is generated under colimits by cells, our result will follow if we show that for
every m in M the enriched category underlying the cell Cm belongs to S. Let d′ : Cm → D′
be an m-cell in D′, with source and target objects d′0 and d′1. Let (d0, ε0) and (d1, ε1) be right
adjoint to F at d′0 and d′1 respectively.
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We claim that there is a unique enhancement of this data to a pair (d, ε) of an m-cell
d : Cm → D and a morphism ε : F∗d → d′. Indeed, the data of a cell d between d0 and
d1 corresponds to a map m → HomD(d0, d1). A map ε lifting ε0 and ε1 consists of an
identification of m-cells ε1F∗d = d′ε0. The fact that (d1, ε1) is right adjoint to F at d′1 implies
that there is a unique such pair (d, ε), as claimed.

It remains to show that (d, ε) is right adjoint to F∗ at d′. Let e : Cm → D be another
m-cell with source and target objects e0 and e1. Recall from corollary 3.5.26 that we have a
cartesian square

HomFunct(Cm,D)(e, d) HomD(e0, d0)

HomD(e1, d1) HomM(m,HomD(e0, d1))

ev0

ev1

where the right and bottom arrows are given by composition with the cells d and e, respectively.
The functor F induces a map from the above square to the cartesian square

HomFunct(Cm,D′)(F∗e, F∗d) HomD′(Fe0, Fd0)

HomD′(Fe1, Fd1) HomM(m,HomD′(Fe0, Fd1))

ev0

ev1

where the right and bottom arrows are given by composition with F∗d and F∗e. Finally,
composition with ε yields a map from the above to the cartesian square

HomFunct(Cm,D′)(F∗e, d
′) HomD′(Fe0, d

′
0)

HomD′(Fe1, d
′
1) HomM(m,HomD′(Fe0, d

′
1))

ev0

ev1

where the right and bottom arrows are given by composition with d′ and F∗e. We thus see
that there is a commutative cube

HomFunct(Cm,D′)(F∗e, d
′) HomD′(Fe0, d

′
0)

HomFunct(Cm,D)(e, d) HomD(e0, d0)

HomD′(Fe1, d
′
1) HomM(m,HomD′(Fe0, d

′
1))

HomD(e1, d1) HomM(m,HomD(e0, d1))

ev1

ev0

ev0

εF∗

ev1

ε0F

ε1F ε1F
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with cartesian front and back faces. Since (d0, ε0) and (d1, ε1) are right adjoint to F at d′0
and d′1, the bottom left, bottom right, and top right diagonal arrows are isomorphisms. We
conclude that the top left diagonal arrow is an isomorphism, which means that (d, ε) is right
adjoint to F∗ at d, as desired.

Corollary 5.1.8. Let M be a presentable symmetric monoidal category. Let J and D be
M-enriched categories. Then a morphism ε : d→ d′ in Funct(J ,D) is an isomorphism if
and only if evj ε is an isomorphism for every j in J .

Proof. Specialize proposition 5.1.7 to the case when F is the identity of D.

Corollary 5.1.9. Let M be a presentable symmetric monoidal category. Let F : D → D′
be a functor of M-enriched categories, and assume that F admits a right adjoint at d′ for
every d′ in D′. Then there is a unique functor FR : D′ → D equipped with a morphism
ε : FFR → idD′ such that for every d′ in D′ the pair (FR(d′), ε(d′)) is right adjoint to F at D.

Proof. Specialize proposition 5.1.7 to the case when J = D′ and take (FR, ε) to be right
adjoint to F∗ at idD′ .

5.2 Global adjoints

We now discuss the notion of adjunction between functors of enriched categories. We will
obtain this as a particular case of the general notion of adjunction in a 2-category.

Definition 5.2.1. Let D be a 2-category. An arrow α : d→ e in D is said to admit a right
adjoint if there is an arrow αR : e→ d and a pair of 2-cells η : idd → αRα and ε : ααR → ide
satisfying the following two conditions:

• The composite 2-cell

α = α idd
idα η−−→ ααRα

ε idα−−→ ide α = α

is equivalent to the identity.

• The composite 2-cell

αR = idd α
R η id

αR−−−→ αRααR
id
αR

ε
−−−→ αR ide = αR

is equivalent to the identity.

In this situation, we say that αR is right adjoint to α, and we call η and ε the unit and counit
of the adjunction, respectively. We say that α admits a left adjoint if it admits a right adjoint
as a morphism in D2-op.

Example 5.2.2. In the case D = Cat, definition 5.2.1 recovers the usual notion of adjunction
between functors of categories.
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We refer to [RV16] for a proof of the following fundamental theorems.

Theorem 5.2.3. There exists a 2-category Adj equipped with an epimorphism L : [1]→ Adj
such that for every 2-category D composition with L induces an equivalence between the space
of functors Adj → D and the space of functors [1] → D which pick out a right adjointable
arrow in D.

Theorem 5.2.4. Let D be a 2-category. Then the following spaces are equivalent:

(i) The space of arrows in D which admit a right adjoint.

(ii) The space of triples (α, αR, η) of an arrow α : d→ e in D, an arrow αR : e→ d in D,
and a 2-cell η : idd → αRα which can be extended to an adjunction between α and αR.

The equivalence is given by mapping a triple (α, αR, η) to α.

We now specialize to the case when D is the 2-category of categories enriched in a
presentable symmetric monoidal category

Notation 5.2.5. LetM be a presentable symmetric monoidal category. We denote by CatM

the image of CatM under the composite functor

CatM -mod(PrL)
θ
CatM−−−→ Ĉat

CatM (τM)!−−−→ Ĉat
Cat

↪→ 2Cat
∧

.

We call CatM the 2-category of M-enriched categories. Note that the 1-category underlying
CatM is equivalent to CatM.

Example 5.2.6. Let n ≥ 0. Then CatnCat is the 2-category underlying (n+ 1)Cat.

Remark 5.2.7. Let M be a presentable symmetric monoidal category and let C,D be
M-enriched categories. Then the Hom category HomCatM(C,D) is the category underlying
Funct(C,D).

Let F,G : C → D be functors, and η : F → G be a 2-cell. Let x, y be a pair of objects of
C. Then there is an induced morphism

CHomC(x,y) ⊗ C1M → D.

Examining the description of the product of cells from remark 3.5.24 we obtain a commutative
diagram

HomC(x, y) HomD(Fx, Fy)

HomD(Gx,Gy) HomD(Fx,Gy).

F∗

G∗ η(y)◦−

−◦η(x)

Definition 5.2.8. Let M be a presentable symmetric monoidal category and let F : C → D
be a functor of M-enriched categories. We say that F admits a right adjoint if it admits a
right adjoint when thought of as a morphism in the 2-category CatM.
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Our next goal is to show that a functor of enriched categories admits a right adjoint if
and only if it admits local right adjoints at every point.

Lemma 5.2.9. Let J and D be 2-categories. Let η : F → G be a morphism in Funct(J ,D).
Then η admits a right adjoint if and only if for every morphism α : j → j′ in J , the
commutative square

F (j) G(j)

F (j′) G(j′)

Fα

ηj

Gα

ηj′

is horizontally right adjointable.

Proof. Combine [Hau20] theorem 4.6 and corollary 3.15.

Proposition 5.2.10. LetM be a presentable symmetric monoidal category and let F : C → D
be a functor of M-enriched categories. Then F admits a right adjoint if and only if for every
object d in D there exists a right adjoint for F at d.

Proof. Assume first that F admits a right adjoint FR. Denote by η : idC → FRF and
ε : FFR → idD the unit and counit of the adjunction, respectively. Let d be an object in D.
We claim that the morphism

ε(d) : FFR(d)→ idD(d) = d

exhibits FR(d) as right adjoint to F at d. Let c be an object of C. We have to show that the
map V given by the composition

HomC(c, F
R(d))

F∗−→ HomD(F (c), FFR(d))
ε(d)◦−−−−→ HomD(F (c), d)

is an isomorphism. Observe that there is a map W going in the opposite direction, given by
the following composition:

HomD(F (c), d)
(FR)∗−−−→ HomC(F

RF (c), FR(d))
−◦η(c)−−−−→ HomC(c, F

R(d))

We claim that V and W are inverse equivalences. Observe that the map WV is given by the
composition

HomC(c, F
R(d))

(FRF )∗−−−−→ HomC(F
RF (c), FRFFR(d))

FRε(d)◦−◦η(c)−−−−−−−−→ HomC(c, F
R(d)).

Thanks to remark 5.2.7, we can rewrite the above as the composition

HomC(c, F
R(d))

η(FR(d))◦−−−−−−−−→ HomC(c, F
RFFR(d))

FRε(d)◦−−−−−−→ HomC(c, F
R(d)).
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This is equivalent to the identity thanks to the second condition in definition 5.2.1. The fact
that VW is equivalent to the identity follows from similar arguments. We conclude that V is
indeed an isomorphism, so ε(d) exhibits FR(d) as right adjoint to F at d.

Assume now that for every object d in D there exists a right adjoint for F at d. To show
that F admits a right adjoint it suffices to show that its image under the Yoneda embedding

CatM → Funct((CatM)1-op,Cat)

admits a right adjoint. Applying lemma 5.2.9, we reduce to showing that for every functor
α : J → J ′ between M-enriched categories, the commutative square of categories

(τM)! Funct(J ′, C) (τM)! Funct(J ′,D)

(τM)! Funct(J , C) (τM)! Funct(J ,D)

α∗

F∗

α∗

F∗

is horizontally right adjointable. Using proposition 5.1.7 together with remark 5.1.2 we see
that the above commutative square of categories is horizontally right adjointable at every
object of (τM)! Funct(J ′,D). Our claim now follows from the fact that local and global
adjointability agree for functors between categories.

We finish with a discussion of localization functors of enriched categories.

Proposition 5.2.11. LetM be a presentable symmetric monoidal category and let F : C → D
be a functor of M-enriched categories admitting a right adjoint FR. Then the following
conditions are equivalent:

(i) The functor FR is fully faithful.

(ii) The counit ε : FFR → idD is an isomorphism.

(iii) The functor F is surjective on objects, and for every object c in C, the unit map
c→ FRFc is inverted by F .

Proof. The equivalence between items (ii) and (iii) follows directly from the triangle conditions.
It remains to show the equivalence with item (i). Let d, d′ be two objects in D, and consider
the composite map

HomD(d, d′)
FR∗−−→ HomC(F

Rd, FRd′)
F∗−→ HomD(FFRd, FFRd′)

ε∗−→ HomD(FFRd, d′).

By naturality of ε, this is equivalent to the morphism

HomD(d, d′)
ε∗−→ HomD(FFRd, d′).

It follows that FR
∗ : HomD(d, d′) → HomC(F

Rd, FRd′) is an equivalence if and only if
ε∗ : HomD(d, d′)→ HomD(FFRd, d′) is an equivalence. The result now follows from the fact
that d, d′ are arbitrary.
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Definition 5.2.12. Let M be a presentable symmetric monoidal category and let F : C → D
be a functor of M-enriched categories admitting a right adjoint FR. We say that F is a
localization functor if it satisfies the equivalent conditions of proposition 5.2.11.

Remark 5.2.13. Let M be a presentable symmetric monoidal category and let F : C → D
be a functor of M-enriched categories admitting a right adjoint FR. It follows from remark
5.1.2 together with the second characterization of localizations in proposition 5.2.11 that
F is a localization functor if and only if the functor of categories (τM)!F underlying F is a
localization functor.

Remark 5.2.14. Let M be a presentable symmetric monoidal category. Let F : C → D
be a localization functor of M-enriched categories, and let C ′ be an M-enriched category.
Denote by Funct(C, C ′)loc the full subcategory of Funct(C, C ′) on those functors that invert
the unit map c→ FRFc for every c in C. Then we have functors

F ∗ : Funct(D, C ′)→ Funct(C, C ′)loc

and
(FR)∗ : Funct(C, C ′)loc → Funct(D, C ′).

The unit and counit of the adjunction F a FR induce equivalences (FR)∗F ∗ = idFunct(D,C′)
and F ∗(FR)∗ = idFunct(C,C′)loc

. It follows that F ∗ and (FR)∗ are inverse equivalences. In
particular, we conclude that localization functors are epimorphisms in CatM.

5.3 Conical limits

We now specialize the notion of local adjoints to obtain a theory of conical limits and colimits.

Notation 5.3.1. LetM be a presentable monoidal category, and I be a category. We denote
by IM the image of I under the functor Cat→ CatM induced by pushforward along the unit
map Spc→M. We note that for every M-enriched category D, there is a correspondence
between functors IM → D and functors I → (τM)!D.

Definition 5.3.2. Let M be a presentable symmetric monoidal category. Let I be category
and let D be an M-enriched category. Let X : IM → D be a functor. We say that X admits
a conical limit if the functor

∆ : D = Funct(1M,D)→ Funct(IM,D)

of precomposition with the projection I → [0] admits a right adjoint at X. In this case, we
call its right adjoint at X the conical limit of X. We say that X admits a conical colimit
if the induced diagram Xop : Iop → Dop admits a conical limit - in this case we define the
conical colimit of X to be the conical limit of Xop.
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Remark 5.3.3. Let I be a category and denote by IC the category obtained from I by
adjoining a final object. We have a pushout diagram in Cat

I I × [1]

[0] IC.

idI ×{0}

Let M be a presentable symmetric monoidal category. It follows from the above that for
every M-enriched category D there is a pullback diagram of spaces

HomCatM(ICM,D) HomCatM(C1M ,Funct(IM,D))

HomCatM(1M,D) HomCatM(IM,D)

where the right vertical arrow is given by evaluation at the source, and to bottom horizontal
arrow is the diagonal map. Hence we see that a pair (d, ε) of an object d in D and a morphism
ε : ∆d→ X in Funct(I,D) is the same data as a diagram XC : ICM → D. In particular, we
have that a conical limit for a diagram X : IM → D can be identified with a particular kind
of extension of X to a diagram XC : ICM → D.

Remark 5.3.4. Let M be a presentable symmetric monoidal category and let F : D → D′
be a functor of M-enriched categories. Let I be a category. Then we have a commutative
square

D Funct(IM,D)

D′ Funct(IM,D′).

∆

F F∗

∆

Let d be an object in D and ε : ∆d → X be a morphism in Funct(IM,D), associated to
a diagram XC : ICM → D under the equivalence of remark 5.3.3. Then the induced pair
(Fd, F∗ε) is associated to F∗X

C.

Remark 5.3.5. Let G : M → M′ be a colimit preserving monoidal functor between
presentable symmetric monoidal categories and let D be an M′ enriched category. It follows
from proposition 3.5.27 that we have an equivalence

Funct(−M, (GR)!D) = (GR)! Funct(−M′ ,D)

of functors Cat → CatM. Let I be a category. Evaluating the above equivalence at the
projection I → [0] we obtain a commutative square

(GR)!D (GR)! Funct(IM′ ,D)

(GR)!D Funct(IM, (GR)!D).

(GR)!∆

id =

∆
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Let d be an object in D, and ε : ∆d→ X be a morphism in Funct(IM,D). Using the above
square, we can also think about ε as a morphism in Funct(IM, (GR)!D). If the pair (d, ε)
corresponds to a diagram XC : ICM′ → D under the equivalence of remark 5.3.3, then the
diagram ICM → (GR)!D obtained from (d, ε) via the above commutative square is equivalent
to the image of XC under the canonical equivalence

HomCatM
′ (ICM′ ,D) = HomCatM(ICM, (GR)!D).

We now explore the behavior of conical limits under changes in the enriching category.

Proposition 5.3.6. Let G :M→M′ be a colimit preserving symmetric monoidal functor
between presentable symmetric monoidal categories. Let D be an M-enriched category and
let X ′C : ICM′ → D be a conical limit diagram. Then the induced functor XC : ICM → (GR)!D
is a conical limit diagram.

Proof. This is a direct consequence of the discussion in remarks 5.1.2 and 5.3.5.

Corollary 5.3.7. Let M be a presentable symmetric monoidal category. Let D be an M-
enriched category and XC : ICM → D be a conical limit diagram in D. Then the induced
diagram IC → (τM)!D in the category underlying D, is a limit diagram.

Proof. Apply proposition 5.3.6 to the unit map Spc→M.

Proposition 5.3.8. Let i :M→M′ be a colimit preserving symmetric monoidal functor
between presentable symmetric monoidal categories. Assume that i is fully faithful and
admits a strictly symmetric monoidal left adjoint. Let D be an M-enriched category and let
XC : ICM → D be a conical limit diagram. Then i!X

C : ICM′ → i!D is a conical limit diagram

Proof. It follows from corollary 3.5.29 that we have an equivalence

i! Funct(−M,D) = Funct(−M′ , i!D)

of functors Catop → CatM
′
. Applying it to the projection I → [0] we obtain a commutative

square

i!D i! Funct(IM,D)

i!D Funct(IM′ , i!D).

i!∆

id =

∆

Let (d, ε) be the right adjoint to ∆ : D → Funct(IM,D) at X = XC|IM . By virtue of remark
5.1.2, we have that (d, ε) is also right adjoint to i!∆ : i!D → i! Funct(IM,D). Its image under
the above equivalence is right adjoint to ∆ : i!D → Funct(IM′ ,D) at i!X - in other words,
it is a conical limit for X. Our result now follows from the fact that the associated limit
diagram ICM′ → i!D is given by i!X

C.
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Corollary 5.3.9. Let m ≥ n ≥ 1 and let D be an n-category, thought of as a category
enriched in (n − 1)-categories. Then a diagram XC : IC → D is a conical limit diagram
if and only if its image under the inclusion functor in,m : nCat → mCat is a conical limit
diagram.

Definition 5.3.10. LetM be a presentable symmetric monoidal category and let F : D → D′
be a functor of M-enriched categories. We say that a conical limit diagram XC : IC → D is
preserved by F if FXC is a conical limit diagram in D′. Similarly, a conical colimit diagram
Y B : IB → D is said to be preserved by F if FY B is a conical colimit diagram in D′.

Remark 5.3.11. LetM be a presentable symmetric monoidal category and let F : D → D′
be a functor of M-enriched categories. Let XC : ICM → D be a conical limit diagram. Then
it follows from remark 5.3.4 that XC is preserved by F if and only if the commutative square

D Funct(IM,D)

D′ Funct(IM,D′)

∆

F F∗

∆

is horizontally right adjointable at X.

We now specialize propositions 5.1.6 and 5.1.7 to the case of conical limits.

Proposition 5.3.12. Let M be a presentable symmetric monoidal category and let K be a
category. Let D : K → CatM be a functor, and denote by D its limit. For each j in K denote
by pj : D → D(j) the projection. Let X : IM → D be a diagram in D. Assume that for every
j in K the diagram pjX : I → D(j) admits a conical limit, which is preserved by the functor
D(α) : D(j)→ D(j′) for every arrow α : j → j′ in K. Then

(i) The diagram X admits a conical limit.

(ii) An extension XC : ICM → D is a conical limit diagram if and only if pjX
C is a conical

limit diagram in D(j) for every j in K.

Proof. Combine proposition 5.1.6 together with remarks 5.3.4 and 5.3.11.

Proposition 5.3.13. Let M be a presentable symmetric monoidal category. Let I be a
category, and let J and D be M-enriched categories. Let X : IM → Funct(J ,D) be a
diagram, and assume that for every object j in J , the diagram evj X : IM → D admits a
conical limit. Then

(i) There exists a conical limit for X.

(ii) An extension XC : ICM → Funct(J ,D) is a conical limit for X if and only if for every
object j in J the diagram evj X

C is a conical limit.
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Proof. Apply proposition 5.1.7 to the diagonal map ∆ : D → Funct(I,D).

Definition 5.3.14. Let M be a presentable symmetric monoidal category and let D be an
M-enriched category. Let I be a category. We say that D admits all conical (co)limits of
shape I if every diagram X : I → D admits a conical (co)limit. We say that D is conically
(co)complete if it admits all conical (co)limits of shape I for every small category I.

Corollary 5.3.15. Let M be a presentable symmetric monoidal category and let D be an
M-enriched category which admits all conical limits of shape I. Then for every M-enriched
category J , the M-enriched category Funct(J ,D) admits all conical limits of shape I.

Proof. Follows directly from proposition 5.3.13.

Corollary 5.3.16. Let M be a presentable symmetric monoidal category and let D be an
M-enriched category which admits all conical limits of shape I. Then there is a functor
Funct(IM,D)→ D which maps each diagram X : I → D to the value of its conical limit at
the cone point of IC.

Proof. Apply corollary 5.1.9 to the diagonal map ∆ : D → Funct(I,D).

For later purposes we record the following basic consequence of proposition 5.3.13.

Proposition 5.3.17. Let M be a presentable symmetric monoidal category. Let D be an
M-enriched category and let f : J → J ′ be an epimorphism of M-enriched categories which
is surjective on objects. Let X : IM → Funct(J ,D) be a diagram admitting a conical colimit
X which is preserved by the evaluation functors evj : Funct(J ,D)→ D for every object j
in J . Assume that for every arrow α : i → i′ in I the morphism X(α) : X(i) → X(j) in
Funct(J ,D) belongs to Funct(J ′,D). Then

(i) The functor X : J → D factors through J ′.

(ii) For every object i in I the morphism X(i)→X belongs to Funct(J ′,D).

Proof. Note that since the map f is an epimorphism, the map

f ∗ : Funct(J ′,D)→ Funct(J ,D)

is indeed a monomorphism. Our assumptions imply that X factors through the image of
f ∗. Let X ′ : IM → Funct(J ′,D) be the induced diagram. Since f is surjective on objects,
we have that for every j in J ′ the diagram evj X

′ admits a conical colimit. It follows from
(the dual version of) proposition 5.3.13 that X ′ can be extended to a conical colimit diagram
X ′B : IBM → Funct(J ′,D). The diagram f ∗X ′B is an extension of X whose image under
all evaluation functors is a conical colimit diagram. Applying proposition 5.3.13 again we
conclude that f ∗X ′B is a conical limit diagram in D. Item (i) now follows from the fact that
X is equivalent to the value of f ∗X ′B at the cone point ∗ in IB. Item (ii) is a consequence of
the fact that the morphism X(i)→X is equivalent to the image under f ∗ of the morphism
X ′B(i)→ X ′B(∗).
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5.4 The case of presentable modules

We now study the interactions between adjunctions with the procedure of enrichment of
modules over presentable symmetric monoidal categories.

Proposition 5.4.1. LetM be a presentable symmetric monoidal category and let F : C → D
be a morphism in M -mod(PrL). Then

(i) The functor of enriched categories θM(F ) : θM(C)→ θM(D) admits a right adjoint.

(ii) Assume that F admits a left adjoint FL, and that the canonical structure of oplax
morphism of M-modules on FL is strict. Then θM(F ) admits a left adjoint.

Proof. We first prove item (i). Let FR : D → C be the right adjoint to the functor underlying
F . Let d be an object in D and let ε(d) : FFR(d)→ d be the counit of the adjunction at d.
We claim that (FR(d), ε(d)) is right adjoint to θM(F ) at d. To see this, we have to show that
for every c in C the composite map

HomθM(C)(c, F
R(d))

θM(F )∗−−−−→ HomθM(D)(F (c), FFR(d))
ε(d)−−→ HomθM(D)(F (c), d)

is an isomorphism. It suffices to show that for every m in M the image of the above
composition under the functor HomM(m,−) is an isomorphism. This is equivalent to

HomC(m⊗ c, FR(d))
F∗−→ HomD(m⊗ F (c), FFR(d))

ε(d)−−→ HomD(m⊗ F (c), d)

which is indeed an isomorphism, since (FR(d), ε(d)) is right adjoint to F at d. Item (i) now
follows from proposition 5.2.10.

We now prove item (ii). Let d be an object in D and let η(d) : d→ FFL(d) be the counit
of the adjunction at d. We claim that (FL(d), η(d)) is left adjoint to θM(F ) at d. To see this,
we have to show that for every c in C the composite map

HomθM(C)(F
L(d), c)

θM(F )∗−−−−→ HomθM(D)(FF
L(d), F (c))

η(d)−−→ HomθM(D)(d, F (c))

is an isomorphism. It suffices to show that for every m in M the image of the above
composition under the functor HomM(m,−) is an isomorphism. This is equivalent to the
composite map

HomC(m⊗ FL(d), c)
F∗−→ HomD(m⊗ FFL(d), F (c))

idm⊗η(d)−−−−−→ HomD(m⊗ d, F (c)).

To show that the above is an equivalence, it suffices to show that idm⊗η(d) exhibits m⊗FL(d)
as left adjoint to F at m ⊗ d. This is implied by the fact that FL is a strict morphism of
M-modules.
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Remark 5.4.2. Let M be a presentable symmetric monoidal category. Then the unit
map Spc → M induces a symmetric monoidal colimit preserving functor of presentable
symmetric monoidal categories i : Cat → CatM. We can think about this as a morphism
in Cat -mod(PrL). Applying the functor θCat yields an enhancement of i to a symmetric
monoidal functor of symmetric monoidal 2-categories i : Cat → CatM. It follows from
proposition 5.4.1 that i admits a right adjoint

(τM)! : CatM → Cat.

Proposition 5.4.3. Let M be a presentable symmetric monoidal category. Then the functor
of categories CatM → Cat underlying (τM)! is equivalent to τM.

Proof. We continue with the notation from remark 5.4.2. Let

ε : i(τM)! → idCatM

be the counit of the adjunction. We think about ε as a morphism in Funct(CatM,CatM).
Consider the functor

((−)≤1)∗ : Hom2Cat(Cat
M,CatM)→ HomCat(CatM,CatM).

This admits an enhancement to a functor

ϕ : Funct(CatM,CatM)≤1 → Funct(CatM,CatM)

induced from the composite map

CatM×Funct(CatM,CatM)≤1 = (CatM × Funct(CatM,CatM))≤1 ev≤1

−−→ (CatM)≤1 = CatM .

The image of ε under ϕ is a map

ϕ(ε) : (i(τM)!)
≤1 = i((τM)!)

≤1 → idCatM .

For each object x in CatM, the morphism

ϕ(ε)(x) : i((τM)!)
≤1(x)→ x

can be identified with ε(x). Using corollary 5.1.9 we conclude that ϕ(ε) exhibits ((τM)!)
≤1 as

right adjoint to i, as desired.

Corollary 5.4.4. Let M be a presentable symmetric monoidal category, and let F : C → D
be a functor of M-enriched categories. Assume that F admits a right adjoint FR. Then
(τM)!(F

R) is right adjoint to (τM)!(F ).

Proof. This follows directly from proposition 5.4.3, since functors of 2-categories preserve
adjunctions.
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We now discuss the existence of conical limits and colimits in enriched categories arising
from presentable modules.

Notation 5.4.5. Let M be a presentable monoidal category and let I be a category. We
denote by I ′M the image of I under the composite functor

Cat
s−→ Algbrd(Spc) −→ Algbrd(M)

where the first map is the functor s from construction 3.4.1, and the second map is given by
pushforward along the unit map Spc→M.

Lemma 5.4.6. LetM be a presentable monoidal category. Let D be a presentableM-module
and let I be a category. Then the projection LMod→ Arroplax(Cat) induces an equivalence

LModI′M(D) = Funct(I,D).

Proof. As in the proof of proposition 4.1.8, we letMI be the Assos-operad with the universal
map MI ×Assos AssosI → M. Recall from [Hin20a] that this is a presentable monoidal
category which acts on Funct(I,D). The category LModI′M(D) is then the category of
modules for an algebra inMI . As discussed in [Hin20a] 4.7, this algebra is in fact the unit in
MX . We conclude that its category of modules is equivalent to Funct(I,D), as desired.

Lemma 5.4.7. LetM be a presentable monoidal category. Let D be a presentableM-module
and let I be a category. Then restriction of scalars along the canonical map IM → I ′M
induces an equivalence

LModI′M(D) = LModIM(D).

Proof. We continue with the notation from the proof of lemma 5.4.6. Recall from [Hin20a]
4.4.10 and 4.7.1 that the unit map Spc → M induces a symmetric monoidal functor
SpcI → MI , where SpcI is defined as MI . The monoidal category SpcI thus acts on
Funct(I,D) by restriction of scalars, and the category LModI′M(D) is the category of modules
over the algebra in SpcI associated to I ′Spc. Similarly, we have that LModIM(D) is equivalent
to the category of modules in Funct(I≤0,D) for the algebra in SpcI≤0 associated to ISpc.

It follows that to prove our lemma it suffices to assume thatM = Spc. We claim that for
every category E the induced functor

HomCat(E ,LModI′M(D))→ HomCat(E ,LModIM(D))

is an equivalence. Using proposition 4.2.15 together with [Hin20a] proposition 6.3.7 we see
that the above is equivalent to the canonical map

HomAlgbrd(Spc)(E × I ′M, θ′Spc(D))→ HomAlgbrd(Spc)(E × IM, θ′Spc(D)).

This is an isomorphism thanks to propositions 4.2.10 and 3.4.5.
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Proposition 5.4.8. Let M be a presentable symmetric monoidal category and let C be a
presentable module over M. Then θM(C) is conically complete and cocomplete.

Proof. Let I be a small category. We have to show that the diagonal map

∆ : θM(C)→ Funct(IM, θM(C))

admits both right and left adjoints.
Let hRM : Algbrd(M)→ Algbrd(M)Spc be the colocalization functor. We note that ∆ is

the image under hRM of the morphism of algebroids

∆′ : θ′M(C)→ Funct(IM, θ′M(C))

of precomposition with the projection IM → 1M. Using the equivalence from [Hin20a]
proposition 6.3.7, we see that the above map can be rewritten as

θ′M(∆mod) : θ′M(C)→ θ′M(LModIM(C))

where:

• The category LModIM(C) is equipped with the structure of presentable M-module
by virtue of its realization as a category of left modules for an algebra in the Assos−-
component of the BM-monoidal category FunctBM(BMI≤0,[0], C) (where we consider C
as a M−M-bimodule in the canonical way).

• The functor ∆mod denotes the functor of restriction of scalars

C = LMod1M(C)→ LModIM(C)

along the projection IM → 1M, equipped with its canonical structure of morphism of
M-modules.

Using lemma 5.4.7 we may rewrite our map as

θ′M(∆′mod) : θ′M(C)→ θ′M(LModI′M(C))

where ∆′mod is defined as ∆mod, except that using the projection I ′M → 1M instead.
Applying lemma 5.4.6 we see that the above is equivalent to

θ′M(∆funct) : θ′M(C)→ θ′M(Funct(I, C))

where Funct(I, C) is equipped with its canonical structure of module over M, and ∆funct

denotes the diagonal functor C → Funct(I, C).
We conclude that our original map ∆ is equivalent to θM(∆funct). This admits both left

and right adjoints thanks to proposition 5.4.1.
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We finish by giving an alternative characterization of the class of conical limits.

Proposition 5.4.9. Let M be a presentable symmetric monoidal category and let I be a
category. Let D be anM-enriched category and denote by i : D → Funct(Dop,M) the Yoneda
embedding. Then a functor XC : ICM → D is a conical limit diagram if and only if iXC is a
conical limit diagram.

Proof. If iXC is a conical limit diagram, then XC is a conical limit diagram, since i is
fully faithful. It remains to show the converse. Denote by ∗ the cone point of IC and let
X = XC|IM . Let x = XC(∗), and let ε : ∆x → X be the morphism presenting x as the
conical limit of X.

It follows from [Hin20a] proposition 6.3.7 that Funct(Dop,M) belongs to the image of θM,
and therefore by proposition 5.4.8, we see that Funct(Dop,M) admits all conical limits. Let
ε′ : y → iX be the conical limit for iX, and let α : ix→ y be the unique morphism equipped
with an identification ε′∆∗α = i∗ε. We need to show that α is an isomorphism.

To see this, it suffices to show that for every object z in D, the morphism

α∗ : HomFunct(Dop,M)(iz, ix)→ HomFunct(Dop,M)(iz, y)

is an isomorphism. This fits into a commutative diagram

HomFunct(Dop,M)(iz, ix) HomFunct(Dop,M)(iz, y)

HomFunct(IM,Funct(Dop,M))(∆iz,∆ix) HomFunct(IM,Funct(Dop,M))(∆iz,∆y)

HomFunct(IM,Funct(Dop,M))(∆iz, iX) HomFunct(IM,Funct(Dop,M))(∆iz, iX).

α∗

∆∗ ∆∗

(∆∗α)∗

(i∗ε)∗ ε′∗

id

Since (y, ε′) is a conical limit diagram, the composition of the right vertical arrows is an
isomorphism. Since (x, ε) is a conical limit diagram and i is fully faithful, the composition
of the left vertical arrows is an isomorphism. Since the bottom horizontal arrow is an
isomorphism, we have that the top horizontal arrow is an isomorphism as well, as desired.

Corollary 5.4.10. Let M be a presentable symmetric monoidal category and let I be a
category. Let D be an M-enriched category and let XC : ICM → D be a diagram. Then XC is
a conical limit diagram in D if and only if for every d in D the composite map

ICM
XC

−−→ D HomD(d,−)−−−−−−→M

is a conical limit diagram.

Proof. This follows from proposition 5.4.9 together with proposition 5.3.13, by using the fact
that M admits all conical limit diagrams.
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Remark 5.4.11. Let M be a presentable symmetric monoidal category. Since M admits
all conical colimits, we have that a left cone inM is a conical limit diagram if and only if the
associated left cone in M is a limit diagram. We can thus informally summarize corollary
5.4.10 by saying that a conical limit in an M-enriched category D is the same as a limit in
the category underlying D which is preserved under all enriched corepresentable copresheaves.

5.5 Weighted limits and colimits

We begin by discussing the notion of join of enriched categories.

Notation 5.5.1. Let M be a presentable symmetric monoidal category and let I, I ′ be
M-algebroids with categories of objects X and X ′, respectively. Let W : BMX,X′ →M be

an I − I ′-bimodule in M. We denote by I ?Algbrd
W I ′ the operadic left Kan extension of W

along the inclusion BMX,X′ → AssosX∪X′ .
In the case when I and I ′ are M-enriched categories, we will denote by I ?W I ′ the

M-enriched category underlying I ?Algbrd
W I ′. We call this the join of I and I ′ weighted by

W .

Remark 5.5.2. Let M be a presentable symmetric monoidal category and let I, I ′ be
M-algebroids with categories of objects X and X ′, respectively. Let W : BMX,X′ →M be

an I − I ′-bimodule inM. Then theM-algebroid I ?Algbrd
W I ′ has category of objects X ∪X ′,

and comes equipped with fully faithful morphisms of algebroids

i : I → I ?Algbrd
W I ′ ← I ′ : i′

which are cartesian lifts of the inclusions X → X ∪X ′ ← X ′.
The unit map W → I ?Algbrd

W I ′ presents the bimodule W as the restriction of scalars of
the diagonal bimodule of I ?Algbrd

W I ′ along i and i′. Furthermore, for each pair of objects x
in I and x′ in I ′, we have that I ?Algbrd

W I ′(x′, x) is the initial object of M.

Remark 5.5.3. Let T : M → M′ be a morphism of commutative algebras in PrL. Let
X,X ′ be categories, and consider the commutative square of categories

AlgAssosX∪X′
(M) AlgBMX,X′

(M)

AlgAssosX∪X′
(M′) AlgBMX,X′

(M)

T! T!

where the horizontal arrows are the restriction maps. Since T preserves all operadic colimits
involved in the construction of free algebras, we have that the above commutative square is
horizontally left adjointable.

Let I, I ′ be M-algebroids with categories of objects X,X ′ respectively. Let W be an
I − I ′-bimodule in M, and let T!W be the induced T!I − T!I ′-bimodule in M′. It follows
from the above that we have an equivalence of M′-algebroids

T!(I ?Algbrd
W I ′) = (T!I) ?Algbrd

T!W
(T!I ′).
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When I, I ′ are M-enriched categories, the above induces an equivalence of M′-enriched
categories

T!(I ?W I ′) = (T!I) ?T!W (T!I ′).
Of particular importance is the case when one of the two categories in the join is the unit

M-enriched category.

Notation 5.5.4. Let M be a presentable symmetric monoidal category. Let I be an M-
enriched category and let W be a presheaf on I, which we think about as an 1M−I-bimodule.
We denote by IBW the join of the unit M-enriched category and I, weighted by W . Similarly,
if W ′ is a copresheaf on I, we denote by ICW the join of I and the unit I-enriched category,
weighted by W ′. We call IBW (resp. ICW ) the right (resp. left) cone of I weighted by W (resp.
W ′).

Example 5.5.5. Let M be a presentable symmetric monoidal category and let I be the
initial M-enriched category (in other words, I is the unique M-enriched algebroid with an
empty space of objects). Let W be the unique presheaf on I. Then IBW is the unitM-enriched
category.

Example 5.5.6. Let M be a presentable symmetric monoidal category and let m be an
object of M. Let I be the unit M-enriched category and let W : Iop →M be the map that
picks out the object m. Then (I)BW is the enriched category underlying the m-cell Cm.

Example 5.5.7. Let M = Spc equipped with its cartesian symmetric monoidal structure,
and let I be a category. Let W : Iop → Spc be the terminal presheaf. Then the cone point
of IBW is a final object. Let IB be the category obtained from I by freely adjoining a final
object. Then the functor IB → IBW induced from the inclusion I → IBW is an equivalence.

Remark 5.5.8. Let T :M→M′ be a morphism of commutative algebras in PrL. Let I
be an M-enriched category and let W be a presheaf on M. Denote by T!W the presheaf on
T!I defined by adjunction from the composite map

Iop W−→M→ TR! M′.

Then it follows from remark 5.5.3 that there is an equivalence (T!I)BT!W
= T!(IBW ).

Example 5.5.9. LetM be a presentable symmetric monoidal category. Let I be a category
and let W be the presheaf on IM induced from the presheaf Iop →M which is constant 1M.
Then it follows from a combination of remarks 5.5.3 and 5.5.8 together with example 5.5.7
that IBW is equivalent to (IB)M.

We now discuss the notion of weighted limits and colimits.

Definition 5.5.10. Let M be a presentable symmetric monoidal category and let I, C be
M-enriched categories. Let W : Iop →M be a presheaf on I, and let X : I → C be a functor.
A right cone for X weighted by W (or W -weighted right cone, for short) is an extension
XBW : IBW → C for X. Dually, a left cone for X weighted by a copresheaf W ′ is an extension
XCW ′ : ICW ′ → C for X.
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Notation 5.5.11. LetM be a presentable symmetric monoidal category and let X : I → C
be a functor of M-enriched categories. We denote by HX : C → Funct(Iop,M) the functor
induced from the composite functor

Iop ⊗ C Xop⊗idC−−−−−→ Cop ⊗ C HomC(−,−)−−−−−−→M.

Remark 5.5.12. Let M be a presentable symmetric monoidal category and let I, C be
M-enriched categories. Then the assignment X 7→ HX forms part of a functor

H(−) : Funct(I, C)op → Funct(C,Funct(Iop,M)).

Assume now given another M-enriched category D and a functor G : C → D. Then the
natural transformationG∗ : HomC(−,−)→ HomD(G−, G−) induces a natural transformation

G∗ : H(−) → HG(−) ◦G

of functors Funct(I, C)op → Funct(C,Funct(Iop,M)).

Remark 5.5.13. Let M be a presentable symmetric monoidal category and let I, C be
M-enriched categories. Let W : Iop → M be a presheaf on I, and let X : I → C be a
functor. Then the space of right cones for X weighted by W is equivalent to the space of
pairs of an object x in C, and a morphism of presheaves

η : W (−)→ HX(x).

Assume now given another M-enriched category D and a functor G : C → D. Let
XBW : IBW → C be a right cone for X weighted by W , associated to a pair (x, η) as above.
Then GXBW is a right cone for GX weighted by W , which corresponds under the above
identification to the pair (Gx, η′), where η′ is given by the composite map

W (−)
η−→ HX(x)

G∗−→ HGX(Gx).

Definition 5.5.14. Let M be a presentable symmetric monoidal category and let I, C be
M-enriched categories. Let W : Iop → M be a presheaf on I, and let X : I → C be a
functor. Let XBW be a right cone for X weighted by W , associated to an object x in C and a
morphism of presheaves η : W → HX(x). We say that XBW is a colimit for X weighted by W
(or W -weighted colimit, for short) if η presents x as left adjoint to HX at W . Dually, given
a copresheaf W ′ on I, we say that a left cone XCW ′ for X weighted by W ′ is a limit for X
weighted by W ′ (or W ′-weighted limit, for short) if (XCW ′)

op is a colimit for Xop weighted by
W ′.

Example 5.5.15. Let M be a presentable symmetric monoidal category and let I be the
initial M-enriched category. Let W be the unique presheaf on I, so that IBW is the unit
M-enriched category (see example 5.5.5).
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Let C be an M-enriched category and let X : I → C be the unique functor. A right
cone for X weighted by W is the same data as an object x of C. This defines a colimit of
X weighted by W if and only if x is initial (in other words, HomC(x, y) is a final object in
M for every y in C). Dually, we have that a limit for X weighted by W is the same a final
object in C.

Example 5.5.16. Let M be a presentable symmetric monoidal category and let I be the
unit M-enriched category. Let m be an object in M and let W be the associated presheaf
on I, so that IBW is the M-enriched category underlying the m-cell (see example 5.5.6).

Let C be an M-enriched category and let X : I → C be a functor that picks out an
object x in C. A right cone for X weighted by W consists of a pair of an object y in C and a
morphism α : m→ HomC(x, y). This is a colimit for X weighted by W if it has the property
that for every object z in C the composite map

m⊗ HomC(y, z)
α⊗id−−−→ HomC(x, y)⊗ HomC(y, z)→ HomC(x, z)

induces an isomorphism HomC(y, z) = HomM(m,HomC(x, z)). In this case, we say that α
presents y as the copower (or tensor) of x by m. Passing to opposites we obtain the dual
notion of power (or cotensor) of an object in C by an object in M.

Example 5.5.17. Let M = Spc. Let I be a category and let W be the terminal presheaf
on I. Then a diagram IBW → C is a W -weighted colimit if and only if it is a colimit diagram.

Example 5.5.18. Let M be a presentable symmetric monoidal category and let I be an
M-enriched category. Let j be an object in I and let W = HomI(−, j) be the corresponding
representable presheaf. The equivalence W = HomI(−, j) induces a functor

r : IBW → I

which is a retraction for the inclusion i : I → IBW , and maps the cone point to j. Observe
that the equivalence ri = idI presents i as left adjoint to r.

Let C be an M-enriched category and let X : I → C be a functor. Then Xr is a right
cone for X weighted by W . Unwinding the definitions, we see that this is the right cone
which corresponds to the object X(j) in C and the natural transformation

η : W (−)→ HomC(X(−), X(j))

is induced by the identity in HomC(X(j), X(j)). It now follows from the Yoneda lemma that
Xr is a colimit for X weighted by W .

We conclude from the above discussion that M-enriched categories admit all colimits
weighted by a representable presheaf.

Remark 5.5.19. Let T : M → M′ be a colimit preserving symmetric monoidal functor
between presentable symmetric monoidal categories. Let I be an M-enriched category and
let W be a presheaf on I. Let C be an M′-enriched category and let

XB : (T!I)BT!W
→ C
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be a weighted colimit diagram. Then the induced diagram X ′B : IBW → TR! C is a weighted
colimit diagram.

Recall that, in unenriched category theory, left adjoint functors preserve all colimits. We
now discuss an enriched generalization of this fact.

Definition 5.5.20. Let M be a presentable symmetric monoidal category and let I, C be
M-enriched categories. Let W : Iop → M be a presheaf on I, and let X : I → C be a
functor. Let G : C → C ′ be a functor of M-enriched categories. We say that a colimit XBW
for X weighted by W is preserved by G if GXBW is a colimit for GX weighted by X. Passing
to opposites, we similarly define the notion of a functor preserving a weighted limit.

Example 5.5.21. Let M be a presentable symmetric monoidal category and let I be an
M-enriched category. Let j be an object in I and let W = HomI(−, j) be the corresponding
representable presheaf. It follows from the description of W -weighted colimits from example
5.5.18 that these are preserved under all functors ofM-enriched categories. We may summarize
this by saying that colimits weighted by representable presheaves are examples of absolute
colimits.

Notation 5.5.22. LetM be a presentable symmetric monoidal category and let G : C → D
be a functor of M-enriched categories. Let D′ be the full subcategory of D on those objects
d such that G admits a left adjoint at d. It follows from proposition 5.1.7 that the functor

G∗ : Funct(D′, C)→ Funct(D′,D)

admits a left adjoint at the inclusion i : D′ → D. We will usually denote the resulting functor
GL : D′ → C and call it the (partially defined) left adjoint of G. We call D′ the domain of
definition of GL.

Remark 5.5.23. Let M be a presentable symmetric monoidal category and let G : C → D
be a functor of M-enriched categories. Then GL is characterized by the property that it
comes equipped with a unit natural transformation η : i → GGL such that η(d) presents
GL(d) as left adjoint to G at d for each d in D′. In the case when G admits a left adjoint
then D′ = D and η presents GL as left adjoint to G.

Proposition 5.5.24. Let M be a presentable symmetric monoidal category. Let I be an M-
enriched category and let W be a presheaf on I. Let G : C → D be a functor of M-enriched
categories and let X : I → D be a functor admitting a W -weighted colimit XB : IBW → D.
Assume that G admits a left adjoint at X(i) for all i in I. Then GLX admits a W -weighted
colimit if and only if G admits a left adjoint at XB(∗). Furthermore, in this case GLXB is a
W -weighted colimit for GLX.

Proof. Let D′ be the domain of definition of GL, and let η be the unit for the partial
adjunction between GL and G. Let x = XB(∗) and let µ : W → HX(x) be the induced
natural transformation which presents x as left adjoint to HX at W .
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Note that the composite natural transformation

HGLX
G∗−→ HGGLXG

η∗−→ HXG

is an isomorphism. It follows from proposition 5.1.3 that HXG admits a left adjoint at W if
and only if G admits a left adjoint at x. Since HXG is equivalent to HGLX , we conclude that
GLX admits a colimit weighted by W if and only if G admits a left adjoint at x, as desired.

Assume now that G admits a left adjoint at x. We need to show that GL preserves the
colimit of X weighted by W . The weighted cone GLXB corresponds to the pair of the object
GLx and the composite map

W
µ−→ HX(x)

GL∗−−→ HGLX(GLx).

Composing with the isomorphism HGLX = HXG described above we obtain the composite
natural transformation

µ′ : W
µ−→ HX(x)

GL∗−−→ HGLX(GLx)
G∗−→ HGGLX(GGLx)

η∗−→ HX(GGLx).

To show that GL preserves the W -weighted colimit of X, we have to show that µ′ presents
GLx as left adjoint to HXG at W .

The natural transformation µ′ is obtained by composing µ with the natural transformation
HX(x)→ HX(GGLx) induced from the composite natural transformation

HomD′(−,−)
GGL∗−−−→ HomD(GGL−, GGL−)

η∗−→ HomD(−, GGL−).

The naturality of η implies that the above is equivalent to

η∗ : HomD′(−,−)→ HomD(−, GGL−)

(see remark 5.2.7). Hence we see that µ′ is equivalent to the composite map

W
µ−→ HX(x)

HX(η)−−−→ HX(GGL(x)).

Using proposition 5.1.3 we see that the above presents GLx as left adjoint to HXG at W , as
desired.

Corollary 5.5.25. Let M be a presentable symmetric monoidal category. Let G : C → D be
a functor of M-enriched categories, and assume that C admits all weighted colimits. Then
the full subcategory of D on those objects d such that G admits a left adjoint at d, is closed
under weighted colimits.

Corollary 5.5.26. Let M be a presentable symmetric monoidal category. Let G : C → D
be a functor of M-enriched categories admitting a left adjoint GL. Then GL preserves all
weighted colimits that exist in D.
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Our next goal is to prove that enriched categories arising from presentable modules admit
powers and copowers, which are computed in the expected way.

Proposition 5.5.27. Let M be a presentable symmetric monoidal category and let C be a
presentable M-module. Let x be an object in C and let m be an object in M. Then

(i) The morphism m→ HomθM(C)(x,m⊗ x) induced from the identity of m⊗ x presents
m⊗ x as the copower of x by m in the M-enriched category θM(C).

(ii) Let xm be the object representing the presheaf HomC(m ⊗ −, x). Then the morphism
m→ HomθM(C)(x

m, x) induced from the canonical map m⊗ xm → x presents xm as the
power of x by m in the M-enriched category θM(C).

Proof. We first prove item (i). We need to show that for every object y in C, the induced
map

m⊗ HomθMC(m⊗ x, y) −→ HomθMC(x,m⊗ x)⊗ HomθMC(m⊗ x, y)→ HomθMC(x, y)

presents HomθMC(m ⊗ x, y) as the Hom object HomM(m,HomθMC(x, y)). Unwinding the
definitions, we see that the above is equivalent to the map

η : m⊗HomC(m⊗ x, y)→HomC(x, y)

induced from the evaluation map ev : HomC(m⊗ x, y)⊗m⊗ x→ y. Our task is to show
that η presents HomC(m ⊗ x, y) as the Hom object HomM(m,HomC(x, y)). This is a
consequence of proposition 5.1.3 applied to the functors

M −⊗m−−−→M −⊗x−−→ C.

We now prove item (ii). We need to show that for every object z in C, the induced map

HomθMC(z, x
m)⊗m→ HomθMC(z, x

m)⊗ HomθMC(x
m, x)→ HomθMC(z, x)

presents HomθMC(z, x
m) as the Hom object HomM(m,HomθMC(z, x)). We can identify the

above map with the map

η′ : m⊗HomC(z, x
m)→HomC(z, x)

induced by composing the evaluation maps

m⊗ z ⊗HomC(z, x
m)→ m⊗ xm → x.

Our task is to show that η′ induces an equivalence

HomC(z, x
m) = HomM(m,HomC(z, x)).
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Consider the following commutative square of categories:

M C

M C

−⊗z

m⊗− m⊗−

−⊗z

The evaluation maps m ⊗ xm → x and HomC(z, x
m) ⊗ z → xm are right adjoint to the

right vertical and top horizontal maps at x and xm, respectively. Using proposition 5.1.3
(in its dual form) we see that the composite evaluation map m⊗ z ⊗HomM(z, xm)→ x is

right adjoint to the diagonal map M m⊗−⊗z−−−−→ C at x. The result now follows from another
application of proposition 5.1.3, this time to the bottom horizontal and left vertical arrows in
the above diagram.

5.6 Weighted colimits via conical colimits and copowers

Our next goal is to give a proof of the following fundamental result, which allows one to
reduce many questions in the theory of weighted colimits to questions about conical colimits
and copowers.

Theorem 5.6.1. Let M be a presentable symmetric monoidal category and let C be an
M-enriched category.

(i) Let I be a category and XB : IBM → C be a functor. Then XB is a conical colimit
diagram if and only if it is a colimit diagram weighted by the presheaf W induced from
the functor Iop →M which is constant 1M.

(ii) The M-enriched category C admits all weighted colimits if and only if it admits all
conical colimits and copowers.

(iii) Let G : C → D be a functor of M-enriched categories, and assume that C admits all
weighted colimits. Then G preserves all weighted colimits if and only if it preserves
conical colimits and copowers.

Corollary 5.6.2. Let M be a presentable symmetric monoidal category and let C be a
presentable module over M. Then θM(C) admits all weighted limits and colimits.

Proof. This is a direct consequence of theorem 5.6.1, by virtue of propositions 5.4.8 and
5.5.27.

Corollary 5.6.3. Let M be a presentable symmetric monoidal category. Let I be an M-
enriched category and let W be a copresheaf on I. Let C be anM-enriched category and denote
by i : C → Funct(Cop,M) the Yoneda embedding. Then a weighted left cone XC : ICW → C is
a weighted limit diagram if and only if iXC is a weighted limit diagram.



CHAPTER 5. ENRICHED ADJUNCTIONS AND WEIGHTED LIMITS 112

Proof. Lemma 5.6.6 below shows that this corollary holds under the additional hypothesis
that Funct(Cop,M) admits all weighted limits. It follows from corollary 5.6.2 that this
hypothesis always holds, since Funct(Cop,M) belongs to the image of θM (see [Hin20a]
proposition 6.3.7).

Our proof of theorem 5.6.1 will need a few preliminary lemmas.

Lemma 5.6.4. Let M be a presentable symmetric monoidal category and let G : C → D be
a functor of M-enriched categories. Assume that C admits all conical colimits. Then the full
subcategory of D on those objects on which the left adjoint to G is defined, is closed under
conical colimits.

Proof. Let I be a category and X : IM → D be a functor admitting a conical colimit with
underlying object x. Assume that for every i in I, there exists a left adjoint to G at X(i).
We have to show that there exists a left adjoint to G at x.

Consider the following commutative square of M-enriched categories:

C D

Funct(IM, C) Funct(IM,D).

G

∆ ∆

G∗

Thanks to proposition 5.1.7, the bottom horizontal arrow in the above square admits a left
adjoint at X. Since C admits all conical colimits, the left vertical arrow admits a left adjoint.
Applying proposition 5.1.3 we conclude that the induced functor C → Funct(IM,D) admits
a left adjoint at X. Our claim now follows from another application of proposition 5.1.3.

Lemma 5.6.5. LetM be a presentable symmetric monoidal category and let C be a presentable
M-module. Let I be a small full subcategory of θM(C) and assume that the family of
copresheaves {HomθM(C)(i,−)}i∈I detects isomorphisms. Then the closure of I under conical
colimits and copowers is the entire θM(C).

Proof. Denote by D the smallest subcategory of C closed under colimits, the action of M,
and containing the objects of I. By a combination of proposition 5.5.27 and proposition
5.4.8, it suffices to show that D is the entire C.

Let κ be a regular cardinal such that M is κ-compactly generated. Observe that D is
generated under colimits by objects of the form m⊗ i with i in I and m a κ-compact object
of M. This is a small collection of objects. Since C is presentable, we conclude that D is
presentable as well. Hence the inclusion of D inside C admits a right adjoint which presents
D as a colocalization of C.

Let c be an object in C and let d be its image under the colocalization map. We claim
that the counit map ε : d → c is an isomorphism. To see this, it suffices to show that for
every object i in I, the induced morphism

ε∗ : HomθC(i, d)→ HomθC(i, c)
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is an isomorphism. The above is equivalent to the map HomC(i, d)→HomC(i, c) induced
from the composite map

HomC(i, d)⊗ i ev−→ d
ε−→ c.

It suffices then to show that for every object m in M, the composite morphism of spaces

HomM(m,HomC(i, d))
−⊗i−−→ HomC(m⊗ i,m⊗HomC(i, d))

(ε ev)∗−−−→ HomC(m⊗ i, c)
is an isomorphism. This follows from the fact that ε∗ : HomC(m⊗ i, d)→ HomC(m⊗ i, c) is
an isomorphism, together with the fact that the composite map of spaces

HomM(m,HomC(i, d))
−⊗i−−→ HomC(m⊗ i,m⊗HomC(i, d))

ev∗−−→ HomC(m⊗ i, d)

is an isomorphism.

Lemma 5.6.6. Let M be a presentable symmetric monoidal category. Let I be an M-
enriched category and let W be a copresheaf on I. Let C be an M-enriched category and
denote by i : C → Funct(Cop,M) the Yoneda embedding. Assume that Funct(Cop,M) admits
all weighted limits.1 Then a weighted left cone XC : ICW → C is a weighted limit diagram if
and only if iXC is a weighted limit diagram.

Proof. Let Î = Funct(I,M). Given an M-enriched category D and a functor F : I → D,

we denote by H ′ : Dop → Î the functor induced from the composite map

Dop ⊗ I id⊗F−−−→ Dop ⊗D HomD(−,−)−−−−−−−→M.

Let x = XC(∗) and let η : W (−)→ H ′X(x) be the natural transformation induced by XC.
It follows from a dual version of the discussion in remark 5.5.13 that the weighted cone iXC

is associated to the pair (ix, η′), where η′ is given by the composition

W (−)
η−→ H ′X(x)

i∗−→ H ′iX(ix).

Note that since i is fully faithful, the second morphism above is an equivalence.
Let X = XC|I and let

µ : W (−)→ H ′iX(y)

be the limit of iX weighted by W . Let α : ix→ y be the unique morphism equipped with an
identification η′ = α∗µ.

Let z be an object of C and consider the following commutative diagram:

HomC(z, x) HomÎ(H
′
X(x), H ′X(z)) HomÎ(W (−), H ′X(z))

HomFunct(Cop,M)(iz, ix) HomÎ(H
′
iX(ix), H ′iX(iz)) HomÎ(W (−), H ′iX(iz))

HomFunct(Cop,M)(iz, y) HomÎ(H
′
iX(y), H ′iX(iz)) HomÎ(W (−), H ′iX(iz))

i∗

(H′X)∗

i∗

η∗

i∗

α∗

(H′iX)∗

HiX(α)∗

η′∗

id

(H′iX)∗ µ∗

1It is a consequence of theorem 5.6.1 that this condition is always verified, see corollary 5.6.3.
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Here the top vertical arrows are the isomorphisms which arise from the fully faithfulness of i.
The composition of the bottom horizontal arrows is an equivalence, since µ presents y as left
adjoint to H ′iX at W . The composition of the right vertical arrows is also an equivalence,
since both arrows are an equivalence.

The composition of the top horizontal arrows is an equivalence if and only if XC is a
weighted limit diagram. By the commutativity of the outer square, this happens if and only
if α∗ is an isomorphism. The Yoneda lemma implies that this happens if and only if α is an
isomorphism. This is equivalent to (ix, η′) being a weighted limit, as desired.

Lemma 5.6.7. Let M be a presentable symmetric monoidal category. Let I be an M-
enriched category and let W be a presheaf on I. Let G,G′ : C → D be functors of M-enriched
categories, and let µ : G→ G′ be a natural transformation. Assume that G and G′ preserve
W -weighted colimits. Then the space of objects x in C such that µ(x) is an isomorphism, is
closed under W -weighted colimits.

Proof. Let C ′ be the full subcategory of C on those objects x for which µ(x) is an isomorphism.
Let X : I → C be a functor which factors through C ′, and assume that X admits a W -weighted
colimit, corresponding to an object x in C and a natural transformation η : W → HX(x). We
need to show that x belongs to C ′.

Let y be an object in D. Let P(I) = Funct(Iop,M) and consider the following commuta-
tive diagram:

HomD(G′(x), y) HomD(G(x), y)

HomP(I)(HGX(G′(x)), HGX(y))

HomP(I)(HG′X(G′(x)), HG′X(y)) HomP(I)(HGX(G(x)), HGX(y))

HomP(I)(HG′X(G′(x)), HGX(y))

HomP(I)(HX(x), HG′X(y)) HomP(I)(HX(x), HGX(y))

HomP(I)(W,HG′X(y)) HomP(I)(W,HGX(y))

(HG′X)∗

µ(x)∗

(HGX)∗

(HGX)∗

HGX(µ(x))∗

(µ∗)∗

(G′∗)
∗

(µ∗)∗

(G∗)∗

(G′∗)
∗

(µ∗)∗

η∗ η∗

(µ∗)∗

Here the diagonal squares commute thanks to the naturality of µ. The composition of the
left vertical arrows is an isomorphism since G′ preserves W -weighted colimits. Similarly, the
composition of the right vertical arrows is an isomorphism since G preserves W -weighted
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colimits. The bottom horizontal arrow is an isomorphism since X factors through C ′. We
conclude that the top horizontal arrow is an isomorphism. Since this happens for all y in C,
we conclude that µ(x) is an isomorphism, as desired.

Lemma 5.6.8. Let M be a presentable symmetric monoidal category, and let C,D be two
M-enriched categories. Let F : C → D and G : D → C be functors, and let µ : idC → GF
be a natural transformation. Let I be an M-enriched category and W be a presheaf on I.
Assume that C admits all W -weighted colimits and that F preserves W -weighted colimits.
Then the space of objects x in C such that µ(x) presents F (x) as left adjoint to G at x, is
closed under W -weighted colimits.

Proof. Let C ′ be the full subcategory of C on those objects where the left adjoint to G is
defined, and let C ′′ be the full subcategory of C on those objects x such that η(x) presents
F (x) as left adjoint to G at x. Note that C ′′ is contained in C ′. Let α : GL → F |C′ be the
unique natural transformation equipped with an identification η∗G∗(α) = µ. Then for each x
in C ′ we have that α(x) is an isomorphism if and only if x belongs to C ′′. The lemma now
follows from a combination of lemma 5.6.7 and corollary 5.5.25.

Proof of theorem 5.6.1. We first show that the existence of conical colimits and copowers
implies the existence of all weighted colimits. Assume that C admits conical colimits and
copowers. Let I be an M-enriched category and let X : I → C be a functor. We need to
show that HX admits a left adjoint. Thanks to example 5.5.18, we have that HX admits a
left adjoint at every representable presheaf. Using lemma 5.6.4 and proposition 5.5.24, we
reduce to showing that the closure of the representable presheaves under conical colimits and
copowers is the entire Funct(Iop,M). This follows from a combination of the Yoneda lemma
and lemma 5.6.5.

We now prove item (i). It follows from propositions 5.4.8 and 5.5.27 that Funct(C,M)op

admits all conical colimits and copowers. By the above, we also know that it has all weighted
colimits. Applying proposition 5.4.9 and lemma 5.6.6 we reduce to showing that W -weighted
colimit diagrams and conical colimit diagrams agree when the target is Funct(C,M)op. Using
remark 5.5.19 and corollary 5.3.7, we reduce to the case when M = Spc. This is example
5.5.17.

Item (ii) now follows, since we have already showed that the existence of conical colimits
and copowers implies the existence of weighted colimits.

It remains to prove item (iii). Let ξ : Funct(Iop,M)→ C be the left adjoint to HX , and
let η be the unit of the adjunction. Consider the composite natural transformation

µ : idFunct(Cop,M)

η−→ HXξ
G∗◦idξ−−−−→ HGXGξ.

To show that G preserves weighted colimits we need to show that µ is the unit of an adjunction
between Gξ and HGX .

Since ξ is a left adjoint, we have that it preserves all weighted colimits that exist in
Funct(Iop,M), thanks to corollary 5.5.26. This implies in particular that ξ preserves all
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conical colimits and copowers. Since G preserves all conical colimits and copowers, we have
that Gξ preserves all conical colimits and copowers.

It follows from the discussion in example 5.5.21 that G preserves colimits weighted by
representable presheaves, and hence µ(W ) presents Gξ(W ) as left adjoint to HGX at W for
every representable W . By lemma 5.6.8 we have that this is also the case for W in the closure
of the representable presheaves under conical colimits and copowers. Our claim now follows
from another application of lemma 5.6.5.
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Chapter 6

Enriched higher algebra

Let M be a symmetric monoidal category. An M-enriched pre-prop P consists of:

• A space of objects P .

• For every pair {xs}s∈S, {yt}t∈T of finite families of elements of P , an object

HomP({xs}s∈S, {yt}t∈T )

in M of operations in P with source {xs}s∈S and target {yt}t∈T .

• For every triple {xs}s∈S, {yt}t∈T , {zu}u∈U of finite families of elements of P , a composi-
tion map

HomP({xs}s∈S, {yt}t∈T )⊗ HomP({yt}t∈T , {zu}u∈U)→ HomP({xs}s∈S, {zu}u∈U)

• For every object x in P , a unit map 1M → HomP(x, x).

• For every quadruple X = {xs}s∈S, Y = {yt}t∈T , Z = {zu}u∈U , W = {wv}v∈V of finite
families of elements of P , a stacking map

HomP(X, Y )⊗ HomP(Z,W )→ HomP(X ∪ Z, Y ∪W )

• Isomorphisms witnessing unitality and associativity of composition, compatibility with
stacking, and an infinite family of higher coherence data.

An M-enriched pre-prop P has an underlying M-enriched algebroid, whose morphisms
are operations in P with single source and target. We say that P is an M-enriched prop
if its underlying M-enriched algebroid is an M-enriched category. An M-enriched operad
is an M-enriched prop P satisfying an extra condition, which roughly speaking states that
arbitrary operations are determined by single target operations.

The goal of this chapter is to discuss a number of topics in enriched higher algebra, and
to provide a way of making the above notions precise.
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We begin in 6.1 with a preliminary discussion on the theory of cartesian monoidal
categories over an operad. This is a generalization of the theory of cartesian symmetric
monoidal categories from [Lur17] section 2.4.1. Recall that each category with finite products
carries a unique cartesian symmetric monoidal structure. We prove here a generalization
of this fact: for any operad O, there is an equivalence between the category of cartesian
O-symmetric monoidal categories and the category of cartesian (O ⊗ Comm)-symmetric
monoidal categories.

In 6.2 we introduce, for a cartesian symmetric monoidal categoryM, a notion of cartesian
O-monoidal M-enriched category, and provide an enriched generalization of the results from
6.1. In particular, this provides an ample source of cartesian symmetric monoidalM-enriched
categories: any M-enriched category with finite conical products carries a unique such
structure.

In 6.3 we discuss the canonical enrichment on the category of O-algebras on a cartesian
symmetric monoidal category C enriched over a cartesian closed presentable category M.
We define this as an enriched analogue of the category of O-monoids from [Lur17] section
2.4.2. We prove here two basic results that allow one to understand enriched categories
of algebras over some simple operads. As a particular case of this theory, we are able to
define an M-enriched 2-category of O-monoidal M-enriched categories. We prove that when
M = Spc this agrees with the 2-category of O-monoidal categories defined as a subcategory
of the 2-category of categories over the category of operators of O.

In 6.4 we discuss the notion of prop enriched over a presentable symmetric monoidal
category M. We show that the category of symmetric monoidal M-enriched categories is
a subcategory of the category of M-enriched props, and that this inclusion admits a left
adjoint, which we think about as sending each M-enriched prop to its symmetric monoidal
envelope.

In 6.5 we discuss the notion of operad enriched over a presentable symmetric monoidal
category M. We show that every enriched operad admits an universal enveloping enriched
prop, and that every enriched prop has an underlying enriched operad. We show that the
category of M-enriched operads contains the category of M-enriched symmetric monoidal
categories as a subcategory. We finish by proving that our approach recovers in the case
M = Spc the usual notion of operad.

6.1 Cartesian O-monoidal categories

We begin by introducing the notion of cartesian O-monoidal category for an arbitrary operad
O.

Notation 6.1.1. Denote by Catfin prod the subcategory of Cat on the categories with finite
products, and finite product preserving functors. We equip Catfin prod with its cartesian
symmetric monoidal structure, and the inclusion Catfin prod → Cat with its unique symmetric
monoidal structure.
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Definition 6.1.2. Let O be an operad and let E be an O-monoidal category. We say that E
is cartesian if the associated morphism of operads O → Cat factors through Catfin prod. We
call AlgO(Catfin prod) the category of cartesian O-operads.

Remark 6.1.3. Let O be an operad and let E be an O-monoidal category. Unwinding the
definitions, we see that E is cartesian if and only if the following two conditions hold:

• For every object x in O the category E(x) admits finite products.

• For every operation in O with source {xs}s∈S and target x, the induced functor∏
s∈S

E(xs)→ E(x)

preserves finite products.

Assume now that E is cartesian, and let F : E → E ′ be a morphism of O-monoidal
categories, with E ′ also cartesian. Then F defines a morphism in AlgO(Catfin prod) if and only
if for every object x in O the induced functor E(x)→ E ′(x) preserves finite products.

The following proposition singles out a minimalistic collection of products that need to
be preserved for an O-monoidal category to be cartesian.

Definition 6.1.4. Let O be an operad. A collection of operations {µj}j∈J of O is said to be
dense if its closure under compositions (and identities) is the entire collection of operations
of O.

Proposition 6.1.5. Let O be an operad and let A = {µj}j∈J be a dense collection of
operations in O. Let E be an O-monoidal category. Then E is cartesian if and only if the
following conditions hold:

• For every object x in O the category E(x) admits finite products.

• For every operation µ in A with source {xs}s∈S and target x, the induced functor

µ∗ :
∏
s∈S

E(xs)→ E(x)

preserves terminal objects.

• Let µ be an operation in A with source {xs}s∈S and target x. Let s0 be an index in
S and denote by by is0 : E(xs0) →

∏
s∈S E(xs) the functor induced from the identity

E(xs0)→ E(xs0) and the terminal maps E(xs0)→ E(xs) for s 6= s0. Then the composite
functor

E(xs0)
is0−→
∏
s∈S

E(xs)
µ∗−→ E(x)

preserves binary products.
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• Let µ be an operation in A with source {xs}s∈S and target x, and let e = {es}s∈S be a

family of objects with es in E(xs). For each i in S let e(i) = {e(i)
s }s∈S be the family of

objects given by e
(i)
i = ei and e

(i)
s = 1E(xs) otherwise. Then the projection maps e→ e(i)

induce an isomorphism

µ(e) =
∏
i∈S

µ(e(i)).

Proof. It follows from remark 6.1.3 that if E is cartesian then the four conditions in the
statement hold. Assume now that the four conditions above hold. By virtue of remark 6.1.3,
we need to show that for every operation µ with source {xs}s∈S and target x the induced
functor

µ∗ :
∏
s∈S

E(xs)→ E(x)

preserves finite products. Since A is dense, it suffices to assume µ belongs to A. The second
item in the statement guarantees that this functor preserves final objects, so it remains to
show that it preserves binary products.

Let e = {es}s∈S and e′ = {e′s}s∈S be two objects in
∏

s∈S E(xs), and let e(i), e′(i) be as in
the statement. Then for each i in S we have a commutative diagram

µ(e) µ(e× e′) µ(e′)

µ(e(i)) µ(e(i) × e′(i)) µ(e′(i)).

Using the fourth condition in the statement we see that as we range over all i in S, the
vertical arrows present the upper row as the product of the lower rows. Our claim now follows
from the fact that the lower row presents µ(e(i) × e′(i)) as the product of µ(e(i)) and µ(e′(i)),
which is itself a consequence of the third condition in the statement.

Example 6.1.6. The operad Comm admits a dense collection of operations consisting of
the unique operations with arity 0 and 2. It follows that a symmetric monoidal category E is
a cartesian Comm-monoidal category if and only if the following two conditions hold:

• The unit object of E is final.

• Let e, e′ be two objects of E . Then the maps

e = e⊗ 1E
ide⊗πe′←−−−− e⊗ e′ πe⊗ide′−−−−→ 1E ⊗ e′ = e′

present e⊗ e′ as the product of e and e′.

In other words, E is cartesian in the sense of definition 6.1.2 if and only if its symmetric
monoidal structure is cartesian.
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Example 6.1.7. The operad CAlgMod governing pairs of a commutative algebra and a left
module over it admits a dense collection of operations consisting of the two operations of
arity 2, and the unique operation of arity 0.

Let E be a symmetric monoidal category and let C be a category tensored over E , so that
the pair (E , C) defines a monoidal category over the operad CAlgMod. Then it follows from
proposition 6.1.5 that (E , C) is cartesian if and only if the following conditions hold:

• The symmetric monoidal structure on E is cartesian.

• The category C admits finite products.

• For every pair of objects e in E and c in C the maps

e⊗ 1C
ide⊗πc←−−−− e⊗ c πe⊗idc−−−−→ 1E ⊗ c = c

present e⊗ c as the product of e⊗ 1C and c.

• The map −⊗ 1C : E → C preserves finite products.

It turns out in fact that the fourth condition is a consequence of the first three. Indeed, if
e, e′ are objects of E , then the pair of morphisms

(e× 1E)⊗ 1C
(ide×πe′ )⊗id1C←−−−−−−−−− (e× e′)⊗ 1C

(πe×ide′ )⊗id1C−−−−−−−−→ (1E × e′)⊗ 1C

is equivalent to

e⊗ 1C
ide⊗πe′⊗1C←−−−−−−− e⊗ (e′ ⊗ 1C)

πe⊗ide′ ⊗1C−−−−−−−→ e′ ⊗ 1C

which is a product diagram thanks to the third condition.

Recall from [Lur17] corollary 2.4.1.9 that the category CAlg(Catfin prod) of cartesian
symmetric monoidal categories is equivalent to Catfin prod. The following proposition provides
a generalization of this fact.

Proposition 6.1.8. Let O be an operad. Then restriction along the morphism of operads
O = O ⊗ [0]→ O⊗ Comm induces an equivalence of categories

AlgO(Catfin prod) = AlgO⊗Comm(Catfin prod).

Proof. Recall that Catfin prod is equivalent to the full subcategory CAlgcart(Cat) of CAlg(Cat)
on the cartesian symmetric monoidal categories. Since the cartesian symmetric monoidal
structure on CAlg(Cat) is also cocartesian, we conclude that the same holds for Catfin prod.
Therefore precomposition with [0]→ Comm induces an equivalence of symmetric monoidal
categories

AlgComm(Catfin prod) = Alg[0](Catfin prod) = Catfin prod .

The result now follows from the above by passing to categories of O-algebras.
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Corollary 6.1.9. Let ∞ ≥ n ≥ 0. Then precomposition with the unique map [0] → En
induces an equivalence

AlgEn(Catfin prod) = Catfin prod .

Proof. Consider the commutative square of operads

[0] [0]⊗ Comm

En En ⊗ Comm

obtained by tensoring the unique map [0] → En with the unique map [0] → Comm. This
induces a commutative square of categories

AlgEn(Catfin prod) AlgEn⊗Comm(Catfin prod)

Alg[0](Catfin prod) Alg[0]⊗Comm(Catfin prod).

It follows from proposition 6.1.8 that the horizontal arrows are equivalences. Since En ⊗
Comm = [0] ⊗ Comm = Comm we have that the right vertical arrow is an equivalence as
well, and the result follows.

Corollary 6.1.10. Let ∞ ≥ n ≥ 1 and let O = LMod∪AssosEn be the operad governing
pairs of an En-algebra and a left module over it. Then there is an equivalence

AlgO(Catfin prod) = Funct([1],Catfin prod).

Proof. Note that we have equivalences of operads

O ⊗ Comm = (LMod⊗Comm) ∪Assos⊗Comm (En ⊗ Comm)

= (LMod⊗Comm) ∪Comm Comm

= LMod⊗Comm .

The result now follows from proposition 6.1.8 using the fact that LMod⊗Comm and [1]⊗
Comm are equivalent.

Remark 6.1.11. Let ∞ ≥ n ≥ 1 and let O = LMod∪AssosEn be the operad governing pairs
of an En-algebra and a left module over it. Inspecting the proof of 6.1.10 reveals that the
equivalence between cartesian O-monoidal categories and morphisms in Catfin prod is such
that:

• To each pair (E , C) of a cartesian En-monoidal category E and a cartesian module C
over it, it assigns the finite product preserving functor

−⊗ 1C : E → C.
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• To each product preserving functor F : E → C between categories with finite products,
it assigns the pair (E , C), where C is seen as an E-module by restriction of scalars along
F .

6.2 Cartesian O-monoidal enriched categories

We now review the notion of O-monoidal enriched category.

Definition 6.2.1. Let M be a symmetric monoidal category and let O be an operad. An
O-monoidal M-enriched category is an O-algebra in the symmetric monoidal category CatM.
We call AlgO(CatM) the category of O-monoidal M-enriched categories.

Given an O-monoidal M-enriched category C, its image under the functor

(τM)! : AlgO(CatM)→ AlgO(Cat)

induced from τM is called the O-monoidal category underlying C. Given an O-operad O′, we
define the category of O′-algebras in C to be the category AlgO′/O((τM)!)C) of O′-algebras in
the O-monoidal category underlying C.

Remark 6.2.2. Let M be a symmetric monoidal category. Specializing definition 6.2.1 to
the case O = Comm (resp. O = Assos) we obtain categories of symmetric monoidal (resp.
monoidal) M-enriched categories, and commutative algebras (resp. associative algebras) in
those.

Example 6.2.3. LetM be a presentable symmetric monoidal category. Let O be an operad
and let C be an O-algebra in M -mod(PrL). Composing with the lax symmetric monoidal
functor

θM :M -mod(PrL)→ Ĉat
M

we obtain an O-monoidal M-enriched category θM(C), whose underlying O-monoidal cat-
egory is equivalent to the image of C under the lax symmetric monoidal forgetful functor
M -mod(PrL)→ Ĉat.

In particular, taking C to be the unit commutative algebra in M -mod(PrL) we obtain a
symmetric monoidalM-enriched categoryM whose underlying symmetric monoidal category
is M.

We now specialize to the case when M is cartesian symmetric monoidal. In this case,
M-enriched categories with conical finite products provide examples of symmetric monoidal
M-enriched categories.

Definition 6.2.4. Let M be cartesian symmetric monoidal category. Let C be a symmetric
monoidalM-enriched category. We say that C is cartesian if the symmetric monoidal category
underlying C is cartesian, and C admits all conical finite products.
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Example 6.2.5. Let M be a cartesian closed presentable category, equipped with its
cartesian symmetric monoidal structure. It follows from proposition 5.4.8 that the symmetric
monoidal M-enriched category M is cartesian.

Remark 6.2.6. LetM be a cartesian symmetric monoidal category and let C be a symmetric
monoidalM-enriched category. We denote by 1C the unit object of C, and by−⊗− : C⊗C → C
the tensoring map. Then C is cartesian if and only if the following two conditions hold:

• For every object c in C we have that HomC(c, 1C) is a final object ofM. In other words,
1C is a conical final object of C.

• Let c, d in C be a pair of objects of C, and denote by πc : c→ 1C and πd : d→ 1C the
unique maps. Then the morphisms

c = c⊗ 1C
idc⊗πd←−−−− c⊗ d πc⊗idd−−−−→ 1C ⊗ d = d

exhibit c⊗ d as a conical product of c and d.

Notation 6.2.7. Let M be a cartesian symmetric monoidal category. We denote by
CAlgcart(CatM) the full subcategory of CAlg(CatM) on the cartesian symmetric monoidal
M-enriched categories. We denote by (CatM)fin prod the subcategory of CatM on those M-
enriched categories admitting all conical finite products, and conical finite product preserving
functors.

Theorem 6.2.8. Let M be cartesian symmetric monoidal category. Then the forgetful
functor CAlg(CatM)→ CatM restricts to an equivalence

CAlgcart(CatM) = (CatM)fin prod.

Our proof of theorem 6.2.8 will need some preliminaries.

Construction 6.2.9. Let M be a cartesian symmetric monoidal category. Consider the
functor

H :Mop → Funct(M, Spc)

induced from the Hom functor HomM(−,−) : Mop ×M → Spc. We have that H fac-
tors through the full subcategory Funct×(M, Spc) of Funct(M, Spc) on the finite product
preserving functors.

Let O be an operad, and consider the composite functor

AlgO(M)×Mop id×H−−−→ AlgO(M)× Funct×(M, Spc)→ AlgO(Spc)

where the second arrow is composition. We denote by

ιO,M : AlgO(M)→ Funct(Mop,AlgO(Spc))

the associated functor.



CHAPTER 6. ENRICHED HIGHER ALGEBRA 125

Lemma 6.2.10. Let M be a cartesian symmetric monoidal category and let O be an operad.
Then the functor ιO,M from construction 6.2.9 is fully faithful.

Proof. Let O⊗ be the category of operators of O. Consider the composite functor

Funct(O⊗,M)×Mop id×H−−−→ Funct(O⊗,M)× Funct(M, Spc)→ Funct(O⊗, Spc)

where the right arrow is composition. This induces a functor

ι′O,M : Funct(O⊗,M)→ Funct(Mop,Funct(O⊗, Spc)).

Observe that the above is equivalent to the functor

Funct(O⊗,M)→ Funct(O⊗,Funct(Mop, Spc))

of composition with the Yoneda embedding M→ Funct(Mop, Spc). In particular, we have
that ι′O,M is fully faithful.

We have a commutative square of categories

AlgO(M) Funct(Mop,AlgO(Spc))

Funct(O⊗,M) Funct(Mop,Funct(O⊗, Spc))

ιO,M

ι′O,M

where the left vertical arrow is the inclusion, and the right vertical arrow is induced from
the inclusion of AlgO(Spc) inside Funct(O⊗, Spc). Our result now follows from the fact that
both vertical arrows and the bottom horizontal arrow are fully faithful.

Construction 6.2.11. Let M be a cartesian symmetric monoidal category. Consider the
composite functor

Algbrd(M)×Mop id×H−−−→ Algbrd(M)× Funct×(M, Spc)→ Algbrd(Spc)

where the second arrow is induced by functoriality of algebroids under change of enrichment.
We denote by

ιAlgbrd,M : Algbrd(M)→ Funct(Mop,Algbrd(Spc))

the induced functor.

Lemma 6.2.12. Let M be a cartesian symmetric monoidal category. Then the functor
ιAlgbrd,M from construction 6.2.11 is fully faithful and preserves finite products.

Proof. Observe that the functor

Algbrd(M)×Mop → Algbrd(Spc)



CHAPTER 6. ENRICHED HIGHER ALGEBRA 126

from construction 6.2.11 can be upgraded to a functor of cartesian fibrations over Cat. In
particular, we have a commutative square of categories

Algbrd(M)×Mop Algbrd(Spc)

Cat×Mop Cat

where the vertical arrows are the projections, and the bottom horizontal arrow is the projection
to the first factor. The above induces a commutative square of categories

Algbrd(M) Funct(Mop,Algbrd(Spc))

Cat Funct(Mop,Cat)

ιAlgbrd,M

∆

SinceM admits a final object, we have thatMop is contractible, and in particular the bottom
horizontal arrow is fully faithful. To show that ιAlgbrd,M is fully faithful it suffices therefore
to show that the induced functor

Algbrd(M)→ Funct(Mop,Algbrd(Spc))×Funct(Mop,Cat) Cat

is fully faithful. The above has the structure of morphism of cartesian fibrations over Cat, so
it suffices to show that for every category X the functor

AlgbrdX(M)→ Funct(Mop,Algbrd(Spc))×Cat {X}

is fully faithful. The above is equivalent to the functor

ιAssosX ,M : AlgbrdX(M)→ Funct(Mop,AlgbrdX(Spc))

which is fully faithful thanks to lemma 6.2.10.
It remains to show that ιAlgbrd,M preserves finite products. It suffices for this to show

that for every m in M the composite functor

Algbrd(M)
ιAlgbrd,M−−−−−→ Funct(Mop,Algbrd(Spc))

evm−−→ Algbrd(Spc)

preserves finite products. The above is equivalent to the functor

H(m)∗ : Algbrd(M)→ Algbrd(Spc)

induced from the symmetric monoidal functor H(m) : M → Spc. Our claim now follows
from the functoriality of the symmetric monoidal structures on categories of algebroids from
construction 3.5.6, together with proposition 3.5.8.
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Notation 6.2.13. Let M be a cartesian symmetric monoidal category. We denote by

ιM : CatM → Funct(Mop,Cat)

the composite functor

CatM ↪→ Algbrd(M)Spc

ιAlgbrd,M−−−−−→ Funct(Mop,Algbrd(Spc)Spc)
L∗−→ Funct(Mop,Cat)

where the last arrow is induced by the localization functor L : Algbrd(Spc)Spc → Cat.

Lemma 6.2.14. Let M be a cartesian symmetric monoidal category. Then the functor ιM
from notation 6.2.13 is fully faithful and preserves finite products.

Proof. It follows from a combination of propositions 3.5.8 and 3.5.9 that the localization
functor L : Algbrd(Spc)Spc → Cat preserves finite products.The fact that ιM preserves finite
products is a consequence of the fact that ιAlgbrd,M preserves finite products, together with
the fact that CatM is closed under finite products inside Algbrd(M)Spc.

It remains to show that ιM is fully faithful. Let C,D be a pair of M-enriched categories.
We need to show that the morphism

(ιM)∗ : HomCatM(C,D)→ HomFunct(Mop,Cat)(ιMC, ιMD)

is an equivalence. Thanks to lemma 6.2.12, we reduce to showing that the map

L∗ : HomFunct(Mop,Algbrd(Spc)Spc)(ιAlgbrd,MC, ιAlgbrd,MD)→ HomFunct(Mop,Cat)(ιMC, ιMD)

is an equivalence. The above fits into a commutative triangle of spaces

HomFunct(Mop,Cat)(ιMC, ιMD)

HomFunct(Mop,Algbrd(Spc)Spc)(ιAlgbrd,MC, ιAlgbrd,MD)

HomFunct(Mop,Algbrd(Spc)Spc)(ιAlgbrd,MC, ιMD)

L∗

where the vertical arrow is induced by precomposition with the unit ηC : ιAlgbrd,MC → ιMC,
and the lower diagonal arrow is induced by composition with the unit ηD : ιAlgbrd,MD → ιMD.
Note that the right vertical arrow is an equivalence. Hence it suffices to show that the lower
diagonal arrow is an equivalence.

It follows from [Lur09a] proposition 3.1.2.1 that the projection

p : Funct(Mop,Algbrd(Spc)Spc)→ Funct(Mop, Spc)
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is a cartesian fibration, and ηD is a cartesian arrow. Hence we have a pullback square of
spaces

HomFunct(Mop,Algbrd(Spc)Spc)(ιAlgbrd,MC, ιAlgbrd,MD) HomFunct(Mop,Spc)(pιAlgbrd,MC, pιAlgbrd,MD)

HomFunct(Mop,Algbrd(Spc)Spc)(ιAlgbrd,MC, ιMD) HomFunct(Mop,Spc)(pιAlgbrd,MC, pιMD)

(ηD)∗

p∗

(pηD)∗

p∗

To show that the left vertical arrow is an equivalence it suffices to show that the right vertical
arrow is an equivalence.

Note that pιAlgbrd,MC and pιAlgbrd,MD belong to the image of the diagonal map ∆ : Spc→
Funct(Mop, Spc). Note that since Mop has an initial object it is contractible, and hence ∆
is fully faithful and admits a right adjoint given by evaluation at the initial object 1M. It
therefore suffices to show that the composition of the map

HomSpc(pιAlgbrd,MC(1M), pιAlgbrd,MD(1M))→ HomFunct(Mop,Spc)(pιAlgbrd,MC, pιAlgbrd,MD)

induced by ∆ with the map

HomFunct(Mop,Spc)(pιAlgbrd,MC, pιAlgbrd,MD)→ HomFunct(Mop,Spc)(pιAlgbrd,MC, pιMD)

induced by pηD, is an equivalence. In other words, we have reduced our task to showing that
pηD presents pιAlgbrd,MD(1M) as right adjoint to ∆ at pιMD. This is equivalent to showing
that pηD(1M) is an isomorphism.

We claim that in fact ηD(1M) is an isomorphism. This is a morphism

ηD(1M) : ιAlgbrd,MD(1M)→ ιMD(1M)

that presents ιMD(1M) as the category underlying ιAlgbrd,MD(1M). It follows from the
definitions that ιAlgbrd,MD(1M) is the Segal space underlying D. Our claim now follows from
the fact that D is an M-enriched category.

Proof of theorem 6.2.8. It follows from lemma 6.2.14 that we have a commutative square of
categories

CAlg(CatM) CatM

CAlg(Funct(Mop,Cat)) Funct(Mop,Cat).

(ιM)∗ ιM

where the horizontal arrows are the forgetful functors, and the vertical arrows are fully
faithful.

The restriction of ιM to (CatM)fin prod factors through Funct(Mop,Catfin prod). Further-
more, the restriction of (ιM)∗ to CAlgcart(CatM) factors through the image of the subcategory
Funct(Mop,CAlgcart(Cat)) across the equivalence

Funct(Mop,CAlg(Cat)) = CAlg(Funct(Mop,Cat)).
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It follows that we have a commutative square of categories

CAlgcart(CatM) (CatM)fin prod

Funct(Mop,CAlgcart(Cat)) Funct(Mop,Catfin prod)

(ιM)∗ ιM

where the horizontal arrows are the forgetful functors. Note that the vertical arrows are still
fully faithful. The bottom horizontal arrow is an equivalence thanks to [Lur17] corollary
2.4.1.9. Therefore the top horizontal arrow is fully faithful as well.

It remains to show that the top horizontal arrow is surjective. Let C be an M-enriched
category admitting conical finite products. It follows from the above discussion that ιM(C)
admits an enhancement to a commutative algebra ιM(C)enh in Funct(Mop,Cat) whose image
under all evaluation functors is a cartesian symmetric monoidal category. Since ιM(C) lies in
the image of ιM, we have that ιM(C)enh may be written as (ιM)∗Cenh for some symmetric
monoidal M-enriched category Cenh with underlying M-enriched category C. Note that the
symmetric monoidal category underlying Cenh is equivalent to ιM(C)enh(1M). This is cartesian
symmetric monoidal, and hence Cenh provides the desired cartesian symmetric monoidal
structure on C.

We now provide an enriched generalization of the theory of cartesianO-monoidal categories
from 6.1.

Definition 6.2.15. Let O be an operad and let M be a cartesian symmetric monoidal
category. An O-monoidal M-enriched category C is said to be cartesian if the underlying
O-monoidal category (τM)!C is cartesian, and for every object x in O theM-enriched category
C(x) admits all conical finite products.

Remark 6.2.16. Let O be an operad and letM be a cartesian symmetric monoidal category.
Unwinding the definition, we have that an O-monoidal M-enriched category C is cartesian if
and only if the following conditions are satisfied:

• For every object x in O theM-enriched category C(x) admits all conical finite products.

• For every operation in O with source {xs}s∈S and target x, the induced functor∏
s∈S

C(xs)→ C(x)

preserves conical finite products.

As before, the second condition may be reduced to a smaller list of assertions by applying
proposition 6.1.5.
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Remark 6.2.17. Let M be a cartesian symmetric monoidal category. Equip CatMfin prod

with its cartesian symmetric monoidal structure, and the inclusion CatMfin prod → CatM with
its unique symmetric monoidal structure. Let O be an operad, and C be an O-monoidal
M-enriched category. Then it follows from remark 6.2.16 that C is cartesian if and only if
the associated morphism O → CatM factors through CatMfin prod.

Definition 6.2.18. Let O be an operad and letM be a cartesian symmetric monoidal category.
We call AlgO(CatMfin prod) the category of cartesian O-monoidal M-enriched categories.

Remark 6.2.19. Let O be an operad and letM be a cartesian symmetric monoidal category.
Then AlgO(CatMfin prod) is the subcategory of AlgO(CatM) defined by the following conditions:

• An O-monoidal M-enriched category C belongs to AlgO(CatMfin prod) if and only if it is
cartesian.

• An morphism F : C → C ′ between two cartesian O-monoidal M-enriched categories
belongs to AlgO(CatMfin prod) if and only if for every object x in O the induced functor
C(x)→ C ′(x) preserves conical finite products.

In the particular case when O = Comm, we have an equivalence

AlgComm(CatM) = CAlgcart(CatM).

The following proposition is a joint generalization of proposition 6.1.8 and theorem 6.2.8.

Proposition 6.2.20. Let O be an operad and let M be a cartesian symmetric monoidal
category. Equip CatMfin prod with its cartesian symmetric monoidal structure. Then restriction
along the morphism of operads O = O⊗ [0]→ O⊗Comm induces an equivalence of categories

AlgO(CatMfin prod) = AlgO⊗Comm(CatMfin prod).

Proof. Since the cartesian symmetric monoidal structure on CAlg(CatM) is also cocartesian,
we have that the same holds for its full subcategory CAlgcart(CatM). Thanks to theorem
6.2.8, this is also the case for the category CatMfin prod. Therefore precomposition with the
map [0]→ Comm induces an equivalence of symmetric monoidal categories

AlgComm(CatMfin prod) = Alg[0](CatMfin prod) = CatMfin prod .

The result now follows from the above by passing to categories of O-algebras.

Corollary 6.2.21. Let M be a cartesian symmetric monoidal category and let ∞ ≥ n ≥ 0.
Then precomposition with the unique map [0]→ En induces an equivalence

AlgEn(CatMfin prod) = CatMfin prod .
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Proof. This follows from proposition 6.2.20 by the same arguments as in the proof of corollary
6.1.9.

Corollary 6.2.22. Let M be a cartesian symmetric monoidal category. Let ∞ ≥ n ≥ 1 and
let O = LMod∪AssosEn be the operad governing pairs of an En-algebra and a left module over
it. Then there is an equivalence

AlgO(CatMfin prod) = Funct([1],CatMfin prod).

Proof. This follows from proposition 6.2.20 by the same arguments as in the proof of corollary
6.1.10.

6.3 Enriched categories of O-algebras

Given a cartesian symmetric monoidal enriched category C, the category O-algebras in C
from definition 6.2.1 admits a canonical enrichment.

Notation 6.3.1. Let O be an operad with category of operators O⊗. Let M be a cartesian
closed presentable category. We equip M with its cartesian symmetric monoidal structure.
Let C be a cartesian symmetric monoidalM-enriched category. We denote by AlgO(C) the full
subcategory of Funct((O⊗)M, C) on those functors whose associated functor O⊗ → (τM)!C is
an O-algebra in C.

Definition 6.3.2. Let O be an operad. Let M be a cartesian closed presentable category
and let C be a cartesian symmetric monoidal M-enriched category. We call AlgO(C) the
M-enriched category of O-algebras in C.

Remark 6.3.3. Let O be an operad. Let M be a cartesian closed presentable category and
let C be a cartesian symmetric monoidalM-enriched category. Then the category underlying
AlgO(C) is the category of O-algebras in C from definition 6.2.1.

Our next goal is to give a description of AlgO(C) for special values of O.

Proposition 6.3.4. LetM be a cartesian closed presentable category and let C be a cartesian
symmetric monoidal M-enriched category. Let I be a category and let O be the image of I
under the embedding Cat→ Op. Let O⊗ be the category of operators of O and F : I → O⊗
be the inclusion of the fiber of O⊗ over 〈1〉. Then restriction along F induces an equivalence

AlgO(C) = Funct(IM, C).

Our proof of proposition 6.3.4 will need a preliminary lemma.

Lemma 6.3.5. Let E be a presentable category. Equip E with its cartesian symmetric
monoidal structure. Let I be a category and let O be the image of I under the embedding
Cat → Op. Let O⊗ be the category of operators of O and F : I → O⊗ be the inclusion of
the fiber of O⊗ over 〈1〉. Then:
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(i) The inclusion AlgO(E)→ Funct(O⊗, E) admits a left adjoint L.

(ii) The restriction map
F ∗ : Funct(O⊗, E)→ Funct(I, E)

factors through the localization functor L.

Proof. Item (i) is a direct consequence of the fact that AlgO(E) is closed under limits and
filtered colimits in Funct(O⊗, E), together with the adjoint functor theorem.

We now prove item (ii). Passing to right adjoints, we reduce to showing that the functor

Funct(I, E)→ Funct(O⊗, E)

of right Kan extension along F , factors through the full subcategory on the O-algebras. Let
X = {Xs}s∈S be an object in O⊗, corresponding to a family of objects in I indexed by a
finite set S. Then the overcategory IX/ has no nontrivial morphisms, and its space of objects
is the set S, where each index s in S corresponds to the inert arrow X → Xs.

It follows that a functor G : O⊗ → E belongs to the right Kan extension of F if and only
if the induced maps G(X) → G(Xs) present G as the product of the objects G(Xs). This
agrees with the condition of being an O-monoid in E , as desired.

Proof of proposition 6.3.4. Note that the functor of categories underlying F ∗ : AlgO(C) →
Funct(IM, C) is equivalent to the functor

AlgO((τM)!C)→ Funct(I, (τM)!C).

of precomposition with F . This is an equivalence by [Lur17] example 2.1.3.5. It follows in
particular that F ∗ is surjective. It remains to show that it is fully faithful.

Let i : C → Funct(Cop,M) be the Yoneda embedding and consider the commutative
square of M-enriched categories

AlgO(C) Funct(IM, C)

AlgO(Funct(Cop,M)) Funct(IM,Funct(Cop,M)).

F ∗

i∗ i∗

F ∗

The vertical arrows are fully faithful since i is fully faithful. Hence it suffices to show that
the bottom horizontal arrow in the above diagram is fully faithful. Thanks to [Hin20a]
proposition 6.3.7, this is equivalent to the restriction to AlgO(Funct(Cop,M)) of the functor

F ∗ : Funct(O⊗M, θM(LModCop(M)))→ Funct(IM, θM(LModCop(M))).

As in the proof of proposition 5.4.8, we may identify the above with the functor

θM(F ∗) : θM(Funct(O⊗,LModCop(M)))→ θM(Funct(I,LModCop(M))).
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It therefore suffices to show that if A,B are two O-algebras in the cartesian symmetric
monoidal category LModCop(M), then the induced map

HomFunct(O⊗,LModCop (M))(A,B)→HomFunct(I,LModCop (M))(F
∗A,F ∗B)

is an equivalence, where the Hom objects are taken with respect to the action of M. This is
equivalent to the assertion that for every object m in M the morphism of spaces

HomFunct(O⊗,LModCop (M))(m⊗ A,B)→ HomFunct(I,LModCop (M))(m⊗ F ∗A,F ∗B)

is an equivalence. Let

L : Funct(O⊗,LModCop(M))→ AlgO(LModCop(M))

be the localization functor. Since the functor

F ∗ : Funct(O⊗,LModCop(M))→ Funct(I,LModCop(M))

is fully faithful on the full subcategory of O-algebras, we reduce to showing that the image
under F ∗ of the unit m ⊗ A → L(m ⊗ A) is invertible. This is a consequence of lemma
6.3.5.

Proposition 6.3.6. LetM be a cartesian closed presentable category and let C be a cartesian
symmetric monoidal M-enriched category. Let E⊗0 be the category of operators of the E0-
operad and let F : [1]→ E⊗0 be the functor that picks out the active arrow 〈0〉 → 〈1〉. Then
precomposition with F induces an equivalence between AlgE0

(C) and the full subcategory of
Funct([1]M, C) on those arrows in C with source 1C.

Our proof of proposition 6.3.6 will need a preliminary lemma.

Lemma 6.3.7. Let E be a presentable category. Equip E with its cartesian symmetric
monoidal structure. Let F : [1]→ E⊗0 be as in the statement of proposition 6.3.6. Then right
Kan extension along F sends arrows in E with source 1E to E0-algebras in E.

Proof. Let n ≥ 0. Then the overcategory [1]〈n〉/ has n+ 2 objects, namely:

• The inert map a : 〈n〉 → 〈0〉.

• For each 1 ≤ i ≤ n the inert map bi : 〈n〉 → 〈1〉.

• The active map c : 〈n〉 → 〈1〉, obtained by composing a with the active map 〈0〉 → 〈1〉.

The only nontrivial map in [1]〈n〉/ is the map a→ c. Note that the full subcategory of [1]〈n〉/
on the objects a and bi is final.
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Assume now given a functor A : [1]→ E which picks out an arrow with source 1E , and let
G : E⊗0 → E be the right Kan extension of A along F . It follows from the above description
of [1]〈n〉/ that we have an isomorphism

G(〈n〉) = A(〈0〉)×
∏

1≤i≤n

A(〈1〉) =
∏

1≤i≤n

A(〈1〉).

In particular, we have G(〈1〉) = A(〈1〉). The above equivalence then becomes an isomorphism

G(〈n〉) =
∏

1≤i≤n

G(〈1〉).

Tracing the identifications, we see that the above is induced by the maps bi. This means that
G is an E0-algebra in E , as desired.

Proof of proposition 6.3.6. Note that the functor of categories underlying F ∗ : AlgE0
(C)→

Funct([1]M, C) is equivalent to the functor

AlgE0
((τM)!C)→ Funct([1], (τM)!C)

of precomposition with F . It follows from [Lur17] proposition 2.1.3.9 that the above is an
equivalence with the full subcategory of Funct([1], (τM)!C) on those arrows in (τM)!C with
source 1C. In particular, we have that the image of F ∗ consists of those arrows in C with
source 1C.

It remains to show that F ∗ is fully faithful. As in the proof of 6.3.4, we reduce to proving
that if A,B are two E0-algebras in LModCop(M) and m is an object ofM, then the morphism
of spaces

HomFunct(E⊗0 ,LModCop (M))(m⊗ A,B)→ HomFunct([1],LModCop (M))(m⊗ F ∗A,F ∗B)

is an equivalence. Denote by

L : Funct(E⊗0 ,LModCop(M))→ AlgE0
(LModCop(M))

the localization functor. To complete the proof it suffices to show that the image under F ∗

of the unit map m ⊗ A → L(m ⊗ A) is left orthogonal to F ∗B. This follows from lemma
6.3.7.

We now specialize the above theory to obtain an enrichment of the category of O-monoidal
enriched categories from definition 6.2.1.

Definition 6.3.8. Let M be a cartesian closed presentable category. Equip the M-enriched

2-category CatM with its cartesian symmetric monoidal structure. Let O be an operad. We

call AlgO(CatM) the M-enriched 2-category of O-monoidal M-enriched categories.
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Remark 6.3.9. Let M be a cartesian closed presentable category and let O be an operad.

It follows from remark 6.3.3 that the category underlying AlgO(CatM) is equivalent to the
category AlgO(CatM) of O-monoidal M-enriched categories from definition 6.2.1.

Remark 6.3.10. Let M be a cartesian closed presentable category. Specializing definition
6.3.8 to the case O = Comm (resp. O = Assos) we obtain an M-enriched 2-category of
symmetric monoidal (resp. monoidal) M-enriched categories.

In the case M = Spc, definition 6.3.8 supplies a 2-category AlgO(Cat) of O-monoidal
categories for any operad O. We finish by showing that this is equivalent to an alternative
definition as a sub-2-category of the 2-category of categories over O⊗.

Construction 6.3.11. Let B be a category. Consider the pullback functor

−× B : Cat→ Cat/B .

Equip Cat and Cat/B with their cartesian symmetric monoidal structures, and − × B
with its unique symmetric monoidal structure. Restriction of scalars along it endows Cat/B
with the structure of category tensored over Cat.

For each category I, we have an equivalence

(I × B)×B − = I × −

of functors Cat/B → CatB, and in particular we see that (I × B)×B − is colimit preserving.
It follows that Cat/B is a presentable module over Cat. We let

Cat/B = θCat(Cat/B).

We call this the 2-category of categories over B.

Remark 6.3.12. Let B be a category and let p : C → B and q : D → B be two categories
over B. Then for each category I we have an equivalence

HomCat(I,HomCat/B(C,D)) = HomCat/B(I × C,D) = HomCat(I × C,D)×HomCat(I×C,B) [0]

where the map [0]→ HomCat(I×C,B) picks the composition of the projection map I×C → C
and p. The above equivalence is natural in I, and it therefore induces an equivalence

HomCat/B(C,D) = Funct(C,D)×Funct(C,B) [0] = FunctB(C,D).

Notation 6.3.13. Let B be a category. We denote by Catcocart
/B the sub 2-category of Cat/B

on the cocartesian fibrations over B, the morphisms of cocartesian fibrations, and all 2-cells.
We call this the 2-category of cocartesian fibrations over B.

Proposition 6.3.14. Let B be a category. Then there is an equivalence

Catcocart
/B = Funct(B,Cat)

which recovers the usual straightening equivalence Catcocart
/B = Funct(B,Cat) upon passage to

underlying categories.
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Proof. Recall from [Hin20a] proposition 6.3.7 that there is an equivalence of 2-categories

Funct(B,Cat) = θCat(LModB(Cat)).

Combining lemmas 5.4.6 and 5.4.7, as in the proof of proposition 5.4.8, we conclude that
there is an equivalence of 2-categories

Funct(B,Cat) = θC(Funct(B,Cat))

where Funct(B,Cat) is a B-module by restriction of scalars along the diagonal map Cat→
Funct(B,Cat). Our claim now follows from the fact that the cartesian symmetric monoidal
functor Cat→ Funct(B,Cat) is equivalent to the functor −× B : Cat→ Cat/B.

Notation 6.3.15. Let O be an operad, with category of operators O⊗. We denote by
Op/O the 2-subcategory of Cat/O⊗ with objects the O-operads, morphisms the morphisms
of O-operads, and all 2-cells. We call Op/O the 2-category of O-operads. In the case when
O = Comm we will use the notation Op and call it the 2-category of operads.

Corollary 6.3.16. Let O be an operad. Then the 2-category AlgO(Cat) is equivalent to the
2-subcategory of Op/O on the O-monoidal categories and the strictly O-monoidal functors.

Proof. Let O⊗ be the category of operators of O. Using proposition 6.3.14 we obtain an
equivalence Cat/O⊗ = Funct(O⊗,Cat). The result now follows by restricting this equivalence
to the full subcategories on the O-monoidal categories.

6.4 Enriched props

The notions of enriched prop and operad will be particular cases of the notion of enriched
envelope, which we now introduce.

Definition 6.4.1. Let M be a presentable symmetric monoidal category. An M-enriched
pre-envelope is a pair (P , P ) of a commutative algebra P in Algbrd(M)Spc, together with a
subspace P of the space of objects of P. We say that an M-enriched pre-envelope (P , P ) is
an M-enriched envelope if the full subalgebroid of P on P is an M-enriched category.

Warning 6.4.2. Let M be a presentable symmetric monoidal category and let (P , P ) be
an M-enriched envelope. Then P is in general only a (symmetric monoidal) M-enriched
algebroid - completeness is only required for its full subalgebroid on P .

Notation 6.4.3. Let M be a presentable symmetric monoidal category. For each object
A in Algbrd(M)Spc we will denote by A≤0 the space of objects of A. If A is the algebroid
underlying a commutative algebra object in Algbrd(M)Spc, we will equip A≤0 with its
structure of commutative algebra in spaces arising from the symmetric monoidal structure of
the projection Algbrd(M)Spc → Spc.
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Let Spcsub be the full subcategory of the arrow category Funct([1], Spc) on the monomor-
phisms. Let preEnvlp(M) be the category arising as the pullback

preEnvlp(M) CAlg(Algbrd(M)Spc)

Spcsub Spc .

(−)≤0

ev1

We call preEnvlp(M) the category ofM-enriched pre-envelopes. We will typically denote by

q : preEnvlp(M)→ CAlg(Algbrd(M)Spc)

the projection. This admits a section

s : CAlg(Algbrd(M)Spc)→ preEnvlp(M)

which is induced by pullback of the section of ev1 obtained by corestriction of the diagonal
map ∆ : Spc→ Funct([1], Spc).

We denote by EnvlpM the full subcategory of preEnvlp(M) on theM-enriched envelopes.
We call this the category of M-enriched envelopes.

Remark 6.4.4. Let M be a presentable symmetric monoidal category and let (P , P ) and
(P ′, P ′) be a pair of M-enriched pre-envelopes. Then a morphism from (P , P ) to (P ′, P ′)
in preEnvlp(M) is the same data as a symmetric monoidal functor F : P → P ′ with the
property that F (P ) is contained in P ′.

The projection q maps a pair (P , P ) to P . We call P the symmetric monoidal envelope
of (P , P ). The section s maps a symmetric monoidal M-enriched algebroid P to the pair
(P , (P)≤0). We call this the M-enriched pre-envelope underlying P . Observe that the identi-
fication qs = idCAlg(Algbrd(M)Spc) presents s as right adjoint to q, so that CAlg(Algbrd(M)Spc)
is a localization of preEnvlp(M). It follows that we have a localization

q′ : EnvlpM CAlg(CatM) : s|CAlg(CatM)

where the left adjoint q′ is the composition of the localization map q with the localization
functor CAlg(Algbrd(Spc)Spc)→ CAlg(Cat). For each M-enriched envelope (P , P ), we call
q′(P , P ) its symmetric monoidal envelope. Given a symmetric monoidalM-enriched category
P , we call s(P) the M-enriched envelope underlying P .

Remark 6.4.5. The inclusion Spcsub → Funct([1], Spc) preserves filtered colimits, and has a
left adjoint which sends a morphism of spaces f : X → Y to the pair (Y, im(f)). In particular
we see that Spcsub is an accessible localization of the presentable category Funct([1], Spc),
and hence Spcsub is itself presentable.

Let M be a presentable symmetric monoidal category. Note that the projection (−)≤0 :
CAlg(Algbrd(M)Spc)→ Spc admits a left adjoint, given by the composition

Spc→ Algbrd(Spc)Spc → Algbrd(M)Spc → CAlg(Algbrd(M)Spc)
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where the first arrow is the canonical inclusion, the second arrow is induced by the unit map
Spc→M, and the third arrow is given by taking free commutative algebras. Furthermore,
the projection Spcsub

ev1−−→ Spc also admits a left adjoint, given by the diagonal map.
We therefore see that the commutative square from notation 6.4.3 takes place in PrR. In

particular, preEnvlp(M) is a presentable category.

For later purposes, we record the following result which allows one to construct functors
into the category of pre-envelopes.

Proposition 6.4.6. Let I be a category and let F : I → Spc be a functor. Assume given for
each object i in I a subspace P (i) of F (i), with the property that for every arrow α : i→ j in
I the image of P (i) under F (α) is contained in F (j). Then there exists a unique lift of F
along the projection u : Spcsub → Spc to a functor

F enh : I → Spcsub

such that F enh(i) = (F (i), P (i)) for all i.

Proof. It follows from our hypothesis that the composite functor

∆F : I → Spcsub

admits a subfunctor which maps each object i in I to the pair (F (i), P (i)). This shows the
existence of lift of F with the desired conditions.

Assume now given such a lift F enh. Consider the natural transformation F enh → ∆uF enh =
∆F induced from the unit of the adjunction u a ∆. This presents F enh as a subfunctor of
∆F which maps each object i in I to the pair (F (i), P (i)). Our claim now follows from the
fact that there is a unique such subfunctor.

Corollary 6.4.7. Let M be a presentable symmetric monoidal category. Let I be a category
and let F : I → CAlg(Algbrd(M)Spc) be a functor. Assume given for each object i in I a
subspace P (i) of the space of objects of F (i), with the property that for every arrow α : i→ j
in I the image of P (i) under F (α) is contained in F (j). Then there exists a unique lift of F
along q to a functor

F enh : I → preEnvlp(M)

such that F enh(i) = (F (i), P (i)) for all i.

Example 6.4.8. Let M be a presentable symmetric monoidal category. Consider the
commutative square of categories

CAlg(Algbrd(M)Spc) Algbrd(M)Spc

CAlg(Spc) Spc

CAlg((−)≤0) (−)≤0



CHAPTER 6. ENRICHED HIGHER ALGEBRA 139

where the horizontal arrows are the forgetful functors. It follows from proposition 3.3.12 that
the above square is horizontally left adjointable. Let

Sym : Algbrd(M)Spc → CAlg(Algbrd(M)Spc)

be the left adjoint to the forgetful functor. Note that for each object A in Algbrd(M)Spc the
space of objects of Sym(A) is the free commutative algebra in spaces on A≤0. An application
of corollary 6.4.7 shows that Sym admits a unique lift to a functor

Symenh : Algbrd(M)Spc → preEnvlp(M)

which maps each object A to (Sym(A),A≤0).
Observe that Symenh is fully faithful. Let (P , P ) be an M-enriched pre-envelope, and

denote by A the full subalgebroid of P on P . Then the morphism Symenh(A) → (P , P )
induced from the inclusion A → P presents A as right adjoint to Symenh at (P , P ). We call
A the M-algebroid underlying (P , P ).

We may summarize this by saying that the category of M-algebroids with a space of
objects is a colocalization of the category of M-enriched pre-envelopes. Note that this
restricts to a colocalization

Symenh |CatM : CatM EnvlpM .

Remark 6.4.9. Let M be a presentable symmetric monoidal category and let I be the
walking isomorphism inside Algbrd(Spc)Spc. Then the M-enriched envelopes sit inside
preEnvlp(M) as the objects which are local for the morphism Symenh(IM)→ Symenh(1M)
induced from the projection I → [0], where Symenh is as in example 6.4.8. It follows from
this, together with remark 6.4.5 that EnvlpM is an accessible localization of preEnvlp(M).
In particular, EnvlpM is presentable.

We now introduce the notion of M-enriched prop.

Definition 6.4.10. Let M be a presentable symmetric monoidal category. We say that
an M-enriched pre-envelope (P , P ) is an M-enriched pre-prop if the inclusion P → P≤0

presents P≤0 as the free commutative algebra in spaces on the space P . We say that (P , P )
is an M-enriched prop if it is an M-enriched pre-prop and an M enriched envelope.

Notation 6.4.11. Let M be a presentable symmetric monoidal category. We denote by
preProp(M) the full subcategory of preEnvlp(M) on the M-enriched pre-props. We call
this the category of M-enriched pre-props. We let PropM = preProp(M) ∩ EnvlpM, and
call it the category of M-enriched props.

Remark 6.4.12. Let M be a presentable symmetric monoidal category and let (P , P ) be
an M-enriched pre-envelope. Then it follows from the characterization of free algebras from
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[Lur17] definition 3.1.3.1 that the pair (P , P ) is an M-enriched pre-prop if and only if the

maps P S ⊗−→ P≤0 induce an equivalence

P≤0 = colimFin≤0 P S,

where Fin≤0 denotes the space of finite sets.
If (P , P ) is an M-enriched pre-prop we will usually identify objects of P with finite

families of objects of P . We call P the space of objects of (P , P ). Given a pair of finite sets
S, T and families {xs}s∈S and {yt}t∈T of objects of P , we call

HomP({xs}s∈S, {yt}t∈T )

the object of operations in (P , P ) with source {xs}s∈S and target {ys}s∈S.

Definition 6.4.13. Let M be a presentable symmetric monoidal category. We say that a
morphism of M-enriched pre-envelopes F : (P , P )→ (P ′, P ′) is a P-equivalence if F induces
an equivalence of spaces P = P ′, and for every pair of finite families {xs}s∈S and {yt}t∈T of
objects of P = P ′, the induced morphism

F∗ : HomP

(⊗
s∈S

xs,
⊗
t∈T

yt

)
→ HomP ′

(⊗
s∈S

xs,
⊗
t∈T

yt

)

is an equivalence.

Remark 6.4.14. LetM be a presentable symmetric monoidal category and let F : (P , P )→
(P ′, P ′) be a P-equivalence ofM-enriched pre-envelopes. If (P ′, P ′) is anM-enriched envelope
then (P , P ) is also an M-enriched envelope.

Proposition 6.4.15. Let M be a presentable symmetric monoidal category. The inclusion
i : preProp(M) → preEnvlp(M) admits a right adjoint iR. Furthermore, a morphism of
M-enriched pre-envelopes is inverted by iR if and only if it is a P-equivalence.

Proof. It follows from proposition 3.5.5 that the projection

(−)≤0 : Algbrd(M)Spc → Spc

admits the structure of cartesian fibration of operads. Hence we have that the induced
projection

CAlg((−)≤0) : CAlg(Algbrd(M)Spc)→ CAlg(Spc)

is a cartesian fibration. Furthermore, a morphism of commutative algebras in Algbrd(M)Spc

is cartesian for CAlg((−)≤0) if and only if the underlying morphism in Algbrd(M)Spc is
cartesian for (−)≤0 (in other words, fully faithful).
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Let CAlg(Spc)sub be the category arising as the pullback

CAlg(Spc)sub CAlg(Spc)

Spcsub Spc .
ev1

where the right vertical arrow is the forgetful functor. We have a pullback square

preEnvlp(M) CAlg(Algbrd(M)Spc)

CAlg(Spc)sub CAlg(Spc).

p CAlg((−)≤0)

Since the right vertical arrow is a cartesian fibration, we have that the left vertical arrow
p is a cartesian fibration as well. Furthermore, a morphism of M-enriched pre-envelopes
is cartesian for p if and only if the underlying functor of symmetric monoidal M-enriched
categories is fully faithful.

Let Sym : Spc → CAlg(Spc) be the left adjoint to the forgetful functor. By propo-
sition 6.4.6, this admits a unique lift Symenh : Spc → CAlg(Spc)sub along the projection
CAlg(Spc)sub → CAlg(Spc), such that Symenh(X) corresponds to Sym(X) together with the
inclusion X → Sym(X).

Observe that Symenh is fully faithful. Furthermore, for every pair (X, Y ) of a commutative
algebra in spaces X and a subspace Y in X, the morphism of commutative algebras Sym(Y )→
X induced from the identity on Y presents Y as right adjoint to Symenh at (X, Y ). It follows
in particular that Symenh admits a right adjoint. Since p is a cartesian fibration, we conclude
that the inclusion

j : Spc×CAlg(Spc)sub
CAlg(Algbrd(M)Spc)sub → preEnvlp(M)

admits a right adjoint as well, which maps an M-enriched pre-envelope (P , P ) to the source
of the p-cartesian lift of the unit map Sym(P )→ (P)≤0.

Observe that j is in fact equivalent to the inclusion i : preProp(M) → preEnvlp(M).
Hence i admits a right adjoint. The characterization of morphisms which are inverted by
iR follows from the above description of jR, together with the description of p-cartesian
arrows.

Corollary 6.4.16. Let M be a presentable symmetric monoidal category. The inclusion
i′ : PropM → EnvlpM admits a right adjoint i′R. Furthermore, a morphism of M-enriched
envelopes is inverted by i′R if and only if it is a P-equivalence.

Proof. It follows from remark 6.4.14 together with proposition 6.4.15 that the functor
iR : preEnvlp(M)→ preProp(M) maps M-enriched envelopes to M-enriched props. Hence
iR restricts to provide a right adjoint to i′.
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Corollary 6.4.17. Let M be a presentable symmetric monoidal category. Then an M-
enriched (pre-) envelope (P , P ) is an M-enriched (pre-) prop if and only if for every P-
equivalence of M-enriched (pre-) envelopes F : (P ′, P ′)→ (P ′′, P ′′), the induced morphism
of spaces

F∗ : HompreEnvlp(M)((P , P ), (P ′, P ′))→ HompreEnvlp(M)((P , P ), (P ′′, P ′′))

is an equivalence.

Example 6.4.18. Let M be a presentable symmetric monoidal category. It follows from
corollary 6.4.17 that for any A in Algbrd(M)Spc, the M-enriched pre-envelope Symenh(A)
from example 6.4.8 is an M-enriched pre-prop. We therefore see that Algbrd(M)Spc (resp.
CatM) sits inside preProp(M) (resp. PropM) as a colocalization.

Example 6.4.19. Let M be a presentable symmetric monoidal category. Let S, T be two
finite sets, and let m be an object in M. Let SM = (1M)tS and TM = (1M)tT , and denote
by Sym : Algbrd(M)Spc → CAlg(Algbrd(M)Spc) the left adjoint to the forgetful functor.

We let CS,T,m be the symmetric monoidal M-algebroid obtained as the pushout

Sym(1M t 1M) Sym(SM t TM)

Sym(Cm) CS,T,m

where the left vertical arrow is induced from the source-target map 1M t 1M → Cm, and the
top horizontal arrow is induced from the map 1M t 1M → Sym(SM t TM) which picks out
the objects {s}s∈S and {t}t∈T .

We equip CS,T,m with the subspace of its space of objects obtained as the image of the
composite map

S t T ↪→ (Sym(SM t TM))≤0 → (CS,T,m)≤0.

It follows from corollary 6.4.17 that CS,T,m is anM-enriched pre-prop. Observe that for every
M-enriched pre-prop (P , P ), the data of a morphism CS,T,m → (P , P ) is equivalent to the
data of a pair of finite families {xs}s∈S, {yt}t∈T of objects of P together with a map

m→ HomP({xs}s∈S, {yt}t∈T ).

We think about CS,T,m as the universal M-enriched pre-prop with an m-operation of arity
S, T .

Remark 6.4.20. Let M be a presentable symmetric monoidal category and let m be an
object in M. Then in the case when S, T are singleton sets, the M-enriched pre-prop CS,T,m
from example 6.4.19 recovers Symenh(Cm).
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Remark 6.4.21. LetM be a presentable symmetric monoidal category, and let κ be a regular
cardinal such that M is κ-compactly generated. Then a morphism F : (P , P )→ (P ′, P ′) of
M-enriched pre-envelopes is a P-equivalence if and only if the following two conditions are
satisfied:

• Composition with F induces an equivalence

F∗ : HompreEnvlp(M)(Symenh(1M), (P , P ))→ HompreEnvlp(M)(Symenh(1M), (P ′, P ′)).

• For every pair of finite sets S, T and every κ-compact object m inM, composition with
F induces an equivalence

F∗ : HompreEnvlp(M)(CS,T,m, (P , P ))→ HompreEnvlp(M)(CS,T,m, (P ′, P ′)).

It follows from this together with remark 6.4.5 that preProp(M) is presentable, and generated
under colimits by the objects Symenh(1M) and CS,T,m.

As in remark 6.4.9, we have that PropM sits inside preProp(M) as the objects which are
local for the morphism Symenh(IM)→ Symenh(1M). We conclude that PropM is an accessible
localization of prePropM, and in particular it is also presentable.

Our next goal is to show that the category of M-enriched symmetric monoidal categories
can be identified with a subcategory of the category of M-enriched props.

Definition 6.4.22. LetM be a presentable symmetric monoidal category and let (P , P ) be an
M-enriched pre-envelope. We call its image under the colocalization map iR : preEnvlp(M)→
preProp(M) the M-enriched pre-prop underlying (P , P ).

Remark 6.4.23. Let M be a presentable symmetric monoidal category. It follows from a
combination of remark 6.4.4 and proposition 6.4.15 that there is an adjunction

qi : preProp(M) CAlg(Algbrd(M)Spc) : iRs.

Given an M-enriched pre-prop (P , P ), we call qi(P , P ) its symmetric monoidal envelope.
Given a symmetric monoidal M-algebroid P, we call iRs(P) the M-enriched pre-prop
underlying C. It follows from corollary 6.4.16 that we also have an adjunction

q′i′ : PropM CAlg(CatM) : i′Rs|CAlg(CatM).

Proposition 6.4.24. Let M be a presentable symmetric monoidal category and let P be
an M-enriched symmetric monoidal category. Then the counit map q′i′i′RsP → P is a
localization functor.

Our proof of proposition 6.4.24 will use the following lemma:
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Lemma 6.4.25. Let M be a presentable symmetric monoidal category and let F : C → D be
a functor of M-enriched categories. Assume given a subspace D of the space of objects of C
such that F (D) = D≤0 and for every object c in C and every object d in D the morphism

F∗ : HomC(c, d)→ HomD(Fc, Fd)

is an isomorphism. Then F is a localization functor.

Proof. Let D′ be the full subcategory of C on D. The conditions guarantee that F |D′ : D′ → D
is an equivalence. Let G : D → C be the composition of the inverse of F |D′ and the inclusion
D′ → D. Then we have an equivalence ε : FG = idD. The conditions in the statement imply
that ε presents G as right adjoint to F . Hence F admits a fully faithful right adjoint, as
desired.

Proof of proposition 6.4.24. The counit q′i′i′RsP → P is the morphism of M-enriched cat-
egories underlying the P-equivalence ε : i′i′RsP → sP obtained from the counit of the
adjunction i′ a i′R. The result follows from an application of lemma 6.4.25, where we equip
q′i′i′RsP with the subspace P≤0.

Corollary 6.4.26. LetM be a presentable symmetric monoidal category and let P be an M-
enriched symmetric monoidal category. Then the counit map q′i′i′RsP → P is an epimorphism
of M-enriched symmetric monoidal categories.

Proof. Combine remark 5.2.14, proposition 6.4.24, and lemma 11.2.7.

Proposition 6.4.27. LetM be a presentable symmetric monoidal category. Then the functor

i′Rs|CAlg(CatM) : CAlg(CatM)→ PropM

from remark 6.4.23 is the inclusion of a subcategory.

Proof. Let C,D be two M-enriched symmetric monoidal categories. We have to show that
the functor

(i′Rs)∗ : HomCAlg(CatM)(C,D) −→ HomPropM(i′RsC, i′RsD)

is a monomorphism, and surjective on isomorphisms. Since q′i′ is left adjoint to i′Rs, we have
that the composite map

HomPropM(i′RsC, i′RsD)
q′i′∗−−→ HomCatM(q′i′i′RsC, q′i′i′RsD)

ε∗−→ HomCatM(q′i′i′RsC,D)

is an isomorphism, where the second arrow is induced by the counit of the adjunction. The
induced map

ε∗(q
′i′)∗(i

′Rs)∗ : HomCAlg(CatM)(C,D)→ HomCatM(q′i′i′RsC,D)

is equivalent to the map given by precomposition with the unit q′i′i′RsC → C. Applying
corollary 6.4.26 we conclude that (i′Rs)∗ is a monomorphism.
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It remains to show that (i′Rs)∗ is surjective on isomorphisms. In other words, we have
to show that if we have an isomorphism of props α : i′RsC → i′RsD, the induced morphism
of M-enriched symmetric monoidal categories εα : q′i′i′RsC → D factors through C. By
lemma 11.2.7, it suffices to show that the underlying functor ofM-enriched categories factors
through C. Observe that we have a commutative square of M-enriched categories

C q′i′i′RsC

D q′i′i′RsD

α

where the horizontal arrows are the inclusions of the categories underlying the M-enriched
props i′RsC and i′RsD, and the vertical arrows are isomorphisms. Examining the proof
of lemma 6.4.25, we see that the functor εα : q′i′i′RsC → D is left adjoint to the bottom
horizontal arrow. Our claim now follows from the horizontal left adjointability of the above
square.

6.5 Enriched operads

We now discuss the notion of enriched operads.

Definition 6.5.1. Let M be a presentable symmetric monoidal category. We say that a
morphism ofM-enriched pre-envelopes F : (P , P )→ (P ′, P ′) is an O-equivalence if F induces
an equivalence of spaces P = P ′, and for every finite family {xs}s∈S of objects of P = P ′ and
every object y in P = P ′, the induced morphism

F∗ : HomP

(⊗
s∈S

xs, y

)
→ HomP ′

(⊗
s∈S

xs, y

)

is an equivalence. We say that an M-enriched pre-envelope (P ′′, P ′′) is an M-enriched
pre-operad if for every O-equivalence F : (P , P )→ (P ′, P ′) of M-enriched pre-envelopes, the
morphism

F∗ : HompreEnvlp(M)((P ′′, P ′′), (P , P ))→ HompreEnvlp(M)((P ′′, P ′′), (P ′, P ′))

induced by composition with F , is an isomorphism. We say that an M-enriched pre-operad
is an M-enriched operad if it is an M-enriched envelope.

Notation 6.5.2. Let M be a presentable symmetric monoidal category. We denote by
preOp(M) the full subcategory of preEnvlp(M) on the M-enriched pre-operads. We call
this the category of M-enriched pre-operads. We let OpM = preOp(M) ∩ EnvlpM and call
it the category of M-enriched operads.
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Remark 6.5.3. LetM be a presentable symmetric monoidal category. Then P-equivalences
of M-enriched pre-envelopes are also O-equivalences. It follows that M-enriched (pre-)
operads are also M-enriched (pre-) props.

Remark 6.5.4. LetM be a presentable symmetric monoidal category and let F : (P , P )→
(P ′, P ′) be an O-equivalence of M-enriched pre-envelopes. If (P ′, P ′) is an M-enriched
envelope then (P , P ) is also an M-enriched envelope.

Example 6.5.5. Let M be a presentable symmetric monoidal category. Then for any A in
Algbrd(M)Spc, theM-enriched pre-envelope Symenh(A) from example 6.4.8 is anM-enriched
pre-operad. We therefore see that Algbrd(M)Spc (resp. CatM) sits inside preOp(M) (resp.
OpM) as a colocalization.

Example 6.5.6. Let M be a presentable symmetric monoidal category. Let S be a finite
set and let m be an object in M. Specializing example 6.4.19 to the case where T is the
singleton set we obtain an M-enriched pre-operad CS,∗,m. We think about CS,∗,m as the
universal M-enriched pre-operad with an m-operation of arity S.

Remark 6.5.7. LetM be a presentable symmetric monoidal category, and let κ be a regular
cardinal such that M is κ-compactly generated. Then a morphism F : (P , P ) → (P ′, P ′)
of M-enriched pre-props is an O-equivalence if and only if the following two conditions are
satisfied:

• Composition with F induces an equivalence

F∗ : HompreEnvlp(M)(Symenh(1M), (P , P ))→ HompreEnvlp(M)(Symenh(1M), (P ′, P ′)).

• For every finite set S and every κ-compact object m inM, composition with F induces
an equivalence

F∗ : HompreEnvlp(M)(CS,∗,m, (P , P ))→ HompreEnvlp(M)(CS,∗,m, (P ′, P ′)).

It follows from this together with remark 6.4.5 that preOp(M) is presentable, and
generated under colimits by the objects Symenh(1M) and CS,∗,m. Moreover, the inclusion
j : preOp(M) → preEnvlp(M) admits a right adjoint jR, and a morphism of M-enriched
pre-envelopes is inverted by jR if and only if it is an O-equivalence.

As in remark 6.4.9, we have that OpM sits inside preOp(M) as the objects which are
local for the morphism Symenh(IM)→ Symenh(1M). We conclude that OpM is an accessible
localization of OpM, and in particular it is also presentable. It follows from remark 6.5.4 that
jR maps M-enriched envelopes to M-enriched operads, and therefore it restricts to provide
a right adjoint to the inclusion j′ : OpM → EnvlpM.

Our next goal is to show that the category of M-enriched symmetric monoidal categories
can be identified with a subcategory of the category of M-enriched operads.
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Definition 6.5.8. Let M be a presentable symmetric monoidal category and let (P , P )
be an M-enriched pre-envelope. We call its image under the colocalization map jR :
preEnvlp(M)→ preOp(M) the M-enriched pre-operad underlying (P , P ).

Remark 6.5.9. Let M be a presentable symmetric monoidal category. It follows from
remarks 6.4.4 and 6.5.7 that there is an adjunction

qj : preOp(M) CAlg(Algbrd(M)Spc) : jRs.

Given an M-enriched pre-operad (P , P ), we call qj(P , P ) its symmetric monoidal envelope.
Given a symmetric monoidal M-algebroid P, we call jRs(P) the M-enriched pre-operad
underlying C. Note that we also have an adjunction

q′j′ : OpM CAlg(CatM) : j′Rs|CAlg(CatM).

Proposition 6.5.10. Let M be a presentable symmetric monoidal category and let P be
an M-enriched symmetric monoidal category. Then the counit map q′j′j′RsP → P is a
localization functor.

Proof. This follows from lemma 6.4.25, in the same way as proposition 6.4.24.

Corollary 6.5.11. LetM be a presentable symmetric monoidal category and let P be an M-
enriched symmetric monoidal category. Then the counit map q′j′j′RP → P is an epimorphism
of M-enriched symmetric monoidal categories.

Proof. Combine remark 5.2.14, proposition 6.5.10, and lemma 11.2.7.

Corollary 6.5.12. Let M be a presentable symmetric monoidal category. Then the functor

j′Rs|CAlg(CatM) : CAlg(CatM)→ OpM

from remark 6.5.9 is the inclusion of a subcategory.

Proof. This follows from corollary 6.5.11, using similar arguments to those in proposition
6.4.27.

We now show that, in the case M = Spc, our notion of operad recovers the usual notion.
The key ingredient is supplied by the theory of monoidal envelopes from [Lur17] section 2.2.4.

Notation 6.5.13. We denote by

Env : Op→ CAlg(Cat)

the left adjoint to the forgetful functor from symmetric monoidal categories to operads. For
each operad O, we let P (O) be the subspace of Env(O) obtained as the image of the unit
map O → Env(O). Note that for every morphism of operads α : O → O′ we have that the
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image of P (O) under Env(α) is contained in P (O′). It follows from corollary 6.4.7, that we
have a unique lift

Envenh : Op→ preEnvlp(Spc)

of Env along q such that Envenh(O) = (Env(O), P (O)) for every operad O.

Proposition 6.5.14. The functor Envenh from notation 6.5.13 is fully faithful, and its image
is OpSpc.

Our proof of proposition 6.5.14 will need some preliminary lemmas.

Lemma 6.5.15. Let O be an operad. Then Envenh(O) is a Spc-enriched operad.

Proof. We first show that Envenh(O) is a Spc-enriched prop. Since Env(O) is a symmetric
monoidal category (as opposed to algebroid), we have that Envenh is a Spc-enriched envelope.
The category underlying Env(O) is given by the wide subcategory O⊗act of the category of
operators O⊗ on the active morphisms. The embedding O → Env(O) is given, at the level
of underlying categories, by the embedding of the fiber p−1(〈1〉) inside O⊗act. Given a finite
set S and a collection of objects xs of O indexed by S, the image of this collection under
the tensoring map Env(O)S → Env(O) is given by the object {xs}s∈S in O⊗act. It now follows
from remark 6.4.12 that Envenh(O) is a Spc-enriched prop, as claimed.

We now show that Envenh(O) is a Spc-enriched operad. Let F : (P ′, P ′)→ (P ′′, P ′′) be
an O-equivalence of Spc-enriched envelopes. We have to show that the induced map of spaces

HomEnvlpSpc(Envenh(O), (P ′, P ′)) F∗−→ HomEnvlpSpc(Envenh(O), (P ′′, P ′′))

is an equivalence.
Let P ′ and P ′′ be the symmetric monoidal categories underlying P ′ and P ′′. The functor of

Spc-algebroids P ′ → P ′ is fully faithful, and moreover its restriction to the full subalgebroid of
P ′ on P ′ is a fully faithful functor of categories, which means that it induces a monomorphism

on spaces. Hence we can see P ′ as a subspace of P ′≤0
. Similarly, we can see P ′′ as a subspace

of P ′′≤0
. Denote by

F : (P ′, P ′)→ (P ′′, P ′′)

the induced morphism of Spc-enriched envelopes. Note that this fits into a commutative
square of Spc-enriched envelopes

(P ′, P ′) (P ′′, P ′′)

(P ′, P ′) (P ′′, P ′′).

F

F

Here the vertical arrows are P-equivalences and therefore the bottom horizontal arrow is an
O-equivalence.
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We now have a commutative square of spaces

HomEnvlpSpc(Envenh(O), (P ′, P ′)) HomEnvlpSpc(Envenh(O), (P ′′, P ′′))

HomEnvlpSpc(Envenh(O), (P ′, P ′)) HomEnvlpSpc(Envenh(O), (P ′′, P ′′)).

F∗

F ∗

Since Envenh(O) is a Spc-enriched prop, we have that the vertical arrows are equivalences.
To show that the top horizontal arrow is an equivalence it suffices to show that the bottom
horizontal arrow is an equivalence.

Let O′ and O′′ be the full suboperads of P ′ and P ′′ on P ′ and P ′′, respectively. The map
F induces a morphism of operads f : O′ → O′′. The bottom horizontal arrow in the above
diagram is equivalent to the map

f∗ : HomOp(O,O′)→ HomOp(O,O′′).

Since F is an O-equivalence, we have that f is an equivalence of operads. Hence f∗ is an
equivalence, and the lemma follows.

Lemma 6.5.16. Let (P , P ) be a Spc-enriched operad. Then (P , P ) belongs to the image of
Envenh.

Proof. Let P be the category underlying P. As in the proof of lemma 6.5.15 we may see
P as a subspace of P and we have an induced P-equivalence of Spc-enriched envelopes
(P , P )→ (P , P ). Let O be the full suboperad of P on P . Then the inclusion O → P induces
an O-equivalence of Spc-enriched envelopes f : Envenh(O) → (P , P ). Since Envenh(O)
is a Spc-enriched prop, we may lift f to an O-equivalence of Spc-enriched envelopes f :
Envenh(O)→ (P , P ). The claim now follows from lemma 6.5.15 since O-equivalences between
Spc-enriched operads are necessarily isomorphisms.

Proof of proposition 6.5.14. Combining lemmas 6.5.15 and 6.5.16 we see that the image of
Envenh consists of the Spc-enriched operads. It remains to show that Envenh is fully faithful.
Let O,O′ be a pair of operads. We have maps of spaces

HomOp(O,O′) Envenh
∗−−−−→ HompreEnvlp(Spc)(Envenh(O),Envenh(O′))

and
HompreEnvlp(Spc)(Envenh(O),Envenh(O′)) q∗−→ HomCAlg(Cat)(Env(O),Env(O′))

whose composition recovers the map Env∗ induced by Env. Observe that q∗ presents
HompreEnvlp(Spc)(Envenh(O),Envenh(O′)) as the subspace of HomCAlg(Cat)(Env(O),Env(O′))
on those morphisms of symmetric monoidal categories which map objects in P (O) to ob-
jects in P (O′). To show that Envenh is fully faithful, it suffices to show that Env∗ presents
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HomOp(O,O′) as the same subspace. This follows from the fact that Env∗ is equivalent to
the map

HomOp(O,O′)→ HomOp(O,Env(O′))

of composition with the unit O′ → Env(O′), which is a fully faithful morphism of operads.
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Chapter 7

Monadicity

The notions of monads and monadic functors are fundamental in category theory. Of central
importance is the monadicity theorem:

Theorem 7.0.1 ([Lur17] theorem 4.7.3.5). Let G : D → C be a functor of categories. The
following conditions are equivalent:

(i) The functor G is monadic: in other words, G admits a left adjoint F , and G is equivalent
to the forgetful functor LModA(C)→ C for A the endomorphism monad of G.

(ii) There exists an algebra A in the monoidal category of endofunctors of C such that G is
equivalent to the forgetful functor LModA(C)→ C.

(iii) The functor G is conservative and creates geometric realizations of G-split simplicial
objects.

The notion of monadic functor only depends on the 2-categorical structure of Cat. We
can therefore think about theorem 7.0.1 (in particular, the equivalence between the first two
and the last item) as providing a characterization of monadic morphisms in Cat.

Our goal in this chapter is to extend the theory of monads and monadic morphisms to
(possibly enriched) 2-categories, and prove a generalization of theorem 7.0.1 which characterizes
monadic morphisms in the 2-category of M-enriched categories for an arbitrary presentable
symmetric monoidal category M.

We begin in 7.1 with a general discussion of the theory of enriched categories of modules
over an associative algebra inM. We show here that if D is anM-enriched category and y is
an object of D, then the representable functor HomD(−, y) admits a canonical enhancement
to a functor into the M-enriched category of modules over EndD(y).

In 7.2 we discuss the notions of monads and modules over a monad in an arbitrary
2-category D. We discuss the notion of endomorphism monad of a morphism in D, and show
that morphisms admitting left adjoints admit an endomorphism monad. We study here the
functoriality of the categories of modules over a monad.
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In 7.3 we discuss the notion of Eilenberg-Moore object for a monad, as a classifying object
for modules. We prove here a basic result on the equivalence of various notions of monadic
morphism in D, which generalizes the equivalence between items (i) and (ii) in theorem 7.0.1.

In 7.4 we specialize the notions of the previous section to the case when D is the 2-category
of categories enriched in a presentable symmetric monoidal category M. We prove here our
main result (theorem 7.4.10), which generalizes the description of monadic morphisms in Cat
provided by item (iii) of theorem 7.0.1. Specializing to the case M = ωCat, we obtain a
monadicity theorem for functors of ω-categories, which reduces to theorem 7.0.1 in the case
when the ω-categories in question are 1-categories.

In 7.5 we generalize the notions of monads and monadic morphisms to an arbitrary
enriched 2-category, and provide various equivalent conditions for a morphism to be monadic.
We finish by specializing to the case of enrichment over ωCat to obtain a theory of monads
and monadic morphisms in an arbitrary ω-category.

7.1 Enriched categories of modules

We now discuss the canonical enrichment of the category of modules over an associative
algebra in a presentable symmetric monoidal category.

Notation 7.1.1. Let M be a presentable symmetric monoidal category and let A be an
associative algebra object in M. We denote by BMA the image of A under the composite
functor

Alg(M) = Algbrd[0](M)→ Algbrd(M)Spc → CatM

where the second arrow is the inclusion, and the last arrow is the localization map.
Let C be an M-enriched category. We denote by A -modl(C) the M-enriched category

Funct(BMA, C). We call this the M-enriched category of left A-modules in C. We also set
A -modr(C) = Aop -modl(C) and call it the M-enriched category of right A-modules in C.

Remark 7.1.2. Let M be a presentable symmetric monoidal category and let C be a
presentable module over M. Let A be an algebra in M. It follows from [Hin20a] proposition
6.3.7 that there is an equivalence

A -modl(θM(C)) = θM(A -modl(C))

where on the right we equip A -modl(C) with its canonical structure of presentableM-module.
In particular, we see that the category underlying A -modl(θM(C)) is given by A -modl(C).

Assume now that C = M, so that θM(C) = M is the canonical M-enrichment of M.
Then A -modl(M) provides an M-enrichment of the category of left A-modules in M. In
particular, when M = ωCat we obtain ω-categories of modules over a monoidal ω-category.

Construction 7.1.3. Let M be a presentable symmetric monoidal category. Let D be an
M-enriched category, and let y be an object in D. We equip the object EndD(y) with the
structure of associative algebra in M arising from its presentation as the object underlying
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the single object algebroid i!yD, where iy is the inclusion of y inside the space of objects of D.
Note that BM EndD(y) is the full subcategory of D on those objects isomorphic to y.

Let HomD(−, y)enh be the composite functor

Dop → Funct(D,M)→ Funct(BM EndD(y),M) = EndD(y) -modl(M)

where the first arrow is the Yoneda embedding, and the second arrow is given by restriction
along the embedding B EndD(y)→ D. Observe that the composition of HomD(−, y)enh with
the forgetful functor EndD(y) -modl(M)→M recovers the functor Dop →M represented
by y.

We conclude that for every object x in D there is a structure of left EndD(y)-module on
HomD(x, y), which is contravariantly functorial in x. Unpacking the definitions, we see that
the action map

HomD(x, y)⊗ EndD(y)→ HomD(x, y)

is given by composition in D.

Remark 7.1.4. Let M be a cartesian closed presentable category, and equip M with its
cartesian symmetric monoidal structure. Let A be an associative algebra in M. ategory, and
equip M with its cartesian symmetric monoidal structure. Denote by LModA(M) the fiber
over A of the projection

AlgLMod(M)→ AlgAssos(M)

induced by restriction along the inclusion Assos→ LMod. Then there is an equivalence of
M-enriched categories

LModA(M) = A -modl(M).

which upon passage to underlying categories recovers the canonical equivalence

(τM)! LModA(M) = LModA(M) = (τM)!A -modl(M).

In particular, in the case M = Cat we see that the 2-categories of modules arising
from notation 7.1.1 agree with the usual 2-categories of categories tensored over a monoidal
category.

7.2 Monads in a 2-category

We now discuss the notion of monad and module over a monad in an arbitrary 2-category.

Definition 7.2.1. Let D be a 2-category and let y be an object in D. The category of monads
on y is the category Alg(EndD(y)) of associative algebras in the monoidal category EndD(y).
Given a monad M on y, a module for M is a pair of an object x in D and an M-module in
the EndD(y)-module category HomD(x, y).
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Definition 7.2.2. Let D be a 2-category. An endomorphism monad1 for a morphism
g : x → y in D is an endomorphism object for g, thought of as an object in the EndD(y)-
module category HomD(x, y).

Remark 7.2.3. Let D be a 2-category. Let g : x → y be a morphism in D, admitting an
endomorphism monad End(g). Then g has the structure of End(g)-module. Furthermore,
for any monad M on y, restriction of scalars provides an equivalence between the space of
morphisms of monads M → End(g) and the space of M -module structures on g.

Adjunctions in D provide an abundant source of monads.

Proposition 7.2.4. Let D be a 2-category and let g : x→ y be a morphism in D. Assume
that g admits a left adjoint gL : y → x. Then g admits an endomorphism monad, whose
underlying object of EndD(y) is given by ggL, and the action map ggLg → g is induced from
the unit map gLg → idx.

Proof. Consider the adjunction of categories

g∗ : EndD(y) HomD(x, y) : (gL)∗

obtained from the adjunction gL a g by applying the functor D1-op → Cat represented by y.
For each object h in EndD(y) we have an induced isomorphism of spaces

HomEndD(y)(h, gg
L) = HomHomD(x,y)(hg, g).

The above is obtained as the composite map

HomEndD(y)(h, gg
L)→ HomHomD(x,y)(hg, gg

Lg)→ HomHomD(x,y)(hg, g)

where the first map is given by composition with g, and the second map is induced by the
counit of the adjunction gL a g. We conclude that the morphism ggLg → g presents ggL as
the Hom object from g to g, and our result follows.

Remark 7.2.5. Let D be a 2-category. Let M be a monad on an object y of D, and let
g : x → y be a module for M . Assume that g admits a left adjoint gL so that there is an
endomorphism monad End(g) for g with underlying endomorphism ggL. Then the morphism
in EndD(y) underlying the induced morphism of monads M → End(g) can be written as the
composition

M →MggL → ggL

where the first map is induced by the unit of the adjunction gL a g and the second map is
induced by the structure map Mg → g.

We now study the functoriality properties of the categories of modules over a monad.

1An alternative name for this concept would have been codensity monad.
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Construction 7.2.6. Let D be a 2-category and let y be an object in D. Specializing
construction 7.1.3 we obtain a functor of 2-categories

Homenh
D (−, y) : D1-op → EndD(y) -modl(Cat)

whose composition with the forgetful functor EndD(y) -modl(Cat)→ Cat recovers the functor
D1-op → Cat represented by y. We can think about Homenh

D (−, y) as a functor D1-op →
AlgLMod(Cat) whose composition with the forgetful functor AlgLMod(Cat) → AlgAssos(Cat)
recovers the constant functor with value EndD(y). Composing with the functor

AlgLMod(Cat) ↪→ OpLMod(Cat)
AlgLMod(−)−−−−−−−→ Cat

induces a functor
F : D1-op → Cat/AlgAssos(EndD(y))

which sends each object x in D to the category whose objects are pairs of a monad on y and
a module for it in Homenh

D (x, y).
Observe that restriction along the inclusion of the module object in LMod induces a

natural transformation

F → HomD(−, y)× AlgAssos(EndD(y)).

Proposition 7.2.7. Let D be a 2-category and let y be an object in D. Then the functor

F : D1-op → Cat/AlgAssos(EndD(y))

from construction 7.2.6 factors through Catcart
/AlgAssos(EndD(y)).

Proof. For each object x in D, we have that F (x) is the category AlgLMod(Homenh
D (x, y)),

equipped with its canonical forgetful functor to AlgAssos(EndD(y)). This is a cartesian fibration
thanks to [Lur17] corollary 4.2.3.2. Assume now given a morphism α : x→ x′ in D. Then we
have a commutative square of categories

AlgLMod(Homenh
D (x′, y)) AlgLMod(Homenh

D (x, y))

HomD(x′, y) HomD(x, y).

α∗

α∗

where the vertical arrows are the forgetful functors. The top horizontal arrow is equivalent to
the image of F (α) under the forgetful functor

Cat/AlgAssos(EndD(y)) → Cat .

Using [Lur17] corollary 4.2.3.2 we have that the vertical arrows create cartesian arrows for
F (x′) and F (x). We conclude that F (α) is a morphism of cartesian fibrations, and our result
follows.
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Construction 7.2.8. Let D be a 2-category. Composing the functor F from construction
7.2.6 with the straightening equivalence we obtain a functor

D1-op → Funct(AlgAssos(EndD(y))op,Cat).

This induces a functor

(−) -modl(Homenh
D (−, y)) : D1-op × (AlgAssos(EndD(y))op → Cat.

Observe that the above comes equipped with a natural transformation

(−) -modl(Homenh
D (−, y))→ HomD(−, y).

In particular, for each monad M on y we have a functor

M -modl(Homenh
D (−, y)) : D1-op → Cat

equipped with a natural transformation into the representable presheaf HomD(−, y).

Remark 7.2.9. Let D be a 2-category and let M be a monad on an object y of D. Tracing
the definitions reveals that the functor M -modl(Homenh

D (−, y)) from construction 7.2.8 assigns
to each object x in D the category of M -modules in the EndD(y)-module category HomD(x, y).
Furthermore, the natural transformation

M -modl(Homenh
D (−, y))→ HomD(−, y)

recovers the canonical forgetful functor into HomD(x, y).
We can summarize the situation informally by saying that the assignment

x 7→M -modl(Homenh
D (x, y))

is functorial on x, and this functoriality is compatible with the usual functoriality of the
assignment x 7→ HomD(x, y).

Assume now given a morphism of monads ρ : M →M ′. Then construction 7.2.8 supplies
a commutative square of presheaves on D as follows:

M ′ -modl(Homenh
D (−, y)) M -modl(Homenh

D (−, y))

HomD(−, y) HomD(−, y)

ρ∗

id

Evaluating at an object x in D recovers a commutative square

M ′ -modl(Homenh
D (x, y)) M -modl(Homenh

D (x, y))

HomD(x, y) HomD(x, y)

ρ∗

id

where the vertical arrows are the forgetful functors, and the top horizontal arrow is given by
restriction of scalars along ρ.
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7.3 Eilenberg-Moore objects and monadic morphisms

We now study the notion of Eilenberg-Moore object for a monad.

Definition 7.3.1. Let D be a 2-category. Let M be a monad on an object y of D and let
g : x→ y be a module for M . We say that g presents x as the Eilenberg-Moore object of M
if for every object z in D, the functor

genh
∗ : HomD(z, x)→M -modl(HomD(z, y))

induced by composition with g using the functoriality of M-modules from construction 7.2.8,
is an equivalence.

Remark 7.3.2. Let D be a 2-category. Let M be a monad on an object y of D and let
x be another object of D. Then the data of an M -module g : x → y is equivalent to the
data of a morphism in Funct(D1-op,Cat) from the representable presheaf HomD(−, x) to the
presheaf M -modl(Homenh

D (−, y)) from construction 7.2.8. Such an M -module presents x as
the Eilenberg-Moore object of M if and only if the induced morphism

HomD(−, x)→M -modl(Homenh
D (−, y))

is an isomorphism of presheaves on D. In other words, an Eilenberg-Moore object is a
representing object for the presheaf from construction 7.2.8. In particular, we have that
Eilenberg-Moore objects are unique if they exist.

Remark 7.3.3. Let U be the monoidal envelope of the associative operad and let Um be
the U -module arising from the LMod-monoidal envelope of the LMod-operad. Let BCat be
the 2-category with one object and monoidal category of endofunctors U , and let W be the
copresheaf on BCatU associated to Um.

Let D be a 2-category, let M be a monad on an object y of D, and let g : x→ y be an
M -module. The monad M defines a functor of 2-categories F : BCatU → D. Furthermore, g
defines a morphism η from W to the copresheaf HomD(x, F−). The M -module g presents x
as the Eilenberg-Moore object of M if and only if η presents x as the limit of F weighted by
W .

Definition 7.3.4. Let D be a 2-category. We say that D admits Eilenberg-Moore objects if
for all monads M in D, there exists an Eilenberg-Moore object for M .

Remark 7.3.5. Let C be a presentable Cat-module. It follows from corollary 5.6.2 together
with remark 7.3.3 that the 2-category θCat(C) admits Eilenberg-Moore objects. In particular,
we conclude that for every presentable symmetric monoidal categoryM, the 2-category CatM

of M-enriched categories admits Eilenberg-Moore objects.

Remark 7.3.6. Let C be a category and let M be a monad on C. Let G : D → C be
an M -module which exhibits D as the Eilenberg-Moore object of M . Then we have an
equivalence

D = HomCat([0],D) = M -modl(Homenh
Cat ([0], C)) = M -modl(C).



CHAPTER 7. MONADICITY 158

where on the right hand side we take modules over M with respect to the canonical EndCat(C)-
module structure on C. The above equivalence maps the functor G : D → C to the forgetful
functor M -modl(C)→ C.

We may summarize this by saying that for every monad M on C, the forgetful functor
M -modl(C)→ C admits a structure of M -module which presents it as the Eilenberg-Moore
object for M .

Proposition 7.3.7. Let D be a 2-category. Let M be a monad on an object y of D and let
g : x→ y be a module for M . Assume that g presents x as the Eilenberg-Moore object for
M . Then g admits a left adjoint, and the induced morphism of monads M → End(g) is an
isomorphism.

Proof. To show that g admits a left adjoint, it suffices to show that for every morphism
α : z → w in D, the commutative square of categories

HomD(w, x) HomD(z, x)

HomD(w, y) HomD(z, y)

g∗

α∗

g∗

α∗

is vertically left adjointable. The above square is equivalent to the outer square in the
commutative diagram

HomD(w, x) HomD(z, x)

M -modl(HomD(w, y)) M -modl(HomD(z, y))

HomD(w, y) HomD(z, y)

genh
∗

α∗

genh
∗

α∗

α∗

which is induced from the pair of natural transformations

HomD(−, x)→M -modl(Homenh
D (−, y))→ HomD(−, y)

described in remarks 7.2.9 and 7.3.2. Since g presents x as an Eilenberg-Moore object for M ,
we have in fact that the top vertical arrows in the above diagram are equivalences. We thus
reduce to showing that the commutative square of categories

M -modl(HomD(w, y)) M -modl(HomD(z, y))

HomD(w, y) HomD(z, y)

α∗

α∗
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is vertically left adjointable.
The existence of a left adjoint to the vertical arrows is guaranteed by the existence of

free M -modules in EndD(y)-module categories (see [Lur17] proposition 4.2.4.2). Assume now
given a morphism h : w → y, and let η : h→ h′ be a morphism in HomD(w, y) presenting an
M -module h′ : w → y as a free M -module on h. In other words, denoting by µ : M ⊗h′ → h′

the structure map, we have that the composite map

M ⊗ h idM ⊗η−−−−→M ⊗ h′ µ−→ h′

is an equivalence in HomD(w, y). Composing with α∗ we see that the composite map

M ⊗ α∗h idM ⊗α∗η−−−−−→M ⊗ α∗h′ α
∗µ−−→ α∗h′

is an equivalence in HomD(z, y). Observe that α∗h′ has the structure of an M -module,
and α∗µ is its structure map. We conclude that α∗η : α∗h → α∗h′ presents h′ as the free
M -module on α∗h. This shows that our commutative square is vertically left adjointable at h.
Since h was arbitrary, we conclude that our commutative square is vertically left adjointable,
as desired.

It remains to show that the induced morphism of monads M → End(g) is an isomorphism.
Denote by gL the left adjoint to g. Then by virtue of remark 7.2.5, the underlying morphism
in EndD(y) to our map of monads is given by the composition

M →MggL → ggL

where the first arrow is induced by the unit of the adjunction gL a g, and the second arrow
is induced by composition with the structure map Mg → g. To show that the above is
an isomorphism, it suffices to check that the unit η : idy → ggL presents ggL as the free
M -module on idy in the monoidal category EndD(y). The map η is the same as the unit at
idy for the adjunction

g∗ : HomD(y, x) HomD(y, y) : gL∗ .

Since g presents x as the Eilenberg-Moore object of M , the above adjunction is equivalent to
the free-forgetful adjunction

M -modl(HomD(y, y)) HomD(y, y).

We conclude that the map η presents ggL as the free M -module on idy, as desired.

Proposition 7.3.8. Let D be a 2-category and let g : x → y be a morphism in D. The
following are equivalent:

(i) There exists a monad M on y and an M -module structure on g, such that g presents x
as the Eilenberg-Moore object of M .
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(ii) The morphism g admits a left adjoint, and g presents x as the Eilenberg-Moore object
of the monad End(g).

(iii) The morphism g admits a left adjoint, and for every object z in D the functor of
categories

g∗ : HomD(z, x)→ HomD(z, y)

is monadic.

Proof. The equivalence between (i) and (ii) follows directly from proposition 7.3.7. Assume
now that (i) holds. Then for every object z in D we can write the morphism

g∗ : HomD(z, x)→ HomD(z, y)

as the composite map

HomD(z, x)
genh
∗−−→M -modl(HomD(z, y))→ HomD(z, y)

where the first arrow is given as in definition 7.3.1, and the second arrow is the forgetful
functor. By assumption, the first arrow is an isomorphism. Furthermore, [Lur17] theorem
4.7.3.5 guarantees that the second arrow is monadic. Hence we conclude that (iii) holds.

It remains to show that (iii) implies (ii). Let z be an object of D. We have to show that
the induced map

genh
∗ : HomD(z, x)→ End(g) -modl(HomD(z, y))

is an equivalence. Note that the composition of the above with the (monadic) forgetful
functor

u : End(g) -modl(HomD(z, y))→ HomD(z, y)

recovers the functor
g∗ : HomD(z, x)→ HomD(z, y)

which is monadic by our assumption. Since g∗ is conservative we have that genh
∗ is conservative

as well.
Let C be the full subcategory of End(g) -modl(HomD(z, y)) on those objects for which

the left adjoint to genh
∗ is defined and the unit is an isomorphism. To show that genh

∗ is an
equivalence, it suffices to show that that C is the entire End(g) -modl(HomD(z, y)).

We first show that C contains the image of uL. Let α be an object in HomD(z, y), and let
µ : uLα→ genh

∗ gL∗ α be the morphism induced by adjunction from the unit

η : α→ ugenh
∗ gL∗ α = g∗g

L
∗ α.

It follows from proposition 5.1.3 that µ presents gL∗ α as left adjoint to genh
∗ at uLα.

We claim that η presents g∗g
L
∗ α as the free End(g)-module on α. To see this, we have to

verify that the composition

End(g)α
idEnd(g) η−−−−−→ End(g)g∗g

L
∗ α→ g∗g

L
∗ α
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is an equivalence, where the last morphism is induced by composition with the structure
map End(g)g → g. This is a consequence of the description of End(g) from proposition 7.2.4,
together with the triangle identities for the adjunction gL a g.

It follows from the above that η presents genh
∗ gL∗ α as left adjoint to u at α. Hence the

map µ is in fact an isomorphism. This shows that the image of uL is indeed contained in C.
By virtue of [Lur17] proposition 4.7.3.14, it suffices now to show that C is closed under

u-split geometric realizations. Let FB : (∆op)B → End(g) -modl(HomD(z, y)) be an u-split
geometric realization diagram, and assume that F = FB|∆op factors through C. Then (genh

∗ )LF
is defined, and we have that

g∗(g
enh
∗ )LF = u∗g

enh
∗ (genh

∗ )LF = u∗F

is a split simplicial object. We conclude that (genh
∗ )LF is a g∗-split simplicial object in

HomD(z, x). Since g∗ was assumed to be monadic, (genh
∗ )LF admits a geometric realiza-

tion. An application of proposition 5.5.24 shows that genh
∗ admits a left adjoint at FB(∗).

Furthermore, (genh
∗ )LFB is a geometric realization diagram which is g∗-split, and therefore

genh
∗ (genh

∗ )LFB is also a geometric realization diagram. Since F factors through C we have that
the natural transformation F → genh

∗ (genh
∗ )LF induced from the unit of the (partially defined)

adjunction (genh
∗ )Lgenh

∗ is an isomorphism. This implies that the natural transformation
FB → genh

∗ (genh
∗ )LFB induced from the unit is also an isomorphism, which means that FB

factors through C, as desired.

Definition 7.3.9. Let D be a 2-category. A morphism g : x→ y in D is said to be monadic
if it satisfies the equivalent conditions of proposition 7.3.8.

For later purposes we record the following basic stability property of monadic morphisms.

Proposition 7.3.10. Let D be a 2-category. Let I be a category and let F : I → Funct([1],D)
be a functor. Assume that:

• For every object i in I the morphism F (i) is monadic.

• For every arrow α : i→ j in I, the induced commutative square

F (i, 0) F (j, 0)

F (i, 1) F (j, 1)

F (i)

F (α,0)

F (j)

F (α,1)

is vertically left adjointable.

• The functors ev0 F, ev1 F : I → D admit conical limits.

Then the conical limit of F is a monadic morphism.
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Proof. Denote by g : x → y the limit of F . For each i in I denote by pi : x → F (i, 0) and
qi : y → F (i, 1) the projections.

The fact that g has a left adjoint follows from an application of proposition 5.3.17. It
remains to show that for any object z in D the functor

g∗ : HomD(z, x)→ HomD(z, y)

is monadic. Note that g∗ is the limit over I of the monadic functors

F (i)∗ : HomD(z, F (i, 0))→ HomD(z, F (i, 1)).

We verify the hypothesis of the monadicity theorem for g∗. Note that g∗ admits a left
adjoint since g itself admits a left adjoint. The conservativity of g∗ follows from the fact that
it is the limit of a sequence of conservative functors.

Assume now given a g∗-split simplicial object S : ∆op → HomD(z, x). For every i in I we
have that

S(i)∗(pi)∗S = (qi)∗g∗S

is a split simplicial object in HomD(z, F (i, 1)). Hence (pi)∗S is S(i)∗-split, and it therefore
admits a geometric realization

((pi)∗S)B : (∆op)B → HomD(z, F (i, 0))

which is preserved by S(i)∗.
For every arrow α : i→ j in I we have

F (j)∗F (α, 0)∗((pi)∗S)B = F (α, 1)∗F (i)∗((pi)∗S)B.

The right hand side is the image under F (α, 1)∗ of the geometric realization of a split simplicial
object, hence it is a colimit diagram. It follows from this that F (α, 0)∗((pi)∗S)B is a colimit
diagram in HomD(z, F (i, 0)). In other words, the geometric realization of (pi)∗S is preserved
under F (α, 0).

The geometric realizations of (pi)∗S therefore pass to the limit to give a geometric
realization SB : (∆op)B → HomD(z, x) for S. It remains to show that the augmented
simplicial object g∗S

B is a colimit diagram. This follows from the fact that for every i in I
the diagram

(qi)∗g∗S
B = F (i)∗(pi)∗S

B

is the geometric realization of a split simplicial object.

7.4 Monadic functors of enriched categories

We now specialize the above theory to obtain a notion of monadic functor of enriched
categories.
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Notation 7.4.1. LetM be a presentable symmetric monoidal category. We denote by CatM

the 2-category of M-enriched categories (see notation 5.2.5 for a definition).

Definition 7.4.2. Let M be a presentable symmetric monoidal category. A functor G : D →
D′ between M-enriched categories is said to be monadic if the associated morphism in CatM

is monadic.

Remark 7.4.3. LetM be a presentable symmetric monoidal category. Unpacking definition
7.4.2 we see that a functor G : D → D′ between M-enriched categories is monadic if and
only if it admits a left adjoint and for every M-enriched category I the functor of categories

G∗ : Funct(I,D)≤1 → Funct(I,D′)≤1

is monadic.

Remark 7.4.4. A straightforward application of the monadicity theorem [Lur17] theorem
4.7.3.5 shows that in the case whenM = Spc equipped with its cartesian symmetric monoidal
structure, definition 7.4.2 recovers the usual notion of monadic functor of categories.

Remark 7.4.5. Let M be a presentable symmetric monoidal category and let G : D → D′
be a functor of M-enriched categories. Let E and J be M-enriched categories. Then the
map

Funct(J ,Funct(E ,D))≤1 → Funct(J ,Funct(E ,D′))≤1

induced by G is equivalent to the functor

Funct(J × E ,D)≤1 → Funct(J × E ,D′)≤1

induced by G. It follows that if G is monadic then the induced functor

G∗ : Funct(E ,D)→ Funct(E ,D′)

is also monadic.

Our next goal is to give a characterization of monadic functors between enriched categories,
generalizing the usual description provided by the monadicity theorem.

Definition 7.4.6. Let M be a presentable symmetric monoidal category. We say that a
functor G : D → D′ of M-enriched categories is conservative if the functor of categories
(τM)!G : (τM)!D → (τM)!D′ is conservative.

Notation 7.4.7. Let ∆−∞ be the wide subcategory of ∆ on the morphisms which preserve
minimums. Let i : ∆→ ∆−∞ be the functor that maps each nonempty totally ordered finite
set O to the totally ordered set {−∞}∪O obtained from O by adjoining a minimum element.
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Definition 7.4.8. Let M be a presentable symmetric monoidal category and let D be an
M-enriched category. A simplicial object in D is a functor S : ∆op

M → D. We say that S
admits a conical geometric realization if it admits a conical colimit. We say that S is split if
it admits an extension along the inclusion i : ∆op

M → (∆op
−∞)M. Given a functor G : D → D′,

we say that S is G-split if GS is split.

Remark 7.4.9. Let M be a presentable symmetric monoidal category and let D be an M-
enriched category. Let S : ∆op

M → D be a split simplicial object inD, and let T : (∆op
−∞)M → D

be an extension of S. Consider the inclusion j : ∆C → ∆−∞ which extends i and maps the
cone point to the initial object of ∆−∞. Then it follows from corollary 5.4.10 together with
[Lur09a] lemma 6.1.3.16 that the augmented simplicial object obtained by restricting T along
j is a conical colimit diagram for S. In particular, we see that split simplicial objects admit
conical geometric realizations which are preserved by arbitrary functors.

Theorem 7.4.10. Let M be a presentable symmetric monoidal category. Then a functor
G : D → D′ betweenM-enriched categories is monadic if and only if it admits a left adjoint, it
is conservative, and every G-split simplicial object in D admits a conical geometric realization
which is preserved by G.

Before giving a proof, we highlight a few important special cases of theorem 7.4.10.

Corollary 7.4.11. Let M be a presentable symmetric monoidal category and let G : D → D′
be a functor of M-enriched categories. Assume that G is conservative, and that D admits
and G preserves conical geometric realizations. Then G is monadic.

Proof. This is a direct consequence of theorem 7.4.10.

Corollary 7.4.12. Let M be a presentable symmetric monoidal category. Let G : D → D′
be a morphism in M -mod(PrL). Assume that G is conservative and admits a left adjoint F ,
and that the canonical structure of oplax morphism of M-modules on F is strict. Then the
functor of M-enriched categories θM(G) : θM(D)→ θM(D′) is monadic.

Proof. This follows from a combination of theorem 7.4.10 and propositions 5.4.1 and 5.4.8.

Our proof of theorem 7.4.10 will need some preliminaries.

Notation 7.4.13. Let M be a presentable symmetric monoidal category. Given a functor
of M-enriched categories G : D → D′, we denote by FunctG-split(∆

op
M,D) the M-enriched

category arising as the pullback

FunctG-split(∆
op
M,D) Funct((∆op

−∞)M,D′)

Funct(∆op
M,D) Funct(∆op

M,D′).

i∗

G∗
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We denote by ∆G-split : D → FunctG-split(∆
op
M,D) the functor arising from the following

commutative square:

D Funct((∆op
−∞)M,D′)

Funct(∆op
M,D) Funct(∆op

M,D′)

G∗∆

∆ i∗

G∗

Note that the letter ∆ is being used in two ways in the above square: to denote the simplex
category, and to denote the diagonal functors.

Remark 7.4.14. LetM be a presentable symmetric monoidal category and let G : D → D′
be a functor of M-enriched categories. Then an object of FunctG-split(∆

op
M,D) is the same

as a triple (S, T, ν) of a simplicial object S in D, a functor T : (∆op
−∞)M → D′, and an

identification ν : G∗S = i∗T . We think about T as a choice of splitting for G∗S.
The functor ∆G-split assigns to each object d in D the constant simplicial object on d,

where we equip its image under G∗ with the constant splitting.

Lemma 7.4.15. Let M be a presentable symmetric monoidal category and let G : D → D′
be a functor of M-enriched categories. Let d be an object in D and let S = (S, T, ν) be
an object of FunctG-split(∆

op
M,D). Then the projection FunctG-split(∆

op
M,D)→ Funct(∆op

M,D)
induces an isomorphism

HomFunctG-split(∆
op
M,D)(S,∆G-splitd) = HomFunct(∆op

M,D)(S,∆d).

Proof. We have a pullback square of objects of M

HomFunctG-split(∆
op
M,D)(S,∆G-splitd) HomFunct((∆op

−∞)M,D′)(T,∆
(2)Gd)

HomFunct(∆op
M,D)(S,∆d) HomFunct(∆op

M,D′)(i
∗T,∆(1)Gd)

(i∗)∗

(G∗)∗

induced from the pullback square from notation 7.4.13. Here

∆(1) : D′ → Funct(∆op
M,D

′)

and
∆(2) : D′ → Funct((∆op

−∞)M,D′)

denote the corresponding diagonal maps.
Our task is to show that the left vertical arrow is an isomorphism. It suffices for this to

show that the right vertical arrow is an isomorphism. This will follow if we can show that the
canonical identification i∗∆(2)Gd = ∆(1)Gd presents ∆(2)Gd as right adjoint to i∗ at ∆(1)Gd.
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Note that i : ∆→ ∆−∞ is left adjoint to the inclusion of ∆−∞ inside ∆. It follows that

i∗ : Funct((∆op
−∞)M,D′)→ Funct(∆op

M,D
′)

is left adjoint to the functor Funct(∆op
M,D′)→ Funct((∆op

−∞)M,D′) of restriction along the
inclusion ∆−∞ → ∆. Given a simplicial object X in D′, the counit of the adjunction is a
morphism of simplicial objects

i∗(X|(∆op
−∞)M)→ X

which upon evaluation at a simplex [n] recovers the morphism

X([n+ 1])→ X([n])

induced from the unique strictly increasing map [n] → [n + 1] sending 0 to 1. In the
particular case when X = ∆(1)Gd is the constant simplicial object at Gd, we have that
X|(∆op

−∞)M = ∆(2)Gd is the constant functor (∆op
−∞)M → D′ at Gd. Our claim now follows

from the fact that there is a unique morphism i∗∆(2)Gd → ∆(1)Gd which restricts to the
identity at [0].

Lemma 7.4.16. Let M be a presentable symmetric monoidal category and let G : D → D′
be a functor of M-enriched categories. Let S = (S, T, ν) be an object of FunctG-split(∆

op
M,D).

Let d be an object in D and η : S → ∆G-splitd be a morphism. Let η′ : S → ∆d be the image
of η under the projection map

FunctG-split(∆
op
M,D)→ Funct(∆op

M,D).

Then η presents d as left adjoint to ∆G-split at S if and only if η′ presents d as left adjoint to
∆ at S.

Proof. Consider for each object e in D the commutative diagram of objects of M

HomD(d, e) HomD(d, e)

HomFunctG-split(∆
op
M,D)(∆G-splitd,∆G-splite) HomFunct (∆op

M,D)(∆d,∆e)

HomFunctG-split(∆
op
M,D)(S,∆G-splite) HomFunct(∆op

M,D)(S,∆e)

id

(∆G-split)∗ ∆∗

η∗ η′∗

where the middle and bottom horizontal arrows are induced by the projection map

FunctG-split(∆
op
M,D)→ Funct(∆op

M,D).

It follows from lemma 7.4.15 that the horizontal arrows in the above diagram are all isomor-
phisms. We conclude that the composition of the two left vertical arrows is an isomorphism
if and only if the composition of the two right vertical arrows is an isomorphism. The lemma
now follows directly from the definition of local adjoints to functors.



CHAPTER 7. MONADICITY 167

Lemma 7.4.17. Let G : D → D′ be a monadic functor of categories. Then the functor
∆G-split admits a left adjoint.

Proof. Let S = (S, T, ν) be an object of FunctG-split(∆
op,D). We need to show that ∆G-split

admits a left adjoint at S. Since G is monadic and S is G-split, we have that S admits a
geometric realization. Let η′ : S → ∆d be a morphism in Funct(∆op,D) that presents an
object d as the geometric realization of S. It follows from lemma 7.4.15 that η′ admits a lift
to a morphism η : S → ∆G-splitd. Applying lemma 7.4.16 we conclude that η presents d as
left adjoint to ∆G-split at S.

Lemma 7.4.18. LetM be a presentable symmetric monoidal category and let G : D → D′ be
a monadic functor of M-enriched categories. Then the functor ∆G-split admits a left adjoint.

Proof. Applying lemma 5.2.9 to the image of the Yoneda embedding for CatM as in the proof
of proposition 5.2.10, we reduce to showing that for every functor F : J → J ′ ofM-enriched
categories, the commutative square of categories

(τM)! Funct(J ′,D) (τM)! Funct(J ,D)

(τM)! Funct(J ′,FunctG-split(∆
op
M,D)) (τM)! Funct(J ,FunctG-split(∆

op
M,D))

F ∗

(∆G-split)∗ (∆G-split)∗

F ∗

is vertically left adjointable. The above square is equivalent to the commutative square of
categories

(τM)! Funct(J ′,D) (τM)! Funct(J ,D)

FunctGJ ′ -split(∆
op, (τM)! Funct(J ′,D)) FunctGJ -split(∆

op, (τM)! Funct(J ,D))

F ∗

(∆GJ ′ -split)∗ (∆GJ -split)∗

F ∗

where
GJ : (τM)! Funct(J ,D)→ (τM)! Funct(J ,D′)

and
GJ ′ : (τM)! Funct(J ′,D)→ (τM)! Funct(J ′,D′)

are the functors induced by G. Since G is monadic, we have that GJ and GJ ′ are monadic.
Applying lemma 7.4.17 we conclude that the vertical arrows in the above square are left
adjointable.
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We now enlarge the above commutative square as follows:

(τM)! Funct(J ′,D) (τM)! Funct(J ,D)

FunctGJ ′ -split(∆
op, (τM)! Funct(J ′,D)) FunctGJ -split(∆

op, (τM)! Funct(J ,D))

Funct(∆op, (τM)! Funct(J ′,D)) Funct(∆op, (τM)! Funct(J ,D))

F ∗

(∆GJ ′ -split)∗ (∆GJ -split)∗

F ∗

F ∗

where the bottom vertical arrows are the canonical projections. Using lemma 7.4.16 we
reduce to showing that the outer commutative square is vertically left adjointable at every
GJ ′-split simplicial object. In other words, we need to show that the top horizontal arrow
preserves geometric realizations of GJ ′-split simplicial objects. This is a direct consequence
of the commutativity of the square

(τM)! Funct(J ′,D) (τM)! Funct(J ,D)

(τM)! Funct(J ′,D′) (τM)! Funct(J ,D′)

F ∗

GJ ′ GJ

F ∗

together with the fact that both vertical arrows are monadic.

Proof of theorem 7.4.10. Assume first that G admits a left adjoint, is conservative, and every
G-split simplicial object in D admits a conical geometric realization which is preserved by G.
Let J be an M-enriched category. We need to show that the functor

G∗ : (τM)! Funct(J ,D)→ (τM)! Funct(J ,D′)

is monadic.
We verify the conditions of the monadicity theorem for G∗. Conservativity of G∗ follows

from the fact that G is conservative, together with corollary 5.1.8. Assume now given a G∗-
split simplicial object S. Then for every object i in I we have that evi S is a G-split simplicial
object in D, and it therefore admits a conical geometric realization which is preserved by G.
Applying proposition 5.3.13 we conclude that S admits a conical geometric realization which
is preserved by G∗.

Assume now that G is monadic. In particular, G admits a left adjoint. Furthermore,
the functor of categories (τM)!G : (τM)!D → (τM)!D′ is monadic. Hence we have that G is
conservative. Moreover, (τM)!D admits geometric realizations to all (τM)!G-split simplicial
objects, and these are preserved by (τM)!G. It therefore suffices to show that all G-split
simplicial objects in D admit a conical geometric realization.

Let S be a G-split simplicial object of D. Choose a functor T : (∆op
−∞)M → D′ and an

identification ν : G∗S = i∗T , so that the triple S = (S, T, ν) defines an enhancement of S
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to an object in FunctG-split(∆
op
M,D). Thanks to lemma 7.4.18 we know that there exists a

morphism η : S → ∆G-splitd which presents an object d in D as left adjoint to ∆G-split at S.
It now follows from lemma 7.4.16 that d is left adjoint to ∆ at S, and therefore S admits a
conical geometric realization, as desired.

7.5 Monads and monadic morphisms in an enriched 2-category

We now provide an enriched generalization of the material from 7.2 and 7.3.

Definition 7.5.1. Let M be a presentable symmetric monoidal category and let D be an
M-enriched 2-category. A monad on an object y in D is a monad on y in the 2-category
underlying D. A module for a monad in D is a module for the underlying monad in the
2-category underlying D.

Definition 7.5.2. Let M be a presentable symmetric monoidal category and let D be an
M-enriched 2-category. An endomorphism monad for a morphism g : x→ y in D is a monad
End(g) on y equipped with an action on g, such that for every endomorphism h of y, the
induced map

HomEndD(y)(h,End(g))→ HomHomD(x,y)(hg,End(g)g)→ HomHomD(x,y)(hg, g)

is an isomorphism, where the first arrow is given by precomposition with g, and the second
arrow is induced by the structure map End(g)g → g.

Remark 7.5.3. Let M be a presentable symmetric monoidal category and let D be an
M-enriched 2-category. Let g be a morphism in D admitting an endomorphism monad
End(g). Then End(g) is also an endomorphism monad for g in the 2-category underlying D.

Definition 7.5.4. Let M be a presentable symmetric monoidal category and let D be an
M-enriched 2-category. We say that a morphism g in D admits a left adjoint if it admits a
left adjoint in the 2-category underlying D.

Proposition 7.5.5. Let M be a presentable symmetric monoidal category and let D be an
M-enriched 2-category. Let g : x→ y be a morphism in D admitting a left adjoint gL. Then
g admits an endomorphism monad.

Proof. By proposition 7.2.4, the morphism g admits an endomorphism monad End(g) in the
2-category underlying D, with underlying endomorphism ggL, and action map ggLg → g
induced by the counit of the adjunction. It remains to show that End(g) is in fact an
endomorphism monad for g in D.

Consider the adjunction of M-enriched categories

g∗ : EndD(y) HomD(x, y) : (gL)∗
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obtained from the adjunction gL a g by applying the functor of 2-categories (τM)!D1-op →
CatM underlying the functor of M-enriched 2-categories D1-op → CatM represented by y.
For each object h in EndD(y) we have an induced isomorphism

HomEndD(y)(h, gg
L) = HomHomD(x,y)(hg, g).

The above is obtained as the composite map

HomEndD(y)(h, gg
L)→ HomHomD(x,y)(hg, gg

Lg)→ HomHomD(x,y)(hg, g)

where the first map is given by composition with g, and the second map is induced by the
counit of the adjunction gL a g. The fact that this composite map is an isomorphism shows
that End(g) is an endomorphism monad for g, as desired.

Notation 7.5.6. Let M be a presentable symmetric monoidal category. Let C be an M-
enriched category and let M be a monad on C. We denote by M -modl(D) the Eilenberg-Moore
object for M in CatM.

Definition 7.5.7. Let M be a presentable symmetric monoidal category and let D be an
M-enriched 2-category. Let M be a monad on an object y of D and let g : x→ y be a module
for M . We say that g presents x as the Eilenberg-Moore object of M if for every object z in
D, the functor

genh
∗ : HomD(z, x)→M -modl(HomD(z, y))

induced by composition with g is an equivalence.

Remark 7.5.8. Let M be a presentable symmetric monoidal category and let D be an
M-enriched 2-category. Let M be a monad on an object y of D and let g : x → y be an
Eilenberg-Moore object for M . Then g is an Eilenberg-Moore object for M in the 2-category
underlying D. In particular, Eilenberg-Moore objects for M are unique if they exist.

Proposition 7.5.9. Let M be a presentable symmetric monoidal category and let D be an
M-enriched 2-category. Let g : x→ y be a morphism in D. Then the following are equivalent:

(i) There exists a monad M on y and an M -module structure on g, such that g presents x
as the Eilenberg-Moore object of M .

(ii) The morphism g admits a left adjoint, and g presents x as the Eilenberg-Moore object
of the monad End(g).

(iii) The morphism g admits a left adjoint, and for every object z in D the functor of
M-enriched categories

g∗ : HomD(z, x)→ HomD(z, y)

is monadic.

Proof. This follows along the same lines as propositions 7.3.7 and 7.3.8.
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Definition 7.5.10. Let M be a presentable symmetric monoidal category and let D be an
M-enriched 2-category. Then a morphism g : x→ y in D is said to be monadic if it satisfies
the equivalent conditions of proposition 7.5.9.

Remark 7.5.11. Let M be a presentable symmetric monoidal category and let D be an
M-enriched 2-category. Let g : x → y be a monadic morphism in D. Then g is also a
monadic morphism in the 2-category underlying D.

Remark 7.5.12. Let M be a presentable symmetric monoidal category and let F : C → D
be a functor ofM-enriched categories. Then it follows from theorem 7.4.10 that F is monadic

if and only if it is a monadic morphism in the M-enriched 2-category CatM.

We finish by specializing to the case of enrichment over ωCat.

Definition 7.5.13. Let G : D → D′ be a functor of ω-categories. We say that G is monadic
if it corresponds to a monadic functor of ωCat-enriched categories under the equivalence
CatωCat = ωCat from remark 3.6.12.

Remark 7.5.14. Let G : D → D′ be a functor of ω-categories. Then G is monadic if and
only if it admits a left adjoint and for every ω-category I the functor of categories

G∗ : Funct(I,D)≤1 → Funct(I,D′)≤1

is monadic.

Remark 7.5.15. Let n ≥ 1 and let G : D → D′ be a functor of n-categories. Then G is
monadic according to definition 7.5.13 if and only if it admits a left adjoint, and for any
n-category J the functor of categories

G∗ : Funct(J ,D)≤1 → Funct(J ,D′)≤1

is monadic. In other words, G is monadic as a functor of ω-categories if and only if it is
monadic as a functor of categories enriched in (n− 1)Cat. In particular, setting n = 1 we
conclude that in the case of functor between 1-categories definition 7.5.13 specializes to the
usual notion of monadic functor of categories.

Proposition 7.5.16. Let G : D → D′ be a functor of ω-categories. Then G is monadic if
and only if for every n ≥ 1 the functor G≤n : D≤n → D′≤n is monadic.

Proof. Assume first that G is monadic. Let n ≥ 1. It follows from a combination of
proposition 5.4.1 and corollary 5.4.4 that the truncation functor (−)≤n : ωCat → nCat
admits an enhancement to a functor of 2-categories. It follows from this that G≤n admits a
left adjoint. Furthermore, if J is an n-category then the functor

G≤n∗ : Funct(J ,D≤n)≤1 → Funct(J ,D′≤n)≤1
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is equivalent to the functor

G∗ : Funct(J ,D)≤1 → Funct(J ,D)≤1

which is monadic. Hence G≤n is monadic.
Assume now that G≤n is monadic for all n ≥ 1. Let J be an ω-category. Recall from

remark 3.6.9 that J is the colimit of its truncations J ≤n. Hence the functor

G∗ : Funct(J ,D)≤1 → Funct(J ,D′)≤1

is the limit of the functors

G∗ : Funct(J ≤n,D)≤1 → Funct(J ≤n,D′)≤1

for n ≥ 1. Applying proposition 7.3.10 we reduce to showing that the latter is monadic for
every n ≥ 1. Indeed, this is equivalent to the functor

G≤n∗ : Funct(J ≤n,D≤n)≤1 → Funct(J ≤n,D′≤n)≤1

which is monadic, as desired.

Definition 7.5.17. Let D be an ω-category. We define the notions of monads, modules
over a monad, Eilenberg-Moore object, and monadic morphisms in D by interpreting D as
a 2-category enriched over ωCat, using the equivalence 2CatωCat = ωCat that results from
iterating the equivalence CatωCat = ωCat from remark 3.6.12.

Remark 7.5.18. Specializing remark 7.5.12 we see that a functor of ω-categories G : D → D′
is monadic if and only if it defines a monadic morphism in the ω-category ωCat.

Remark 7.5.19. Let D be an ω-category. Then a morphism g : x→ y in D is monadic if
and only if for every object z in D, the functor of ω-categories

g∗ : HomD(z, x)→ HomD(z, y)

is monadic. It follows from remark 7.5.15 that if D is an n-category for some n ≥ 2 then
g is monadic if and only if it is monadic when interpreting D as a 2-category enriched in
(n− 2)-categories. We conclude in particular that in the case when D is a 2-category, the
notions of monadic morphism from definitions 7.3.9 and 7.5.17 coincide.

Remark 7.5.20. Let D be an ω-category. It follows from proposition 7.5.16 that a morphism
g in D is monadic if and only if it is monadic as a morphism in D≤n for all n ≥ 2.

Remark 7.5.21. Let D be an ω-category. Let M be a monad on an object y of D, and let
g : x→ y be a module over M . Then g presents x as the Eilenberg-Moore object of M if and
only if g is monadic, and the induced morphism of monads M → End(g) is an equivalence. It
follows from remark 7.5.20 that g presents x as the Eilenberg-Moore object of M if and only
if the same assertion holds in D≤n for every n ≥ 2. In particular, when D is a 2-category, the
notions of Eilenberg-Moore object from definitions 7.3.1 and 7.5.17 agree.
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Part II

Higher quasicoherent sheaves
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Chapter 8

Introduction to part II

Part II of this thesis forms part of a program aimed at setting up the foundations of the
theory of sheaves of (∞, n)-categories in derived algebraic geometry. The goal of the program
is to construct and study various theories of sheaves of (∞, n)-categories on prestacks, and
use them to produce interesting examples of fully extended topological field theories.

We begin part II by studying a general framework for higher categorical sheaf theories
in the language of categories of correspondences. As emphasized in [GR17], much of the
functorial behaviour of a sheaf theory is encoded in its realization as a functor out of an
(∞, 2)-category of correspondences. The existence of this realization has direct consequences
in terms of dualizability properties of the sheaf theory, and is a helpful tool in the computation
of various field-theoretic invariants [BN13].

We therefore take the point of view that a higher sheaf theory on a category of geometric
objects C is a (possibly symmetric monoidal) functor out of a higher category of correspon-
dences on C, into a target (∞, n+ 1)-category D whose objects are to be thought of as being
(∞, n)-categories of some sort. The first goal of part II is to provide tools for the construction
of such functors.

In the case of non-categorical sheaf theories, the target D is usually taken to be the
(∞, 2)-category of presentable stable ∞-categories. The second goal of part II is to introduce
(∞, n)-categorifications of the theory of presentable ∞-categories, which will be the target
for our higher categorical sheaf theories.

Our starting point is the observation that the∞-category PrL of presentable∞-categories
is not itself a presentable ∞-category. We argue that PrL should instead be considered as
a presentable (∞, 2)-category - we in fact define this notion so that PrL is the unit in the
symmetric monoidal (∞, 2)-category of presentable (∞, 2)-categories. In general, we find
that for each n ≥ 1 the collection of all presentable (∞, n)-categories can be organized, not
into a presentable (∞, n)-category, but rather into a presentable (∞, n+ 1)-category.

The third goal of part II is to construct and study the most basic higher categorical sheaf
theory: the theory of quasicoherent sheaves of presentable stable (∞, n)-categories. This
turns out to satisfy very strong functoriality and dualizability properties, which we encode in
its formulation as a symmetric monoidal functor out of a higher category of correspondences



CHAPTER 8. INTRODUCTION TO PART II 175

of prestacks.
In the case n = 1, our definition specializes to the notion of sheaves of categories studied

in [Gai15]. A fundamental concept in that setting is that of 1-affineness. Roughly speaking,
a prestack X is 1-affine if the ∞-category of sheaves of categories on X can be recovered by
taking modules over the symmetric monoidal ∞-category QCoh(X). In part II we introduce
generalizations of this notion for all values of n, and provide a simple inductive criterion that
allows one to reduce higher affineness questions to the case n = 1.

The material in chapters 9, 10 and 11 is a slight revision of the author’s preprint [Ste20a].
The material in chapter 12 is a slight revision of the last section in the author’s preprint
[Ste20b].

Below we provide a more detailed description of the contents of part II. As usual in this
thesis, we will use the convention where all objects are∞-categorical by default, and suppress
this from our notation from now on.

8.1 Sheaf theories and the 2-category of correspondences

We begin by reviewing the case of ordinary, 1-categorical sheaf theory. Let C be a category
admitting pullbacks, whose objects we think about as geometric spaces of some sort (for
instance, C can be the category of affine schemes, stacks, etc). Then one can define a
2-category 2Corr(C) with the following properties:

• The objects of 2Corr(C) are the objects of C.

• For each pair of objects c, c′ in C, the category Hom2Corr(C)(c, c
′) is the category C/c,c′

whose objects are spans c← s→ c′ in C.

• The composition of two spans c← s→ c′ and c′ ← t→ c′′ is given by c← s×c′ t→ c′′.

In its most basic form 1, a sheaf theory on C consists of a functor F : 2Corr(C)→ D into
a 2-category D whose objects are to be thought of as categories of some sort. This assigns to
each object c in C an object F (c) in D, subject to the following functoriality:

• For every morphism α : c → c′ in C a morphism α! : F (c) → F (c′) associated to the
following span:

c

c c′

id α

1Many sheaf theories of interest can be formulated in this form if we allow ourselves to work with variants
of 2Corr(C) where the legs of the spans are required to belong to certain predetermined classes, and change
the notion of 2-cell. For our purposes, this basic version will suffice.
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• For every morphism α : c → c′ in C a morphism α! : F (c′) → F (c) associated to the
following span:

c

c′ c

idα

• For every morphism α : c → c′, a 2-cell α!α
! → idc′ , associated to the following

morphism of spans:
c

c′

c′ c′

α α

α

id id

It can be shown that the 2-cell from the third item is the counit of an adjunction between
α! and α!. Furthermore, the composition rule of 2Corr(C) implies that for every pair of maps
α : c→ c′ ← c′′ : β the square

F (c×c′ c′′) F (c′′)

F (c) F (c′)

β′!

α′!

β!

α!

which is in principle only commutative up to a natural transformation, is in fact strictly
commutative.

There is a natural inclusion ιC : C → 2Corr(C), which is the identity on objects, and sends
each arrow α to the span with right leg α and identity left leg. It was proven in [GR17] that
the functor F can be recovered just from the knowledge of its restriction to C. Moreover,
given a functor f : C → D one can find an extension of F to 2Corr(C) if and only if f(α)
admits a right adjoint for every arrow α in C, and for every pair of maps α : c→ c′ ← c′′ : β
in C the associated lax commutative square is strictly commutative:

Theorem 8.1.1 ([GR17]). Let C be a category admitting pullbacks and let D be a 2-category.
Then precomposition with the inclusion ιC induces an equivalence between the space of functors
F : 2Corr(C) → D and the space of functors f : C → D satisfying the left Beck-Chevalley
condition.

In chapter 10 we give an alternative approach to this result.2 Our proof relies on two
main ideas:

2We refer also to [Mac20] for a related approach to theorem 8.1.1, which proves it conditional on the
existence of a 2-categorical Grothendieck construction.
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• Let 2Corruniv(C) be the 2-category satisfying the universal property of theorem 8.1.1.
Then the restriction of the hom functor

Hom2Corruniv(C) : 2Corruniv(C)1-op × 2Corruniv(C)→ Cat

to 2Corruniv(C)1-op × C is shown to satisfy a universal property - roughly speaking, we
show that it can be obtained by left Kan extension of HomC : Cop × C → Spc along
the inclusion of Cop × C inside 2Corruniv(C)1-op × C. Our proof of this relies on the
description of Hom functors for enriched categories in terms of diagonal bimodules from
[Hin20a].

• We prove a version of the Grothendieck construction which relates functors Cop × C →
Cat and the so-called two-sided fibrations over C × C, and identify the image of
Funct(2Corruniv(C)1-op×C,Cat) under this equivalence. The problem then gets reduced
to establishing a universal property for the two-sided fibration whose objects are spans
in C. The proof of this fact, which is carried out in chapter 9, ultimately relies on the
description of free fibrations from [GHN17].

8.2 Higher sheaf theories and the n-category of correspondences

For each n > 2 one can define an n-category nCorr(C) with the following properties:

• The objects of nCorr(C) are the objects of C.

• For each pair of objects c, c′ we have HomnCorr(C)(c, c
′) = (n− 1)Corr(Hom2Corr(C)(c, c

′)).

In its most basic form, a higher sheaf theory on C is a functor F : nCorr(C)→ D into an
n-category D whose objects we think about as being (n− 1)-categories of some sort. Such
a functor satisfies a large list of adjointability and base change properties. As before, its
restriction to C satisfies the left Beck-Chevalley condition. However, as soon as n > 2 it
turns out that it also satisfies the right Beck-Chevalley condition: in fact, pushforwards and
pullbacks form part of an ambidextrous adjunction. Furthermore, when n > 2 we have, for
each pair of objects c, c′ in C, a functor

F∗ : C/c,c′ → HomD(F (c), F (c′))

which also satisfies the left Beck-Chevalley condition. When n > 3, these functors also
satisfy the right Beck-Chevalley condition, and for every pair of spans S = (c← s→ c′) and
T = (c← t→ c′) there is an induced functor

(F∗)∗ : (C/c,c′)/s,t → HomHomD(F (c),F (c′))(F∗(S), F∗(T ))

which also satisfies the left Beck-Chevalley condition.
Our first main result in chapter 11 is a generalization of theorem 8.1.1 which singles

out a minimalistic list of base change properties to verify for a functor C → D to admit an
extension to nCorr(C):
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Theorem 8.2.1. Let n ≥ 1. Let C be a category admitting pullbacks, and let D be an
n-category. Then precomposition with the inclusion C → nCorr(C) induces an equivalence
between the space of functors nCorr(C)→ D and the space of functors C → D satisfying the
left (n− 1)-fold Beck-Chevalley condition.

In the same way that verifying the left Beck-Chevalley condition for a functor f : C → D
involves checking an adjointability statement for every cartesian square in C, verifying the left
(n−1)-fold Beck-Chevalley condition involves checking a series of n−1 different adjointability
statements for every such cartesian square. We refer the reader to section 11.2 for a precise
definition of the left (n− 1)-fold Beck-Chevalley condition.

In the case when C admits finite limits, the n-category nCorr(C) comes equipped with
a symmetric monoidal structure, and the inclusion C → nCorr(C) can be enhanced to a
symmetric monoidal functor, where C is given the cartesian symmetric monoidal structure.
In chapter 11 we also prove a version of theorem 8.2.1 that takes into account this structure:

Corollary 8.2.2. Let n ≥ 1. Let C be a category admitting finite limits, and let D be a
symmetric monoidal n-category. Then restriction along the inclusion C → nCorr(C) induces
an equivalence between the space of symmetric monoidal functors nCorr(C) → D and the
space of symmetric monoidal functors C → D which satisfy the left (n−1)-fold Beck-Chevalley
condition.

It was shown in [Hau18] that every object of nCorr(C) is fully dualizable in the (n− 1)-
category underlying nCorr(C). Combining this fact with corollary 8.2.2 we are able to
conclude that if F : C → D is a symmetric monoidal functor satisfying the (n− 1)-fold left
Beck-Chevalley condition and c is an object of C, then F (c) is a fully dualizable object in
the (n− 1)-category underlying D. In other words, F (c) can be considered as the object of
boundary conditions for an (n− 1)-dimensional topological field theory.

8.3 Extension along the Yoneda embedding

The second main result of chapter 11 concerns the interaction of the higher Beck-Chevalley
condition and the procedure of Kan extension along the Yoneda embedding C → P(C). It
gives conditions under which one can deduce that a colimit preserving functor P(C) → D
satisfies a higher Beck-Chevalley condition, from knowing that its restriction to C does.

This is instrumental in the study of higher sheaf theories in algebraic geometry, as one
usually first gives a definition for affine schemes, and then one Kan-extends the theory to
more general stacks. It can often be checked without too much difficulty that a higher
Beck-Chevalley condition holds on affine schemes, but this is not so easy to do by hand for
arbitrary stacks.

There are two conditions that are required on D to be able to do this. The first one is
that D be conically cocomplete (see chapter 5). In other words, we want that colimits in
the 1-category underlying D be compatible with the n-categorical structure. We use this to
reduce base change properties for cartesian squares in P(C) to those in which the final vertex
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belongs to C. We require that this holds not only for D, but also for all Hom (n−1)-categories
of D, all Hom (n− 2)-categories of those, and so on.

The second condition is called the passage to adjoints property, and is modeled on the
well-known fact that colimits of right adjointable arrows in PrL can be computed as limits
after passage to right adjoints:

Definition 8.3.1. Let D be an n-category, and denote by (D≤1)radj (resp. (D≤1)ladj) the
subcategory of the category underlying D containing all objects, and only those morphisms
which are right (resp. left) adjointable in D. We say that D satisfies the passage to adjoints
property if the following conditions are satisfied:

• The category (D≤1)radj has all colimits, and the inclusion (D≤1)radj → D preserves
conical colimits.

• The category (D≤1)ladj has all limits, and the inclusion (D≤1) ladj → D preserves conical
limits.

This condition is used to ensure that the image of any arrow in P(C) will admit a right
adjoint, from knowing that this is true for C. Again the passage to adjoints property is
required inductively on all Hom-categories as well.

The following is a simplified version of the second main result of chapter 11 - we refer the
reader to section 11.3 for a slightly stronger statement:

Theorem 8.3.2. Let n ≥ 1. Let C be a category admitting pullbacks and let D be an n-
category. Assume that D is (n− 1)-fold conically cocomplete, and satisfies the (n− 1)-fold
passage to adjoints property. Let F : P(C)→ D be a conical colimit preserving functor and
assume that F |C and F |n-op

C satisfy the left (n− 1)-fold Beck-Chevalley condition. Then F
satisfies the left (n− 1)-fold Beck-Chevalley condition.

We remark that if D is the n-category underlying an (n+ 1)-category D+ and F |C satisfies
the left n-fold Beck-Chevalley condition (as a functor into D+), then F |C and F |n-op

C satisfy
the left (n− 1)-fold Beck-Chevalley condition. In other words, under the stated assumptions
on D, any functor (n+ 1)Corr(C)→ D+ induces a functor nCorr(P(C))→ D.

8.4 Presentable n-categories

The theory of presentable categories is one of the cornerstones of category theory. Many
categories arising in nature are presentable, and many categorical constructions preserve
presentability. The category PrL of presentable categories and colimit preserving functors
can be given a symmetric monoidal structure, and its full subcategory of stable presentable
categories is the target of various sheaf theories of interest.

In chapter 12 we introduce higher categorical versions of the theory of presentable
categories. This takes the form of a symmetric monoidal category (n + 1)-category nPrL
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of presentable n-categories for each n ≥ 1, which recovers in the case n = 1 a 2-categorical
enhancement of PrL.

In order to define nPrL, one first defines its underlying symmetric monoidal category
nPrL. Recall the following features of PrL:

• The category PrL admits all small colimits.

• For each pair of objects C,D in PrL, there is a presentable category Funct(C,D)
parametrizing functors between C and D. This endows PrL with the structure of a
category enriched over itself.

Any presentable 2-category will share the same features. If PrL were itself presentable,
then any module over PrL inside PrL would have these properties. In that case, we could
simply define 2PrL to be the category of modules for PrL inside itself.

Since PrL is not presentable, it does not make sense to consider its category of modules
in PrL. However, PrL is still a cocomplete category, and its symmetric monoidal structure
is compatible with colimits. It therefore makes sense to consider the category of modules
for PrL inside the symmetric monoidal category Ĉatcocompl of large cocomplete categories
admitting small colimits and colimit preserving functors.

The category PrL -mod(Ĉatcocompl) is however still not a good candidate for 2PrL. A

first issue is that its objects turn out to be enriched in Ĉatcocompl, rather than PrL. A

related problem is that PrL -mod(Ĉatcocompl) is too big. Recall that presentable categories
are controlled by a small amount of data, which in particular implies that PrL is a large
category (as opposed to very large). However PrL -mod(Ĉatcocompl) is a very large category,

and in particular it does not belong to Ĉatcocompl, but to the category CATcocompl of very
large categories admitting large colimits. A theory of presentable n-categories which simply
iteratively takes categories of modules would need a long sequence of nested universes, and
would require one to carefully keep track of the relative sizes of different objects.

The main observation that leads to our definition of higher presentable categories is that,
while PrL -mod(Ĉatcocompl) is a very large category, it is controlled by a large subcategory

of objects we call presentable. More precisely, PrL -mod(Ĉatcocompl) is presentable as a very
large category, and it is in fact κ0-compactly generated, for κ0 the smallest large cardinal.
The category 2PrL is then defined to be the full subcategory of PrL -mod(Ĉatcocompl) on the
κ0-compact objects.

Iterating the above discussion, one may obtain a symmetric monoidal category nPrL for
each n ≥ 1:

Definition 8.4.1. We inductively define, for each n ≥ 2, the symmetric monoidal category
nPrL to be the full subcategory of (n− 1)PrL -mod(Ĉatcocompl) on the κ0-compact objects.

The first main result of chapter 12 is the construction of an (n+1)-categorical enhancement
of nPrL, which we denote by nPrL. This is obtained as a consequence of the existence of a
lax symmetric monoidal realization functor which maps objects in (n−1)PrL -mod(Ĉatcocompl)
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to n-categories, which ultimately depends on the procedure of enrichment of presentable
modules from chapter 4. In other words, although our approach to presentable n-categories
starts out being 1-categorical, we are in fact able to consider these as higher categories. To
formulate the statement, it is convenient to set 0PrL to be the category of spaces.

Theorem 8.4.2. Let n ≥ 1. There exists a lax symmetric monoidal functor

ψn : (n− 1)PrL -mod(Ĉatcocompl)→ nCat
∧

with the following properties:

(i) For each (n − 1)PrL-module C, the 1-category underlying ψn(C) is equivalent to the
category underlying C.

(ii) Assume n > 1 and let c, d be objects in C. Then

Homψn(C)(c, d) = ψn−1(HomC(c, d))

where HomC(c, d) denotes the Hom object between c and d obtained from the action of
(n− 1)PrL on C.

Remark 8.4.3. Although our main interest is in objects of nPrL, we need to have access to
the realization functor on the bigger category (n− 1)PrL -mod(Ĉatcocompl). The main reason
is that if n > 2 we do not know whether the Hom objects in part (ii) belong to (n− 1)PrL,
even if C itself belongs to nPrL.

Corollary 8.4.4. Let n ≥ 1. There exists a symmetric monoidal (n+ 1)-category nPrL =
ψn+1(nPrL) whose underlying category is nPrL, and such that for every pair of objects C,D,
we have

HomnPrL(C,D) = ψn(HomnPrL(C,D)).

In particular, there is an equivalence

EndnPrL((n− 1)PrL) = (n− 1)PrL.

8.5 Colimits and the passage to adjoints property

A direct consequence of item (i) in theorem 8.4.2 is that for every object C in the category

(n− 1)PrL -mod(Ĉatcocompl), the category underlying ψn(C) admits all small colimits. The
second main result of chapter 12 provides a strengthening of this fact:

Theorem 8.5.1. Let n ≥ 1 and let C be an object in (n − 1)PrL -mod(Ĉatcocompl). Then
ψn(C) admits all conical colimits.

The following result is a typical application of theorem 8.5.1 (see also theorem 2.3.1).
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Corollary 8.5.2. Let C be an object in (n − 1)PrL -mod(Ĉatcocompl), and let I be a small
category. Let F,G : I → C be functors, and η : F → G be a natural transformation. Assume
that for every arrow α : i→ j in I the commutative square

F (i) G(i)

F (j) G(j)

F (α)

ηi

G(α)

ηj

is horizontally right adjointable in ψn(C) (in other words, the horizontal arrows admit right
adjoints ηRi and ηRj in ψn(C), and the induced 2-cell F (α)ηRi → ηRj G(α) is an isomorphism).
Then the morphism

colimI η : colimI F → colimI G

admits a right adjoint in ψn(C).

In other words, a colimit of right adjointable arrows in ψn(C) is right adjointable, as long
as various base change properties hold.

A fundamental feature of the theory of presentable categories is that passage to adjoints
interchanges colimits and limits. Concretely, if F : I → PrL is a diagram, then the colimit of
F is equivalent to the limit of the diagram Iop → Ĉat obtained from F by passing to right
adjoints of every arrow.

In the case when the right adjoint to F (α) belongs to PrL for every arrow α in I, this is
also the same as the limit of the resulting functor FR : Iop → PrL. The properties of 2PrL

which make this fact hold are in fact encoded in the passage to adjoints property (definition
8.3.1).

The third main result of chapter 12 states that the n-categories obtained from the
realization functors of theorem 8.4.2 satisfy the passage to adjoints property.

Theorem 8.5.3. Let n ≥ 2 and let C be an object in (n − 1)PrL -mod(Ĉatcocompl). Then
ψn(C) satisfies the passage to adjoints property.

In particular, although we do not know whether nPrL admits all small limits when n > 1,
we are able to conclude that it has limits of left adjointable diagrams.

Combining theorems 8.2.1 and 8.3.2 with theorems 8.5.1 and 8.5.3 yields the following
result which forms the base of our approach to constructing representations of higher categories
of correspondences of prestacks.

Corollary 8.5.4. Let C be a category admitting pullbacks and let D be the (n+ 1)-category
underlying a presentable (n + 1)-category. Let F : C → D be a functor such that F |C and
F |n-op
C satisfy the left (n − 1)-fold Beck-Chevalley condition. Then there exists a unique

extension of F to a functor nCorr(P(C))→ D whose restriction to P(C) preserves conical
colimits.
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8.6 Categorical spectra

Let C be a category admitting finite products. Then for each n ≥ 1 the n-category nCorr(C)
comes equipped with a distinguished object, corresponding to the terminal object 1C of C.
Furthermore, there are equivalences

End1C((n+ 1)Corr(C)) = nCorr(C)

which map the unit endomorphism to 1C.
A similar situation occurs in the theory of higher presentable categories. For each n ≥ 1

the (n+ 1)-category nPrL comes equipped with a distinguished object, given by (n− 1)PrL.
Furthermore, there are equivalences

End(n+1)PrL(nPrL) = nPrL

which map the unit endomorphism to (n− 1)PrL.
It is often the case that higher sheaf theories produce not only a functor out of a single

higher category of correspondences, but a sequence of functors which are compatible with
the above isomorphisms. Furthermore, the multiplicative structure of a higher sheaf theory
is usually encoded in this sequence of functors.

To abstract and provide context for this situation, we introduce in chapter 13 the notion
of a categorical spectrum.3 The situation is reminiscent of stable homotopy theory: in the
same way that a spectrum is a sequence of pointed homotopy types compatible under looping,
a categorical spectrum consists of a sequence of ω-categories Cn equipped with basepoints xn,
and pointed equivalences

(EndCn+1(xn+1), idxn+1) = (Cn, xn)

for all n ≥ 1. In the same way that the passage from spaces to spectra amounts to allowing
negative homotopy groups, we may think about the passage from ω-categories to categorical
spectra as allowing cells of negative dimensions.

The theory of categorical spectra has intimate connections to the theory of symmetric
monoidal ω-categories. The fundamental observation is that sometimes a symmetric monoidal
structure on an ω-category is more naturally studied by studying a sequence of deloopings of
it.4 In fact, the theory of categorical spectra may be considered as a joint generalization of
the theory of symmetric monoidal ω-categories and the theory of spectra. This is justified
by the fact, explained in chapter 13, that the category CatSp of categorical spectra sits in a
commutative square of categories and fully faithful functors

CAlggrpllike(Spc) Sp

CAlg(ωCat) CatSp .

3We first heard about a version of the notion of categorical spectrum from Constantin Teleman.
4We refer to [Sch14] section 1.6 for a discussion of this theme in the setting of n-fold Segal spaces.
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We can summarize this by saying that the theory of symmetric monoidal ω-categories
is the same as the theory of connective categorical spectra. In the context of higher sheaf
theory, one should arguably think about the symmetric monoidal ω-categories nCorr(C) and
nPrL as being connective covers of more fundamental, nonconnective categorical spectra.

8.7 Higher quasicoherent sheaves

Let n ≥ 1. Then starting from a commutative ring spectrum A, the theory from chapter
12 produces a presentable stable n-category A -modn of A-linear presentable stable (n− 1)-
categories. In chapter 14 we interpret this object geometrically:

Definition 8.7.1. Let X = Spec(A) be an affine scheme. We let nQCoh(X) = A -modn.
We call this the presentable stable n-category of quasicoherent sheaves of (n− 1)-categories
on X.

The assignment A 7→ A -modn is functorial in A, and therefore the assignment X 7→
nQCoh(X) is also functorial in X. A right Kan extension procedure allows us to extend
definition 8.7.1 to a functor nQCohPreStk on the category of prestacks. The first main result of
chapter 14 is an application of theorems 8.2.1, 8.3.2, 8.5.1 and 8.5.3, and states that the functor
nQCohPreStk admits an extension to a functor out of a higher category of correspondences of
prestacks:

Theorem 8.7.2. Let n ≥ 2. Then there is a unique extension of nQCohPreStk along the
inclusion PreStkop → nCorr(PreStk) to a functor

nQCohnCorr(PreStk) : nCorr(PreStk)→ nPrLSt.

Furthermore, if PreStkrep denotes the wide subcategory of PreStk on the affine-schematic
morphisms, we have that the restriction of nQCohnCorr(PreStk) to nCorr(PreStkrep) admits a
unique extension to a functor

nQCoh(n+1)Corr(PreStkrep) : (n+ 1)Corr(PreStkrep)→ (nPrLSt)
(n+1)-op.

As we shall see, the above functors are compatible as we change the number n. We may
summarize the situation by saying that the theory of higher quasicoherent sheaves gives rise
to a representation of the categorical spectrum of correspondences of prestacks.

The second main result of chapter 14 has to do with the notion of affineness. As observed
in [Gai15], many stacks of interest are 1-affine: roughly speaking, they behave as if they were
affine schemes, for the purposes of categorified sheaf theory. Building upon the theory of
monads and monadic morphisms from chapter 7, we generalize this notion as follows:

Definition 8.7.3. Let n ≥ 2 and let X be a prestack. We say that X is n-affine if the global
sections morphism

Γ(X,−) : (n+ 1)QCoh(X)→ nPrLSt

is a monadic morphism in (n+ 1)PrLSt.
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The second main result of chapter 14 is the following inductive criterion that allows one
to reduce questions in higher affineness to the case n = 1 studied in [Gai15].

Theorem 8.7.4. Let n ≥ 2 and let X be a prestack with (n− 1)-affine diagonal. Then X is
n-affine.

8.8 Organization

We now describe the contents of part II in more detail. We refer the reader also to the
introduction of each chapter for an expanded outline of its contents.

In chapter 9 we study the theory of two-sided fibrations. We introduce a two-sided variant
of the Grothendieck construction, and study the classes of two-sided fibrations which are
classified by functors with various adjointability properties. We discuss two main examples:
the arrow fibration and the span fibration, and prove universal properties for them.

Chapter 10 deals with the 2-category of correspondences. We recall its definition, and
collect a series of basic functoriality, adjointness and duality results, for later reference. We
finish this section by applying the theory of two-sided fibrations to the proof of theorem 8.1.1

In chapter 11 we study the n-category of correspondences. We begin by giving a definition
adapted to our purposes using the language of enriched category theory, and review its main
adjointness and duality properties. We then introduce the higher Beck-Chevalley conditions,
and prove theorem 8.2.1. We finish this section with a proof of theorem 8.3.2.

In chapter 12 we construct the symmetric monoidal categories nPrL and the realization
functor from theorem 8.4.2. We then give a proof of theorem 8.5.1. Finally, we study the
procedure of passage to adjoints and prove theorem 8.5.3.

Chapter 13 deals with the theory of categorical spectra. We discuss a number of basic
concepts such as shifts, cells, opposites, and connective objects. We present a number of
examples of categorical spectra of interest for the rest of the thesis. We finish this chapter by
studying the relation to the theory of symmetric monoidal ω-categories.

Finally, in chapter 14 we introduce the theory of higher quasicoherent sheaves, and study
the functoriality, descent, and affineness properties of this theory. We supply here proof of
theorems 8.7.2 and 8.7.4.
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Chapter 9

Two-sided fibrations

Let C and D be categories. A two-sided fibration from C to D is a functor p : E → C × D
which behaves as a cocartesian fibration along the C-directions, and as a cartesian fibration
along the D-directions. In 9.1 we review the notion of two-sided fibration,1 and we present
a two-sided analog of the straightening-unstraightening equivalence, which identifies the
category of two-sided fibrations over C × D with the category of functors C × Dop → Cat.

In 9.2 we study a fundamental example of a two-sided fibration: the target-source
projection Funct([1], C) → C × C. We show that this is classified by the Hom functor
HomC : C × Cop → Spc. This is a two-sided counterpart to the fact that the twisted arrow
category of C is the pairing of categories classified by the Hom functor of C. As an application,
we provide a concrete description of the so-called representable bifibrations, which are classified
by functors C × Dop → Spc of the form HomD(F (−),−) for some functor F : C → D. We
also establish a universal property for the arrow bifibration - in its most basic form it states
that the arrow category is the free bifibration on the diagonal functor ∆ : C → C × C.

In 9.3 we introduce the class of bivariant fibrations. These are functors p : E → C × D
which are simultaneously cocartesian fibrations, cartesian fibrations, and two-sided fibrations
over both C×D and D×C. In the same way that a two-sided fibration over C×D is classified
by a functor C × Dop → Cat, we show that a bivariant fibration is equivalent to the data of
four functors

C × D → Cat C × Dop → Cat

Cop ×D → Cat Cop ×Dop → Cat

each of which determines the rest by passage to right or left adjoints in one or both coordinates.
In 9.4 we specialize to the case when C and D admit pullbacks, and study the class of

bivariant fibrations satisfying the so-called Beck-Chevalley condition. We show that these are
classified by functors which satisfy familiar base change properties in each variable. We finish
with a fundamental example of a bivariant fibration satisfying the Beck-Chevalley condition:

1The notion of (lax) two-sided fibration which we discuss here agrees with the notion of (lax) bifibration
discussed previously in [Hin20b] section 3.1.2 and [Hin20a] section 2.2.6.



CHAPTER 9. TWO-SIDED FIBRATIONS 187

the source-target projection Funct(Λ2
0, C)→ C × C, where Funct(Λ2

0, C) denotes the category
whose objects are spans in C. We show that this enjoys a universal property: it is the free
cocartesian and two-sided fibration which satisfies the Beck-Chevalley condition in the first
coordinate, on the arrow two-sided fibration.

9.1 The two-sided Grothendieck construction

We begin by reviewing the notion of two-sided fibration.

Definition 9.1.1. Let C,D, E be categories, and let p = (p1, p2) : E → C × D be a functor.
We say that p is a lax two-sided fibration from C to D if the following conditions hold:

• Let e be an object of E and write p(e) = (c, d). Then for every arrow α : c→ c′ in C
there is a p-cocartesian lift of (α, idd) with source e.

• Let e be an object of E and write p(e) = (c, d). Then for every arrow β : d→ d′ in C
there is a p-cartesian lift of (idc, β) with target e.

Remark 9.1.2. The condition that the functor p be a lax two-sided fibration depends on
the decomposition of C × D as an ordered product. It will usually be clear from context
what this decomposition is. Unless otherwise stated, we will work in this chapter with the
convention where a (lax) two-sided fibration has cocartesian lifts of arrows in the first factor,
and cartesian lifts of arrows in the second factor. In other words, unless otherwise stated, if
we say that a functor p : E → C ×D is a (lax) two-sided fibration we mean that it is a (lax)
two-sided fibration from C to D.

Remark 9.1.3. Let C,D, E be categories, and let p = (p1, p2) : E → C ×D be a functor. Let
α : c → c′ be an arrow in C and d be an object in D. It follows from [Lur09a] proposition
4.3.1.5 item (2) that a lift of (α, idd) to E is p-cocartesian if and only if it is p1-cocartesian.
Similarly, if β : d→ d′ is a morphism in D and c is an object in C, a lift of (idc, β) to E is
p-cartesian if and only if it is p2-cartesian.

In particular, we see that p is a lax two-sided fibration if and only if the following two
conditions hold:

• p1 is a cocartesian fibration and p is a morphism of cocartesian fibrations over C.

• p2 is a cartesian fibration and p is a morphism of cartesian fibrations over D.

Definition 9.1.4. Let C,D be categories, and let p = (p1, p2) : E → C ×D be a lax two-sided
fibration from C to D. Let f : e→ e′ be an arrow in E , lying above an arrow (α, β) : (c, d)→
(c′, d′). Let (α, idd) : e → m be a p-cocartesian lift of (α, idd), and (id′c, β) : m′ → e be
a p-cartesian lift of (idc, β). We say that f is p-bicartesian if the induced map m → m′

is an isomorphism. We say that p is a two-sided fibration from C to D if composition of
p-bicartesian arrows is p-bicartesian.
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Remark 9.1.5. Let C,D be categories, and let p = (p1, p2) : E → C ×D be a lax two-sided
fibration. An arrow f : e → e′ in E is p-bicartesian if and only if it can be written as a
composition of a p1-cocartesian arrow followed by a p2-cartesian arrow. The projection p is a
two-sided fibration if and only if any arrow of the form f1 ◦ f2 where f2 is p2-cartesian and f1

is p1-cocartesian, is bicartesian.

Definition 9.1.6. Let C,D be categories, and let p : E → C × D and q : E ′ → C × D be
two-sided fibrations. A functor F : E → E ′ equipped with an identification qF = p is said to
be a morphism of two-sided fibrations if it maps bicartesian arrows to bicartesian arrows.

Remark 9.1.7. Let C,D be categories, and let p : E → C × D and q : E ′ → C × D be
two-sided fibrations. Let F : E → E ′ be a functor equipped with an identification qF = p. It
follows from remark 9.1.5 that F is a morphism of two-sided fibrations if and only if it is a
morphism of cocartesian fibrations over C and a morphism of cartesian fibrations over D.

Notation 9.1.8. Let C be a category. We denote by Catcart
/C (resp. Catcocart

/C ) the subcategory
of the overcategory Cat/C on the (co)cartesian fibrations and morphisms of (co)cartesian
fibrations. Given another category D, we denote by Cattwo-sided

/C,D the subcategory of Cat/C,D
on the two-sided fibrations and morphisms of two-sided fibrations.

If we allow ourselves to break symmetry, we can give an alternative characterization of
two-sided fibrations and morphisms of two-sided fibrations.

Proposition 9.1.9. Let C,D, E be categories, and let p = (p1, p2) : E → C × D be a functor.
Then

(i) The map p is a lax two-sided fibration if and only if p1 is a cocartesian fibration, the
functor p is a morphism of cocartesian fibrations over C, and for every object c in C the
projection p−1

1 (c)→ D is a cartesian fibration.

(ii) The map p is a two-sided fibration if and only if it is a lax two-sided fibration and the
induced functor C → Cat/D factors through Catcart

/D .

(iii) Assume that p is a two-sided fibration and let q : E ′ → C × D be another two-sided
fibration. Then a functor F : E → E ′ equipped with an identification qF = p is a
morphism of two-sided fibrations if and only if it is a morphism of cocartesian fibrations
over C, and for every object c in C the induced functor p−1(c)→ q−1(c) is a morphism
of cartesian fibrations over D.

Proof. This follows from a combination of remarks 9.1.3 and 9.1.5, together with (the dual
of) [Lur09a] corollary 4.3.1.15.

Our next goal is to present a two-sided analog of the Grothendieck construction. We first
recall the notion of weighted colimits of categories.2

2This should be a special case of the notion of weighted colimit from chapter 5. The fact that these two
definitions are compatible will not be needed in this thesis.
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Definition 9.1.10. Let B be a category and denote by Tw(B) the twisted arrow category of
B. Let H : B → Cat and W : Bop → Cat be functors. The colimit of H weighted by W is
defined to be the colimit of the composite functor

Tw(B)→ Bop × B W (−)×H(−)−−−−−−−→ Cat .

The lax colimit of H is the colimit of H weighted by the functor B−/ : Bop → Cat obtained by
straightening of the source fibration Funct([1],B)→ B. The oplax colimit of H is the colimit
of H weighted by the functor (B−/)op = (Bop)/−.

It is proven in [GHN17] that the lax colimit of a functor H : B → Cat recovers the
total category of the cocartesian fibration associated to H. Similarly, the oplax colimit of
H recovers the total category of the cartesian fibration associated to H. We now define our
two-sided Grothendieck construction to be a mixed lax-oplax colimit.

Definition 9.1.11. Let C,D be categories and H : C × Dop → Cat be a functor. We define
the bilax colimit of H to be the colimit of H weighted by the functor C−/×D/− : Cop×D → Cat.
We denote it by

∫
C×Dop H.

Example 9.1.12. Let C be a category and H : C = C × [0]op → Cat be a functor. Then we
have ∫

C×[0]op

C = colimTw(C×[0]op) C−/ × [0]/− ×H = colimTw(C) C−/ ×H

Using [GHN17] theorem 7.4 we see that
∫
C×[0]op H is the total category of the cocartesian

fibration associated to H.

Example 9.1.13. Let D be a category and H : Dop = [0]×Dop → Cat be a functor. Then by
[GHN17] corollary 7.6 we have that

∫
[0]×Dop H is the total category of the cartesian fibration

associated to H.

Example 9.1.14. Let C,D be categories and H : C × Dop → Cat be the functor which is
constant [0]. We have∫

C×Dop

H = colimTw(C×Dop) C−/ ×D/− = colimTw(C) C−/ × colimTw(Dop)D/−

Using [GHN17] corollary 7.5 we conclude that
∫
C×Dop H = C × Dop.

Remark 9.1.15. Let C,D be categories. The assignment H 7→
∫
C×Dop H can be enhanced

to a functor Funct(C × Dop,Cat)→ Cat. The functor constant [0] is the terminal object in
Funct(C × Dop,Cat). It follows from example 9.1.14 that the bilax colimit functor can be
enhanced to a functor ∫

C×Dop

: Funct(C × Dop,Cat)→ Cat/C×Dop .
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Proposition 9.1.16. Let C,D be categories. The functor
∫
C×Dop factors through Cattwo-sided

/C,D ,
and induces an equivalence

Funct(C × Dop,Cat) = Cattwo-sided
/C,D .

Proof. Let H : C × Dop → Cat be a functor. We have∫
C×Dop

H = colimTw(C×Dop) C−/ ×D/− ×H

= colimTw(C)(colimTw(D)D/− ×H)× C−/

=

∫
C×[0]op

(∫
[0]×Dop

H

)
.

It follows that the functor
∫
C×Dop : Funct(C × Dop,Cat) → Cat/C×Dop is equivalent to the

composite functor

Funct(C × Dop,Cat) = Funct(C,Funct(Dop,Cat))→ Funct(C,Cat/D)→ Cat/C×D

where the middle arrow is the cartesian Grothendieck construction, and the last arrow is the
cocartesian Grothendieck construction. This is an embedding, and it follows from proposition
9.1.9 that its image coincides with Cattwo-sided

/C×D .

Remark 9.1.17. The proof of proposition 9.1.16 shows that the two-sided Grothendieck
construction can be computed in two steps, by first doing cartesian unstraightening along D,
and then cocartesian unstraightening along C. Alternatively, we can also compute it by first
doing cocartesian unstraightening along C and then cartesian straightening along D.

9.2 The arrow bifibration

The notion of two-sided fibration specializes in the case when the fibers are groupoids to the
notion of bifibration introduced in [Lur09a].

Definition 9.2.1. Let C,D be categories. A two-sided fibration p = (p1, p2) : E → C ×D is
said to be a bifibration if for every pair (c, d) in C × D the fiber p−1((c, d)) is a groupoid.

Remark 9.2.2. If p : E → C × D is a functor whose fibers are groupoids, then p is a
two-sided fibration if and only if it is a lax two-sided fibration. Moreover, if p is a bifibration
and q : E ′ → C × D is another bifibration, then any functor F : E → E ′ equipped with an
identification qF = p is automatically a morphism of two-sided fibrations.

Remark 9.2.3. Let C,D be categories. Under the equivalence of proposition 9.1.16, the full
subcategory of Cattwo-sided

/C×D on the bifibrations gets identified with Funct(C × Dop, Spc).
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For each category C, the arrow category of C equipped with its target-source projection
turns out to be a bifibration. As the following proposition shows, it in fact plays a similar
role in the theory of bifibrations as the twisted arrow category does in the theory of pairings
of categories (see [Lur17] section 5.2.1).

Proposition 9.2.4. Let C be a category. Then the bifibration associated to the functor
HomC : C × Cop → Spc is equivalent to the projection p = (ev1, ev0) : Funct([1], C)→ C.

Proof. The fact that p is a bifibration follows directly from the criteria of remark 9.1.3
together with remark 9.2.2. Let ev∨1 : Funct([1], C)∨ → Cop be the cartesian fibration classified
by the same functor as the cocartesian fibration ev1. This comes equipped with a projection
p∨ = (ev∨1 , ev∨0 ) : Funct([1], C)∨ → Cop × C, which is a right fibration classified by the same
functor that classifies the bifibration p. According to [Lur17] proposition 5.2.1.11, the right
fibration associated to HomC : C × Cop → Spc is equivalent to the canonical projection
λ = (t, s) : Tw(C)→ Cop × C. Hence it suffices to show that p∨ is equivalent to λ.

We will use the description of dual fibrations from [BGN18] (translated to the language
of simplicial spaces rather than simplicial sets). The space of n-simplices of the category
Funct([1], C)∨ is the space of functors σ : Tw([n])op → Funct([1], C) such that for each
0 ≤ i < j ≤ n the cospan

σ(i→ j)

σ(i→ j − 1) σ(i+ 1→ j)

has a cocartesian right leg, and the image of its left leg under ev1 is an isomorphism. Under
the isomorphism HomCat(Tw([n])op,Funct([1], C)) = HomCat(Tw([n])op× [1], C) we have that
the space of n-simplices in Funct([1], C)∨ is the space of maps τ : Tw([n])op × [1] → C
such that for every 0 ≤ i < j ≤ n the morphisms τ(i → j − 1, 1) → τ(i → j, 1) and
τ(i + 1 → j, 0) → τ(i → j, 0) are isomorphisms. In other words, this is the space of maps
τ : Tw([n])op × [1] → C which factor through the localization of Tw([n])op × [1] at the
collection Sn of arrows of the form (i→ j− 1, 1)→ (i→ j, 1) and (i+ 1→ j, 0)→ (i→ j, 0).

Consider for each n ≥ 0 the functor Tw([n])op × [1]→ [2n+ 1] that maps (i→ j, 0) to j
and (i→ j, 1) to 2n+ 1− i. This induces an isomorphism S−1

n (Tw([n])op × [1]) = [2n+ 1].
This isomorphism is natural in n - namely, we have an isomorphism of simplicial categories
[n] 7→ S−1

n (Tw([n]op × [1]) and n 7→ [n] ? [n]op = [2n+ 1]. The latter corepresents the twisted
arrow category construction, hence we see that Funct([1], C)∨ is equivalent to Tw(C).

The projection ev∨1 : Funct([1], C)∨ → Cop sends an n-simplex σ : Tw([n])op → Funct([1], C)
to the composition of ev1 σ with the functor [n]op → Tw([n])op given by the formula i 7→ (i→
n). The projection ev∨0 : Funct([1], C)∨ → C sends an n-simplex σ : Tw([n])op → Funct([1], C)
to the composition of ev0 σ with the functor [n]→ Tw([n])op given by the formula j 7→ (0→ j).
Under the isomorphism Funct([1], C)∨([n]) = C([2n+ 1]) = C([n] ? [n]op) these assignments
amount to precomposing with the natural inclusions [n]op → [n]?[n]op and [n]→ [n]?[n]op. We
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conclude that under the isomorphism Funct([1], C)∨ = Tw(C), the projection p∨ = (ev∨1 , ev∨0 )
agrees with the projection λ, as desired.

The following proposition shows that the arrow category enjoys a universal property in
the category of two-sided fibrations. Specializing it to the category of bifibrations, we are
able to conclude that the arrow bifibration is the free bifibration on the diagonal functor
∆ : C → C × C.

Proposition 9.2.5. Let C be a category and let p = (ev1, ev0) : Funct([1], C) → C × C.
Denote by ψ : C = Funct([0], C)→ Funct([1], C) the functor given by precomposition with the
projection [1]→ [0] and by ∆ = pψ : C → C×C the diagonal map. Let r = (r1, r2) : E → C×C
be a two-sided fibration. Then precomposition with ψ induces an embedding

HomCattwo-sided
/C×C

(p, r)→ HomCat/C×C(∆, r)

which identifies HomCattwo-sided
/C×C

(p, r) with the space of maps ∆→ r which send arrows in C to

bicartesian arrows in E.

Proof. Recall from [GHN17] section 4 that the functor ψ presents ev1 as the free cocartesian
fibration on idC. It follows that precomposition with ψ induces an equivalence

Hom(Catcocart
/C )/C×C

(p, r) = HomCat/C×C(∆, r).

The space HomCattwo-sided
/C×C

(p, r) is the subspace of Hom(Catcocart
/C )/C×C

(p, r) containing those maps

F : p→ r which map ev0-cartesian arrows to r2-cartesian arrows.
Let F be an object in Hom(Catcocart

/C )/C×C
(p, r). We have to show that F maps ev0-cartesian

arrows to r2-cartesian arrows if and only if Fψ maps arrows in C to bicartesian arrows in E .
Assume first that Fψ maps arrows in C to bicartesian arrows in r. Let f : σ → σ′ be

an ev0-cartesian arrow in Funct([1], C). In other words, we have ev1 f invertible. We have a
commutative diagram

ψσ(0) σ

ψσ′(0) σ′

where the horizontal arrows are ev1-cocartesian. Applying the functor F we obtain a
commutative diagram

Fψσ(0) Fσ

Fψσ′(0) Fσ′.

The horizontal arrows are r1-cocartesian, and the left vertical arrow is bicartesian. Since the
image of the right vertical arrow under r1 is an isomorphism and r is a two-sided fibration
we conclude that the right vertical arrow is r2-cartesian, as desired.
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Assume now that F maps ev0-cartesian arrows to r2-cartesian arrows. Since p is a
bifibration and F also maps ev1-cocartesian arrows to r1-cocartesian arrows, we conclude
that F maps all arrows in Funct([1], C) to bicartesian arrows. It follows that the same is true
for Fψ, as desired.

Corollary 9.2.6. Let C be a category, and let p, ψ be as in the statement of proposition 9.2.5.
Let r : E → C × C be a bifibration. Then precomposition with ψ induces an equivalence

HomCattwo-sided
/C×C

(p, r) = HomCat/C×C(∆, r).

We now study the notion of representable bifibration, which is a two-sided analog of the
notion of representable pairing of categories from [Lur17].

Definition 9.2.7. Let C,D be categories. We say that a bifibration p = (p1, p2) : E → C ×D
is representable if for every object c in C the fiber p−1

1 (c) has a final object.

Remark 9.2.8. Let C,D be categories. Recall that the full subcategory of Cattwo-sided
/C×D on

the bifibrations corresponds under the equivalence of proposition 9.1.16 to the category
Funct(C,P(D)) = Funct(C × Dop, Spc) ⊆ Funct(C × Dop,Cat). The full subcategory of
Cattwo-sided

/C×D on the representable bifibrations agrees under this correspondence with the
subcategory Funct(C,D) ⊆ Funct(C,P(D)).

Notation 9.2.9. Let C,D be categories and F : C → D be a functor. We define the mapping
cocylinder of F as the following pullback:

Cocyl(F ) Funct([1],D)

C D.

F

ev1 ev1

F

Note that Cocyl(F ) comes equipped with a projection pF = (pF1 , p
F
2 ) : Cocyl(F ) → C × D

given by pF1 = ev1 and pF2 = ev0 F .

Proposition 9.2.10. Let C,D be categories and F : C → D be a functor. Then the projection
pF : Cocyl(F ) → C × D is a representable bifibration, and the induced functor C → D is
equivalent to F .

Proof. The fact that pF is a bifibration follows directly from the fact that it is the base change
of the bifibration p : Funct([1],D) → D × D along the functor (F, idD) : C × D → D × D.
The functor C → Catcart

/D classifying pF1 is the composition

C F−→ D → Catcart
/D

where the second arrow is the functor classifying the projection ev1 : Funct([1],D)→ D. By
proposition 9.2.4, this corresponds under the equivalence Catcart

D = Funct(Dop,Cat) to the
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composition of the Yoneda embedding D → P(D) and the inclusion P(D)→ Funct(D,Cat).
Hence we see that the functor C → P(D) associated to pF is the composition of F with the
Yoneda embedding of D. This means that pF is representable and the associated functor
C → D is equivalent to F , as desired.

9.3 Bivariant fibrations

We now introduce the class of bivariant fibrations.

Definition 9.3.1. Let C,D, E be categories, and p : E → C ×D be a functor. We say that p
is a lax bivariant fibration if it is both a cocartesian and a cartesian fibration.

Remark 9.3.2. Let C,D be categories, and p = (p1, p2) : E → C × D be a lax bivariant
fibration. Then p is a lax two-sided fibration from C to D, and a lax two-sided fibration from
D to C.

Definition 9.3.3. Let C,D be categories, and p = (p1, p2) : E → C × D be a lax bivariant
fibration. We say that p is a bivariant fibration if p is a two-sided fibration from C to D and
also from D to C.

Definition 9.3.4. Let C,D be categories and p : E → C ×D and p′ : E ′ → C×D be bivariant
fibrations. A functor F : E → E ′ equipped with an identification p′F = p is said to be a
morphism of bivariant fibrations if it is a morphism of cartesian and cocartesian fibrations
over C ×D. We denote by Catbivar

/C,D the subcategory of Cat/C×D on the bivariant fibrations and
morphisms of bivariant fibrations.

Our next goal is to identify the image of Catbivar
/C,D across the different versions of the

straightening equivalence. We first review the notion of adjointable diagram of categories.

Definition 9.3.5. We say that a commutative diagram of categories

E00 E10

E01 E11

β′

α′

β

α

is vertically right adjointable if the following conditions hold:

• The functors β and β′ have right adjoints βR and β′R.

• The natural transformation

α′(β′)R → βRβα′(β′)R = βRαβ′(β′)R → βRα

built from the unit idE10 → βRβ and the counit β′(β′)R → idE01, is a natural isomorphism.



CHAPTER 9. TWO-SIDED FIBRATIONS 195

We say that the above diagram is horizontally right adjointable if its transpose is vertically
right adjointable. We say that it is right adjointable if it is both horizontally and vertically
right adjointable. We say that it is (vertically / horizontally) left adjointable if the diagram
obtained by taking opposites of all the categories involved is (vertically / horizontally) right
adjointable.

Remark 9.3.6. Let

E00 E10

E01 E11

β′

α′

β

α

be a vertically right adjointable commutative diagram of categories. Then the natural
isomorphism α′(β′)R = βRα exhibits the following diagram as commutative:

E00 E10

E01 E11.

α′

(β′)R

α

βR

We say that this diagram arises from the first one by passage to right adjoints of the vertical
arrows. We can similarly talk about diagrams obtained by passage to right adjoints of
horizontal arrows, or left adjoints of vertical / horizontal arrows, by requiring that the original
diagram satisfy the appropriate adjointability condition.

The following proposition provides a link between the notion of adjointability of commu-
tative squares of categories and the theory of two-sided fibrations.

Proposition 9.3.7. Let C,D be categories and H : C ×D → Cat be a functor. The following
conditions are equivalent:

(i) For every pair of arrows α : c→ c′ in C and β : d→ d′ in D the commutative diagram
of categories

H(c, d) H(c′, d)

H(c, d′) H(c′, d′)

H(α,idd)

H(idc,β) H(idc′ ,β)

H(α,idd′ )

is vertically right adjointable.

(ii) The cocartesian fibration pcocart : Ecocart → C×D classified by H is a two-sided fibration.

(iii) The two-sided fibration ptwo-sided : E two-sided → D × Cop classified by H is a cartesian
fibration.
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(iv) Let G : C → Cat/D be the image of H under the composite map

Funct(C × D,Cat) = Funct(C,Catcocart
/D )→ Funct(C,Cat/D).

Then G factors through the subcategory Catcart
/D .

Proof. The equivalence between conditions (ii) and (iv) is a direct consequence of proposition
9.1.9. To show that conditions (iii) and (iv) are equivalent, note that the two-sided fibration
ptwo-sided is obtained by applying the cartesian unstraightening construction to the functor
G. The equivalence then follows from a combination of [Lur09a] propositions 2.4.2.8 and
2.4.2.11.

We now establish the equivalence between conditions (i) and (ii). Let c be an object in C,
and β : d→ d′ be an arrow in D. The functor H(idc, β) admits a right adjoint if and only if
the arrow (idc, β) in C × D admits a locally pcocart-cartesian lift. By (the dual of) [Lur09a]
corollary 4.3.1.15, this happens if and only if (idc, β) admits a pcocart-cartesian lift. This holds
for all pairs c, β if and only if pcocart is a lax two-sided fibration.

Assume now that pcocart is indeed a lax two-sided fibration. Let α : c→ c′ and β : d→ d′

be a pair of arrows in C and D and let e be an object in (pcocart)−1(c, d′) = H(c, d′). Consider
the commutative diagram

e′ f f ′

e e′′

(α,idd)

̂(idc,β)

ζ

̂(idc′ ,β)

(α,idd′ )

where Â denotes a pcocart-cocartesian lift of the arrow A, and A denotes a pcocart-cartesian lift
of A . We have f = H(α, idd)H(idc, β)Re and f ′ = H(idc′ , β)RH(α, idd′)e. The projection
pcocart is a two-sided fibration if and only if for every choice of α, β and e, the resulting map
ζ is an isomorphism.

We now enlarge the above diagram as follows:

e′ f g f ′

x y

e e′′.

̂(idc,β)

(idc,β)

(α,idd)

(idc′ ,β)

ζ1 ζ2

̂(idc′ ,β)

̂(idc′ ,β)

η

(α,idd′ )
η′

(α,idd′ )

The map ζ from the previous diagram is now decomposed as the composite map f
ζ1−→ g

ζ2−→ f ′.
We have equivalences

H(idc′ , β)RH(idc′ , β)H(α, idd)H
R(idc, β)e = g = H(idc′ , β)RH(α, idd′)H(idc, β)HR(idc, β)e.
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Under these equivalences, the map ζ1 is the unit of the adjunction H(idc′ , β) a H(idc′ , β)R

evaluated at f , and the map ζ2 is the image under H(idc′ , β)RH(α, idd′) of the counit of the
adjunction H(idc, β) a H(idc, β)R applied to e. We conclude that the map ζ is a component
of the natural transformation witnessing the lax commutativity of the diagram obtained by
passing to right adjoints of the vertical arrows of the square in the statement. It follows that
the square in the statement is vertically right adjointable if and only if for every choice of
α, β and e the resulting map ζ is an isomorphism, which we already observed is equivalent to
pcocart being a two-sided fibration.

Corollary 9.3.8. Let C,D be categories and H : C × D → Cat be a functor. The following
conditions are equivalent:

(i) For every pair of arrows α : c→ c′ in C and β : d→ d′ in D the commutative diagram
of categories

H(c, d) H(c′, d)

H(c, d′) H(c′, d′)

H(α,idd)

H(idc,β) H(idc′ ,β)

H(α,idd′ )

is vertically left adjointable.

(ii) The cartesian fibration pcart : Ecart → Dop × Cop classified by H is a two-sided fibration.

(iii) The two-sided fibration ptwo-sided : E two-sided → C ×Dop classified by H is a cocartesian
fibration.

(iv) Let G : C → Cat/Dop be the image of H under the composite map

Funct(C × D,Cat) = Funct(C,Catcart
/Dop)→ Funct(C,Cat/Dop).

Then G factors through the subcategory Catcocart
/Dop .

Proof. This follows from proposition 9.3.7 applied to the functor Hop : C × D → Cat.

Definition 9.3.9. Let C,D be categories and H : C × D → Cat be a functor. We say that
H is right adjointable in the D coordinate if the equivalent conditions of proposition 9.3.7 are
satisfied. We say that H is left adjointable in the D coordinate if the equivalent conditions of
corollary 9.3.8 are satisfied. By switching the role of C and D we can similarly talk about
right/left adjointability in the C coordinate.

Notation 9.3.10. Let C,D be categories and H : C × D → Cat be a functor. If H is right
adjointable in the D coordinate then condition (iv) in proposition 9.3.7 provides a functor
C → Catcart

/D = Funct(Dop,Cat). We denote by HRD : C×Dop → Cat the induced functor. We
say that this is obtained from H by passage to right adjoints in the D coordinate. Similarly,
if H is left adjointable then out of equivalence (iv) in corollary 9.3.8 we obtain a functor
HLD : C × Dop → Cat which is said to arise from H by passage to left adjoints in the D
coordinate.
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Notation 9.3.11. Let C be a category and H : C → Cat be a functor. Identifying C with
[0]×C, it makes sense to talk about right and left adjointability of H in the coordinate C. In
this situation, we simply say that H is right (resp. left) adjointable if it is right (resp. left)
adjointable in the coordinate C. We will use the notation HR (resp. HL) instead of HRC

(resp. HLC).

Remark 9.3.12. Let C,D be categories. Then passage to right and left adjoints in the D
coordinate define inverse equivalences between the space of functors C × D → Cat which are
right adjointable in the D coordinate, and the space of functors C × Dop → Cat which are
left adjointable in the D coordinate.

Remark 9.3.13. Let C,D be categories and H : C × D → Cat be a functor. Let pcocart :
Ecocart → C×D be the cocartesian fibration classified by H and ptwo-sided : E two-sided → D×Cop

be the two-sided fibration classified by H. Assume that H is right adjointable in the D
coordinate. Then the two-sided fibration pcocart and the cartesian fibration ptwo-sided are both
classified by the functor HRD . Moreover it follows from the proof of proposition 9.3.7 that
for every pair of arrows α : c→ c′ and β : d→ d′ in C and D respectively, the commutative
diagram

HRD(c, d) HRD(c′, d)

HRD(c, d′) HRD(c′, d′)

HRD (α,idd)

HRD (idc,β)

HRD (α,idd′ )

HRD (idc′ ,β)

is equivalent to the diagram obtained from

H(c, d) H(c′, d)

H(c, d′) H(c′, d′)

H(α,idd)

H(idc,β) H(idc′ ,β)

H(α,idd′ )

by passage to right adjoints of vertical arrows (see remark 9.3.6).

Remark 9.3.14. Let C,D be categories and H : C×D → Cat be a functor. Let pcart : Ecart →
Dop×Cop be the cartesian fibration classified by H and ptwo-sided : E two-sided → C×Dop be the
two-sided fibration classified by H. Assume that H is left adjointable in the D coordinate.
Then the two-sided fibration pcart and the cocartesian fibration ptwo-sided are both classified
by the functor HLD . Moreover, for every pair of arrows α : c→ c′ and β : d→ d′ in C and D
respectively, the commutative diagram

HLD(c, d) HLD(c′, d)

HLD(c, d′) HLD(c′, d′)

HLD (α,idd)

HLD (idc,β)

HLD (α,idd′ )

HLD (idc′ ,β)
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is equivalent to the diagram obtained from

H(c, d) H(c′, d)

H(c, d′) H(c′, d′)

H(α,idd)

H(idc,β) H(idc′ ,β)

H(α,idd′ )

by passage to left adjoints of vertical arrows.

The notion of bivariant fibration arises naturally when studying functors of two variables
which have adjointability properties with respect to both of them. We consider first the case
of functors which are either right or left adjointable with respect to both variables.

Proposition 9.3.15. Let C,D be categories and p : E → C × D be a cocartesian fibration
classified by a functor H : C × D → Cat. Then p is a bivariant fibration if and only if H is
right adjointable in both the C coordinate and the D coordinate.

Proof. According to proposition 9.3.7, the functor H is right adjointable in both the C and
D coordinates if and only if p is a two-sided fibration from C to D and from D to C. In
this case, for every arrow (α, β) : (c, d)→ (c′, d′) in C × D, the functor H(α, β) has a right
adjoint, since it can be written as the composition of the right adjointable functors H(α, idd)
and H(idc′ , β). We conclude that in this case p is also a cartesian fibration, and therefore a
bivariant fibration, as desired.

Corollary 9.3.16. Let C,D be categories and p : E → C×D be a cartesian fibration classified
by a functor H : Cop × Dop → Cat. Then p is a bivariant fibration if and only if H is left
adjointable in both the C coordinate and the D coordinate.

Proof. Apply proposition 9.3.15 to the functor Hop : C × D → Cat.

We now deal with the case of functors which enjoy mixed adjointability properties.

Proposition 9.3.17. Let C,D be categories and p : E → C × D be a two-sided fibration
classified by a functor H : C × Dop → Cat. Then the following are equivalent

(i) The map p is a bivariant fibration.

(ii) The functor H is left adjointable in the Dop coordinate and the functor HLD is right
adjointable in the C coordinate.

(iii) The functor H is right adjointable in the C coordinate and the functor HRC is left
adjointable in the Dop coordinate.

Proof. By corollary 9.3.8, H is left adjointable in the Dop coordinate if and only if p is a
cocartesian fibration. In this case, p is the cocartesian fibration classified by HLD . The
equivalence between conditions (i) and (ii) is now a direct consequence of proposition 9.3.15.
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Similarly, proposition 9.3.7 shows that H is right adjointable in the C coordinate if and only
if p is a cartesian fibration, and moreover in this case p is the cartesian fibration classified by
HRC . The equivalence between conditions (i) and (iii) now follows from corollary 9.3.16.

Remark 9.3.18. Let C,D be categories and p : E → C ×D be a bivariant fibration. Then
the different versions of the straightening equivalence yield four functors

Hcocart : C × D → Cat Hcocart,cart : C × Dop → Cat

Hcart,cocart : Cop ×D → Cat Hcart : Cop ×Dop → Cat .

It follows from remarks 9.3.13 and 9.3.14 that each of these four functors determines the
rest, by passage to right or left adjoints in the appropriate coordinates. In particular, the
operations of passing to adjoints in different coordinates commute.

We now examine the image of the class of morphisms of bivariant fibrations under the
different versions of the straightening equivalence.

Remark 9.3.19. Let I, C,D be categories, and H : I×C×D → Cat be a functor. Identifying
I × C ×D with (I × C)×D, we may talk about right adjointability of H with respect to the
D coordinate. Since any map in I × C is a composition of maps which are constant in one
coordinate, the functor H is right adjointable in the D coordinate if and only if the following
two conditions hold:

• For every object i in I the induced functor H(i,−,−) : C×D → Cat is right adjointable
in the D coordinate.

• For every object c in C the induced functor H(−, c,−) : I×D → Cat is right adjointable
in the D coordinate.

The above can be adapted in a straightforward way to yield characterizations for left
adjointability in the D coordinate, or right/left adjointability in the C coordinate.

Proposition 9.3.20. Let C,D be categories. Let p : E → C × D and p′ : E → C × D
be bivariant fibrations, and let F : p → p′ be a morphism in Cat/C×D. The following are
equivalent:

(i) The map F is a morphism of bivariant fibrations.

(ii) The map F is a morphism of cocartesian fibrations, and the induced functor [1]×C×D →
Cat is right adjointable in the C and D coordinates.

(iii) The map F is a morphism of two-sided fibrations from C to D, and the induced functor
[1]× C ×Dop → Cat is right adjointable in the C coordinate, and left adjointable in the
Dop coordinate.

(iv) The map F is a morphism of cartesian fibrations, and the induced functor [1]× Cop ×
Dop → Cat is left adjointable in the C and D coordinates.
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(v) The map F is a morphism of two-sided fibrations from D to C, and the induced functor
[1]×D × Cop → Cat is right adjointable in the D coordinate, and left adjointable in the
Cop coordinate.

Proof. We show that conditions (i) and (ii) are equivalent - the equivalence between (i)
and each of the items (iii)-(v) follows along similar lines. Assume that F is a morphism of
cocartesian fibrations and denote by G : [1]× C ×D → Cat the induced functor. Since p is a
bivariant fibration, the functors C ×D → Cat classifying p and p′ are right adjointable in the
C and D coordinates. By virtue of remark 9.3.19, the functor G is right adjointable in the C
and D coordinates if and only if the following conditions are satisfied:

• For every object c in C the induced functor G(−, c,−) : [1]×D → Cat is right adjointable
in the D coordinate.

• For every object d in D the induced functor G(−,−, d) : [1] × C → Cat is right
adjointable in the C coordinate.

The result now follows from the characterization of adjointability given by item (iv) in
proposition 9.3.7.

9.4 The Beck-Chevalley condition

We now specialize to the class of bivariant fibrations satisfying an extra base change property.

Definition 9.4.1. Let B be a category admitting pullbacks, and p : E → B be a functor which
is both a cocartesian and a cartesian fibration. We say that p satisfies the Beck-Chevalley
condition if for every cartesian square C : [1] × [1] → B the base change of p along C is a
bivariant fibration.

Remark 9.4.2. Let C,D be categories admitting pullbacks. Let α : c→ c′ and β : d→ d′

be arrows in C and D respectively. Then the commutative diagram

(c, d) (c′, d)

(c, d′) (c′, d′)

(α,idd)

(idc,β) (idc′ ,β)

(α,idd′ )

is a cartesian square in C × D. It follows that if p : E → C × D is a lax bivariant fibration
satisfying the Beck-Chevalley condition then p is a bivariant fibration.

Proposition 9.4.3. Let C,D be categories admitting pullbacks, and p : E → C × D be a
bivariant fibration. Then p satisfies the Beck-Chevalley condition if and only if the following
conditions are satisfied:
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• For every cartesian square C : [1]× [1]→ C and every object d in D the base change of
p along C × d is a bivariant fibration.

• For every cartesian square C : [1]× [1]→ D and every object c in C the base change of
p along c× C is a bivariant fibration.

Proof. The pair of conditions given in the statement are evidently implied by the Beck-
Chevalley condition. Assume now that p satisfies the two conditions in the statement, and
consider a general cartesian square C : [1]× [1]→ C ×D depicted as follows:

(c′ ×c c′′, d′ ×d d′′) (c′′, d′′)

(c′, d′) (c, d).

We can see C as the outer boundary of a commutative diagram G : [2] × [2] → C × D, as
follows:

(c′ ×c c′′, d′ ×d d′′) (c′′, d′ ×d d′′) (c′′, d′′)

(c′, d′ ×d d′′) (c, d′ ×d d′′) (c, d′′)

(c′, d′) (c, d′) (c, d).

To show that the base change C∗p is a bivariant fibration it suffices to show that G∗p is a
bivariant fibration. To see this we must show that the base change of p along each of the
four small commutative diagrams inside G is a bivariant fibration. The fact that this holds
for the lower left and the upper right squares is a direct consequence of the fact that p itself
is a bivariant fibration. The fact that this holds for the upper left and lower right squares
follows from our assumptions on p.

Corollary 9.4.4. Let C,D be categories admitting pullbacks, and p : E → C×D be a bivariant
fibration classified by a functor H : C × Dop → Cat. Then p satisfies the Beck-Chevalley
condition if and only if the following conditions are satisfied:

• For every pair of maps c′ → c ← c′′ in C and every object d in D the commutative
diagram of categories

H(c′ ×c c′′, d) H(c′′, d)

H(c′, d) H(c, d)

is right adjointable.
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• For every object c in C and every pair of arrows d′ → d ← d′′ in D the commutative
diagram of categories

H(c, d) H(c, d′)

H(c, d′′) H(c, d′ ×d d′′)

is left adjointable.

Proof. Combine propositions 9.4.3 and 9.3.7.

We now study a fundamental example of a bivariant fibration satisfying the Beck-Chevalley
condition, which plays a role analogous to that of the arrow category in the theory of two-sided
fibrations.

Notation 9.4.5. Denote by Λ2
0 the category with objects 0, 1, 2 and nontrivial arrows 0→ 1

and 0→ 2. For each category C and i in Λ2
0 we let evi : Funct(Λ2

0, C)→ C be the functor of
evaluation at i.

Proposition 9.4.6. Let C be a category admitting pullbacks. Then

q = (ev1, ev2) : Funct(Λ2
0, C)→ C × C

is a bivariant fibration which satisfies the Beck-Chevalley condition.

Proof. Let ρ : µ→ µ′ be an arrow in Funct(Λ2
0, C). Then

• ρ is q-cocartesian if and only if the induced map µ(0)→ µ′(0) is an isomorphism.

• ρ is q-cartesian if and only if the diagram

µ(0)

µ(1) µ′(0) µ(2)

µ′(1) µ′(2)

is a limit diagram.

We thus see that q has all cocartesian lifts, and that the existence of cartesian lifts is
guaranteed by the fact that C has pullbacks. Therefore q is a lax bivariant fibration.
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It follows from the above characterization of cartesian and cocartesian arrows that a
morphism µ→ µ′ in Funct(Λ2

0, C) is bicartesian (from C to D) if and only if the square

µ(0) µ′(0)

µ(2) µ′(2)

is cartesian. We thus see that the class of bicartesian arrows is stable under composition, and
therefore q is a two-sided fibration from C to D. Switching the roles of C and D we conclude
that q is also a two-sided fibration from D to C, and therefore q is a bivariant fibration.

It remains to show that q satisfies the Beck-Chevalley condition. Consider a commutative
diagram C : [1]× [1]→ Funct(Λ2

0, C) depicted as follows

ν µ′′

µ′ µ

and such that qC is cartesian. Assume that the horizontal arrows are q-cocartesian and
that the left vertical arrow is q-cartesian. We have to show that the right vertical arrow is
q-cartesian. By virtue of proposition 9.4.3, and since the bivariant fibrations q and (ev2, ev1)
are equivalent, it suffices to consider the case when the image of the above square under ev2

is constant.
Consider the commutative diagram

ν(0) ν(1) µ′′(1)

µ′(0) µ′(1) µ(1).

The right inner square is ev1(C) which is cartesian since qC is cartesian. The left inner
square is cartesian since the morphism ν → µ′ is ev1-cartesian. Hence the outmost square
is cartesian. Since the maps ν → µ′′ and µ′ → µ are cocartesian, the outermost square is
equivalent to

µ′′(0) µ′′(1)

µ(0) µ(1).

Since the map µ′′ → µ is constant under ev2 this shows that it is in fact ev1-cartesian, as
desired.
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We finish by proving a universal property for Funct(Λ2
0, C). Although it is possible to

formulate a universal property for it in the category of bivariant fibrations, for our purposes
we will need a version which treats it as a cocartesian and two-sided fibration.

Notation 9.4.7. Let C,D be categories. We denote by Catcocart,two-sided
/C×D the intersection of

Catcocart
/C×D and Cattwo-sided

/C×D inside Cat/C×D.

Proposition 9.4.8. Let C be a category admitting pullbacks. Let

p = (ev1, ev0) : Funct([1], C)→ C × C

and
q = (ev1, ev2) : Funct(Λ2

0, C)→ C × C.

Let φ : p→ q be the map given by precomposition with the functor Λ2
0 → [1] sending 0 to 0, 1

to 1, and 2 to 0. Then

(i) The map φ is a morphism of two-sided fibrations.

(ii) Let r = (r1, r2) : E → C × C be a cocartesian and two-sided fibration such that for every
c in C the base change of E along c × idC : C → C × C satisfies the Beck-Chevalley
condition. Then precomposition with φ induces an equivalence

HomCatcocart,two-sided
/C×C

(q, r) = HomCattwo-sided
/C×C

(p, r).

Proof. Let g : σ → σ′ be an arrow in Funct([1], C). Then

• The arrow g is ev1-cocartesian if and only if the induced map σ(0) → σ′(0) is an
isomorphism.

• The arrow g is ev0-cartesian if and only if the induced map σ(1) → σ′(1) is an
isomorphism.

It follows from this together with the description of q-cocartesian and q-cartesian arrows from
the proof of proposition 9.4.6 that the map φ is a morphism of two-sided fibrations.

It remains to check the universality of φ. Let ∆ : C → C × C be the diagonal map. Let
ψ : ∆→ p be the map induced by precomposition with the projection [1]→ [0]. It follows
from [GHN17] section 4 that the map ψ presents ev1 as the free cocartesian fibration on idC,
and that φψ presents q as the free cocartesian fibration on ∆. We therefore have equivalences

HomCatcocart
/C×C

(q, r) = HomCat/C×C(∆, r) = Hom(Catcocart
/C )/C×C

(p, r).

Under the above equivalence, the space HomCattwo-sided
/C×C

(p, r) becomes identified with the space

of morphisms of cocartesian fibrations F : q → r whose composition with φ is a morphism of
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two-sided fibrations. Since φ is a morphism of two-sided fibrations, we see that precomposition
with φ induces an inclusion

HomCatcocart,two-sided
/C×C

(q, r) ⊆ HomCattwo-sided
/C×C

(p, r).

It remains to show that the above inclusion is an equivalence. Let F : q → r be a
morphism of cocartesian fibrations and assume that Fφ is a morphism of two-sided fibrations.
We have to show that F is a morphism of two-sided fibrations. Let ρ : µ → µ′ be an
ev2-cartesian arrow in Funct(Λ2

0, C). Consider the commutative diagram C in E given as
follows:

Fφ(µ(1)← µ(0)) Fµ

Fφ(µ′(1)← µ′(0)) Fµ′.

Since the maps φ(µ(1) ← µ(0)) → µ and φ(µ′(1) ← µ′(0)) → µ′ are q-cocartesian, we see
that the horizontal arrows in C are r-cocartesian. Moreover, since ρ is ev2-cartesian the
map (µ(1)← µ(0))→ (µ′(1)← µ′(0)) is ev0-cartesian. The fact that Fφ is a morphism of
two-sided fibrations then implies that the left vertical arrow in C is r2-cartesian. The image
of C under r is the commutative square

(µ(1), µ(0)) (µ(1), µ(2))

(µ′(1), µ′(0)) (µ′(1), µ′(2))

which is cartesian and has constant first coordinate since ρ was taken to be ev2-cartesian.
Since r satisfies the Beck-Chevalley condition in the second coordinate we conclude that the
right vertical arrow in C is r-cartesian, as desired.
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Chapter 10

The 2-category of correspondences

Let C be a category admitting pullbacks. We can attach to C a 2-category 2Corr(C) called the
2-category of correspondences of C. Its space of objects coincides with the space of objects of
C, and for each pair of objects c, c′ in C, the hom category Hom2Corr(C)(c, c

′) is the category
of diagrams in C of the form

s

c c′.

Our goal in this chapter is to review the definition and main properties of the 2-category of
correspondences1, and to provide a new proof of its universal property.

We begin in 10.1 by recalling the definition and basic properties of 2Corr(C). We define
2Corr(C) first as a simplicial category, and show that it is in fact a complete Segal object
in Cat, so it defines a 2-category. We provide here a description of the degeneracies and
composition maps for 2Corr(C).

In 10.2 we study the functoriality of the assignment C 7→ 2Corr(C). We construct 2Corr
as a functor on the category of categories with pullbacks and pullback preserving morphisms.
We show that this is in fact a limit preserving functor - in particular, if C comes equipped with
a symmetric monoidal structure which is compatible with pullbacks, we obtain an induced
symmetric monoidal structure on 2Corr(C).

The 2-category 2Corr(C) comes equipped with inclusions ιC : C → 2Corr(C) and ιRC :
Cop → 2Corr(C). We show that these also depend functorially on C. In particular, in the
presence of a symmetric monoidal structure on C compatible with pullbacks, the inclusions
ιC and ιRC inherit canonical symmetric monoidal structures.

1Many of the basic properties of 2Corr(C) that we discuss in 10.1 - 10.3 (namely, its construction,
symmetric monoidal structure, adjunctions, duals) can be found in some way in [Hau18] or [GR17]. We chose
to include statements and proofs of these facts for completenes and for ease of reference, as our notation
differs from that of previous sources. Some of our proofs of these facts contain some level of novelty - for
instance we prove the adjointness and duality properties of 2Corr(C) by appeal to the functoriality of 2Corr,
therefore reducing to checking that they hold in the universal examples, which is often manageable.
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In 10.3 we record two basic dualizability and adjointness properties of the 2-category of
correspondences. We show that if α is an arrow in C then the maps ιC(α) and ιRC (α) are
adjoint to each other. In the case when C admits finite limits, we show that every object of
2Corr(C) is dualizable under the symmetric monoidal structure inherited from the cartesian
symmetric monoidal structure on C. The proof of these results appeals in a fundamental
way to the functoriality properties of 2Corr: rather than showing that a candidate (co)unit
indeed defines a duality or adjunction on 2Corr(C) for an arbitrary C, one proves it in the
universal example, in which case the verification of the triangle identities becomes simple.

In 10.4 we review the so-called Beck-Chevalley condition, and provide a new proof of the
fact that the inclusion ιC : C → 2Corr(C) is the universal embedding of C into a 2-category
satisfying the left Beck-Chevalley condition. This provides a concrete way of constructing
functors out of 2Corr(C): given a 2-category D, a functor 2Corr(C)→ D is the same data as
a functor C → D satisfying familiar base change properties.

10.1 Construction and basic properties

We begin by reviewing the construction of the 2-category of correspondences.

Notation 10.1.1. Let n ≥ 0 and let Tw([n]) be the twisted arrow category of [n]. We
identify the objects in Tw([n]) with pairs (i, j) in [n] × [n] such that i ≤ j, so that there
is a unique arrow (i, j)→ (i′, j′) whenever i ≤ i′ ≤ j′ ≤ j. We denote by Tw([n])el the full
subcategory of Tw([n]) on the objects of the form (i, i+ 1) for 0 ≤ i < n.

Definition 10.1.2. Let C be a category admitting pullbacks and let n ≥ 0. We say that a
functor Tw([n])→ C is cartesian if it is the right Kan extension of its restriction to Tw([n])el.

Proposition 10.1.3. Let C be a category admitting pullbacks and let n ≥ 0. Let S :
Tw([n])→ C be a functor. Then the following conditions are equivalent:

(i) The functor S is cartesian.

(ii) For every object (i, j) in Tw([n]) such that j ≥ i+ 2 the commutative square

S(i, j) S(i, j − 1)

S(i+ 1, j) S(i+ 1, j − 1)

is cartesian.

Proof. For each integer 1 ≤ k ≤ n let Tw([n])≤k be the full subcategory of Tw([n]) on the
objects of the form (i, j) with j − i ≤ k. Note that if 2 ≤ k ≤ n and (i, j) is such that
j − i = k then the undercategory ((Tw([n])≤k−1)(i,j)/ contains the diagram

(i+ 1, j)→ (i+ 1, j − 1)← (i, j − 1).
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This diagram is in fact final in ((Tw([n])≤k−1)(i,j)/, and therefore we have that the restriction
of S to (Tw([n]))≤k is the right Kan extension of its restriction to (Tw([n]))≤k−1 if and only
if the diagram in the statement is cartesian for every (i, j) such that j − i = k. The result
now follows by induction on k.

Notation 10.1.4. Let C be a category admitting pullbacks. Let 2Corr(C) : ∆op → Cat be
the simplicial category given by the formula 2Corr(C)([n]) = Funct(Tw([n]), C). By virtue
of proposition 10.1.3, for each map [n] → [n′] in ∆, the induced map 2Corr(C)([n′]) →
2Corr(C)([n])) sends cartesian objects to cartesian objects. We denote by 2Corr′(C) the
sub-simplicial category of 2Corr(C) such that for every [n] in ∆ the category 2Corr′(C)([n])
is the full subcategory of 2Corr(C)([n]) on the cartesian objects.

Proposition 10.1.5. Let C be a category admitting pullbacks. Then 2Corr′(C) is a Segal
category.

Proof. Let n ≥ 0 and denote by sp([n]) the spine of [n], that is, the union inside P(∆) of all
the edges of [n] of the form i→ i+ 1. Any simplicial category S determines by right Kan
extension a functor P(∆)op → Cat, which we will also denote by S.

We have a commutative diagram

2Corr(C)([n]) 2Corr(C)(sp[n])

2Corr′(C)([n]) 2Corr′(C)(sp[n]).

Since 2Corr′(C) and 2Corr(C) agree on simplices of dimension at most 1, the right vertical arrow
is an isomorphism. Observe that the left Kan extension along ∆→ P(∆) of the cosimplicial
category Tw |∆ maps the inclusion sp([n]) → [n] to the inclusion Tw([n])el → Tw([n]). It
follows that the top horizontal arrow in the above diagram is equivalent to the restriction
map

Funct(Tw([n]), C)→ Funct(Tw([n])el, C).

It follows from the definition of 2Corr′(C)([n]) that restriction along the inclusion Tw([n])el →
Tw([n]) provides an equivalence 2Corr′(C)([n]) = Funct(Tw([n])el, C). Therefore the bottom
horizontal arrow in the diagram is an equivalence, which means that 2Corr′(C) satisfies the
Segal conditions, as desired.

Note that the category 2Corr′(C)([0]) is equivalent to C. We now consider the Segal
category obtained from 2Corr′(C) by discarding noninvertible arrows in 2Corr′(C)([0]).

Notation 10.1.6. Denote by codisc : Cat = Funct([0],Cat)→ Funct(∆op,Cat) the functor
of right Kan extension along the inclusion {[0]} → ∆op. We have a diagram of endofunctors
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of Funct(∆op,Cat) as follows

idFunct(∆op,Cat)

codisc ev≤0
[0] codisc ev[0]

where the vertical arrow is the unit of the adjunction ev[0] a codisc and the horizontal arrow
is the canonical inclusion. We let (−)red : Funct(∆op,Cat) → Funct(∆op,Cat) be the fiber
product of the above diagram.

Remark 10.1.7. The functor codisc can alternatively described as the functor induced from
the composite map

∆op × Cat
(−)≤0×idCat−−−−−−−→ Catop×Cat

Funct(−,−)−−−−−−→ Cat .

In other words, for each category C the simplicial category codisc(C) has Cn as its category
of [n]-simplices. Note that this is in fact a Segal category.

Remark 10.1.8. The functor (−)red sends a simplicial category S to a simplicial subcategory
Sred of S such that for each n ≥ 0 we have that Sred([n]) is the subcategory of S([n]) containing
all objects, and only those arrows whose images under the n+ 1 functors S([n])→ S([0]) are
invertible. It follows from its presentation as the fiber product codisc(S([0])≤0)×codisc(S([0])) S
that the map Sred → S is universal among the maps of simplicial categories S ′ → S such
that S ′([0]) is a space. Moreover, since codiscrete simplicial categories are Segal, we see that
if S is a Segal category then Sred is also a Segal category.

Notation 10.1.9. Let C be a category admitting pullbacks. We denote by 2Corr(C) the
Segal category 2Corr′(C)red.

Remark 10.1.10. Let C be a category admitting pullbacks. The space of objects of 2Corr(C)
is the space of maps Tw([0]) = [0]→ C, and it therefore agrees with the space of objects of C.
Given two objects, c, c′ in C, the category of morphisms Hom2Corr(C)(c, c

′) is the overcategory

C/c,c′ = Funct(Tw([1]), C)×C×C {(c, c′)}

where the projection Funct(Tw([1]), C)→ C × C is given by evaluation at (0, 0) and (1, 1).
The objects of Hom2Corr(C)(c, c

′) are therefore spans c ← s → c′, and a morphism
(c← s→ c′)→ (c← t→ c′) is a commutative diagram

s

t

c c′.
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The degeneracy map of 2Corr(C) is given by precomposition with the projection Tw([1])→
Tw([0]) = [0]. We thus see that for every object c in C the identity in HomC(c, c) is given by

the span c
idc←− c

idc−→ c.
Consider the diagram of simplicial spaces sp([2]) → [2] ← [1], where the right arrow

is the unique active map from [1] to [2], and the left arrow is the inclusion of the spine
sp([2]) = [1] ∪[0] [1] inside [2]. As in the proof of proposition 10.1.5, via right Kan extension
along the inclusion ∆op → P(∆)op, we allow ourselves to evaluate Segal categories on such
a diagram. Applying this to the maps 2Corr′(C) → 2Corr(C) → codisc(C) we obtain a
commutative diagram of categories

2Corr′(sp([2])) 2Corr′(C)([2]) 2Corr′(C)([1])

2Corr(sp([2])) 2Corr(C)([2]) 2Corr(C)([1])

codisc(C)(sp([2])) codisc(C)([2]) codisc(C)([1]).

Here the top left and bottom left horizontal arrows are isomorphisms, the top left and top
right vertical arrows are isomorphisms, and the top middle vertical arrow is a monomorphism.
The top and bottom left squares are horizontally right adjointable. Using the canonical
identification Tw([2])el = Tw([1])∪[0] Tw([1]) we see that the bottom two rows of the diagram
can be rewritten as follows:

2Corr′(C)(sp[2]) 2Corr′(C)([2]) 2Corr′(C)([1])

Funct(Tw([2])el, C) Funct(Tw([2]), C) Funct(Tw([1]), C)

C × C × C C × C × C C × C.

Here the bottom vertical arrows are given by evaluation at the objects of the form (i, i), the
bottom left vertical arrow is the identity, the bottom right arrow is the projection onto the
first and third coordinate, the middle left horizontal arrow is restriction along the inclusion
Tw([2])el → Tw([2]), and the middle right horizontal arrow is induced from the active map
[1]→ [2].

The top and bottom left commutative squares in the above diagram are horizontally right
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adjointable. Passing to horizontal right adjoints of these yields a commutative diagram

2Corr′(C)(sp([2])) 2Corr′(C)([2]) 2Corr′(C)([1])

Funct(Tw([2])el, C) Funct(Tw([2]), C) Funct(Tw([1]), C)

C × C × C C × C × C C × C.

Here the middle left horizontal arrow is given by right Kan extension along the inclusion
Tw([2])el → Tw([2]). The top row recovers the composition map for the Segal category
2Corr′(C). The composition map for 2Corr(C) can be obtained from the above by base change
along the inclusion of

C≤0 × C≤0 × C≤0 −→ C≤0 × C≤0 × C≤0 −→ C≤0 × C≤0

into the bottom row.
Let c, c′, c′′ be a triple of objects in C. The bottom row receives a map from the final row

[0]→ [0]→ [0] that picks out the triple (c, c′, c′′) inside C × C × C. Base change along this
map yields a commutative diagram

Funct(Tw([2])el, C)(c,c′,c′′) 2Corr(C)([2])(c,c′,c′′) Funct(Tw([1]), C)(c,c′′)

Funct(Tw([2])el, C)(c,c′,c′′) Funct(Tw([2]), C)(c,c′,c′′) Funct(Tw([1]), C)(c,c′′)

.

The composition of the two maps in the top row recovers the composition map

Hom2Corr(C)(c, c
′)× Hom2Corr(C)(c

′, c′′)→ Hom2Corr(C)(c, c
′′).

In particular, we see that the composition map for 2Corr(C) sends a pair of spans c← s→ c′

and c′ ← s′ → c′′ to the span c← s×c′ s′ → c′′. Given a pair of morphisms of spans

s

t

c c′

s′

t′

c′ c′′
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their composition is the morphism (c← s×c′ s′ → c′′)→ (c← t×c′ t′ → c′′) that arises from
the unique commutative diagram of the form

s×c′ s′

s t×c′ t′ s′

t t′

c c′ c′′

that extends the given morphisms of spans.

Proposition 10.1.11. Let C be a category admitting pullbacks. Then a span c← s→ c′ is
invertible in 2Corr(C) if and only if both legs are isomorphisms.

Proof. If both legs of a span c← s→ c′ are invertible, then it is equivalent to an identity
span, which is invertible. Conversely, assume that the span c← s→ c′ is invertible and let
c′ ← t→ c be the inverse. Consider the composite span

u

s t

c c′ c

where u = s×c′ t. The maps c← u and u→ c′′ are invertible, and therefore we see that the
projections c ← s and t → c admit sections. Considering the composition in the opposite
order reveals that the projections s → c′ and c′ ← t also admit sections. In particular we
conclude that the projection s ← u admits a section, and therefore the map c ← s is an
isomorphism. Similarly, the projection u→ t admits a section, and thus the map t→ c is
also an isomorphism.

Corollary 10.1.12. Let C be a category admitting pullbacks. Then the Segal space underlying
2Corr(C) is complete.

Proof. Denote by 2Corr(C)([1])iso the space of invertible 1-morphisms in 2Corr(C) and by
C([1])iso the space of invertible arrows in C. Proposition 10.1.11 implies that 2Corr(C)([1])iso

is equivalent to the fiber product C([1])iso×C≤0 C([1])iso, where the fiber product is taken with
respect to the source projection in both coordinates. Our claim now follows from the fact
that the degeneracy C≤0 → C([1])iso is an equivalence.
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In other words, corollary 10.1.12 states that 2Corr(C) belongs to the image of the inclusion
2Cat→ Funct(∆op,Cat).

Definition 10.1.13. Let C be a category admitting pullbacks. We call 2Corr(C) the 2-category
of correspondences of C.

Remark 10.1.14. Let C be a category admitting pullbacks. For each n ≥ 0 we have source
and target projections [n]← Tw([n])→ [n]op that map the pair (i, j) to i and j respectively.
These projections are natural in [n], and precomposing with them yields functors

C ιC−→ 2Corr(C)
ιRC←− Cop.

The above functors are the identity on objects. Moreover, for every arrow α : c→ c′ in C, we

have ιC(α) = (c
idc←− c

α−→ c′) and ιRC (α) = (c′
α←− c

idc−→ c).

10.2 Functoriality of 2Corr

We now examine the functoriality of the assignment C 7→ 2Corr(C).

Construction 10.2.1. We denote by Catpb the subcategory of Cat on the categories admit-
ting pullbacks, and functors which preserve pullbacks. Let 2Corr : Catpb → Funct(∆op,Cat)
be the functor induced from the composite map

∆op × Catpb

Tw(−)×idCatpb−−−−−−−−−→ Catop×Catpb ⊂ Catop×Cat
Funct(−,−)−−−−−−→ Cat .

It follows from proposition 10.1.3 that for every morphism C → D in Catpb the induced
morphism of simplicial categories 2Corr(C)→ 2Corr(D) restricts to a morphism 2Corr′(C)→
2Corr′(D). This in turn restricts to a functor 2Corr(C)→ 2Corr(D). We therefore have that
the assignment C 7→ 2Corr(C) extends to a functor 2Corr : Catpb → 2Cat whose composition
with the embedding 2Cat→ Funct(∆op,Cat) is a subfunctor of 2Corr.

Proposition 10.2.2. The functor 2Corr : Catpb → 2Cat preserves limits.

Proof. Denote by i : 2Cat→ Funct(∆op,Cat) the inclusion. To show that 2Corr preserves
limits, it suffices to show that the functor ev[n] i2Corr : Catpb → Cat preserves limits for
every n ≥ 0. We now fix a category J and a limit diagram F : J C → Catpb. Denote by ∗
the initial object of J C.

By construction, the functor ev[n] 2Corr is given by the composition of the forgetful functor
Catpb → Cat and the functor Funct(Tw([n]),−) : Cat→ Cat. Both of these preserve limits,
so we see that ev[n] 2CorrF is a limit diagram. The natural functor

lim(ev[n] i2CorrF |J )→ ev[n] 2CorrF (∗)

is a limit of monomorphisms, and is therefore a monomorphism.
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An object S in ev[n] 2CorrF (∗) belongs to lim(ev[n] i2CorrF |J ) if and only if its projection
to ev[n] 2CorrF (j) belongs to ev[n] i2CorrF (j) for every j in J . It follows from proposition
10.1.3 and the fact that the transition maps in F preserve pullbacks that this happens if and
only if S belongs to ev[n] i2CorrF (∗).

Similarly, a morphism g : S → S ′ in ev[n] 2CorrF (∗) belongs to lim(ev[n] i2CorrF |J ) if
and only if its projection to ev[n] 2CorrF (j) belongs to ev[n] i2CorrF (j) for every j in J . This
again happens if and only if g belongs to ev[n] i2CorrF (∗).

We have thus seen that the functor lim(ev[n] i2CorrF |J )→ ev[n] 2CorrF (∗) is a monomor-
phism, and its image coincides with ev[n] i2CorrF (∗). This implies that ev[n] i2CorrF is
indeed a limit diagram.

Remark 10.2.3. Equip Catpb and 2Cat with their cartesian symmetric monoidal structures.
It follows from proposition 10.2.2 that 2Corr has a canonical symmetric monoidal structure.
As a consequence, if C is a symmetric monoidal category admitting pullbacks and such that
the tensor product functor C × C → C preserves pullbacks, there is an induced symmetric
monoidal structure on 2Corr(C). In particular, given any finitely complete category C there is
a symmetric monoidal structure on 2Corr(C) inherited from the cartesian symmetric monoidal
structure on C. This assignment is functorial in C - namely, it can be enhanced to yield
functors

Catlex → CAlg(Catpb)→ CAlg(2Cat)

where Catlex denotes the category if categories with finite limits and left exact functors.

The inclusions ιC and ιRC from remark 10.1.14 turn out to be compatible with the symmetric
monoidal structure of remark 10.2.3. To show this, we will need to make the transformations
ιC and ιRC functorial in C.

Construction 10.2.4. Consider the commutative diagram of cosimplicial categories

Tw |∆ iop
∆

i∆ [0]

where i∆ : ∆ → Cat is the canonical inclusion, and the left vertical and top horizontal
maps are given by the source and target projections (see remark 10.1.14). This induces a
commutative square of functors Catpb → Funct(∆op,Cat) as follows

disc j(−)op

j 2Corr

where disc denotes the functor that maps each category C to the constant simplicial category
on C, the functor j is given by the formula jC([n]) = Funct([n], C), and j(−)op denotes
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the composition of j with the functor (−)op : Cat → Cat. The bottom horizontal and
right vertical arrows factor through 2Corr′, so we obtain a commutative square of functors
Catpb → Funct(∆op,Cat) as follows:

disc j(−)op

j 2Corr′

Composing with the functor (−)red from notation 10.1.6 we obtain a commutative square of
functors Catpb → 2Cat

iSpc(−)≤0 iop
Catpb

iCatpb
2Corr

where iCatpb
denotes the canonical inclusion Catpb → 2Cat, the functor iop

Catpb
is the com-

position of iCatpb
with the functor (−)op : Catpb → Catpb, and the top left corner is the

composition of the truncation functor (−)≤0 : Cat → Spc and the canonical inclusion
iSpc : Spc→ 2Cat.

We denote by ι the bottom horizontal arrow of the above diagram, and ιR the right
vertical arrow. When evaluated at a category C in Catpb, the above diagram recovers the
commutative diagram

C≤0 Cop

C 2Corr(C)

ιRC

ιC

from remark 10.1.14.

Remark 10.2.5. We can think about the commutative diagram

iSpc(−)≤0 iop
Catpb

iCatpb
2Corr

ιR

ι

as a functor Catpb → Funct([1] × [1], 2Cat). Thanks to proposition 10.2.2, this functor is
limit preserving, so it can be given a canonical symmetric monoidal structure, where we
equip Catpb and 2Cat with their cartesian symmetric monoidal structures. It follows that if
C is a symmetric monoidal category admitting pullbacks and such that the tensor product
functor C × C → C preserves pullbacks, the inclusions ιC and ιRC can be given symmetric
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monoidal structures, and we have a commutative diagram of symmetric monoidal categories
and symmetric monoidal functors

C≤0 Cop

C 2Corr(C).

ιRC

ιC

Remark 10.2.6. The span of cosimplicial categories

Tw |∆ iop
∆

i∆ [0]

from construction 10.2.4 is equivalent to the transpose of the diagram obtained by composing
the above with the functor Funct(∆,Cat)→ Funct(∆,Cat) induced from the order reversing
automorphism of ∆. It follows that the commutative square of functors Catpb → 2Cat

iSpc(−)≤0 iop
Catpb

iCatpb
2Corr

ιR

ι

is equivalent to the transpose of the square

iSpc(−)≤0 iCatpb

iop
Catpb

2Corr1-op

ιR,1-op

ι1-op

where (−)1-op : 2Cat → 2Cat denotes the functor that reverses the directions of 1-arrows.
In other words, for every object C in Catpb we have an equivalence 2Corr(C) = 2Corr(C)1-op

which is the identity on objects, and exchanges iC(α) and iRC (α) for each arrow α in C.

10.3 Adjointness and duality in 2Corr(C)

We now review some basic adjointness and duality properties of morphisms and objects in
the 2-category of correspondences.
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Proposition 10.3.1. Let C be a category admitting pullbacks and let α : c→ c′ be an arrow
in C. Then the morphism ηα : ιC(α)ιRC (α)→ idιC(c′) given by the following diagram

c

c′

c′ c′

α α

α

idc′ idc′

is the counit of an adjunction between ιC(α) and ιRC (α).

Proof. Recall from (the dual version of) [Lur09a] proposition 5.3.6.2 that the forgetful functor
Catpb → Cat has a left adjoint F , which maps a category I to the smallest full subcategory
of the free completion of I (namely, P(Iop)op) containing I and closed under pullbacks.
Consider the pullback preserving functor F([1]) → C induced from the map [1] → C that
sends the unique arrow a : 0→ 1 in [1] to α. The arrows ιC(α) and ιRC (α) are the images of
ιF([1])(a) and ιRF([1])(a) under the induced functor 2Corr(F([1]))→ 2Corr(C). Moreover, the
morphism of spans in the statement is the image of the morphism of spans

0

1

1 1.

We have thus reduced to proving the result in the case when C = F([1]) and α = a : 0→ 1.
Note that in 2Corr(F([1])) there is a unique map ιF([1])(a) → ιF([1])(a) and a unique map
ιRF([1])(a)→ ιRF([1])(a). Therefore any morphism

εa : idιF([1])(0) → ιRF([1])(a)ιF([1])(a)

will satisfy the triangle identities with ηa. Such a morphism is unique, and given by the
following diagram:

0

0×1 0

0 0
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Remark 10.3.2. Let C be a category admitting pullbacks and let α : c→ c′ be an arrow in
C. The composition ιRC (α)ιC(α) is given by the span c← c×d c→ c. It follows from the proof
of proposition 10.3.1 that the counit of the adjunction ιC(α) a ιRC (α) is given by the diagram

c

c×d c

c c

idc idc

where the map c→ c×d c is the diagonal map.

Proposition 10.3.3. Let C be a category admitting finite limits and let c be an object in C.
Denote by ∆ : c→ c× c the diagonal map, and by π : c→ 1C the map into the final object of
C. Equip 2Corr(C) and the inclusion ιC with the symmetric monoidal structures from remark
10.2.5. Then the morphism

ηc : 12Corr(C) = ιC(1C)→ ιC(c× c) = ιC(c)⊗ ιC(c)

given by the span
c

1C c× c

π ∆

is the unit of a self duality for ιC(c).

Proof. Let Spcfin be the category of finite spaces. This is obtained from [0] by adjoining
finite colimits, and therefore there is a unique left exact functor F : Spcop

fin → C that maps
the point ∗ to c. As observed in remark 10.2.5, the functor

2Corr(F ) : 2Corr(Spcop
fin)→ 2Corr(C)

inherits a symmetric monoidal structure, which is compatible the transformations ι and ιR.
The map ηc is the image under 2Corr(F ) of the functor

η∗ : 12Corr(Spcop
fin) = ιSpcop

fin
(∅)→ ιSpcop

fin
(∗ q ∗) = ιSpcop

fin
(∗)⊗ ιSpcop

fin
(∗)

defined by the span
∗

∅ ∗ q ∗.

It therefore suffices to prove the proposition in the case C = Spcop
fin and c = ∗. Since there is

a unique map ∗ → ∗ in Spcop
fin, any map ε∗ : ιSpcop

fin
(∗)⊗ ιSpcop

fin
(∗)→ 12Corr(Spcop

fin) satisfies the
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triangle identities with η∗. Such a map exists and is unique, and is given by the following
span

∗

∗ q ∗ ∅.

Remark 10.3.4. Let C be a category admitting finite limits and let c be an object in C.
Then the proof of proposition 10.3.3 shows that the morphism

εc : ιC(c)⊗ ιC(c) = ιC(c× c)→ ιC(1C) = 12Corr(C)

given by the span
c

c× c 1C

∆ π

is the counit of the self duality of proposition 10.3.3.

Proposition 10.3.5. Let C be a category admitting finite limits. Let c, c′ be objects of C,
and let σ : ιC(c)→ ιC(c

′) be a morphism between them, represented by a span

s

c c′.

α β

Then the morphism σ∨ : ιC(c
′)→ ιC(c) dual to σ under the self duality of proposition 10.3.3

is given by the span
s

c′ c.

β α

Proof. Note that the morphism σ is equivalent to ιC(β)ιRC (α), and furthermore we have an
equivalence σ∨ = (ιRC (α))∨ιC(β)∨. It suffices therefore to show that there are equivalences
ιC(β)∨ = ιRC (β) and ιRC (α)∨ = ιC(α). We may furthermore restrict to showing the first identity
only - the second one follows from the first one by replacing β with α and passing to adjoints.

Let F([1]) be the free finitely complete category with limits on the arrow category. The
morphism β is the image of the walking arrow 0→ 1 under a finite limit preserving functor
F([1])→ C. It therefore suffices to prove our proposition in the case when C = F([1]) and β
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is the walking arrow βuniv. In this case, the dual morphism to ιF([1])(βuniv) can be computed
as the following composition:

1× 0 1× 0× 0 1× 0

1 1× 0× 0 1× 1× 0 0.

id1×∆0 id id1×βuniv
×id0

∆1×id0

This recovers the unique span of the form

0

1 0

which is ιRF([1])(βuniv), as desired.

10.4 Beck-Chevalley conditions

We now discuss the universal property of the 2-category of correspondences.

Definition 10.4.1. Let D be a 2-category. We say that a commutative diagram

d′ d

e′ e

α′

β′ β

α

in D is vertically right adjointable if the following conditions hold:

• The maps β and β′ admit right adjoints βR and β′R.

• The 2-cell
α′β′R → βRβα′β′R = βRαβ′β′R → βRα

built from the unit idd → βRβ and the counit β′βR → ide′, is an isomorphism.

We say that the above diagram is horizontally right adjointable if its transpose is vertically
right adjointable. We say that it is right adjointable if it is both horizontally and vertically
right adjointable. We say that it is (vertically / horizontally) left adjointable if it is (vertically
/ horizontally) right adjointable as a diagram in the 2-category D2-op obtained from D by
reversing the direction of the 2-cells.

Remark 10.4.2. Let D be a 2-category. A commutative square

d′ d

e′ e

α′

β′ β

α
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in D defines a morphism γ : α′ → α in the arrow category Funct([1],D). It is shown in
[Hau20] theorem 4.6 that β′ and β admit right adjoints if and only if γ admits a right adjoint
in the category Funct([1],D)lax of functors [1]→ D and lax natural transformations. In that
case, the right adjoint to γ is given by the lax commutative square

d′ d

e′ e

α′

β′R

α

βR

where the 2-cell is the one described in definition 10.4.1. It follows that γ admits a right
adjoint in Funct([1],D) ⊂ Funct([1],D)lax if and only if the original commutative square is
vertically right adjointable. In this case, the morphism γR corresponds to a commutative
square in D; we say that this square arises from the original one by passage to right adjoints
of vertical arrows.

Remark 10.4.3. Let D be a 2-category and let

d′ d

e′ e

α′

β′ β

α

be a commutative diagram in D. Assume that the vertical maps are right adjointable, and
that the horizontal maps are left adjointable. We can then construct two lax commutative
squares

d′ d

e′ e

α′

β′R

α

βR

d′ d

e′ e.

β′

α′L

β

αL

These two are related to each other by passage to left/right adjoints. In particular we have
that our original square is vertically right adjointable if and only if it is horizontally left
adjointable.

Remark 10.4.4. Denote by Adj the universal adjunction. This is a 2-category equipped
with an epimorphism L : [1]→ Adj such that for every 2-category D, precomposition with
L induces an equivalence between the space of functors Adj → D and the space of maps
[1]→ D which pick out a right adjointable arrow in D. Let Ulax be the pushout in 2Cat of
the following diagram

Adj [1]× [1] Adj

[1] [1] .

L

{0}×id[1] {1}×id[1] L
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This is the universal lax vertically right adjointable square. It contains a 2-cell µuniv which is
the universal instance of the 2-cell from definition 10.4.1.

Let U be the 2-category obtained from Ulax by inverting the 2-cell µuniv. The natural
inclusion i : [1]× [1]→ U is an epimorphism in 2Cat. For any 2-category D, precomposition
with i induces an equivalence between the space of functors U → D and the space of functors
[1]× [1]→ D which represent a vertically right adjointable square. By virtue of remark 10.4.2,
we in fact have an equivalence between i : [1]× [1]→ U and L× id[1] : [1]× [1]→ Adj×[1].

As a consequence of the above we deduce the following fact: if F : I → 2Cat is a diagram
in 2Cat with limit D, then a commutative square in D is vertically right adjointable if and
only if its image in F (i) is vertically right adjointable, for all i in I.

Definition 10.4.5. Let C be a category admitting pullbacks and D be a 2-category. We
say that a functor F : C → D satisfies the left Beck-Chevalley condition if for every cospan
x→ s← y in C, the induced commutative square in D

F (x×s y) F (y)

F (x) F (s)

is right adjointable.

Proposition 10.4.6. Let C be a category admitting pullbacks. Then the inclusion ιC : C →
2Corr(C) satisfies the left Beck-Chevalley condition.

Proof. Let F : Cat→ Catpb be the left adjoint to the forgetful functor. Let U be universal
cospan: this is the category with three objects 0, 1, 2 and nontrivial arrows α : 0→ 1← 2 : β.
Any cospan in C is the image of a pullback preserving morphism F(U) → C. It therefore
suffices to prove that the image under ιF(U) of the universal cartesian square

0×1 2 2

0 1

α′

β′ β

α

is vertically right adjointable. Recall from proposition 10.3.1 that ιF(U)(β
′) is left adjoint

to ιRF(U)(β
′), and ιF(U)(β) is left adjoint to ιRF(U)(β). We have that ιF(U)(α

′)ιRF(U)(β
′) and

ιRF(U)(β)ιF(U)(α) are both given by the span

0×1 2

0 2.

β′ α′
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Our claim now follows from the fact that HomF(U)(0×1 2, 0×1 2) = [0], and thus any 2-cell

ιF(U)(α
′)ιRF(U)(β

′)→ ιRF(U)(β)ιF(U)(α)

is necessarily invertible.

The rest of this chapter is devoted to showing that 2Corr(C) is the universal 2-category
equipped with a functor from C which satisfies the left Beck-Chevalley condition (theorem
10.4.18). A proof was given in [GR17] chapter 7 theorem 3.2.2. - here we present an alternative
approach using the theory of two-sided fibrations, and in particular the universal property of
the span fibration established in proposition 9.4.8. The proof will need a few preliminary
lemmas.

Notation 10.4.7. Let C be a category. Recall the universal left adjointable arrow L : [1]→
Adj from remark 10.4.4. We let CR be the 2-category defined by the pushout

HomCat([1], C)× [1] C

HomCat([1], C)× Adj CR.

ev

id×L LC

The functor LC is an epimorphism in 2Cat. For every 2-category D, precomposition with
LC induces an equivalence between the space Hom2Cat(CR,D) and the space of functors
F : C → D such that for every arrow α in C the arrow F (α) admits a right adjoint in D.

Lemma 10.4.8. Let C be a category and let D be a 2-category. Let η : F → G be a morphism
in Funct(C,D). Then the morphism η is left adjointable if and only if for every morphism
α : x→ y in C, the commutative square

F (x) G(x)

F (y) G(y)

η(x)

F (α) G(α)

η(y)

is horizontally left adjointable.

Proof. Let S be the full subcategory of Cat on those categories C for which the lemma holds.
As discussed in remark 10.4.2, the walking arrow belongs to S. To prove this lemma it suffices
to show that S is closed under colimits in Cat. Assume given a diagram C : I → Cat with
C(i) in S for every i in I. Then we have an equivalence

Funct(colimI C(i),D) = lim
Iop

Funct(C(i),D).
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A morphism η : F → G in Funct(colimI C(i),D) is left adjointable if and only if its image in
Funct(C(i),D) is left adjointable for every i in I. This happens if and only if the square

F (x) G(x)

F (y) G(y)

η(x)

F (α) G(α)

η(y)

is horizontally left adjointable for every arrow α : x→ y in colimI C(i) which belongs to the
image of the map C(i)→ colimI C(i) for some i in I. Observe now that the family of arrows
α in colimI C(i) for which the above square is horizontally left adjointable is closed under
compositions (this follows from example from the characterization of adjointability of squares
from remark 10.4.2). We conclude that η is left adjointable if and only if the above square is
horizontally left adjointable for every arrow, which implies that colimI C(i) also belongs to
S, as desired.

Lemma 10.4.9. Let C be a category. Then the composition of the functor

(L1-op
C × idC)

∗ : Funct((CR)1-op × C,Cat)≤1 → Funct(Cop × C,Cat)

and the two-sided Grothendieck construction 2∫
Cop×C

: Funct(Cop × C,Cat)→ Cat/C×C

is a monomorphism, whose image is the category Catcocart,two-sided
/C×C = Catcocart

/C×C ∩Cattwo-sided
/C×C .

Proof. We note that since LC is an epimorphism, we have that L1-op
C × idC is also an epimor-

phism, and hence the induced functor

Funct((CR)1-op × C,Cat)≤1 → Funct(Cop × C,Cat)≤1 = Funct(Cop × C,Cat)

is a indeed a monomorphism. We note that the above map is equivalent to the map

(L1-op
C )∗ : Funct((CR)1-op,Funct(C,Cat))≤1 → Funct(Cop,Funct(C,Cat)).

It follows from lemma 10.4.8 that an object belongs to the image of (L1-op
C )∗ if and only if

the associated functor Cop × C → Cat is left adjointable in the Cop coordinate. This happens
if and only if the associated two-sided fibration is also a cocartesian fibration. We conclude
that the lemma holds at the level of objects.

2In this chapter we use the convention where two-sided fibrations are cartesian over the first coordinate
and cocartesian over the second coordinate, unless otherwise stated. Note that this differs from the convention
used in chapter 9.
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Consider now the functor

Funct((CR)1-op,Funct(C × [1],Cat))≤1 → Funct(Cop,Funct(C × [1],Cat))

of precomposition with L1-op
C . Applying lemma 10.4.8 again we conclude that an object

belongs to its image if and only if the associated functor Cop×C× [1]→ Cat is left adjointable
in the Cop coordinate. Applying remark 9.3.19 we see that this happens if and only if the
associated morphism in Cattwo-sided

/C×C belongs also to Catcocart
/C×C . This shows that the lemma

holds also at the level of morphisms, which finishes the proof.

Notation 10.4.10. Let C be a category admitting pullbacks. Recall the universal vertically
right adjointable square id[1]×L : [1] × [1] → [1] × Adj from remark 10.4.4. Let S be the
space of cartesian commutative squares in C, and let ev : S× ([1]× [1])→ C be the evaluation
functor. Let 2Corruniv(C) be the 2-category defined by the pushout

S × ([1]× [1]) C

S × ([1]× Adj) 2Corruniv(C)

ev

idS ×(id[1]×L) ιuniv
C .

The 2-category 2Corruniv(C) is the universal 2-category equipped with the a functor from
C which satisfies the left Beck-Chevalley condition. The map ιuniv

C is an epimorphism in
2Cat: for every 2-category D, precomposition with ιuniv

C induces an equivalence between the
space of functors 2Corruniv(C)→ D and the space of functors C → D which satisfy the left
Beck-Chevalley condition. It follows in particular that ιuniv

C factors through CR. We denote
by q : CR → 2Corruniv(C) the induced functor.

Lemma 10.4.11. Let C be a category admitting pullbacks and let D be a 2-category. The
functor

q∗ : Funct(2Corruniv(C),D)→ Funct(CR,D)

induces equivalences at the level of Hom categories.

Proof. Observe that 2Corruniv(C) is obtained out of CR by inverting a family of 2-cells. It
therefore suffices to show that if q′ : C2 → [1] is the projection from the walking 2-cell to the
walking 1-cell, the induced functor

q′∗ : Funct([1],D)→ Funct(C2,D)

induces equivalences at the level of Hom categories.
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Let α, β : [1]→ D be a pair of objects of Funct([1],D). We have a commutative cube of
categories as follows:

HomFunct(C2,D)(q
′∗α, q′∗β) HomD(α(0), β(0))

HomFunct([1],D)(α, β) HomD(α(0), β(0))

HomD(α(1), β(1)) Funct([1],HomD(α(0), β(1)))

HomD(α(1), β(1)) HomD(α(0), β(1))

ev1

ev0

q′∗β
ev0

q′∗

ev1

β

id

q′∗α

α

id

Here the front and back faces are cartesian. The bottom left and top right diagonal arrows
are isomorphisms, and the bottom right diagonal arrow is the degeneracy map, which is fully
faithful. It follows that the top left diagonal arrow is an isomorphism, as desired.

Lemma 10.4.12. Let J and D be 2-categories. Then a 2-cell in Funct(J ,D) is invertible
if and only if its image under all evaluation functors is invertible.

Proof. Let S be the full subcategory of 2Cat on those 2-categories J for which the lemma holds.
We claim that S is closed under colimits in 2Cat. Assume given a diagram J : I → 2Cat,
with J(i) in S for every i in I. Then we have an equivalence

Funct(colimI J(i),D) = lim
Iop

Funct(J(i),D).

It follows that a 2-cell γ : C2 → Funct(colimI J(i),D) is invertible if and only if its image in
Funct(J(i),D) is invertible for all i in I. Since J(i) is assumed to belong to S, this happens
if and only if the 2-cell evj γ is invertible for all objects j in colimI J(i), which means that
colimI J(i) also belongs to S.

To prove the lemma it then suffices to show that S contains the walking 2-cell C2. In
other words, we have reduced to proving the lemma in the case J = C2. In this case, for
every pair of objects µ, ν in Funct(C2,D), we have a pullback diagram

HomFunct(C2,D)(µ, ν) HomD(µ(0), ν(0))

HomD(µ(1), ν(1)) Funct([1],HomD(µ(0), ν(1)))

where the top and left arrows are the evaluation functors. A 2-cell in Funct(C2,D) corre-
sponds to an arrow in HomFunct(C2,D)(µ, ν), and this is invertible if and only if its image in
HomD(µ(0), ν(0)) and HomD(µ(1), ν(1)) is invertible, as desired.
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Lemma 10.4.13. Let J ,D be 2-categories, and let C be a category admitting pullbacks. Then
a functor F : CR → Funct(J ,D) extends to 2Corruniv(C) if and only if for every object j in
J the composite functor evj F : CR → D extends to 2Corruniv(C).

Proof. This follows directly from lemma 10.4.12 using the fact that 2Corruniv(C) is obtained
from CR by inverting a family of 2-cells.

Lemma 10.4.14. Let C be a category admitting pullbacks. Then the composition of the
functor

((ιuniv
C )1-op × idC)

∗ : Funct(2Corruniv(C)1-op × C,Cat)≤1 → Funct(Cop × C,Cat)

and the two-sided Grothendieck construction∫
Cop×C

: Funct(Cop × C,Cat)→ Cat/C×C

is a monomorphism, whose image is the full subcategory of Catcocart,two-sided
/C×C on those fibrations

which satisfy the Beck-Chevalley condition in the first coordinate.

Proof. The functor q : CR → 2Corruniv(C) is an epimorphism, so we have a monomorphism

(q1-op × idC)
∗ : Funct(2Corruniv(C)1-op × C,Cat)≤1 → Funct((CR)1-op × C,Cat)≤1.

The above is equivalent to the functor

Funct(2Corruniv(C)1-op,Funct(C,Cat))≤1 → Funct((CR)1-op,Funct(C,Cat))≤1

obtained by precomposition with q1-op. Applying lemma 10.4.11 we see that the above functor
is fully faithful. Combining this fact with lemma 10.4.9 we conclude that precomposition
with (ιuniv

C )1-op × idC followed by the two-sided Grothendieck construction embeds

Funct(2Corruniv(C)1-op × C,Cat)≤1

as a full subcategory of Catcocart,two-sided
/C×C . Thanks to lemma 10.4.13, its image consists of those

fibrations which satisfy the Beck-Chevalley condition in the first variable, as desired.

The next three lemmas use the theory of algebroids and enriched categories as developed
in [GH15] and [Hin20a], and in particular the approach to the Yoneda embedding via diagonal
bimodules from [Hin20a]. We refer the reader to chapter 3 for our conventions regarding this
subject.

Lemma 10.4.15. Let M be a presentable monoidal category and let f : A → B be a
morphism of M-algebroids which is an equivalence on categories of objects. Let AAA be the
diagonal A-bimodule, and let ABB be the restriction of scalars of the diagonal B-bimodule
along the map (f, idB). Then the induced morphism f∗ : AAA → ABB in BMod(M) is a
cocartesian lift of the morphism (idA, f) : (A,A)→ (A,B) in Algbrd(M)× Algbrd(M).
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Proof. Let X be the category of objects of A and B. By construction, the projection
p : BMod(M) → Algbrd(M) × Algbrd(M) is a morphism of cartesian fibrations over
Cat×Cat. Thanks to [Lur09a] corollary 4.3.1.15, to show that f∗ is p-cocartesian it suffices
to show that it is cocartesian for the projection

pX,X : BModX,X(M)→ AlgbrdX(M)× AlgbrdX(M).

Recall from [Hin20a] proposition 3.3.6 that AssosX is a flat associative operad. It follows
that there is an associative operad MX equipped with the universal map of associative
operads AssosX ×MX →M. As discussed in [Hin20a] corollary 4.4.9, the associative operad
MX is a presentable monoidal category. The projection pX,X is equivalent to the projection

p′X,X : AlgBM(MX)→ AlgAssos(MX)× AlgAssos(MX)

which sends each BM-algebra in MX to its underlying associative algebras.
Let Ã and B̃ be the associative algebras corresponding to the M-algebroids A and

B,respectively. Then under the above equivalence, the map f∗ corresponds to the map of
bimodules f̃∗ : ÃÃÃ → ÃB̃B̃, which is p′X,X-cocartesian, as desired.

Lemma 10.4.16. Let M be a presentable symmetric monoidal category and let f : A → B
be a morphism of M-algebroids which is an equivalence on categories of objects. Consider
the morphisms

HA = A(−,−) : A⊗Aop →M

and
HB = B(−,−) : B ⊗ Bop →M

whereM denotes the enhancement ofM to anM-enriched category. Let f∗ : HA → HB|A⊗Aop

be the induced map. Then for every object G in Funct(A⊗ Bop,M), the composition of the
restriction map

τMHomFunct(A⊗Bop,M)(HB|A⊗Bop , G)→ τMHomFunct(A⊗Aop,M)(HB|A⊗Aop , G|A⊗Aop)

with the precomposition with f∗ map

τMHomFunct(A⊗Aop,M)(HB|A⊗Aop , G|A⊗Aop)→ τMHomFunct(A⊗Aop,M)(HA, G|A⊗Aop)

is an equivalence.

Proof. This is a translation of lemma 10.4.15 under the folding equivalence of [Hin20a] section
3.6, and the equivalence of [Hin20a] proposition 6.3.7.

Lemma 10.4.17. Let C be a category admitting pullbacks.

(i) The map ιuniv
C is surjective on objects.
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(ii) The image of the natural transformation

(ιuniv
C )∗ : HomC(−,−)→ Hom2Corruniv(C)(−,−)|Cop×C

under the two-sided Grothendieck construction∫
Cop×C

: Funct(Cop × C,Cat)→ Cat/C×C

is equivalent to the morphism of two-sided fibrations over C × C

Funct([1], C) Funct(Λ2
0, C)

C × C

φ′

(ev0,ev1) (ev1,ev2)

where Λ2
0 is the category with objects 0, 1, 2 and nontrivial morphisms 1← 0→ 2, and

φ′ is the functor of precomposition with the map Λ2
0 → [1] which sends 0, 1, 2 to 0, 0, 1,

respectively.

Proof. Let S be the space of cartesian commutative squares in C, and let ev : S×([1]×[1])→ C
be the evaluation functor. Let 2Corruniv

algbrd(C) be the Cat-algebroid defined as the pushout

S × ([1]× [1]) C

S × ([1]× Adj) 2Corruniv
algbrd(C)

ev

idS ×(id[1]×L) ιuniv
C,algbrd

inside Algbrd(Cat). Note that the image of ιuniv
C,algbrd under the projection Algbrd(Cat)Spc →

2Cat recovers ιuniv
C . It follows from proposition 3.3.12 that the map of algebroids ιuniv

C,algbrd is
an equivalence at the level of objects. Item (i) now follows from this together with the fact
that the map from any algebroid to its completion is surjective on objects.

Denote by j : 2Corruniv
algbrd(C) → 2Corruniv(C) the canonical map. As shown in [GH15]

corollary 5.6.3, the map j is fully faithful. In other words, the natural transformation

j∗ : Hom2Corruniv
algbrd(C)(−,−)→ Hom2Corruniv(C)(−,−)|2Corruniv

algbrd(C)1-op×2Corruniv
algbrd(C)

is an equivalence. It follows that the image of the transformation

(ιuniv
C )∗ : HomC(−,−)→ Hom2Corruniv(C)(−,−)|Cop×C

under the two-sided Grothendieck construction is equivalent to the image of

(ιuniv
C,algbrd)∗ : HomC(−,−)→ Hom2Corruniv

algbrd(C)(−,−)|Cop×C.
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The fact that Cat is complete as a Cat-algebroid implies that the restriction map

Funct(2Corruniv(C)1-op × C,Cat)→ Funct(2Corruniv
algbrd(C)1-op × C,Cat)

is an equivalence, and therefore the conclusion of lemma 10.4.14 remains valid if we replace
2Corruniv(C) with 2Corruniv

algbrd(C). Item (ii) now follows this together with a combination of
lemma 10.4.16 and proposition 9.4.8.

Theorem 10.4.18. Let C be a category admitting pullbacks, and D be a 2-category. Pre-
composition with the functor ιC : C → 2Corr(C) induces an equivalence between the space
Hom2Cat(2Corr(C),D) and the subspace of Hom2Cat(C,D) consisting of those functors F :
C → D which satisfy the left Beck-Chevalley condition.

Proof. By virtue of proposition 10.4.6 the functor ιC factors through 2Corruniv(C). Our goal
is to show that the resulting functor Q : 2Corruniv(C)→ 2Corr(C) is an equivalence. Thanks
to item (i) in lemma 10.4.17 it suffices show that for every pair of objects c, c′ in C, the
induced functor

Q∗ : Hom2Corruniv(C)(ι
univ
C (c), ιuniv

C (c′))→ Hom2Corr(C)(ιC(c), ιC(c
′))

is an equivalence.
Denote by R the equivalence of item (ii) in lemma 10.4.17 between the two-sided fibration

associated to the functor Hom2Corruniv(C)(−,−)|Cop×C and Funct(Λ2
0, C). In particular R gives

for every pair of objects c, c′ in C an isomorphism

Funct(Λ2
0, C)(c,c′)

=−→ Hom2Corruniv(C)(ι
univ
C (c), ιuniv

C (c′)).

Note that the left hand side is also equivalent to Hom2Corr(C)(ιC(c), ιC(c
′)), so we have a (a

priori non necessarily commutative) diagram of categories

Hom2Corruniv(C)(ι
univ
C (c), ιuniv

C (c′)) Hom2Corr(C)(ιC(c), ιC(c
′))

Funct(Λ2
0, C)(c,c′) .

=

Q∗

=

Since Cat is generated by the walking arrow, to show that Q∗ is an equivalence, it suffices
to show that the diagram of spaces obtained from the above by applying the functor
HomCat([1],−) : Cat → Spc, can be made commutative. In other words, we have to show
that Q∗ is compatible with both equivalences above at the level of arrows.

Consider a morphism of spans η : T → S depicted as follows.

t

s

c c′

α′ β′
µ

α β
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Recall that the projection (ev1, ev2) : Funct(Λ2
0, C)→ C ×C is both cartesian and cocartesian.

Passing to cartesian lifts of α, α′, µ and cocartesian lifts of µ, β, β′ yields the following diagram
of categories:

Funct(Λ2
0, C)(c,t)

Funct(Λ2
0, C)(c,s)

Funct(Λ2
0, C)(c,c) Funct(Λ2

0, C)(c,c′)

(idc,β′)∗
(idc,µ)∗

(idc,β)∗

(idc,µ)∗

(idc,α)∗

(idc,α′)∗

Here (idc, µ)∗ is right adjoint to (idc, µ)∗. The morphism of spans η is the image of the
identity span of c under the natural transformation

(idc, β
′)∗(idc, α

′)∗ = (idc, β)∗(idc, µ)∗(idc, µ)∗(idc, α)∗ → (idc, β)∗(idc, α)∗

induced by the adjunction (idc, µ)∗ a (idc, µ)∗. Under the equivalence R, the above diagram
becomes

Hom2Corruniv(C)(ι
univ
C (c), ιuniv

C (t))

Hom2Corruniv(C)(ι
univ
C (c), ιuniv

C (s))

Hom2Corruniv(C)(ι
univ
C (c), ιuniv

C (c)) Hom2Corruniv(C)(ι
univ
C (c), ιuniv

C (c′)).

ιuniv
C (β′)∗

ιuniv
C (µ)∗

ιuniv
C (β)∗

ιuniv
C (µ)R∗

ιuniv
C (α)R∗

ιuniv
C (α′)R∗

Furthermore, the identity span of c becomes idιuniv
C (c). We thus see that η corresponds, under

the equivalence R, to the morphism

ιuniv
C (β′)ιuniv

C (α′)R = ιuniv
C (β)ιuniv

C (µ)ιuniv
C (µ)Rιuniv

C (α)R → ιuniv
C (β)ιuniv

C (α)R

induced by the counit of the adjunction ιuniv
C (µ) a ιuniv

C (µ)R. Applying the functor Q recovers
the morphism

ιC(β
′)ιC(α

′)R = ιC(β)ιC(µ)ιC(µ)RιC(α)R → ιC(β)ιC(α)R

induced by the counit of the adjunction ιC(µ) a ιC(µ)R. This agrees with the image of η
under the usual isomorphism Hom2Corr(C)(ιC(c), ιC(c

′)) = Funct(Λ2
0, C)(c,c′), as we wanted.
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Chapter 11

Higher categories of correspondences

Let C be a category admitting pullbacks. For each n ≥ 2 one can construct an n-category
nCorr(C) called the n-category of correspondences of C. The case n = 2 of this construction
was the focus of chapter 10. For n > 2 the n-category nCorr(C) is defined inductively so
that its objects agree with the objects of C, and for each pair of objects c, c′ in C, the hom
(n− 1)-category between them is (n− 1)Corr(Hom2Corr(C)(c, c

′)). Our goal in this chapter is
to review the definition and main properties of the n-category of correspondences, and to
establish two results (theorems 11.2.6 and 11.3.9) that provide ways of constructing functors
from nCorr(C) into a target n-category D.

We begin in 11.1 by reviewing the definition of the n-category of correspondences. Here
we depart from previous approaches in the literature: rather than defining nCorr(C) as an
(n−1)-fold simplicial category (as in [Hau18]), we use the language of enriched category theory
to make sense of the fact that nCorr(C) is defined by applying the functor (n− 1)Corr at the
level of hom categories on 2Corr(C). We also show that nCorr(C) enjoys strong adjointness
properties that extend those of 2Corr(C): every k-cell in nCorr(C) with k < n − 1 is both
left and right adjointable, and its left and right adjoints coincide. In particular, if C has a
symmetric monoidal structure which is compatible with pullbacks, every object of nCorr(C)
is fully dualizable in the (n− 1)-category underlying nCorr(C).

We are ultimately interested in constructing functors out of nCorr(C): these are higher
sheaf theories on C. In the case n = 2, a way of constructing functors is provided by theorem
10.4.18: in order to construct a functor out of 2Corr(C) it suffices to construct a functor out
of C which satisfies the left Beck-Chevalley condition. In 11.2 we introduce higher analogs of
the Beck-Chevalley condition. While the ordinary Beck-Chevalley condition for a functor
F : C → D involves the adjointability of certain commutative squares in D, the higher
Beck-Chevalley condition is an inductively defined criterion that involves the adjointability of
certain squares in D, together with the adjointability of certain squares in EndD(d) for objects
d in the image of F , together with the adjointability of certain squares in EndEndD(d)(idd) for
all such d, and so on.

The first main result of this chapter is theorem 11.2.6, which states that nCorr(C) is the
universal n-category equipped with a functor from C satisfying the left (n − 1)-fold Beck-



CHAPTER 11. HIGHER CATEGORIES OF CORRESPONDENCES 234

Chevalley condition. We also show that in the presence of a symmetric monoidal structure
on a functor F : C → D which satisfies the left (n − 1)-fold Beck-Chevalley condition, its
extension to nCorr(C) also comes equipped with a symmetric monoidal structure.

Given a functor F : C → D into an n-category with colimits which is known to satisfy a
higher Beck-Chevalley condition, one is sometimes interested in understanding whether the
left Kan extension of F to the presheaf category P(C) also satisfies a higher Beck-Chevalley
condition. This is instrumental in the study of higher sheaf theories in algebraic geometry, as
these start out life as functors on the category of affine schemes which are then extended to
prestacks. In 11.3 we apply the theory of conical colimits from chapter 5 to establish the
second main result of this chapter, theorem 11.3.9: under appropriate conditions on D, if a
functor F : C → D is such that F and F n-op satisfy the (n− 1)-fold Beck-Chevalley condition,
then the left Kan extension F ′ : P(C) → D satisfies the left (n − 1)-fold Beck-Chevalley
condition. These conditions are for instance verified in the case when D underlies a presentable
n-category (see chapter 12).

11.1 The n-category of correspondences

We begin by giving a construction of the n-category of correspondences of a category with
pullbacks. We will use the language of enriched categories as developed in [GH15] and
[Hin20a] - we refer the reader to chapter 3 for our conventions.

Notation 11.1.1. For each n ≥ 1 we denote by nCatpb the category (n − 1)CatCatpb of
(n− 1)-categories enriched in the cartesian symmetric monoidal category Catpb.

Remark 11.1.2. The inclusion Catpb → Cat induces an inclusion nCatpb → nCat for
each n ≥ 1. The fact that the inclusion Catpb → Cat creates limits implies that inclusion
nCatpb → Cat creates limits as well for all n ≥ 1. Its image can be characterized inductively
for n ≥ 2 as follows:

• An n-category C belongs to nCatpb if and only if for every pair of objects c, c′ in
C the (n − 1)-category HomC(c, c

′) belongs to (n − 1)Catpb, and for every triple of
objects c, c′, c′′ the composition map HomC(c, c

′)× HomC(c
′, c′′)→ HomC(c, c

′′) belongs
to (n− 1)Catpb.

• A functor of n-categories F : C → D belongs to nCatpb if and only if for every pair of
objects c, c′ in C the induced functor of (n−1)-categories HomC(c, c

′)→ HomD(Fc, Fc′)
belongs to (n− 1)Catpb.

In particular, the subcategory Cat ⊂ nCat is contained in nCatpb for all n > 1. Moreover, if
C is a category and D is an object of nCatpb for n > 1, any functor F : C → D belongs to
nCatpb.

Proposition 11.1.3. The functor 2Corr : Catpb → 2Cat factors through 2Catpb.
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Proof. Let C be a category admitting pullbacks. We first show that 2Corr(C) belongs to
2Catpb. Let c, c′ be objects in C and recall from remark 10.1.10 that we have an equivalence
Hom2Corr(C)(c, c

′) = C/c,c′ . Let S = (c ← s → c′) be an object in Hom2Corr(C)(c, c
′). The

forgetful functor C/c,c′ → C induces an equivalence

Hom2Corr(C)(c, c
′)/S = C/s.

Since C admits pullbacks, we conclude that the category Hom2Corr(C)(c, c
′)/S admits products

for all S, which means that Hom2Corr(C)(c, c
′) has pullbacks.

Let c, c′, c′′ be a triple of objects in C. Recall from remark 10.1.10 that the composition
map for the Segal category 2Corr′(C) is equivalent to the composition of the right Kan
extension functor

Funct(Tw([2])el, C)→ Funct(Tw([2]), C)

with the functor
Funct(Tw([2]), C)→ Funct(Tw([1]), C)

of precomposition with the functor Tw([1])→ Tw([2]) induced by the active arrow [1]→ [2].
Both of these preserve pullbacks, and therefore the composition map for 2Corr′(C) preserves
pullbacks. The composition map

Hom2Corr(C)(c, c
′)× Hom2Corr(C)(c

′, c′′)→ Hom2Corr(C)(c, c
′′)

is obtained from the above by passing to fibers over (c, c′, c′′) and therefore it also preserves
pullbacks. It follows that C satisfies the criteria of remark 11.1.2, so it belongs to 2Catpb, as
desired.

Let F : C → D be a morphism in Catpb and let c, c′ be objects in C. Let S = (c← s→ c′)
be an object in Hom2Corr(C)(c, c

′). We have a commutative diagram of categories

Hom2Corr(C)(c, c
′)/S C/s

Hom2Corr(D)(Fc, Fc
′)/FS D/Fs

whose horizontal arrows are isomorphisms. Since F preserves pullbacks, the right vertical
arrow preserves products. Hence the left vertical arrow reserves products, and it follows that
the morphism Hom2Corr(C)(c, c

′) → Hom2Corr(D)(Fc, Fc
′) induced by F preserves pullbacks.

Our result now follows from remark 11.1.2.

Construction 11.1.4. Let n ≥ 3 and assume given a limit preserving functor

(n− 1)Corr : Catpb → (n− 1)Cat
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which factors through (n−1)Catpb, and such that its composition with the truncation functor
(−)≤0 : (n − 1)Cat → Spc is equivalent to the truncation functor (−)≤0 : Catpb → Spc.
Consider the composite functor

Catpb
2Corr−−−→ 2Catpb = CatCatpb

(n−1)Corr!−−−−−−→ Algbrd((n− 1)Cat).

For each object C in Catpb, the underlying Segal space to (n− 1) Corr! 2Corr(C) is given by

(((n− 1) Corr)≤0)!2Corr(C) = ((−)≤0)!2Corr(C)

which recovers the underlying Segal space of 2Corr(C). Since 2Corr(C) is a 2-category, we
conclude that (n − 1) Corr! 2Corr(C) is an n-category. We denote by nCorr the resulting
functor Catpb → nCat.

In the setting of construction 11.1.4, the resulting functor nCorr is again limit preserving
and factors through nCatpb. Moreover, the functor (nCorr)≤0 is equivalent to (2Corr)≤0

which is in turn equivalent to the truncation functor (−)≤0 : Catpb → Spc. We thus see that
nCorr satisfies the hypothesis of construction 11.1.4 for n + 1. Starting with the functor
2Corr we can thus produce functors nCorr : Catpb → nCat for every n ≥ 3. In what follows,
it will be convenient to allow n to be 1 as well, by setting 1Corr : Catpb → Cat to be the
forgetful functor.

Definition 11.1.5. Let C be a category admitting pullbacks and let n ≥ 1. We call nCorr(C)
the n-category of correspondences of C.

We now study the relationship of the n-category of correspondences for different values
of n. In what follows, we leave implicit the inclusions nCat→ (n+ 1)Cat. In other words,
we work in the category ωCat = colimn≥0 nCat, so that all the functors nCorr for different
values of n can be considered to have the same target.

Construction 11.1.6. Let n ≥ 3 and assume given a natural transformation

ιn−2,n−1 : (n− 2)Corr→ (n− 1)Corr .

Consider the induced natural transformation ((n− 2)Corr)! → ((n− 1)Corr)!. Composition
with the functor 2Corr yields a natural transformation

ιn−1,n : (n− 1)Corr→ nCorr

which we continue denoting by ι. Applying this inductively starting with the natural
transformation of construction 10.2.4 we obtain a sequence of functors Catpb → ωCat and
natural transformations between them

1Corr→ 2Corr→ 3Corr→ . . . .

For each m ≤ n we let ιm,n : mCorr→ nCorr the associated natural transformation. In the
case m = 1 we will simply write ιn = ι1,n.
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Remark 11.1.7. Let n ≥ m ≥ 1. Then the natural transformation ιm,n is a monomor-
phism. Moreover, its composition with the truncation functor (−)≤m : nCat→ mCat is an
equivalence.

Remark 11.1.8. We can think about the sequence of functors and transformations of
construction 11.1.6 as a functor −Corr : N→ ωCat, where N denotes the poset of natural
numbers. Since nCorr is limit preserving for all values of n, we have that −Corr is limit
preserving.

In particular, if C is a symmetric monoidal category admitting pullbacks and such that
the functor C × C → C preserves pullbacks, then nCorr(C) inherits a symmetric monoidal
structure for all n, and the functors ιm,nC also inherit symmetric monoidal structures. In the
case when C is a category with finite limits equipped with its cartesian symmetric monoidal
structure, it follows from proposition 10.3.3 that every object of nCorr(C) is dualizable.

Proposition 11.1.9. Let C be a category admitting pullbacks. Let n ≥ 3 and 1 ≤ k < n− 1.
Then every k-cell µ in nCorr(C) admits both a right adjoint µR and a left adjoint µL, and
moreover there is an equivalence µL = µR.

Proof. We argue by induction on k. Consider first the case k = 1. By remark 11.1.7 we have
that any arrow in nCorr(C) belongs to the image of the functor ι3,nC : 3Corr(C)→ nCorr(C).
It therefore suffices to consider the case n = 3. Recall from remark 10.2.6 that there is a
natural equivalence 2Corr = 2Corr1-op that restricts to the identity on objects. It follows that
there is an equivalence 3Corr(C) = 3Corr(C)2-op which restricts to the identity on objects and
arrows. Therefore for every arrow µ in 3Corr(C), we have that µ admits a right adjoint if and
only if it admits a left adjoint, and moreover in that case there is an equivalence µR = µL.

It now suffices to show that every arrow in 3Corr(C) can be written as a composition of
arrows which admit either a left or right adjoint. Since the functor ι2,3C : 2Corr(C)→ 3Corr(C)
is surjective on arrows, it suffices to show that this is the case in 2Corr(C). Indeed, any
morphism in 2Corr(C) is represented by a span

s

c c′

α β

and can thus be written as the composition ιC(β)ιRC (α), which admit adjoints thanks to
proposition 10.3.1.

Assume now that k > 1. Let c, c′ be objects in C such that µ is a k-cell with source and
target objects ιnC(c) and ιnC(c

′), respectively. Then µ can be thought of as a (k − 1)-cell in

HomnCorr(C)(ι
n
C(c), ι

n
C(c
′)) = (n− 1)Corr(C)(Hom2Corr(C)(ιC(c), ιC(c

′)).

Our result now follows from the inductive hypothesis.

The following result appears previously in [Hau18] corollary 12.5.
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Corollary 11.1.10. Let C be a category admitting finite limits equipped with its cartesian
symmetric monoidal structure, and let n ≥ 2. Then every object of the (n − 1)-category
nCorr(C)≤n−1 is fully dualizable.

Proof. Combine remark 11.1.8 with proposition 11.1.9.

11.2 Higher Beck-Chevalley conditions

Our next goal is to generalize the universal property of theorem 10.4.18 to the case of higher
categories of correspondences.

Construction 11.2.1. Let D be a 2-category. For each right adjointable arrow α : d→ e
in D we denote by αR its right adjoint, and by εα : ααR → idd the counit of the adjunction.

Consider a commutative diagram

d′ d

e′ e

α′

β′ β

α

in D such that all four arrows admit right adjoints. The diagonal map γ : d′ → e has a right
adjoint which can be computed as in two ways as

β′RαR = γR = α′RβR

and the counit of the adjunction can be described as

(αεβ′α
R) ◦ εα = εγ = (βεα′β

R) ◦ εβ.

The above equivalence exhibits the following square in EndC(e) as a commutative square:

γγR ββR

ααR ide .

αεβ′α
R

βεα′β
R

εβ

εα

Definition 11.2.2. Let D be an n-category. We say that a commutative diagram

d′ d

e′ e

β′

α′ α

β

in D is 1-fold (vertically / horizontally) right adjointable if it is right adjointable in the
2-category underlying D. For each k ≥ 2 we say that the above diagram is k-fold (vertically
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/ horizontally ) right adjointable if it is (vertically / horizontally) right adjointable, all its
arrows admit right adjoints, and the commutative diagram square

γγR ββR

ααR ide .

αεβ′α
R

βεα′β
R

εβ

εα

in EndD(e) defined in construction 11.2.1, is (k − 1)-fold (vertically/ horizontally) right
adjointable.

Construction 11.2.3. Recall the universal left adjointable arrow L : [1] → Adj and the
universal vertically right adjointable square

id[1]×L : [1]× [1]→ [1]× Adj

from remark 10.4.4. Let U+ be the colimit in 2Cat of the following diagram:

Adj [1]× Adj Adj

[1]× [1]

[1] [1]

id[1]×L

id[1]×{0}
L

{1}×id[1]

L

In other words, U+ is the universal vertically right adjointable square such that the horizontal
arrows are also right adjointable. Construction 11.2.1 provides a functor

Cuniv : Σ([1]× [1])→ U+

where Σ denotes the functor which associates to each n-category T an (n+ 1)-category Σ(T )
with objects s, t and such that its only nontrivial Hom category is HomΣ(T )(s, t) = T .

We define for each n ≥ 2 an n-category Un equipped with a functor in : [1]× [1]→ Un as
follows:

• When n = 2 we set i1 = id[1]×L : [1]× [1]→ [1]× Adj.

• Assume that n > 2. Then we let Un be the pushout of the following diagram:

U+ Σ(Un−1)

Σ([1]× [1])

Σ(in−1)Cuniv

.
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The functor in is the universal (n−1)-fold vertically right adjointable commutative square.
The map in an epimorphism - for each n-category D precomposition with in induces an
equivalence between the space of functors Un → D and the space of functors [1]× [1]→ D
which correspond to (n− 1)-fold right adjointable squares.

Remark 11.2.4. As a consequence of the existence of a universal (n−1)-fold vertically right
adjointable commutative square we deduce the following fact: if F : I → nCat is a diagram
with limit D, then a commutative square in D is (n− 1)-fold vertically right adjointable if
and only if its image in F (i) is (n− 1)-fold vertically right adjointable for all i in I.

Definition 11.2.5. Let C be a category admitting pullbacks and D be an n-category. We say
that a functor F : C → D satisfies the left n-fold Beck-Chevalley condition if for every cospan
x→ s← y in C, the induced commutative square

F (x×s y) F (y)

F (x) F (s)

is n-fold right adjointable.

We are now ready to state the universal property of the n-category of correspondences.

Theorem 11.2.6. Let C be a category admitting pullbacks and D be an n-category. Restriction
along the inclusion ιnC : C → nCorr(C) induces an identification of HomnCat(nCorr(C),D)
with the subspace of HomnCat(C,D) consisting of functors satisfying the left (n − 1)-fold
Beck-Chevalley condition.

The proof of theorem 11.2.6 needs a few lemmas.

Lemma 11.2.7. Let O be an operad 1 and letM be an O-monoidal category. Let F : A → B
be a morphism of O-algebras in M. Assume that for every operation µ in O with source
{Xs}s∈S and target X the induced map

F (µ) : µ({A(Xs)}s∈S)→ µ({B(Xs)}s∈S)

is an epimorphism in M(X). Then

(i) The morphism F is an epimorphism in AlgO(M).

1In this thesis we use a language for speaking about operads which is close in spirit to the classical
language in terms of objects and operations which satisfy a composition rule. Namely, given an operad O
with associated category of operators p : O⊗ → Fin∗, we call p−1(〈1〉) the category of objects of O, and
arrows in O⊗ lying above an active arrow of the form 〈n〉 → 〈1〉 are called operations of O.
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(ii) Let B′ be another O-algebra in M. Then a morphism F ′ : A → B′ factors through B if
and only if for every object X in O the map F ′(X) : A(X) → B′(X) factors through
B(X).

Proof. Denote by p : O⊗ → Fin∗ and q :M⊗ → O⊗ the categories of operators associated to
O and M. Recall that AlgO(M) is the full subcategory of

FunctO⊗(O⊗,M⊗) = Funct(O⊗,M⊗)×Funct(O⊗,O⊗) [0]

on those functors that map inert arrows in O⊗ to inert arrows in M⊗. The algebras A,B
determine functors A,B : O⊗ →M⊗, and F is a natural transformation A → B.

We will show that F is an epimorphism by showing that the diagram

A B

B B

F

F id

id

is a pushout diagram in AlgO(M). This would follow if we are able to show that the above
is a pushout in FunctO⊗(O⊗,M⊗). Note that the square which is constant idO⊗ is a pushout
square in Funct(O⊗,O⊗). Therefore we may in fact restrict to showing that the above square
defines a pushout square in Funct(O⊗,M⊗). This can be done pointwise. Let {Xs}s∈S be
an object of O⊗, corresponding to a finite collection of objects of O. We must show that the
square

{A(Xs)}s∈S {B(Xs)}s∈S

{B(Xs)}s∈S {B(Xs)}s∈S

{F (Xs)}s∈S

{F (Xs)}s∈S id

id

taking place in q−1({Xs}s∈S) =
∏

s∈SM(Xs) ⊂M⊗, defines a pushout square inM⊗. Since
the image under q of the above square is constant (and thus a pushout), suffices to show that
the above is in fact a q-pushout. Using [Lur09a] proposition 4.3.1.10, we reduce to showing
that for every arrow α : {Xs}s∈S → {Xt}t∈T in O⊗, the image of the above square under the
functor

α! : q−1({Xs}s∈S)→ q−1({Xt}t∈T )

is a pushout. It suffices to do this in the case when α is either inert or active, and this follows
readily from our assumptions on F . This proves item (i).

We now prove item (ii). Assume given a morphism F ′ : A → B′ such that for every object
X in O the map F ′(X) : A(X) → B′(X) factors through B(X). We have to show that F ′

factors through B. Let {Xs}s∈S be an object in O⊗. Note that the map

F ′({Xs}s∈S) : {A(Xs)}s∈S → {B′(Xs)}s∈S
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factors through {B(Xs)}s∈S. It follows that we have a pushout diagram

{A(Xs)}s∈S {B(Xs)}s∈S

{B′(Xs)}s∈S {B′(Xs)}s∈S

{F (Xs)}s∈S

{F ′(Xs)}s∈S

id

in q−1({Xs}s∈S). We claim that the above is a q-colimit diagram. As before, by [Lur09a]
proposition 4.3.1.10, we reduce to showing that for every arrow α : {Xs}s∈S → {Xt}t∈T in
O⊗, the image of the above square under α! is a pushout. The case when α is inert is clear;
the case when α is active follows from our assumption on F .

Using [Lur17] lemma 3.2.2.9 we see that there is a square

A B

B′ B′′

F

F ′

G

in FunctO⊗(O⊗,M⊗) with the property that, for every object {Xs}s∈S in O⊗, the induced
square

{A(Xs)}s∈S {B(Xs)}s∈S

{B′(Xs)}s∈S {B′′(Xs)}s∈S

F ({Xs}s∈S)

F ′({Xs}s∈S)

G({Xs}s∈S)

is a q-colimit diagram. It follows that G({Xs}s∈S) is an isomorphism, and hence G is an
isomorphism, which implies that F ′ factors through B, as desired.

Lemma 11.2.8. Let C be a category admitting pullbacks and let

x×s y y

x s

α′

β′ β

α

(∗)

be a cartesian square in C. Then the commutative square

ιC(γ)ιRC (γ) ιC(β)ιRC (β)

ιC(α)ιC(α)R idιC(s)

ιC(β)ειC(α′)ι
R
C (β)

ιC(α)ειC(β′)ι
R
C (α) ειC(β)

ειC(α)
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in End2Corr(C)(ιC(s)) that results from construction 11.2.1 applied to the image of (∗) under
ιC is equivalent to the image under the canonical map

C/s → C/s,s = End2Corr(C)(ιC(s))

of the commutative square

γ α

β ids

β′

α′ α

β

whose image under the forgetful functor C/s → C recovers (∗).

Proof. Let U be the universal cospan: this is the category with objects 0, 1, 2 and nontrivial

arrows 0
αu−→ 1

βu←− 2. Everything in the statement is functorial in C, so we may reduce to
the case when C = F(U) is the free category with pullbacks on U , and the cartesian square
under consideration is

0×1 2 2

0 1.

α′u

β′u βu

αu

The two squares that we have to show are equivalent can easily be seen to have the same
vertices. Our result now follows from the fact that in End2Corr(F(U))(id1) there is a unique
commutative square with those vertices.

Lemma 11.2.9. Let C be a category admitting pullbacks and let D be an n-category for
n ≥ 3. Let F : C → D be a functor satisfying the left Beck-Chevalley condition. Then F
satisfies the left (n− 1)-fold Beck-Chevalley condition if and only if for every pair of objects
z, w in C the induced functor

Hom2Corr(C)(ιC(z), ιC(w))→ HomD(F (z), F (w))

satisfies the left (n− 2)-fold Beck-Chevalley condition.

Proof. Assume first that for every pair of objects z, w in C the functor

Hom2Corr(C)(ιC(z), ιC(w))→ HomD(F (z), F (w))

satisfies the left (n− 2)-fold Beck-Chevalley condition. Consider a cartesian square

x×s y y

x s

α′

β′ β

α
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in C and denote by γ : x×s y → s the induced map. Since F is assumed to satisfy the left
Beck-Chevalley condition, we know that the induced commutative square

F (x×s y) F (y)

F (x) F (s)

F (α′)

F (β′) F (β)

F (α)

is right adjointable. We need to show that the commutative square

F (γ)F (γ)R F (β)F (β)R

F (α)F (α)R idF (s)

F (β)εF (α′)F (β)R

F (α)εF (β′)F (α)R εF (β)

εF (α)

in EndD(F (s)) arising from construction 11.2.1 is (n− 2)-fold right adjointable. This square
is the image under the functor 2Corr(C)→ D of the commutative square

ιC(γ)ιRC (γ) ιC(β)ιRC (β)

ιC(α)ιC(α)R idιC(s) .

ιC(β)ειC(α′)ι
R
C (β)

ιC(α)ειC(β′)ι
R
C (α) ειC(β)

ειC(α)

This commutative square is described by lemma 11.2.8. In particular, note that the image of
it under the canonical map

End2Corr(C)(ids) = C/s,s → C
is a cartesian square. Since the projection C/s,s → C creates pullbacks, we conclude that the
above is in fact a cartesian square, and therefore its image inside EndD(F (s)) is (n− 2)-fold
right adjointable, as we wanted.

Assume now that F satisfies the left (n− 1)-fold Beck-Chevalley condition, and let z, w
be a pair of objects of C. Let

x] ×s] y] y]

x] s]

β′]

α′] α]

β]

(?)

be a cartesian square in Hom2Corr(C)(ιC(z), ιC(w)), whose image under the forgetful functor
Hom2Corr(ιC(z),ιC(w)) = C/z,w → C is a cartesian square in C which we denote as follows:

x×s y y

x s

β′

α′ α

β
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Let z ← s : σ and τ : s
τ−→ w be the legs of the span s]. Then the square (?) is equivalent to

the image of the square

γ α

β ids

β′

α′ α

β

(??)

under the composite map

C/s → C/s,s = End2Corr(C)(ιC(s))
ιRC (σ)∗

−−−→ Hom2Corr(C)(ιC(z), ιC(s))
ιC(τ)∗−−−→ Hom2Corr(C)(ιC(z), ιC(w)).

It therefore suffices to show that the image of the square (??) under the composite map

C/s → C/s,s = End2Corr(C)(ιC(s))→ EndD(F (s))

is (n−2)-fold right adjointable. This follows from the fact that F satisfies the left (n−1)-fold
Beck-Chevalley condition, combined with lemma 11.2.8.

Proof of theorem 11.2.6. We argue by induction on n. The case n = 2 is theorem 10.4.18,
so we assume n ≥ 3. The inclusion ι2,nC : 2Corr(C) → nCorr(C) defines a morphism in
AlgbrdC≤0((n− 1)Cat) which is an epimorphism by item (i) in lemma 11.2.7 combined with
our inductive hypothesis. The second part of lemma 11.2.7 guarantees that for any other
AssosC≤0-algebra B′ in (n− 1)Cat precomposition with ι2,nC induces an equivalence between
the space of maps nCorr(C)→ B′ and the space of maps 2Corr(C)→ B′ such that for every
pair of objects z, w in C the induced map

Hom2Corr(C)(ιC(z), ιC(w))→ B′(z, w)

satisfies the left (n− 2)-fold Beck-Chevalley condition. Since the projection

Algbrd((n− 1)Cat)→ Cat

is a cartesian fibration, we conclude that ι2,nC is in fact an epimorphism in Algbrd((n− 1)Cat),
and in particular it is an epimorphism in nCat. Moreover, a morphism G : 2Corr(C)→ D
factors through nCorr(C) if and only if for every pair of objects z, w in C the induced functor

Hom2Corr(C)(ιC(z), ιC(w))→ HomD(G(ιC(z)), G(ιC(w)))

satisfies the left (n − 2)-fold Beck-Chevalley condition. Our result now follows from a
combination of theorem 10.4.18 and lemma 11.2.9.

Remark 11.2.10. Let C be a symmetric monoidal category which admits pullbacks and
assume such that the tensor product functor C × C → C preserves pullbacks. Combining
theorem 11.2.6 with lemma 11.2.7 we see that for every n ≥ 2 the functor ιnC : C → nCorr(C) is
an epimorphism of symmetric monoidal n-categories. Given a symmetric monoidal n-category
D, precomposition with ιC yields an equivalence between the space of symmetric monoidal
functors nCorr(C)→ D and the space of symmetric monoidal functors C → D which satisfy
the left (n− 1)-fold Beck-Chevalley condition.
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11.3 Extension along the Yoneda embedding

Our next goal is to show that under suitable conditions, a functor out of nCorr(C) can be
extended to a functor on (n− 1)Corr(P(C)). We begin by recalling the passage to adjoints
property from chapter 12. The definition requires the notion of conical colimits and limits in
n-categories - we refer the reader to chapter 5 for a general discussion of this concept in the
setting of enriched categories.

Notation 11.3.1. Let D be an n-category. We denote by D≤1 the 1-category underlying
D, and by (D≤1)radj (resp. D≤1)ladj the subcategory of D≤1 containing all objects, and only
those morphisms which are right (resp. left) adjointable in D.

Definition 11.3.2. Let D be an n-category. We say that D satisfies the passage to adjoints
property if the following conditions are satisfied:

• The category (D≤1)radj has all colimits, and the inclusion (D≤1)radj → D preserves
conical colimits.

• The category (D≤1)ladj has all limits, and the inclusion (D≤1)ladj → D preserves conical
limits.

Remark 11.3.3. Let D be an n-category. Then passage to adjoints induces an equivalence
between the categories (D≤1)radj and (D≤1)ladj. It follows that if D satisfies the passage to
adjoints property, then a right adjointable diagram F : IB → D in D is a conical colimit if
and only if the diagram FR : (Iop)C → D is a conical limit.

Definition 11.3.4. Let D be an n-category. We say that D satisfies the 1-fold passage to
adjoints property if it satisfies the passage to adjoints property. For each (n− 1) ≥ k ≥ 2 we
say that D satisfies the k-fold passage to adjoints property if it satisfies the passage to adjoints
property and for every pair of objects d, e in D the (n− 1)-category HomD(d, e) satisfies the
(k − 1)-fold passage to adjoints property.

Definition 11.3.5. Let D be an n-category. We say that D is 1-fold conically cocomplete
if it admits all small conical colimits. For each n ≥ k ≥ 2 we say that D is k-fold conically
cocomplete if it is 1-fold conically cocomplete and for every pair of objects d, e in D the
(n− 1)-category HomD(d, e) is (k − 1)-fold conically cocomplete.

Example 11.3.6. Recall the category nPrL of presentable n-categories from chapter 12.
Each object D in nPrL has an underlying n-category ψn(D). It follows from theorems 12.4.6
and 12.5.14 together with remark 12.3.3 that ψn(D) is n-fold conically cocomplete and satisfies
the (n− 1)-fold passage to adjoints property.

Definition 11.3.7. Let C be a category admitting pullbacks. We say that a map f : x→ y in
P(C) is representable if for every map c→ y with c in C, the presheaf x×y c is representable.
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Remark 11.3.8. Let C be a category admitting pullbacks. The class of representable
morphisms defines a subcategory P(C)rep of P(C). The category P(C)rep contains all pullbacks,
and these are preserved by the inclusion into P(C).

We are now ready to state our extension theorem.

Theorem 11.3.9. Let n ≥ 2. Let C be a category admitting pullbacks and D be an (n−1)-fold
conically cocomplete n-category satisfying the (n− 1)-fold passage to adjoints property. Let
F : P(C)→ D be a conical colimit preserving functor.

(i) If F |C satisfies the left (n − 1)-fold Beck-Chevalley condition, then for every pair of
maps α : x→ s and β : y → s in P(C) where β is representable the commutative square

F (x×s y) F (y)

F (x) F (s)

F (β)

F (α)

is (n − 1)-fold vertically right adjointable. In particular, F |P(C)rep satisfies the left
(n− 1)-fold Beck-Chevalley condition.

(ii) If F |C : C → D and (F |C)n-op : C → Dn-op satisfy the left (n − 1)-fold Beck-Chevalley
conditions, then F satisfies the left (n− 1)-fold beck-Chevalley condition.

Before giving the proof of theorem 11.3.9, we study a few consequences.

Corollary 11.3.10. Let n ≥ 3. Let C be a category admitting pullbacks and let D be an
(n − 2)-fold conically cocomplete n-category satisfying the (n − 2)-fold passage to adjoints
property. Let F : P(C)→ D be a conical colimit preserving functor such that F |C satisfies the
left (n−1)-fold Beck-Chevalley condition. Then F satisfies the left (n−2)-fold Beck-Chevalley
condition.

Proof. By theorem 11.2.6, F admits an extension to nCorr(C). Recall from remark 10.2.6 that
there is a natural equivalence 2Corr = 2Corr1-op which restricts to the identity on underlying
spaces. It follows by induction that for each m ≥ 3 there is a natural equivalence between
the functor mCorr and the functor mCorr(m−1)-op, which is an equivalence upon passage to
underlying categories. In particular, we have an equivalence between nCorr(C)(n−1)-op and
nCorr(C) which is the identity on the underlying category. It follows that F (n−1)-op admits
an extension to a functor from nCorr(C) into D(n−1)-op, and therefore F (n−1)-op satisfies the
(n− 1)-fold Beck-Chevalley condition. Our result now follows from theorem 11.3.9.

Remark 11.3.11. In the setting of theorem 11.3.9 item (i), it is not true in general that
F will satisfy the full left (n − 1)-fold Beck-Chevalley condition, although it does satisfy
the left (n− 2)-fold Beck-Chevalley condition thanks to corollary 11.3.10. In other words,
the statement of part (i) in theorem 11.3.9 does not hold if we remove the representability
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condition. For example, the functor mod : CAlg(Sp)op → (PrL)1-op that assigns to each
commutative ring spectrum its category of modules satisfies the left Beck-Chevalley condition,
but its left Kan extension along CAlg(Sp)op → P(CAlg(Sp))op is the functor that assigns to
each (nonconnective) prestack its category of quasicoherent sheaves, which does not satisfy
base change in all generality.

Definition 11.3.12. Let D be an n-category. For each 0 ≤ k < n we denote by Dk-adj the
largest (k + 1)-category contained inside D and such that all cells of dimension at most k
admit both left and right adjoints. We say that an arrow α in D is k-fold adjointable if it
belongs to Dk-adj.

Corollary 11.3.13. Let n ≥ 3. Let C be a category admitting pullbacks and let D be an
(n − 1)-fold conically cocomplete n-category satisfying the (n − 1)-fold passage to adjoints
property. Let F : P(C) → D be a conical colimit preserving functor such that F |C and
(F |C)n-op satisfy the left (n− 1)-fold Beck-Chevalley condition. Let β : x→ y be a morphism
in P(C). Then F (β) is (n− 2)-fold adjointable, and its left and right adjoints are equivalent.

Proof. Combine theorems 11.2.6 and 11.3.9 with proposition 11.1.9.

Corollary 11.3.14. Let n ≥ 2. Let C be a category admitting pullbacks. Let D be an
(n− 1)-fold conically cocomplete symmetric monoidal n-category satisfying the (n− 1)-fold
passage to adjoints property. Equip P(C) with its cartesian symmetric monoidal structure.
Let F : P(C)→ D be a symmetric monoidal conical colimit preserving functor such that F |C
and (F |C)n-op satisfy the left (n − 1)-fold Beck-Chevalley condition. Let x be an object in
P(C). Then

(i) The object F (x) in D is fully dualizable in D≤n−1.

(ii) Let ∆ : x → x × x be the diagonal map and π : x → ∗ be the projection to the final
object of P(C). If F (∆) and F (π) are (n−1)-fold adjointable then x is a fully dualizable
object of D.

Proof. Combine theorem 11.3.9, remark 11.2.10 and corollary 11.1.10, with the description of
the self duality of x in 2Corr(P(C)) from proposition 10.3.3 and remark 10.3.4.

The proof of theorem 11.3.9 needs a few lemmas.

Lemma 11.3.15. Let C be a category admitting pullbacks and D be a 2-category. Let
F : P(C)→ D be a conical colimit preserving functor. Let

x×s y y

x s

β′

α′

β

α

(?)
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be a cartesian square in P(C). Assume that for every arrow c→ c′ in C/s the induced square

F (c×s y) F (c′ ×s y)

F (c) F (c′)

F (βc) F (βc′ )

is vertically right adjointable. Then the image of (?) under F is vertically right adjointable.

Proof. Let XB : IB → P(C) be a colimit diagram such that its value on the cone point X(∗)
recovers x, and such that X = XB|I factors through C. Let

(I+)B = (I t [0])B = IB
⋃
[0]

[1]

be the category obtained by adjoining a final object to I t [0]. There is an evident inclusion

i : (I+)B → IB × [1]

defined by the fact that it preserves final objects, and extends the inclusions I idI ×1−−−→ I × [1]

and [0]
∗×0−−→ I × [1]. Consider the functor (XB)+ : (I+)B → P(C) which extends XB and

such that (XB)+|[0]B recovers the arrow β′.
Let Y B : IB×[1]→ P(C) be the right Kan extension of (XB)+ along i, and let Y = Y B|I×[1].

In other words, Y B is such that the restriction Y B|∗×[1] recovers the arrow β′, the restriction
Y B|I×{1} recovers XB, and for every index i in I the induced commutative square

(Y (i), 0) x×s y

(Y (i), 1) x

β′

is a pullback square. Since pullbacks distribute over colimits in presheaf categories, we have
that Y B|I×{j} is a colimit diagram in P(C) for j = 0, 1.

Let ZB : IB → Funct([1], C) be the functor associated to Y B, and Z = ZB|I . Note that
the functor FZB : IB → Funct([1],D) is a conical colimit diagram for FZ. Our hypothesis
on F together with remark 10.4.2 imply that the functor FZ factors through Funct(Adj,D).
Since D is conically cocomplete, we conclude that FZB also factors through Funct(Adj,D),
and in fact defines a conical colimit diagram in Funct(Adj,D). In particular, for all objects i
in I, the square

F (X(i)×x x×s y) F (x×s y)

F (X(i)) F (x)

F (βX(i)) F (β′)
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is vertically right adjointable.
Repeating the above argument with the conical colimit diagram CB/s → P(C) shows that

for every i in I the square

F (X(i)×x x×s y) F (y)

F (X(i)) F (s)

F (βX(i)) F (β)

is vertically right adjointable. In other words, the morphism F (β′)→ F (β) in Funct([1],D)
induced by the square (?) is such that its composition with the map F (βX(i)) → F (β′)
factors through the subcategory Funct(Adj,D). Since FZB is a conical colimit diagram we
conclude that the map F (β′)→ F (β) factors through Funct(Adj,D), which means that (?)
is vertically right adjointable, as desired.

Lemma 11.3.16. Let C be a category admitting pullbacks, and D be a 2-category. Assume
that D is satisfies the passage to adjoints property. Let F : P(C)→ D be a conical colimit
preserving functor and assume that F |C satisfies the left and right Beck-Chevalley conditions.
Then F satisfies the left Beck-Chevalley condition.

Proof. Let

x×s y y

x s

β′

α′

β

α

be a cartesian square in P(C). We have to show that its image under F is vertically right
adjointable. By virtue of lemma 11.3.15, we may assume that x and s are representable.

Let XB : IB → P(C) be a colimit diagram such that X = XB|I factors through C, and
its value on the cone point XB(∗) recovers y. Since F preserves conical colimits we have that
FXB is a conical colimit diagram.

Note that the composite morphism

F (X(i))→ F (y)
F (β)−−→ F (s)

admits a right adjoint for every i in I. Since D satisfies the passage to adjoints property and
FX factors through (D≤1)radj, we conclude that F (β) admits a right adjoint in D. A similar
argument guarantees that F (β′) admits a right adjoint.

Using remark 10.4.3 we now see that in order to show that the image of our square under
F is vertically right adjointable it suffices to show that it is horizontally left adjointable.
Applying the dual version of lemma 11.3.15 we may assume that our square takes place in C,
and in this case the conclusion follows from the fact that F |C satisfies the right Beck-Chevalley
condition.
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Lemma 11.3.17. Let D be an n-category for n ≥ 3 and let

τd′ τd

τe′ τe

τα′

τβ′ τβ

τα

(?)

be a commutative square in Funct([1],D), corresponding to a commutative cube as follows:

d′1 d1

d′0 d0

e′1 e1

e′0 e0

β′1

α′1

β1

α′0

τd′

β′0

β0

τd

α1

α0

τe′ τe

Then the square (?) is (n − 1)-fold vertically right adjointable if and only if the front and
back faces of the cube are (n− 1)-fold vertically right adjointable, the left and right faces are
vertically right adjointable, and the top and bottom faces are horizontally right adjointable.

Proof. It follows from remark 10.4.2 that:

• The morphisms τα′ and τα are right adjointable if and only if the top and bottom faces
of the cube are horizontally right adjointable.

• The morphisms τβ′ and τβ are right adjointable if and only if the left and right faces of
the cube are vertically right adjointable.

Assume that both both of the items above hold. It follows from lemma 10.4.12 that the
square (?) is vertically right adjointable if and only if the front and back faces of the cube
are vertically right adjointable. Consider now the pullback square

EndFunct([1],D)(τe) EndD(e0)

EndD(e1) HomD(e0, e1).

ev0

ev1 (τe)∗

(τe)∗

Using remark 11.2.4 we see that a commutative square in EndFunct([1],D)(τe) is (n− 2)-fold
vertically right adjointable if and only if its image under ev0 and ev1 is (n− 2)-fold vertically
right adjointable. The lemma now follows by applying this fact to the square associated to
(?) under construction 11.2.1.
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Lemma 11.3.18. Let C be a category admitting pullbacks and D be a 2-category. Assume
that D satisfies the passage to adjoints property. Let F : P(C) → D be a conical colimit
preserving functor satisfying the left Beck-Chevalley condition. Let c, c′ be objects of P(C).
Then the induced functor

F∗ : Hom2Corr(P(C))(ιP(C)(c), ιP(C)(c
′))→ HomD(F (c), F (c′))

is colimit preserving.

Proof. We first show that F∗ preserves (infinite) coproducts. Consider a family of spans

xi

c c′

ai bi

in P(C), indexed by a set I. Let

x

c c′

a b

be their coproduct, and for each i denote by ji : xi → x the induced map. We must show
that the family of morphisms

F (bi)F (ai)
R = F (b)F (ji)F (ji)

RF (a)R → F (b)F (a)R

induced from the counit maps F (ji)F (ji)
R → idF (x) exhibit F (b)F (a)R as the coproduct of

the family {F (bi)F (ai)
R}i∈I inside HomD(F (c), F (c′)).

Since D satisfies the passage to adjoints property, we have that the functors

(F (ji)
R)∗ : HomD(F (c), F (x))→ HomD(F (c), F (xi))

exhibit the left hand side as the product of the categories on the right hand side. It
follows that the natural transformations (F (ji)F (ji)

R)∗ → idHomD(F (c),F (x)) induced from the
counits of the adjunctions F (ji) a F (ji)

R exhibit idHomD(F (c),F (x)) as the coproduct of the
endofunctors (F (ji)F (ji)

R)∗. Since F (b)∗ is right adjointable we see that the induced natural
transformations (F (b)F (ji)F (ji)

R)∗ → F (b)∗ exhibit F (b)∗ as the coproduct of the functors
F (b)F (ji)F (ji)

R = F (bi)F (ji)
R. Our claim now follows from this by evaluation at F (a)R.

We now show that F∗ preserves pushouts. Consider a cospan of spans

x0

x1 x2

c c′

µ ν

a0 b0

a1

b1 a2

b2
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and let
x

c c′

a b

be its pushout. For each i denote by ji : xi → x the associated map. We must show that the
induced square

F (b0)F (a0)R F (b2)F (a2)R

F (b1)F (a1)R F (b)F (a)R

in HomD(F (c), F (c′)) is a pushout square. As before, since D satisfies the passage to adjoints
property, we have that the induced commutative square of categories

HomD(F (c), F (x)) HomD(F (c), F (x2))

HomD(F (c), F (x1)) HomD(F (c), F (x0))

(F (j2)R)∗

(F (j1)R)∗ F (ν)R∗

F (µ)R∗

is a pullback square. It follows that the commutative square

(F (j0)F (j0)R)∗ (F (j2)F (j2)R)∗

(F (j1)F (j1)R)∗ idHomD(F (c),F (x))

induced from the counit of the adjunctions F (ji) a F (ji)
R, is a pushout square. Since

F (b)∗ is a left adjoint, we obtain that the following commutative square in the category
Funct(HomD(F (c), F (x)),HomD(F (c), F (c′))) is a pushout square:

(F (b)F (j0)F (j0)R)∗ (F (b)F (j2)F (j2)R)∗

(F (b)F (j1)F (j1)R)∗ F (b)∗

Our result now follows from this by evaluation at F (a)R.

Proof of theorem 11.3.9. We begin by proving item (ii). We argue by induction on n. The
case n = 2 is proven in lemma 11.3.16, so assume n > 2.
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It follows from our inductive hypothesis (in the form of corollary 11.3.10) that F satisfies
the left Beck-Chevalley condition. Let

x×s y y

x s

β′

α′

β

α

be a cartesian square in P(C). Let SB : IB → P(C) be a colimit diagram such that its value
on the cone point S(∗) recovers s, and S = SB|I factors through C. Arguing as in the proof
of lemma 11.3.15, we may construct a functor TB : IB × ([1]× [1]) such that TB|IB×{(1,1)}
recovers SB, the functor TB|∗×([1]×[1]) is given by the above square, and moreover for every
object i in I the cube

x×s y y

TB(i, (0, 0)) TB(i, (1, 0))

x s

TB(i, (0, 1)) TB(i, (1, 1))

β′

α′

β

α

has all its faces cartesian. In particular, for every object (j, k) in [1] × [1] the restriction
TB|IB×{(j,k)} is a colimit diagram in P(C).

Let RB : IB → Funct([1] × [1],P(C)) be the induced functor. The composite functor
FRB : IB → Funct([1], [1],D) is a conical colimit diagram, and its value on the cone point ∗
recovers the image under F of our original square.

Recall from construction 11.2.3 the universal (n − 1)-fold vertically right adjointable
square in : [1]× [1]→ Un. Our task is to show that FRB(∗) belongs to Funct(Un,D). This
would follow if we are able to show that FRB|I factors through Funct(Un,D). Using lemma
11.3.17 together with the fact that F satisfies the left Beck-Chevalley condition, we reduce to
showing that FRB(i) belongs to Funct(Un,D) for every i in I. In other words, we must show
that the front face of the above cube is (n− 1)-fold vertically right adjointable. This face is a
cartesian square in P(C), and its lower right corner c = TB(i, (1, 1)) is representable.

It follows from lemma 11.2.8 that the commutative square in End2Corr(P(C))(ιP(C)(c))
associated to the front face of the cube by construction 11.2.1 is cartesian. It therefore suffices
to show that the functor

End2Corr(P(C))(ιP(C)(c))→ EndD(F (c))

induced from F satisfies the left (n − 2)-fold Beck-Chevalley condition. Using [GHN17]
corollary 9.9, we obtain equivalences

P(End2Corr(C)(ιC(c))) = P(C/c,c) = P(C)/c,c = End2Corr(P(C))(ιP(C)(c)).
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Our result now follows from our inductive hypothesis together with lemmas 11.3.18 and
11.2.9.

We now give a proof of item (i). We proceed along the same lines as the proof of item (ii)
carried out above, with suitable modifications. Again we argue by induction on n. The case
n = 2 follows directly from lemma 11.3.15. Assume now that n > 2. Using our inductive
hypothesis (in the form of corollary 11.3.10) we see that F satisfies the left Beck-Chevalley
condition. Let

x×s y y

x s

β′

α′

β

α

be a cartesian square in P(C), where β is representable. We have to show that its image
under F is (n− 1)-fold vertically right adjointable. Arguing in the same way as in the proof
of item (ii), we may reduce to the case when s belongs to C. Since β is representable, we also
have that y belongs to C.

As before, the square in End2Corr(P(C))(ιP(C)(s)) associated to the above square via con-
struction 11.2.1, is cartesian. It follows from lemma 11.2.8 that the right vertical side of that
square corresponds to the morphism of spans

y

s

s s.

β β

β

id id

Our result now follows again from our inductive hypothesis combined with lemmas 11.3.18
and 11.2.9, using the fact that the above diagram defines a representable morphism in
P(C/s,s).
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Chapter 12

Presentable n-categories

LetM be a presentable symmetric monoidal category. Then any presentable category C with
an action of M compatible with colimits has a natural structure of M-enriched category. As
we discussed in chapter 4, this procedure gives rise to a lax symmetric monoidal functor from
the symmetric monoidal category M -modpr of M-modules in PrL to the category CatM

of M-enriched categories. Under certain conditions, a category equipped with an action of
M -modpr inherits the structure of an M -modpr-enriched category, and it therefore also has
the structure of a category enriched in CatM - in other words, a 2-category enriched in M.
Our goal in this chapter is to introduce higher versions of this procedure that allow one to
produce n-categories enriched in M for all values of n.

A naive iteration of the enrichment procedure described above runs into set theoretical
difficulties: even though M is presentable, the category M -modpr is no longer presentable
in general as it is generally not locally small. It therefore does not make sense to consider
its category of modules in PrL. However, we still have that M -modpr admits all small
colimits and its tensor product structure preserves all colimits, so one may consider the
symmetric monoidal category M -mod2 of M -modpr-modules in the symmetric monoidal

category Ĉatcocompl of large cocomplete categories. One can then define a functor from
M -mod2 to the category of 2-categories enriched in a suitable completion of M.

If one attempts to repeat the above to obtain enriched 3-categories one runs into a similar
problem than in the 2-categorical case. Again the category M -mod2 is not presentable.
However, M -mod2 is now not large, but very large. It therefore does not make sense to
consider its category of modules in Ĉatcocompl. One way around this problem is to consider
instead its category of modules in the category CATcocompl of very large categories admitting
all large colimits. This can be iterated to yield a theory that works for all values of n, however
this requires one to work with an infinite sequence of nested universes and keep careful track
of the relative sizes of various objects.

In this thesis we pursue a different approach that is based on the observation that although
M -mod2 is very large, it is controlled by a large cocomplete category M -mod2

pr of so called
presentableM -modpr-modules. It therefore makes sense to consider the symmetric monoidal

category M -mod3 of modules for M -mod2
pr inside Ĉatcocompl, which is again controlled by
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a subcategory M -mod3
pr of presentable M -mod2

pr-modules. Iterating this reasoning yields
symmetric monoidal categories M -modn and M -modnpr for all n ≥ 1, which admit functors
into the category of n-categories enriched in a suitable completion of M.

We begin in 12.1 by introducing the notion of presentable module over an arbitrary
monoidal cocomplete category E . This is obtained as a special case of the notion of κ-
compactness in presentable categories in the case when κ = κ0 is the smallest large cardinal,
applied to the very large presentable category E -mod(Ĉatcocompl). We show that if A is an
algebra object in E then the category of right A-modules is a presentable left E-module. In
the case when E is a presentable monoidal category, we show that the category E -modpr of
presentable E-modules agrees with the category E -mod(PrL) of E-modules in PrL. When
E = Spc this yields a characterization of Spc -modpr = PrL as the full subcategory of

Ĉatcocompl on the κ0-compact objects.
In 12.2 we iterate the above to obtain symmetric monoidal categories E -modn and

E -modnpr attached to each symmetric monoidal cocomplete category E . Specializing to

the case E = Spc, we obtain a symmetric monoidal category nPrL = Spc -modnpr whose
objects we call presentable n-categories. In the case when E is the category of spectra, this
yields a full subcategory nPrLSt of nPrL whose objects we call presentable stable n-categories.
Applying the results from 12.1 inductively, we are able to conclude that for every commutative
ring spectrum A there is an associated presentable stable n-category A -modn of A-linear
presentable stable (n− 1)-categories.

In 12.3 we use the theory from chapter 4 to construct a lax symmetric monoidal functor
ψn : Spc -modn → nCat

∧
. In other words, even though our approach to presentable n-

categories is 1-categorical in nature, we are able to upgrade presentable n-categories to honest
n-categories. We use the realization functor ψn to obtain (n+ 1)-categorical enhancements
nPrL and nCatL for nPrL and Spc -modn, respectively.

In 12.4 we establish our first main result regarding the theory of presentable n-categories,
theorem 12.4.6: if C belongs to Spc -modn then ψn(C) is a conically cocomplete n-category,
and moreover any limit that exists in C is a conical limit in ψn(C). In particular, we conclude
that nPrL is a conically cocomplete n-category.

A fundamental feature of the 2-category PrL is that colimits of right adjointable diagrams
can be computed as limits after passage to right adjoints. In 12.5 we establish a generalization
of this statement (theorem 12.5.14) : we show that for every object C in Spc -modn the
n-category ψn(C) satisfies the so-called passage to adjoints property. In particular, we are
able to conclude that ψn(C) admits limits of left adjointable diagrams.

12.1 Presentable modules over cocomplete monoidal categories

We begin by discussing the notion of smallness for objects of a category with large colimits.
This is a special case of the notion of κ-compactness from [Lur09a] section 5.3.4, in the case
when κ is the smallest large cardinal.
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Notation 12.1.1. Denote by κ0 the smallest large cardinal. In other words, κ0 is such that
κ0-small spaces are what we usually call small spaces. We denote by Ĉatcocompl the category
of large categories admitting all small colimits, and functors which preserve small colimits.
As usual, we denote by PrL the full subcategory of Ĉatcocompl on the presentable categories.

Definition 12.1.2. Let C be a very large, locally large category admitting all large colimits.
An object c in C is said to be κ0-compact if the functor C → Ŝpc corepresented by c preserves
large κ0-filtered colimits. We say that C is κ0-compactly generated if it is generated under
large colimits by its κ0-compact objects, and the space of κ0-compact objects in C is large.

Remark 12.1.3. Let C be a very large, locally large category admitting all large colimits.
Then the collection of κ0-compact objects is closed under small colimits in C ([Lur09a]
corollary 5.3.4.15). Moreover, if C is κ0-compactly generated then it can be recovered from
its full subcategory of κ0-compact objects by freely adjoining large κ0-filtered colimits.

Proposition 12.1.4. The category Ĉatcocompl is κ0-compactly generated. Moreover, an object

of Ĉatcocompl is κ0-compact if and only if it is a presentable category.

Proof. The fact that Ĉatcocompl is presentable as a very large category follows from [Lur17]

lemma 4.8.4.2. Let U : Ĉatcocompl → Ĉat be the forgetful functor. It follows from [Lur09a]
proposition 5.5.7.11 that U preserves κ0-filtered colimits, and therefore its left adjoint
P : Ĉat→ Ĉatcocompl sends κ0-compact objects to κ0-compact objects. Note that Ĉat is κ0-
compactly generated by the small categories. Since U is furthermore conservative we conclude
that Ĉatcocompl is generated under large colimits by the objects of the form P(I) where I is

a small category. In particular we conclude that Ĉatcocompl is κ0-compactly generated.

We now show that PrL is closed under small colimits inside Ĉatcocompl. Recall from
[Lur09a] section 5.5.7 that PrL is the union of its subcategories PrLκ of κ-compactly generated
categories and functors that preserve κ-compact objects, for κ a small regular cardinal. The
functor PrLκ → Cat sending each object C to its subcategory of κ-compact objects induces
an equivalence between PrLκ and the subcategory Catrex(κ),id of Cat consisting of idempotent
complete categories with κ-small colimits and functors that preserve those colimits. It follows
from [Lur17] lemma 4.8.4.2 that PrLκ is presentable and in particular it has all small colimits.

For τ > κ a pair of regular cardinals, the inclusion PrLκ → PrLτ is equivalent to the functor
Catrex(κ),id → Catrex(τ),id which freely adjoins τ -small κ-filtered colimits. This is a left adjoint,
and so it follows that the inclusion PrLκ → PrLτ preserves small colimits. Similarly, for each

κ the inclusion PrLκ → Ĉatcocompl is equivalent to the functor Catrex(κ),id → Ĉatcocompl that
freely adjoins small κ-filtered colimits, and so it preserves small colimits.

Note that PrL is the colimit of the categories PrLκ in Ĉat, and in particular also in the

category of very large categories. Moreover, the inclusion PrL → Ĉatcocompl is induced by

passing to the colimit the inclusions PrLκ → Ĉatcocompl. It follows from [Lur09a] proposition

5.5.7.11 that PrL admits small colimits and the inclusion PrL → Ĉatcocompl preserves small

colimits. In other words, PrL is closed under small colimits in Ĉatcocompl, as we claimed.
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It remains to show that PrL is generated under small colimits by the objects P(I) for I in
Cat. Indeed, for each small regular cardinal κ the forgetful functor PrLκ → Cat is conservative
and preserves κ-filtered colimits, which implies that PrLκ is generated under colimits by the
image of P|Cat. Our claim now follows from the fact that PrL is the union of the subcategories
PrLκ , and that the inclusions PrLκ → PrL preserve small colimits.

Recall from [Lur17] section 4.8 that Ĉatcocompl has a symmetric monoidal structure ⊗
such that for each triple of objects C,D, E , the space of morphisms C ⊗ D → E is equivalent
to the space of functors C × D → E which are colimit preserving in each coordinate. The
unit of this symmetric monoidal structure is the category Spc of spaces. This symmetric
monoidal structure is compatible with large colimits, in the sense that the functor

⊗ : Ĉatcocompl × Ĉatcocompl → Ĉatcocompl

preserves large colimits in each variable. Moreover, the subcategory PrL is closed under tensor
product and therefore PrL also inherits a symmetric monoidal structure which is compatible
with small colimits.

Notation 12.1.5. Let E be an algebra object in Ĉatcocompl (in other words, E is a large
cocomplete category equipped with a monoidal structure compatible with colimits). We

denote by E -modl (resp. E -modr) the category of left (resp. right) E-modules in Ĉatcocompl.
For each algebra A in E we denote by A -modl (resp. A -modr) the category of left (resp.

right) A-modules, thought of as an object of E -modr (resp. E -modl).
If E is a commutative algebra, we will use the notation E -mod for E -modl = E -modr. If A

is a commutative algebra in E , we will use the notation A -mod instead of A -modl = A -modr.

Warning 12.1.6. Let E be an algebra object in Ĉatcocompl, and assume that E is furthermore
presentable. Then E -modl has two different meanings. If we think about E as an algebra in
Ĉatcocompl then E -modl denotes the category of cocomplete categories with an action of E .
However if we think about E as an algebra in PrL (which is itself a commutative algebra in

Ĉatcocompl) then E -modl can be taken to mean the category of presentable categories with an

action of E . We will consider modules in Ĉatcocompl by default, unless it is clear from context
that E is to be considered specifically as an algebra in PrL. When in doubt, we will make the
context clear in our notation by writing E -modl(Ĉatcocompl) or E -modlpr = E -modl(PrL).

Proposition 12.1.7. Let E be an algebra object in Ĉatcocompl. Then the category E -modl is
κ0-compactly generated. Moreover, the collection of free left E-modules E ⊗ C where C is a
presentable category is a collection of κ0-compact generators for E -modl.

Proof. The forgetful functor E -modl → Ĉatcocompl preserves large colimits by [Lur17] corollary
4.2.3.5, and therefore its left adjoint preserves κ0-compact objects. Combining this with
proposition 12.1.4 we conclude that the free left E-module E ⊗ C is κ0-compact for every
presentable category C. The fact that these objects generate E -modl under large colimits
follows by observing that E -modl is generated under colimits by free modules ([Lur17]
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proposition 4.7.3.14), and that free modules live in the colimit-closure of the modules
E ⊗ C with C presentable. Using [Lur17] 4.2.3.7 we conclude that E -modl is κ0-compactly
generated.

Definition 12.1.8. Let E be an algebra in Ĉatcocompl. We say that a left E-module is pre-
sentable if it is a κ0-compact object in E -modl. We denote by E -modlpr the full subcategory of

E -modl on the presentable E-modules. If E comes equipped with the structure of a commutative
algebra, we will use the notation E -modpr instead of E -modlpr.

Remark 12.1.9. Recall from the proof of proposition 12.1.4 that PrL is generated under
small colimits by presheaf categories. Since the category of small categories is generated
under small colimits by [1], we in fact have that PrL is generated under small colimits by

P([1]). Using proposition 12.1.7 we see that for any algebra E in Ĉatcocompl the category
E -modpr is the smallest category of left E-modules containing E ⊗ P([1]) = Funct([1], E) and
closed under small colimits.

The following proposition provides an abundant source of presentable E-modules.

Proposition 12.1.10. Let E be an algebra in Ĉatcocompl, and let A be an algebra in E . Then
the category A -modr of right A-modules equipped with its natural left E-module structure, is
a presentable E-module.

Proof. Recall from [Lur17] remark 4.8.4.8 that A -modr is left dualizable as a left E-module
- its left dual is the category A -modl of left A-modules with its natural right E-module
structure. We thus have an equivalence

HomE -modl(A -modr,−) = HomĈatcocompl
(Spc, A -modl⊗E−) : E -modl → Ŝpc.

It follows from a combination of [Lur17] proposition 4.4.2.14 and [Lur09a] proposition 5.5.7.11
that the right hand side preserves κ0-filtered colimits, and thus A -modr is κ0-compact.

Remark 12.1.11. Let ϕ : E → E ′ be a morphism of algebras in Ĉatcocompl. Then the
extension of scalars functor

ϕ∗ = E ′ ⊗E − : E -modl → E ′ -modl

preserves large colimits, and maps each free E-module E ⊗ C to the free E ′-module E ′ ⊗ C. It
follows from proposition 12.1.7 that ϕ∗ maps presentable E-modules to presentable E ′-modules.

Similarly, given a pair of algebras E , E ′ in Ĉatcocompl, the exterior product functor

� : E -modl×E ′ -modl → (E ⊗ E ′) -modl

preserves colimits in each variable, and maps the pair (E ⊗C, E ′⊗D) to E ⊗E ′⊗C⊗D. Using
proposition 12.1.7 we conclude that � restricts to the subcategories of presentable objects.
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We therefore conclude that the assignment E 7→ E -modlpr has a natural enhancement to a
lax symmetric monoidal functor

-modlpr : Alg(Ĉatcocompl)→ Ĉatcocompl.

In particular, passing to commutative algebra objects yields an endofunctor

-modpr : CAlg(Ĉatcocompl)→ CAlg(Ĉatcocompl).

In other words, if E is a commutative algebra in Ĉatcocompl, then the natural symmetric
monoidal structure on E -mod restricts to a symmetric monoidal structure on E -modpr.

Example 12.1.12. Let E = Spc with the cartesian symmetric monoidal structure. This is
the trivial commutative algebra in Ĉatcocompl and therefore E -mod(Ĉatcocompl) = Ĉatcocompl.
Using proposition 12.1.4 we see that E -modpr coincides with the category PrL of presentable
categories. The symmetric monoidal structure on E -modpr agrees with the usual symmetric
monoidal structure on PrL.

Remark 12.1.13. Let E be a commutative algebra in Ĉatcocompl. Recall from [Lur17] section
4.8.5 that the functor -modr : Alg(E)→ E -mod has a natural symmetric monoidal structure.
Combining propositions 12.1.10 and remark 12.1.11 we see that the above restricts to a
symmetric monoidal functor Alg(E) → E -modpr. In particular, we obtain a symmetric
monoidal functor

-mod : CAlg(E)→ CAlg(E -modpr).

We finish by studying the interaction of the notion of presentability with extensions of
commutative algebras.

Proposition 12.1.14. Let ϕ : E → E ′ be a morphism of commutative algebras in Ĉatcocompl,
so that E ′ can alternatively be thought of as a commutative algebra in E -mod. Assume that
E ′ is presentable as an E-module. Then the canonical equivalence of symmetric monoidal
categories

E ′ -mod(Ĉatcocompl) = E ′ -mod(E -mod)

restricts to an equivalence

E ′ -modpr = E ′ -mod(E -modpr).

Proof. By proposition 12.1.7, the subcategory E ′ -modpr of E ′ -mod(Ĉatcocompl) is generated
under small colimits by the free modules E ′ ⊗ C with C presentable. Similarly, E -modpr

is generated under small colimits by the free modules E ⊗ C with C presentable, and thus
E ′ -mod(E -modpr) is generated under small colimits by the objects of the form

E ′ ⊗E (E ⊗ C) = E ′ ⊗ C.

We thus see that E ′ -modpr and E ′ -mod(E -modpr) are generated under small colimits by the
same collection of objects, and they therefore agree.
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Corollary 12.1.15. Let E be a commutative algebra in PrL. Then E -modpr is equivalent to
the category E -mod(PrL) of presentable categories equipped with an E-module structure.

Proof. Apply proposition 12.1.14 in the case of the unit Spc→ E .

12.2 Higher module categories

We now iterate the functor -modpr to arrive at a notion of higher presentable modules over a
cocomplete symmetric monoidal category.

Notation 12.2.1. For each n ≥ 0 we let

-modnpr : CAlg(Ĉatcocompl)→ CAlg(Ĉatcocompl)

be the endofunctor obtained by composing the endofunctor -modpr of remark 12.1.11 with
itself n times (in particular, if n = 0 we set -mod0

pr to be the identity endofunctor).
Denote by

-mod : CAlg(Ĉatcocompl)→ CAlg(CAT)

the functor that assigns to each commutative algebra E in Ĉatcocompl the (very large) symmetric
monoidal category E -mod. For each n ≥ 1 we let -modn be the composite functor

CAlg(Ĉatcocompl)
-modn−1

pr−−−−−→ CAlg(Ĉatcocompl)
-mod−−−→ CAlg(CAT).

Let E be a commutative algebra in Ĉatcocompl. We inductively define a symmetric monoidal
functor -modn : CAlg(E)→ CAlg(E -modnpr) as follows:

• When n = 0 we let -mod0 be the identity functor.

• When n > 1 we let -modn be the composite functor

CAlg(E)
-modn−1

−−−−−→ CAlg(E -modn−1
pr )

-mod−−−→ CAlg(E -modnpr).

where -mod denotes the functor of remark 12.1.13.

Definition 12.2.2. Let E be a commutative algebra in Ĉatcocompl and let n ≥ 0. We call
E -modnpr the category of presentable E-linear n-categories. In the case E = Spc we use the

notation nPrL = Spc -modnpr, and call it the category of presentable n-categories.

Warning 12.2.3. Let E be a presentable symmetric monoidal category and let n ≥ 1. By
virtue of being a commutative algebra in Ĉatcocompl, we have associated categories E -modn

and E -modnpr which are related to each other by passage to κ0-compact objects, and Ind-
κ0-completion. We can also think about E as a commutative algebra in the cocomplete
symmetric monoidal category PrL, and attach to it the object E -modn in PrL -modnpr. These
two notations are in conflict: as explained in remark 12.2.4 below, the underlying symmetric
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monoidal category to the latter agrees in fact with E -modnpr. We hope it will be clear from
context which version of the construction we are using at each time, and in case where it
may be ambiguous we will use the notation E -modn(Ĉatcocompl) or E -modn(PrL) to specify
which version of the two constructions we are using.

Remark 12.2.4. Let ϕ : E → E ′ be a morphism of commutative algebras in Ĉatcocompl, and
assume that E ′ is a presentable E-module. Denote by E ′ the associated commutative algebra
in E -modpr. An inductive application of proposition 12.1.14 shows that for every n ≥ 1 the
symmetric monoidal category E ′ -modnpr is equivalent to the symmetric monoidal category

underlying E ′ -modn. In particular, E ′ -modnpr can be enhanced to a commutative algebra in
presentable E-linear (n+ 1)-categories.

Specializing the above to the case when E = Spc and E ′ is a presentable symmetric
monoidal category, we see that E ′ -modnpr has a natural enhancement to a commutative
algebra in presentable (n+ 1)-categories. Moreover, if n > 1 we have equivalences

E ′ -modnpr = E ′ -modn(PrL) = (E ′ -modn−1(PrL)) -mod(nPrL) = E ′ -modn−1
pr -mod(nPrL).

In other words, a presentable E-linear n-category is the same data as a presentable n-category
equipped with the action of the presentable symmetric monoidal n-category of E-linear
(n− 1)-categories.

Specializing to the case when E is the category of spectra we obtain a notion of presentable
stable n-category.

Definition 12.2.5. Denote by Sp the symmetric monoidal category of spectra. For each
n ≥ 0 we denote by nPrLSt the category Sp -modnpr = Sp -modn(PrL), and call it the category
of presentable stable n-categories. For each commutative ring spectrum A we call A -modn

the presentable n-category of presentable A-linear (n− 1)-categories.

Remark 12.2.6. Recall from [Lur17] section 4.8.2 that Sp is an idempotent commutative
algebra in PrL. It follows by induction that nPrLSt is an idempotent commutative algebra in
(n+ 1) PrL for every n ≥ 0. We conclude that for every n ≥ 1 the functor

−⊗ (n− 1)PrLSt : nPrL → nPrLSt

is a localization functor. We think about the above as the stabilization functor for presentable
n-categories. The fact that it is a localization implies that being stable is a property of a
presentable n-category.

12.3 The n-categorical structure

Our next goal is to enhance the category Spc -modn to an (n + 1)-category. We will first
need to construct a lax symmetric monoidal functor

ψn : Spc -modn → n̂Cat.
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This is accomplished by applying in an inductive way the functor that turns modules over
presentable monoidal categories into enriched categories.

Notation 12.3.1. For each n ≥ 1 denote by

υSpc -modn : Spc -modn → Ĉat

the lax symmetric monoidal functor given by the composition

Spc -modn = (n− 1)PrL -mod(Ĉatcocompl)→ Ĉatcocompl → Ĉat

where the second and third arrow are the forgetful functors. The composition of υSpc -modn

with the symmetric monoidal functor (−)≤0 : Ĉat → Ŝpc is the lax symmetric monoidal
functor τSpc -modn that maps each object of Spc -modn to its underlying space.

Construction 12.3.2. Let

ψ1 : Spc -mod = Ĉatcocompl → Ĉat

be the forgetful functor, equipped with its canonical lax symmetric monoidal structure. In
other words, we have ψ1 = υ1. Let n > 1 and assume given a lax symmetric monoidal functor

ψn−1 : Spc -modn−1 → (n− 1)Cat
∧

such that the composite lax symmetric monoidal functor

Spc -modn−1 ψn−1−−−→ (n− 1)Cat
∧

(−)≤1

−−−→ Ĉat

is equivalent to υSpc -modn−1 .

Denote by P̂rL the category of very large presentable categories and (large) colimit
preserving functors, and by CAT the category of very large categories. We let

ϕn : Spc -modn → CATSpc -modn−1

be the lax symmetric monoidal functor given by the following composition:

Spc -modn = (n− 1)PrL -mod(Ĉatcocompl)
Indκ0−−−→ (Spc -modn−1) -mod(P̂rL)→ CATSpc -modn−1

Here the second arrow is the lax symmetric monoidal functor θSpc -modn−1 which sends each very

large presentable module over Spc -modn−1 to its underlying Spc -modn−1-enriched category.
Note that the lax symmetric monoidal functor (τSpc -modn−1)!ϕn is equivalent to the com-

posite

Spc -modn
υSpc -modn−−−−−−→ Ĉat

Indκ0−−−→ CAT .

In particular, we observe that for each morphism f : C → D in Spc -modn, the induced
morphism ϕn(f) : ϕn(C)→ ϕn(D) restricts to the full enriched-subcategories of ϕn(C) and
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ϕn(D) on those objects which are κ0-compact, when thought of as an object in C or D.
Furthermore, for every pair of objects C,D in Spc -modn, the morphism

ϕn(C)⊗ ϕn(D)→ ϕn(C ⊗ D)

arising from the lax symmetric monoidal structure on ϕn, restricts to the subcategories of
κ0-compact objects. We thus have a well defined lax symmetric monoidal functor

ϕ′n : Spc -modn → Ĉat
Spc -modn−1

equipped with a monomorphism into ϕn, and which maps every object C in Spc -modn to the
full enriched subcategory of ϕn(C) on those objects which are κ0-compact when thought of
as objects of C.

Let ψ′n be the composite lax symmetric monoidal functor

Spc -modn
ϕ′n−→ Ĉat

Spc -modn−1
(ψn−1)!−−−−→ Âlgbrd((n− 1)Cat
∧

).

Note that for every object C in Spc -modn, the Segal space underlying ψ′n(C) is given by
(ψ≤0

n−1)!ϕ
′
n(C) = (τSpc -modn−1)!ϕ

′
n(C) which is a complete Segal space since ϕ′n(C) is an enriched

category. It follows that ψ′n(C) is in fact also an enriched category. Hence ψ′n defines, by
corestriction, a lax symmetric monoidal functor

ψn : Spc -modn → Ĉat
̂(n−1)Cat

= n̂Cat.

Observe that we have equivalences of lax symmetric monoidal functors

(ψn)≤1 = (−)≤0
! ψn = ((ψn−1)≤0)!ϕ

′
n = (τSpc -modn−1)!ϕ

′
n

and the latter is obtained from (τSpc -modn−1)!ϕn = Indκ0 υSpc -modn by restricting to κ0-compact
objects. It follows that (ψn)≤1 is equivalent, as a lax symmetric monoidal functor, to υSpc -modn .
We conclude that this construction may be iterated to yield lax symmetric monoidal functors
ψn for all n ≥ 1.

Remark 12.3.3. Let n ≥ 2 and let C be an object of Spc -modn. Unwinding construction
12.3.2 reveals that ψn(C) is an n-category whose underlying category is the category underlying
C. For each pair of objects x, y of C we have an equivalence

Homψn(C)(x, y) = ψ(n−1)(HomIndκ0 (C)(x, y))

where the right hand side denotes the Hom object between x and y, where we consider
Indκ0(C) as a module over Spc -modn−1.

We now use the functors ψn to obtain the desired (n + 1)-categorical enhancement of
Spc -modn.
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Notation 12.3.4. Let n ≥ 1. We denote by nCatL the (very large) symmetric monoidal
(n+ 1)-category obtained by applying the composite lax symmetric monoidal functor

(Spc -modn) -mod(P̂rL)
θSpc -modn−−−−−−→ CATSpc -modn (ψn)!−−−→ CATn̂Cat ↪→ (n+ 1)CAT

to the unit object of (Spc -modn) -mod(P̂rL), where the first map is the map that turns
presentable modules into enriched categories.

Remark 12.3.5. The symmetric monoidal category underlying nCatL is Spc -modn. Given
two objects C,D in Spc -modn, we have an equivalence

HomnCatL(C,D) = ψnHomSpc -modn(C,D).

Given a third object E in Spc -modn, the composition map

HomnCatL(C,D)× HomnCatL(D, E)→ HomnCatL(C, E)

is obtained by applying the lax symmetric monoidal functor ψn to the morphism

HomSpc -modn(C,D)⊗HomSpc -modn(D, E)→HomSpc -modn(C, E)

which is associated to the composite map

C ⊗HomSpc -modn(C,D)⊗HomSpc -modn(D, E)→ D ⊗HomSpc -modn(D, E)→ E .

Definition 12.3.6. We denote by nPrL the full (n + 1)-subcategory of nCatL on the pre-
sentable n-categories. We call nPrL the (n+ 1)-category of presentable n-categories. We let
nPrLSt be the full (n+ 1)-subcategory of nPrL on the presentable stable n-categories. We call
nPrLSt the (n+ 1)-category of presentable stable n-categories

Remark 12.3.7. The categories underlying nPrL and nPrLSt are nPrL and nPrLSt, respec-
tively. Since these are closed under tensor products inside Spc -modn, we conclude that nPrL

and nPrLSt inherit symmetric monoidal structures from nCatL.

12.4 Conical colimits in presentable n-categories

Our next goal is to show that the realization functor ψn takes value in conically cocomplete
n-categories. This will be accomplished by combining proposition 5.4.8 with a generalization
of proposition 5.3.6, which depends on a variant of proposition 3.5.27.

Lemma 12.4.1. Let F :M→M′ be a lax symmetric monoidal functor between presentable
symmetric monoidal categories. Assume that F is accessible and preserves limits, and that
the lax symmetric monoidal functor τM′F is equivalent to τM. Then the induced functors

F! : Algbrd(M)→ Algbrd(M′)

and
F! : CatM → CatM

′

are accessible and preserve limits.
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Proof. The fact that τM′F is equivalent to τM implies that the functor

F! : Algbrd(M)→ Algbrd(M′)

restricts to the full subcategories of enriched categories. Since the inclusion of enriched
categories inside algebroids is creates limits and sufficiently filtered colimits, to prove the
lemma it suffices to show that the above functor is accessible and limit preserving.

Recall that F! is a morphism of cartesian fibrations over Cat. For every category X, the
functor

(F!)X : AlgbrdX(M)→ AlgbrdX(M′)

is accessible and limit preserving thanks to [Lur17] corollaries 3.2.2.4 and 3.2.3.1. We
know that AlgbrdX(M) and AlgbrdX(M′) are presentable by [Lur17] corollary 3.2.3.5, and
therefore by the adjoint functor theorem we see that (F!)X admits a left adjoint. Using [Lur17]
proposition 7.3.2.6 we see that F! itself admits a left adjoint, and the lemma follows.

Lemma 12.4.2. Let F :M→M′ be a lax symmetric monoidal functor between presentable
symmetric monoidal categories. Assume that F is accessible and preserves limits, and that
the lax symmetric monoidal functor τM′F is equivalent to τM. Let I be a category and let D
be an M-enriched category. Then there is an equivalence of M′-enriched categories

F! Funct(IM,D) = Funct(IM′ , F!(D))

which is natural in I, and which at the level of objects enhances the canonical equivalence

HomCatM(IM,D) = HomCat(I, (τM)!D) = HomCatM
′ (IM′ , F!D).

Proof. Denote by (F!)
L the left adjoint to F! : CatM → CatM

′
, which is guaranteed to exist

by lemma 12.4.1. Let E be an M′-algebroid. We have

HomCatM
′ (E ,Funct(IM′ , F!(D))) = HomCatM

′ (E ⊗ IM′ , F!(D))

= HomCatM((F!)
L(E ⊗ IM′),D).

Similarly, we have

HomCatM
′ (E , F! Funct(IM,D)) = HomCatM((F!)

L(E),Funct(IM,D))

= HomCatM((F!)
L(E)⊗ IM,D).

To construct the desired equivalence it suffices to construct a functorial equivalence between
(F!)

L(E ⊗ IM′) and (F!)
L(E)⊗ IM. Note that since (τM′)!F! is equivalent to (τM)!, we can

rewrite the latter as (F!)
L(E)⊗ (F!)

L(IM′). We now observe that there is a natural morphism

ηE,I : (F!)
L(E ⊗ IM′)→ (F!)

L(E)⊗ (F!)
L(IM′)
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obtained by adjunction from the composite map

E ⊗ IM′ −→ F!(F!)
L(E)⊗ F!(F!)

L(IM′)→ F!((F!)
L(E)⊗ (F!)

L(IM′))

where the first arrow is induced from the unit of the adjunction (F!)
L a F!, and the second

map is induced from the lax symmetric monoidal structure on F!.
Since the assignment (E , I) 7→ ηE,I is colimit preserving, to show that ηE,I is an isomor-

phism it suffices to consider the case I = [1] and E = Cm is the enriched category induced
from the cell Cm for some m inM′. Note that we have (F!)

L(Cm) = CFLm where FL denotes
the left adjoint to F . Using proposition 3.5.25 together with the fact that (F!)

L preserves
colimits, we obtain a pushout square of M-algebroids

CFLm CFLm,1M

C1M,FLm (F!)
L(Cm ⊗ C1M′

).

The fact that ηCm,[1] is an isomorphism follows now from another application of proposition
3.5.25.

Lemma 12.4.3. Let F :M→M′ be a lax symmetric monoidal functor between presentable
symmetric monoidal categories. Assume that the lax symmetric monoidal functor τM′F is
equivalent to τM. Let C be an M-enriched category. Let G : C → D be a functor between
M-enriched categories. Let d be an object in D and let (c, ε) be right adjoint to G at d. Then
(c, ε) is also right adjoint to F!G at d.

Proof. We have to show that for every object e in (τM′)!F!D = (τM)!D the composite map

HomF!C(e, c)
(F!G)∗−−−−→ HomF!D(G(e), G(c))

ε−→ HomF!D(G(e), d)

is an isomorphism. This is equivalent to the image under F of the composite map

HomC(e, c)
G∗−→ HomD(G(e), G(c))

ε−→ HomD(G(e), d).

Our claim now follows from the fact that the above composite map is an isomorphism since
(c, ε) is right adjoint to G at d.

Lemma 12.4.4. Let F :M→M′ be a lax symmetric monoidal functor between presentable
symmetric monoidal categories. Assume that F is accessible and preserves limits, and that the
lax symmetric monoidal functor τM′F is equivalent to τM. Let C be an M-enriched category.
Let I be a category and XC : IC → (τM)!C be a conical limit diagram in C. Then XC defines
also a conical limit diagram in F!C.
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Proof. Let X = XC|I . The diagram XC defines a pair (c, ε) right adjoint to ∆ : C →
Funct(IM, C) at X. By lemma 12.4.3 we have that (c, ε) is also right adjoint to F!∆ : F!C →
F! Funct(IM, C) at X. Using lemma 12.4.2 we may identify this with the diagonal functor
F!C → Funct(IM′ , C). This identification is the identity on objects, so we conclude that X
also has a conical limit in F!C. The lemma now follows from corollary 5.3.7.

Lemma 12.4.5. Let n ≥ 1. Then the functor ψn : Spc -modn → nCat
∧

is accessible and
preserves large limits.

Proof. We argue by induction. The case n = 1 is a direct consequence of the fact that the
forgetful functor Ĉatcocompl → Ĉat preserves limits and κ0-filtered colimits.

Assume now that n > 1. We continue with the notation from construction 12.3.2. Note
that we have an equivalence

Spc -modn = (n− 1)PrL -mod = (Spc -modn−1) -mod(P̂r
L

κ0
)

given by ind-κ0-completion. From this point of view, the functor ϕ′n agrees with the functor
θκ0

Spc -modn−1 from notation 4.2.21. It follows from proposition 4.2.24 that the functor ϕ′n
is accessible and preserves large limits. Using lemma 12.4.1 together with our inductive
hypothesis we conclude that ψ′n is accessible and preserves large limits. The lemma now

follows from the fact that the inclusion of nCat
∧

inside Âlgbrd((n− 1)Cat
∧

) creates large limits
and filtered colimits.

Theorem 12.4.6. Let n ≥ 1 and let C be an object in Spc -modn. Then the n-category ψn(C)
is admits all small conical colimits. Furthermore, the inclusion C → ψn(C) maps limits in C
to conical limits in ψn(C).

Proof. The case n = 1 is clear, so assume n > 1. We continue with the notation from
construction 12.3.2. By proposition 5.4.8, the enriched category ϕn(C) admits all large conical
limits and colimits. It follows that its full subcategory ϕ′n(C) admits all small conical colimits,
and that any small limit in C defines a conical limit in ϕ′n(C). Our result now follows from a
combination of lemmas 12.4.4 and 12.4.5.

Corollary 12.4.7. The (n+ 1)-category nPrL is conically cocomplete for each n ≥ 1.

Proof. Apply theorem 12.4.6 to C = nPrL inside Spc -modn+1.

12.5 The passage to adjoints property

A fundamental feature of presentable 1-categories is that they are stable under many of
the usual constructions of category theory. The following would imply that the world of
presentable n-categories enjoys similar closure properties:

Conjecture 12.5.1. The category nPrL has all small limits for all n ≥ 0.
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Note that for every n ≥ 1 the inclusion

nPrL → Spc -modn(Ĉatcocompl) = Indκ0(nPrL)

preserves all small limits that exist in nPrL. Therefore conjecture 12.5.1 is equivalent to the
claim that the κ0-small objects in Spc -modn(Ĉatcocompl) are closed under small limits.

Our next goal is to prove a weak form of conjecture 12.5.1 (stated below as proposition
12.5.10) which guarantees the existence of limits of diagrams of right adjoints.

Definition 12.5.2. Let E be a commutative algebra in Ĉatcocompl and let F : C → D be a
morphism in E -mod. We say that F is left adjointable if its underlying functor admits a left
adjoint FL : D → C, and the canonical structure of oplax morphism of E-modules on FL is
strict. We say that F is right adjointable if its underlying functor admits a colimit preserving
right adjoint FR : C → D, and the canonical structure of lax morphism of E-modules on FR

is strict.
Let X : I → E -mod be a diagram. We say that X is left (resp. right) adjointable if for

every arrow α in I the morphism X(α) is left (resp. right) adjointable. In this case, the
induced diagram XL : Iop → E -mod (resp. XR : Iop → E -mod) is said to arise from X by
passage to left (resp. right) adjoints.

Proposition 12.5.3. Let E be a commutative algebra in Ĉatcocompl which is generated under
small colimits by its dualizable objects. Let F : C → D be a morphism in E -mod. Then

(i) F is left adjointable if and only if its underlying functor is left adjointable.

(ii) F is right adjointable if and only if its underlying functor has a colimit preserving right
adjoint.

Proof. We give a proof of item (i) - the proof of (ii) is completely analogous. The structure
of morphism of E-modules on F induces a commutative square

E × C C

E × D D

⊗

idE ×F F

⊗

which we have to show is vertically left adjointable. Since the horizontal arrows preserve
colimits in the E-variable and FL preserves colimits, we may restrict to showing that for
every dualizable object e in E the induced commutative diagram

C C

D D

e⊗−

F F

e⊗−
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is vertically left adjointable. Note that the horizontal arrows have right adjoints given by
e∨ ⊗−, and the fact that F is a morphism of E-modules implies that the square is in fact
horizontally right adjointable. Since the vertical arrows admit left adjoints we conclude that
the above square is also vertically left adjointable, as desired.

Notation 12.5.4. Let κ be an uncountable regular cardinal. Denote by PrLκ the full
subcategory of PrL on the κ-compactly generated categories and functors which preserve κ-
compact objects. Denote by Catrex(κ) the full subcategory of Cat on those categories admitting
κ-small colimits, and functors which preserve κ-small colimits. For each presentable category
C we denote by Cκ the full subcategory of C on the κ-compact objects. Recall from [Lur09a]
proposition 5.5.7.10 that passage to κ-compact objects and ind-κ-completion are inverse
equivalences between PrLκ and Catrex(κ).

Lemma 12.5.5. Let κ be an uncountable regular cardinal. Then the inclusion PrLκ → PrL

creates κ-small limits.

Proof. Let XC : IC → PrL be a κ-small limit diagram, and assume that X = XC|I factors
through PrLκ . Denote by ∗ the initial object of IC. We have to show that XC(∗) is κ-compactly
generated, and that an object in XC(∗) is κ-compact if and only if its projection to X(i) is
κ-compact for every i in I. It suffices moreover to consider the case of κ-small products, and
pullbacks.

We begin with the case of κ-small products, so that I is a κ-small set, and we have
XC(∗) =

∏
i∈I X(i). For each i in I the projection XC(∗) → X(i) has a right adjoint,

which is induced by the identity map X(i) → X(i) together with the map X(i) → X(j)
that picks out the final object of X(j) for all j 6= i. This preserves colimits indexed by
contractible categories, and in particular κ-filtered colimits, so we conclude that the projection
XC(∗)→ X(i) preserves κ-compact objects. Combining this with [Lur09a] lemma 5.3.4.10
we see that an object in XC(∗) is κ-compact if and only if its projection to X(i) is κ-compact
for all i in I.

It remains to show that XC(∗) is κ-compactly generated. Observe that the projections
XC(∗)→ X(i) are jointly conservative, admit left adjoints, and preserve κ-filtered colimits.
It follows that XC(∗) is generated under colimits by the sequences (ci)i∈I where ci is a
κ-compact object of X(i) for all i and ci is initial for all but one index i - and moreover these
objects are κ-compact in XC(∗). This shows that XC(∗) is κ-compactly generated.

We now deal with the case of pullbacks, so that IC = [1]× [1], and X corresponds to a
pullback diagram which we depict as follows:

C ′ C

D′ D

p′

q′

p

q

It follows from [Lur09a] lemma 5.4.5.7 that if c′ is an object of C ′ such that q′c′ and p′c′ are
κ-compact then c′ is κ-compact. It therefore remains to show that C ′ is generated under
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colimits by those κ-compact objects c′ such that q′c′ and p′c′ are κ-compact. This is essentially
a consequence of the proof of [Lur09a] proposition 5.4.6.6. We repeat the relevant part of the
argument below, suitably adapted to our context.

Denote by C ′′ the full subcategory of C ′ on those objects whose projections to C and D′
are κ-compact. Let c′ be an arbitrary object of C ′, and let c = q′c′, d′ = p′c′ and d = pq′c′ .
We have a pullback diagram

C ′′/c′ Cκ/c

(D′)κ/d′ Dκ/d.

f ′

g′ g

f

It follows from [Lur09a] lemma 5.4.6.1 (applied to the cardinals ω << κ) that f and g are
ω-cofinal (see [Lur09a] definition 5.4.5.8). Applying [Lur09a] lemma 5.4.6.5 we see that C ′′/c′
is κ-filtered that f ′ and g′ are ω-cofinal, and therefore from [Lur09a] lemma 5.4.5.12 we have
that f ′ and g′ are cofinal. Denote by c′′ the colimit of the natural map C ′′/c′ → C ′. Since f ′

and g′ are cofinal and C,D′ are κ-compactly generated we see that the canonical map c′′ → c′

becomes an isomorphism upon composition with q′ and p′. Therefore c′ is a colimit of objects
of C ′′, as desired.

Lemma 12.5.6. Let κ be an uncountable regular cardinal and let X : I → Catrex(κ) be a
κ-small diagram. Let XB : IB → Catrex(κ) be a colimit diagram for X, and denote by ∗ the
final object of IB. Assume that for every arrow α in I the induced functor X(α) admits a
right adjoint which preserves κ-small colimits. Then

(i) For every i in I the induced functor X(i)→ X(∗) admits a right adjoint which preserves
κ-small colimits.

(ii) The induced diagram (XB)R : (Iop)C → Catrex(κ) is a limit diagram.

Proof. Consider the functor IndκX
B : IB → PrL. This is a colimit diagram since Indκ

preserves colimits. Note that we have a natural monomorphism X → XB. The adjoint
functor theorem guarantees that for every arrow α in IB the functor IndκX

B(α) has a right
adjoint. Moreover, results from [Lur09a] section 5.5.3 guarantee that the induced diagram

(IndκX
B)R : (Iop)C → Ĉat

is a limit diagram.
Let α be an arrow in I. By virtue of being right adjoint to a functor of κ-compactly

generated categories which preserves κ-compact objects we have that (IndκX
B)R(α) preserves

κ-filtered colimits. Since X(α) is itself right adjointable we see that (IndκX
B)R(α) preserves

κ-compact objects. Moreover, the fact that the right adjoint to X(α) preserves κ-small
colimits implies that (IndκX

B)R(α) is in fact colimit preserving.

Since the forgetful functor PrL → Ĉat creates small limits, we conclude that (IndκX
B)R

factors through PrL. Since (IndκX
B)R|Iop factors through PrLκ and I is κ-small we conclude
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using lemma 12.5.5 that (IndκX
B)R factors through PrLκ , and in fact defines a limit diagram in

PrLκ . In particular, we have that for every i in I the right adjoint to the functor IndκX(i)→
IndκX(∗) preserves κ-compact objects and is colimit preserving, which establishes item (i).
Item (ii) follows from the fact that passage to κ-compact objects provides an equivalence
PrLκ = Catrex(κ).

Corollary 12.5.7. Let E be a commutative algebra in Ĉatcocompl, generated under colimits
by its dualizable objects. Let X : I → E -mod be a right adjointable diagram, with I small.
Let XB : IB → E -mod be a colimit diagram for X. Then XB is right adjointable, and the
induced diagram (XB)R : (Iop)C → E -mod is a limit diagram.

Proof. This is a direct consequence of proposition 12.5.3 and lemma 12.5.6 applied to κ = κ0

after enlarging the universe.

We now specialize the above discussion to the case when E is (n− 1)PrL.

Remark 12.5.8. Let n > 1. Recall from remark 12.1.9 that (n− 1)PrL is generated under
small colimits by the free modules of the form (n− 2)PrL⊗P(C), where C is a small category.

Since P(C) is dualizable in Ĉatcocompl we conclude that (n − 2)PrL⊗P(C) is dualizable in
(n− 1)PrL. Hence (n− 1)PrL is generated under small colimits by its dualizable objects.

Proposition 12.5.9. Let n ≥ 1 and let F : C → D be a morphism in Spc -modn. Then the
functor of n-categories ψn(F ) admits a left adjoint if and only if F is left adjointable.

Proof. The case n = 1 is clear, so assume that n > 1. Recall from our construction that the
functor of 1-categories underlying ψn(F ) is equivalent to F . It follows that if ψn(F ) is left
adjointable then F is left adjointable.

Assume now that F is left adjointable. We continue with the notation from construction
12.3.2. Note that the functor of very large presentable categories Indκ0 F : Indκ0 C → Indκ0 D
is left adjointable. It follows from an application of proposition 12.5.3 that Indκ0 F is a left
adjointable morphism of Spc -modn−1-modules. By proposition 5.4.1, we have that ϕn(F )
is a left adjointable functor of Spc -modn−1-enriched categories. It follows from corollary
5.4.4, together with the fact that Indκ0 F and its left adjoint restrict to an adjunction on the
subcategories of κ0-compact objects, that ϕ′n(F ) is also left adjointable. The fact that ψn(F )
is left adjointable follows now from an application of lemma 12.4.3.

Proposition 12.5.10. Let n ≥ 1 and let X : I → nPrL be a diagram with I small, such
that for every arrow α in I the functor underlying X(α) admits a left adjoint. Then

(i) The diagram X is left adjointable, when thought of as a functor into (n− 1)PrL -mod.

(ii) Let (XL)B : (Iop)B → nPrL be a colimit diagram for XL. Then (XL)B is right
adjointable, and the induced diagram ((XL)B)R : IC → nPrL is a limit diagram for X.
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Proof. The case n = 1 follows from the results of [Lur09a] section 5.5, so we assume that
n > 1. Item (i) then follows from an application of proposition 12.5.3 and (ii) is a direct
consequence of corollary 12.5.7.

Our next goal is to recast proposition 12.5.10 in a language intrinsic to the (n + 1)-
categorical structure on nPrL. We will in fact be able to obtain a variant of it which works
for any object in Spc -modn.

Notation 12.5.11. Let D be an n-category. We denote by D≤1 the 1-category underlying
D, and by (D≤1)radj (resp. D≤1)ladj the subcategory of D≤1 containing all objects, and only
those morphisms which are right (resp. left) adjointable in D.

Definition 12.5.12. Let D be an n-category. We say that D satisfies the passage to adjoints
property if the following conditions are satisfied:

• The category (D≤1)radj has all colimits, and the inclusion (D≤1)radj → D preserves
conical colimits.

• The category (D≤1)ladj has all limits, and the inclusion (D≤1)ladj → D preserves conical
limits.

Remark 12.5.13. Let D be an n-category. Then the passage to adjoints equivalence1 from
[GR17] induces an equivalence between the categories (D≤1)radj and (D≤1)ladj. It follows that
if D satisfies the passage to adjoints property, then a right adjointable diagram F : IB → D
in D is a conical colimit if and only if the diagram FR : (Iop)C → D is a conical limit.

Theorem 12.5.14. Let n ≥ 2 and let C be an object in Spc -modn. Then the n-category
ψn(C) satisfies the passage to adjoints property.

Our proof of theorem 12.5.14 requires a few lemmas.

Lemma 12.5.15. Let n ≥ 2 and let C be an object in Spc -modn. Let α : c→ d be a morphism
in C. Denote by HomC the functor of Hom objects for C as a module over (n− 1)PrL. Then

(i) The morphism α is left adjointable in ψn(C) if and only if for every morphism γ : e→
e′ in C, the commutative square of categories underlying the commutative square of
(n− 2)PrL-modules

HomC(e, c) HomC(e, d)

HomC(e
′, c) HomC(e

′, d)

α∗

γ∗

α∗

γ∗

is horizontally left adjointable.

1The proof of our result does not rely on the existence of such an equivalence in the general case - however
our choice of name for the passage to adjoints property is motivated by it.
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(ii) The morphism α is right adjointable in ψn(C) if and only if for every morphism
γ : e→ e′ in C, the commutative square of categories underlying the commutative square
of (n− 2)PrL-modules

HomC(d, e
′) HomC(c, e

′)

HomC(d, e) HomC(c, e)

α∗

γ∗

α∗

γ∗

is horizontally left adjointable.

Proof. This is a direct consequence of lemma 5.2.9 applied to the Yoneda embedding, as in
the proof of proposition 5.2.10.

Lemma 12.5.16. Let n ≥ 2. Let I be a small category and let XC, X ′C : IC → Spc -modn−1

be two small limit diagrams. Denote by ∗ the initial object of IC, and let X = XC|I and
X ′ = X ′C|I. Let η : XC → X ′C be a natural transformation, and assume that for every arrow
α : i→ j in I the commutative square of categories

X(i) X(j)

X ′(i) X ′(j)

X(α)

ηi ηj

X′(α)

is horizontally left adjointable. Then

(i) For every index j in I the commutative square of categories

XC(∗) X(j)

X ′C(∗) X ′(j)

η∗ ηj

is horizontally left adjointable.

(ii) Assume given an extension of η|I to a natural transformation µ between functors
Y C, Y ′C : IC → Spc -modn−1, and that for every index j in I the commutative square
of categories

Y C(∗) X(j)

Y ′C(∗) X ′(j)

µ∗ ηj
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is horizontally left adjointable. Then the induced commutative square of categories

Y C(∗) XC(∗)

Y ′C(∗) X ′C(∗)

µ∗ η∗

is horizontally left adjointable.

Proof. We first establish item (i). It follows from corollary 12.5.7 that for every j in I
the functors XC(∗) → X(j) and X ′C(∗) → X ′(j) are left adjointable. Consider now the
commutative square of categories

Indκ0 X
C(∗) Indκ0 X(j)

Indκ0 X
′C(∗) Indκ0 X

′(j).

Indκ0 η∗ Indκ0 ηj

Our claim will follow if we are able to show that this is horizontally left adjointable. Since
the horizontal arrows admit left adjoints, it suffices in fact to show that this is vertically right
adjointable. By virtue of lemma 5.2.9, it suffices to show that the diagram

GC : IC → Funct([1],CAT2-cat)

induced from the natural transformation

Indκ0 η : Indκ0 X
C → Indκ0 X

′C

factors through Funct(Adj,CAT2-cat), where CAT2-cat denotes the 2-category of very large
categories. Combining propositions 5.4.8 and 5.3.13 with lemma 12.5.5 we see that GC is in
fact a conical limit diagram.

For each arrow α : i→ j in I, the commutative square of categories

Indκ0 X(i) Indκ0 X(j)

Indκ0 X
′(i) Indκ0 X

′(j)

Indκ0 X(α)

Indκ0 ηi Indκ0 ηj

Indκ0 X
′(α)

is horizontally left adjointable thanks to our hypothesis on η. By the adjoint functor theorem,
we also know that the vertical arrows are right adjointable. It follows that the above square is
also vertically right adjointable. Another application of lemma 5.2.9 shows that GC|I factors
through Funct(Adj,CAT2-cat). Applying proposition 5.3.13 we conclude that GC factors
through Funct(Adj,CAT2-cat), as we claimed.
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We now prove item (ii). Applying corollary 12.5.7 we see that (XC)L is a colimit diagram
in Spc -modn−1 and hence we have a morphism (XC)L → (Y C)L which restricts to the identity
on Iop. Consider now the induced morphism

Indκ0(XC)L → Indκ0(Y C)L.

Passing to right adjoints, we obtain a natural transformation Indκ0 Y
C → Indκ0 X

C which is
the identity on I. Since Indκ0 X

C is a limit diagram by lemma 12.5.5, we conclude that the
induced functor

Indκ0 Y
C(∗)→ Indκ0 X

C(∗)

is obtained by ind-κ0-completion of the map Y C(∗) → XC(∗) induced from µ. It follows
that the functor Y C(∗) → XC(∗) is left adjointable. Similarly, we have that the functor
Y ′C(∗)→ X ′C(∗) is horizontally left adjointable.

As before, our claim would follow if we are able to show that the commutative square of
categories

Indκ0 Y
C(∗) Indκ0 X

C(∗)

Indκ0 Y
′C(∗) Indκ0 X

′C(∗)

Indκ0 µ∗ Indκ0 η∗

is horizontally left adjointable. Since the horizontal arrows admit left adjoints, it suffices to
show that the square is in fact vertically right adjointable. Consider the diagram

HC : IC → Funct([1],CAT2-cat)

induced from the natural transformation

Indκ0 µ : Indκ0 Y
C → Indκ0 Y

′C.

This extends the functor GC|I . By lemma 5.2.9, we may reduce to showing that the induced
natural transformation HC → GC factors through Funct(Adj,CAT2-cat). This is a consequence
of the fact that GC is a conical limit diagram in Funct(Adj,CAT2-cat).

Proof of theorem 12.5.14. To simplify notation, we set Cradj = (ψn(C)≤1)radj and Cladj =
(ψn(C)≤1)ladj.

Let X : I → Cradj be a diagram, and let XB : IB → C be an extension of X to a colimit
diagram in C. We claim that XB factors through Cradj. Let γ : e→ e′ be a morphism in C.
We have limit diagrams

HomC(X
B, e) : (IB)op → Spc -modn−1

and
HomC(X

B, e′) : (IB)op → Spc -modn−1 .
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The morphism γ induces a natural transformation

HomC(X
B, γ) : HomC(X

B, e)→HomC(X
B, e′).

Combining lemma 12.5.15 and part (i) of lemma 12.5.16 we see that for every i in I the
commutative square of categories

HomC(X
B(∗), e) HomC(X(i), e)

HomC(X
B(∗), e′) HomC(X(i), e′)

γ∗ γ∗

is horizontally left adjointable. Using lemma 12.5.15 once more we conclude that XB factors
through Cradj.

Similarly, combining lemma 12.5.15 with part (ii) of lemma 12.5.16 we see that if Y B is
another extension of X which factors through Cradj, then the induced morphism XB(∗)→
Y B(∗) belongs to Cradj. This means that XB is in fact also a colimit diagram in Cradj, and
therefore we see that the inclusion Cradj → C creates colimits. It now follows from theorem
12.4.6 that ψn(C) satisfies the first condition in definition 12.5.12.

We now show that ψn(C) satisfies the second condition in definition 12.5.12. Thanks
to theorem 12.4.6, it suffices to show that Cladj has arbitrary products and fiber products,
and that these are preserved by its inclusion into C. An argument analogous to the case of
colimits reduces one to showing that C has arbitrary products and fiber products of diagrams
in Cladj.

We consider the case of pullbacks - the proof for arbitrary products is analogous. Let I
be the category with objects 0, 1, 2 and nontrivial arrows 0→ 2← 1. Let X : I → Cladj be
a diagram. Extend X to a limit diagram XC : IC → Indκ0 C. Repeating our argument for
the case of colimits shows that XC defines in fact a limit diagram in the wide subcategory
(Indκ0 C)ladj of Indκ0 C containing those arrows which are left adjointable when considered
inside the n-category (ψn−1)!ϕn(C).

Consider now the diagram XL : Iop → Cradj obtained from X by passage to left adjoints.
As in the case of X, we may extend XL to a diagram (XL)B : (Iop)B → (Indκ0 C)radj which
is both a colimit diagram in (Indκ0 C)radj and Indκ0 C. Since pushout squares in (Indκ0 C)radj

and pullback squares in (Indκ0 C)ladj are in one to one correspondence by passing to adjoints
of all arrows involved, we obtain an equivalence between (XL)B(∗) and XC(∗). Since C is
closed under small colimits inside Indκ0 C we conclude that XC(∗) in fact belongs to C. Hence
XC gives the desired extension of X to a limit diagram in C.
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Chapter 13

Categorical spectra

Consider the following series of analogies between concepts in homotopy theory and concepts
in higher category theory:

Homotopy theory Higher category theory
Space ω-category

n-truncated space n-category
Pointed space Pointed ω-category

Based loopspace ω-category of endomorphisms
Grouplike monoid in spaces Monoidal ω-category

Grouplike commutative algebra in spaces Symmetric monoidal ω-category

The goal of this chapter is to enhance the above dictionary by studying an analogue
in higher category theory of the notion of spectrum from homotopy theory. In the same
way that the category of spectra is obtained by formally inverting the based loopspace
endofunctor Ω : Spc∗ → Spc∗, we introduce a category CatSp obtained by formally inverting
the endofunctor ΩωCat : ωCat∗ → ωCat∗ that sends each pointed ω-category (C, x) to the
pointed ω-category (EndC(x), idx). In other words, an object of CatSp is a sequence of pointed
ω-categories Cn and identifications ΩωCat(Cn+1) = Cn for all n ≥ 0.

We call CatSp the category of categorical spectra. In the same way that the passage from
spaces to spectra amounts to allowing negative homotopy groups, we may think about the
passage from ω-categories to categorical spectra as allowing cells of negative dimensions.

The theory of categorical spectra may be considered as a joint generalization of the theory
of symmetric monoidal ω-categories and the theory of spectra. This is justified by the fact
that CatSp sits in a commutative square of categories and fully faithful functors

CAlggrpllike(Spc) Sp

CAlg(ωCat) CatSp .
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A fundamental observation that leads to the notion of spectra is that one may induce a
grouplike commutative algebra structure on a space by giving a sequence of deloopings of
it. In the same way, the point of view of categorical spectra is that sometimes symmetric
monoidal structures on an ω-category are more naturally studied by studying a sequence of
deloopings of it.

We now describe the contents of this chapter in more detail. We begin in 13.1 by studying,
for each monoidal categoryM, the functor ΩM : CatM∗ → Alg(M) which sends each pointed
M-enriched category to the algebra of endomorphisms of its basepoint. We show that this has
a fully faithful left adjoint BM : Alg(M)→ CatM∗ which identifies the category of algebras
in M with the category of pointed M-enriched categories with a connected space of objects.
This allows us to define for each symmetric monoidal category M the category CatSpM of
M-enriched categorical spectra as the limit of the sequence of categories

M∗
ΩM←−− CatM∗

Ω
CatM←−−−− 2CatM∗

Ω
2CatM←−−−− 3CatM∗ . . . .

In 13.2 we specialize the above to the case M = ωCat, to obtain the category CatSp =
CatSpωCat of categorical spectra. We show that this may be identified with the limit of the
sequence of categories

ωCat∗
ΩωCat←−−− ωCat∗

ΩωCat←−−− ωCat∗
ΩωCat←−−− ωCat∗ . . .

and in particular, admits a description as the category obtained from ωCat∗ by formally
adding an inverse BωCat to the endomorphism ΩωCat.

We explore here the idea that categorical spectra behave like ω-categories with cells of
arbitrary integer dimension. We introduce for each categorical spectrum spaces of cells of
dimension i for every integer i, and show that these satisfy familiar composition and unitaly
laws. In the same way that ωCat comes equipped with an infinite family of order reversing
commuting involutions indexed by positive integers, we show that CatSp admits an infinite
family of order reversing commuting involutions indexed by arbitrary integers.

We also study for each integer n the subcategory nCatSp of CatSp consisting of categorical
spectra for which all cells of dimension greater than n are invertible. We show that the
inclusion of nCatSp inside CatSp admits both left and right adjoints, which allow one to
universally invert cells above dimension n, or discard non-invertible cells above dimension n.

In 13.3 we discuss a variety of examples of categorical spectra:

• We show that any spectrum (in the sense of homotopy theory) gives an example of a
categorical spectrum. This gives an embedding Sp→ CatSp, which we show admits
both left and right adjoints.

• Any grouplike commutative algebra in spaces gives an example of a spectrum. We
provide here a generalization of this by attaching to each commutative algebra A
in a symmetric monoidal category M an M-categorical spectrum which we call the
Eilenberg-MacLane M-categorical spectrum of A.
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• Given a presentable symmetric monoidal category E , we construct a categorical spectrum
which organizes the ω-categories of presentable n-categories tensored over E for all
values of n.

• Given a category with finite limits C, we construct a categorical spectrum which
organizes the ω-categories nCorr(C) of correspondences of C for all values of n.

• Given a symmetric monoidal category with good relative tensor products, we discuss
the Morita categorical spectrum of C, which organizes the higher Morita categories
from [Hau17].

In 13.4 we study the connection between the theory of categorical spectra and the theory
of symmetric monoidal ω-categories. We show that for a symmetric monoidal category M,
the category CatSpM can alternately be defined as the limit of a sequence of functors

CAlg(M)
ΩM←−− CAlg(CatM)

Ω
CatM←−−−− CAlg(2CatM)

Ω
2CatM←−−−− CAlg(3CatM) . . . .

In other words, an M-categorical spectrum is the same data as a sequence of symmetric
monoidal M-enriched higher categories compatible under looping. We use the above fact to
show that the symmetric monoidal structure on CatSpM inherited from M is cocartesian.
In the case M = ωCat this implies that CatSp admits biproducts.

From the above sequence we obtain a projection Ω∞M : CatSpM → CAlg(M). In other
words, eachM-categorical spectrum has an underlying commutative algebra inM. We show
that this admits a fully faithful left adjoint, which sends each commutative algebra in M to
its Eilenberg-MacLane M-categorical spectrum. This identifies CAlg(M) with a certain full
subcategory of CatSpM on objects that we call connective.

Specializing to the case M = CatSp we obtain close connections between the theory of
categorical spectra and the theory of symmetric monoidal ω-categories, which run parallel
to the connections between spectra and grouplike commutative algebras in spaces. We may
summarize this series of analogies as follows:

Homotopy theory Higher category theory
Spectrum Categorical spectrum

Inverse automorphisms B,Ω on Sp Inverse automorphisms BωCat,ΩωCat on CatSp
Ω∞ : Sp→ CAlggrplike(Spc) Ω∞ωCat : CatSp→ CAlg(ωCat)

Connective spectrum Connective categorical spectrum
Embedding CAlggrplike(Spc)→ Sp Embedding CAlg(ωCat)→ CatSp

13.1 Basic notions

Recall that the category of spectra is obtained by formally inverting the loop space functor
Ω : Spc∗ → Spc∗. We begin this section by studying the categorical analogue of this functor.
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Notation 13.1.1. Let M be an associative operad and recall the projection Algbrd(M)→
Cat which sends eachM-algebroid to its category of objects. We denote by Algbrd∗(M) the
pullback Algbrd(M)×Cat Cat∗. We call this the category of pointed M-algebroids.

We let Algbrd∗(M)Spc (resp. CatM∗ ) denote the full subcategory of Algbrd∗(M) on those
pointed M-algebroids whose underlying M-algebroid has a space of objects (resp. is an
M-enriched category). We call CatM∗ the category of pointed M-enriched categories.

Warning 13.1.2. It is common in the literature to use the terminology pointed category to
refer to a category with a zero object. In notation 13.1.1 we are using this terminology to
refer instead to pointed objects in the category of M-enriched categories.

Remark 13.1.3. Let M be a monoidal category. Then the category Algbrd∗(M) (resp.
Cat∗(M)) can be identified with the undercategory Algbrd(M)1M/ (resp. Cat(M)1M/).

Notation 13.1.4. LetM be a monoidal category. Since the projection Algbrd∗(M)→ Cat∗
is a cartesian fibration, the inclusion of the fiber over [0] admits a right adjoint. We denote by

ΩM : Algbrd∗(M)→ Algbrd[0](M) = Alg(M)

the resulting functor. In other words, this is the unique functor extending the identity on
Algbrd[0](M), and which sends arrows cartesian for the projection Algbrd∗(M)→ Cat∗ (that
is, fully faithful morphisms of pointed algebroids) to isomorphisms in Alg(M).

We will sometimes abuse notation and continue denoting by ΩM the restriction of the
above functor to CatM∗ . We will also use the same notion for the functors obtained from
these by composition with the forgetful functor

Alg(M)→M∗

where M∗ denotes the category of E0-algebras in M.
We denote by BM the composite functor

Alg(M)→ Algbrd∗(M)Spc → CatM∗

where the first arrow is the inclusion, and the second arrow is the localization functor. In
other words, BM is the left adjoint to ΩM : CatM∗ → Alg(M).

Remark 13.1.5. Let M be a monoidal category. Then the functor ΩM sends an M-
algebroid A equipped with a basepoint x to an algebra in M whose underlying object is
A(x, x). On the other hand, the functor BM sends an associative algebra A in M to a
pointedM-enriched category BMA with a connected space of objects, and equipped with an
identification ΩMBMA = A.

Remark 13.1.6. LetM be a monoidal category. Recall from remark 3.4.13 that morphisms
which are local for the localization Algbrd(M)Spc → CatM are cartesian for the projection
Algbrd(M)Spc → Spc. Therefore their images under the morphism ΩM : Algbrd∗(M)Spc →
Alg(M) are invertible.
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It follows that the functor BM : Alg(M) → CatM∗ is fully faithful. This gives an
identification of Alg(M) with the full subcategory of CatM∗ on the pointed M-enriched
categories with a connected space of objects.

Remark 13.1.7. Let F : M → M′ be a monoidal functor between monoidal categories.
Consider the commutative square

Alg(M) Algbrd∗(M)Spc CatM∗

Alg(M′) Algbrd∗(M′)Spc CatM
′

∗

F! F! F!

where the left horizontal arrows are the inclusions, and the right horizontal arrows are the
projections.

The compositions of the horizontal rows recover the functors BM and BM′ . For each
pointed M-enriched category A the unit map u : BMΩMA → A is fully faithful. The map
F!u is also fully faithful, and it therefore presents F!ΩMA as right adjoint to BM at F!A.

We conclude that the outer commutative square is horizontally right adjointable. It
follows that there is a natural transformation

Ω(−) : Cat(−)
∗ → Alg(−)

of functors Alg(Cat)→ Ĉat, which specializes upon evaluation on a monoidal category M
to the functor ΩM : CatM∗ → Alg(M) of notation 13.1.4.

Note that the natural transformation Ω(−) is characterized uniquely by the fact that for
each monoidal category M the map ΩM inverts fully faithful functors, and the fact that the
composite natural transformation Ω(−)B(−) comes equipped with an identification to idAlg(−).
Indeed, if Ω′(−) is another such natural transformation, then the fact that Ω′M = ΩM for all

M implies that Ω′(−) factors as ηΩ(−) for some natural transformation η : Alg(−)→ Alg(−),
and the fact that Ω′(−)B(−) is the identity implies that η is the identity.

We are now ready to give the definition of categorical spectrum.

Notation 13.1.8. Let M be a symmetric monoidal category and let n ≥ 1. We denote by
nCatM the symmetric monoidal category of M-enriched n-categories. We let nCatM∗ be the
category of pointed (n − 1)CatM-enriched categories (where in the case n = 1 we use the
convention 0CatM =M). We call nCatM∗ the category of pointed M-enriched n-categories.

Definition 13.1.9. Let M be a symmetric monoidal category. We denote by CatSpM limit
of the sequence of categories

M∗
ΩM←−− CatM∗

Ω
CatM←−−−− 2CatM∗

Ω
2CatM←−−−− 3CatM∗ . . . .

We call CatSpM the category of M-categorical spectra.
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Notation 13.1.10. Let M be a symmetric monoidal category. We denote by

Ω∞M : CatSpM →M∗

the canonical projection. Given an M-categorical spectrum C, we call Ω∞MC the pointed
M-enriched category underlying C.

Remark 13.1.11. Using remark 13.1.7 we may construct a sequence of functors from
CAlg(Cat) into Ĉat

(−)∗
Ω(−)←−− Cat(−)

∗
Ω

Cat(−)←−−−− 2Cat(−)
∗

Ω
2Cat(−)←−−−−− 3Cat(−)

∗ . . .

which specializes to the sequence of definition 13.1.9 upon evaluation at a symmetric monoidal
category M. The limit of the above tower is a functor

CatSp(−) : CAlg(Cat)→ Ĉat

which sends each symmetric monoidal category M to CatSpM. Note that there is a natural
transformation

Ω∞(−) : CatSp(−) → (−)∗

of functors CAlg(Cat) → Cat, which recovers upon evaluation at a symmetric monoidal
category M the functor Ω∞M from notation 13.1.10.

Remark 13.1.12. Let F :M→M′ be a monoidal functor between monoidal categories.
Consider the commutative square

Alg(M) Cat∗(M)

Alg(M′) Cat∗(M′).

F!

BM

F!

BM′

(∗)

As discussed in remark 13.1.7, this square is horizontally right adjointable. Passing to
right adjoints to the horizontal arrows we obtain the commutative square

Alg(M) Cat∗(M)

Alg(M′) Cat∗(M′)

F!

ΩM

F!

ΩM′

(∗∗)

which features in the functoriality of enriched categorical spectra discussed in remark 13.1.11.
Assume now that F has a strictly monoidal right adjoint FR. In this case we have that the

right vertical arrows in the square (∗) are right adjointable, and furthermore this adjunction
restricts to the full subcategories from the left column. It follows from this that (∗) is also
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vertically right adjointable. Passing to right adjoints to the vertical arrows we obtain the
commutative square

Alg(M) Cat∗(M)

Alg(M′) Cat∗(M′).

BM

(FR)!

BM′

(FR)!
(∗ ∗ ∗)

This is horizontally right adjointable, and the square obtained from it by passing to right
adjoints to horizontal arrows is equivalent to the square obtained from (∗∗) by passing to
right adjoints to vertical arrows.

Assume now that M is symmetric monoidal and that F and FR are strictly symmetric
monoidal. Consider the commutative diagram

M∗ CatM∗ 2CatM∗ . . .

M′
∗ CatM

′

∗ 2CatM
′

∗ . . .

F

ΩM

F!

Ω
CatM

F!

ΩM′ Ω
CatM′

whose limit recovers the functor F! : CatSpM → CatSpM′ induced from F . By the previous
discussion, the above diagram is vertically right adjointable, and passing to right adjoints of
the vertical arrows we recover the commutative diagram

M∗ CatM∗ 2CatM∗ . . .

M′
∗ CatM

′

∗ 2CatM
′

∗ . . .

ΩM Ω
CatM

FR

ΩM′

FR!

Ω
CatM′

FR!

whose limit is the functor (FR)! : CatSpM′ → CatSpM induced from FR. It then follows
from an application of proposition 5.3.17 that we have an adjunction

F! : CatSpM CatSpM′ : (FR)!.

Remark 13.1.13. Let M be a presentable symmetric monoidal category. Then it follows
from propositions 3.3.12 and 3.4.12 that the category Algbrd∗(M)Spc of pointedM-algebroids
with a space of objects is presentable, and CatM∗ is an accessible localization of it. The
functor ΩM : CatM∗ →M∗ admits a left adjoint, given by the composite functor

M∗ → Alg(M)
BM−−→ CatM∗

where the first arrow is given by operadic left Kan extension along the inclusion E0 → E1.
In particular, it follows from the above that the sequence of categories from definition

13.1.9 takes place in PrR, and hence its limit CatSpM is a presentable category.
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Remark 13.1.14. Recall from remarks 3.3.8 and 3.4.11 that there is an involution (−)op

on Algbrd and a Z/2Z-equivariant structure on the projection Algbrd → OpAssos×Cat,
which restricts to an involution on the full subcategory of Algbrd on the enriched categories.
Observe moreover that the map of operads E0 → E1 admits a canonical Z/2Z equivariant
structure, where we equip E0 with the trivial involution. It follows that there is a Z/2Z
equivariant structure on the natural transformation

Ω(−) : Cat(−)
∗ → (−)∗

of functors Alg(Cat)→ Ĉat. For each monoidal categoryM, this induces a Z/2Z equivariant
structure on the map ΩM : CatM∗ →M∗, where M∗ is equipped with the trivial involution.

We conclude that the sequence of functors from remark 13.1.11 comes equipped with
an infinite family of commuting involutions indexed by nonpositive integers, where the i-th
involution acts on nCat(−)

∗ as (−)(−i+1)-op when 0 ≥ i ≥ n− 1, and as the identity otherwise.
Passing to the limit, we obtain an infinite family of commuting involutions (−)i-op on the

functor CatSp(−), where i ranges over all nonpositive integers. We think about (−)i-op as the
involution which reverses the direction of cells of dimension i.

Recall that the category of spectra comes equipped with inverse automorphisms

B : Sp Sp : Ω.

We now discuss the analogue functors in the setting of M-categorical spectra.

Notation 13.1.15. Let M be a symmetric monoidal category. Then the category CatSpM
is equivalent to the limit of the sequence of categories

CatM∗
Ω

CatM←−−−− 2CatM∗
Ω

2CatM←−−−− 3CatM∗ . . .

obtained from the sequence of definition 13.1.9 by removing the first category. This is the
same sequence which arises in the definition of CatSpCatM . We therefore have an equivalence
CatSpCatM = CatSpM, which is evidently functorial in M. We will denote by

BM : CatSpM CatSpCatM : ΩM

the resulting functors.

Warning 13.1.16. The functors BM,ΩM from notation 13.1.15 are different (but related)
to the functors BM,ΩM from notation 13.1.4. It will usually be clear from context which
variant of the functors we are using.

Remark 13.1.17. Let M be a symmetric monoidal category. The equivalence CatSpM =
CatSpCatM from notation 13.1.15 exchanges the involution (−)i-op on CatSpM with the
involution (−)(i+1)-op on CatSpCatM for each i ≤ 0 (where in the case i = 0 we set (−)1-op to
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be the involution on CatSpCatM which arises from the order reversing involution on CatM).
Furthermore, there is an equivalence

Ω∞MΩM = ΩMΩ∞
CatM

of functors CatSpCatM →M∗.

We finish this section by discussing the notion of cells in M-categorical spectra.

Notation 13.1.18. Let M be a monoidal category. For each object m in M we denote by

cellsm(−) :M→ Spc

the functor corepresented by m.
Assume now thatM has an inital object which is compatible with the monoidal structure.

We denote by
cellsCm : CatM → Spc

the functor corepresented by (the enriched category underlying) the walking m-cell Cm from
example 3.3.6. In other words, cellsCm is the functor that assigns to eachM-enriched category
C the space of pairs of objects x, y in C together with a map m→ HomC(x, y).

Remark 13.1.19. Let M be a monoidal category with compatible initial object and let
m be an object of M. Then for each pointed M-enriched monoidal category C we have an
equivalence

HomAlgbrd(M)(Cm,ΩM(C)) = cellsm(ΩM(C))

where the two occurrences of ΩM(C) in the above formula are first as an associative algebra,
and second as an object of M. Composing with the morphism of algebroids ΩM(C)→ C we
obtain a map of spaces

cellsm(ΩM(C))→ cellsCm(C).

Observe that both sides are functorial in m and C, and the above maps can be assembled
into a natural transformation

cells− |M∗(ΩM(−))→ cellsC− |CatM∗

of functors Mop × CatM∗ → Spc.

Definition 13.1.20. Let M be a symmetric monoidal category with compatible initial object.
Let C be an M-categorical spectrum, corresponding to a sequence of pointed M-enriched
n-categories Cn indexed by nonnegative integers, and equivalences ΩnCatMCn+1 = Cn for all
n ≥ 0. For each object m in M we define the space cellsm(C) to be the colimit of the diagram

cellsm(C0)→ cellsCm(C1)→ cellsCCm (C2)→ cellsCCCm
(C3) . . .

where the transition maps are as in remark 13.1.19.
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Warning 13.1.21. We use the notation cellsm for two different purposes, in notation 13.1.18
and definition 13.1.20. If C is an M-categorical spectrum, there is a map

cellsm(Ω∞M(C))→ cellsm(C)

which is in general not an equivalence. It will generally be clear from context which version
of cellsm we are using.

Remark 13.1.22. Let M be a symmetric monoidal category with compatible initial object
and let m be an object in M. Definition 13.1.20 can be upgraded to a functor

cellsm : CatSpM → Spc .

As opposed to the analogous functor in the setting of M-categories from notation 13.1.18,
the above functor is generally not corepresented.

Assume now that M is presentable symmetric monoidal. Then each of the terms in the
sequences from definition 13.1.20 is limit preserving in C, and hence we have that the functor
cellsm : CatSpM → Spc preserves finite limits. In other words, we may think about the
functor cellsm as being corepresented by a pro-object in CatSpM.

Remark 13.1.23. Let M be a symmetric monoidal category with compatible initial object.
Let m be an object in M and let C be a CatM-categorical spectrum, corresponding to a
sequence of pointed CatM-enriched n-categories Cn indexed by nonnegative integers, and
equivalences Ω(n+1)CatM(Cn+1) = Cn for all n ≥ 0. Then the sequence

cellsCm(C0)→ cellsCCm (C1)→ cellsCCCm
(C2)→ cellsCCCCm

(C3) . . .

which features in the definition of cellsCm(C) is a shift of the sequence which features in the
definition of cellsm(ΩM(C)). We therefore have an equivalence cellsCm(C) = cellsm(ΩM(C)).
This equivalence admits an evident upgrade to a commutative triangle

CatSpCatM CatSpM

Spc

ΩM

cellsCm
cellsm

which is furthermore functorial in m.

13.2 The case M = ωCat

We now specialize the above discussion to the case of ωCat-categorical spectra. We refer to
section 3.6 for general background on the theory of ω-categories.

Definition 13.2.1. We let CatSp be the category CatSpωCat, where ωCat is equipped with its
cartesian symmetric monoidal structure. We call CatSp the category of categorical spectra.
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Remark 13.2.2. Recall from remark 3.6.12 that there is an equivalence CatωCat = ωCat.
It follows that we have equivalences nCatωCat = (n− 1)CatωCat for each n ≥ 1. Composing
these we obtain an equivalence nCatωCat = ωCat for each n ≥ 1.

Concretely, we may understand the above equivalence as follows. Consider the diagram
of categories

Spc
(−)≤0

←−−− Cat
(−)≤1

←−−− 2Cat
(−)≤2

←−−− 3Cat . . .

and recall that its limit recovers ωCat. This induces for each n ≥ 1 a sequence of categories

nCatSpc (−)≤0
!←−−− nCatCat (−)≤1

!←−−− nCat2Cat (−)≤2
!←−−− nCat3Cat . . .

whose limit is nCatωCat. The above two sequences are equivalent up to a shift - the induced
equivalence between their limits recovers our equivalence nCatωCat = ωCat.

Consider now for each n ≥ 1 the diagram

(n+ 1)CatSpc
∗ (n+ 1)CatCat

∗ (n+ 1)Cat2Cat
∗ (n+ 1)Cat3Cat

∗ . . .

nCatSpc
∗ nCatCat

∗ nCat2Cat
∗ nCat3Cat

∗ . . . .

Ω
nCatSpc

(−)≤0
!

Ω
nCatCat

(−)≤1
!

Ω
nCat2Cat

(−)≤2
!

Ω
nCat3Cat

(−)≤0
! (−)≤1

! (−)≤2
!

Its limit recovers the functor ΩnCatωCat : (n+ 1)CatωCat
∗ → nCatωCat

∗ . The above diagram is
equivalent to a shift of the diagram

CatSpc
∗ CatCat

∗ Cat2Cat
∗ Cat3Cat

∗ . . .

Spc∗ Cat∗ 2Cat∗ 3Cat∗ . . . .

ΩSpc

(−)≤0
!

ΩCat

(−)≤1
!

Ω2Cat

(−)≤2
!

Ω3Cat

(−)≤0 (−)≤1 (−)≤2

The limit of the latter recovers the functor ΩωCat : CatωCat
∗ → ωCat∗.

The functor ΩωCat : CatωCat
∗ → ωCat∗ induces, via the equivalence CatωCat = ωCat an

endofunctor of ωCat∗, which we will continue denoting by ΩωCat. It follows from the above
that for each n ≥ 1 there is a commutative square of categories

(n+ 1)CatωCat
∗ ωCat∗

nCatωCat
∗ ωCat∗

Ω
nCatωCat ΩωCat

whose horizontal arrows are the equivalences discussed above.
In particular, we have that the category CatSp is equivalent to the limit of the sequence

ωCat∗
ΩωCat←−−− ωCat∗

ΩωCat←−−− ωCat∗
ΩωCat←−−− ωCat∗ . . . . (∗)
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Remark 13.2.3. Recall that ωCat comes equipped with an infinite family of commuting
involutions indexed by positive integers, where the i-th involution reverses the direction of
i-dimensional cells. It follows from remark 13.1.14 that the category CatSp admits an infinite
family of commuting involutions (−)i indexed by arbitrary integers. From the point of view
of the sequence (∗) from remark 13.2.2, these are induced by the fact that the endofunctor
ΩωCat of ωCat∗ exchanges the involution (−)(i+1)-op with (−)i-op for each i ≥ 0.

Thinking about a categorical spectrum C as a category whose cells may have any integer
dimension, we may interpret the categorical spectrum Ci-op as being obtained from C by
reversing the direction of i-dimensional cells.

We now specialize the shift automorphisms from notation 13.1.15 to the case M = ωCat.

Remark 13.2.4. The equivalence of categories CatωCat = ωCat induces an equivalence
between CatSpCatωCat and CatSp. Under this equivalence, the equivalence

BωCat : CatSpωCat CatSpCatωCat : ΩωCat

from notation 13.1.15 induces inverse automorphisms on CatSp, which we will continue
denoting by BωCat and ΩωCat. These automorphisms are induced from the symmetry under
shifts of the sequence (∗) from remark 13.2.2. Note that the inverse automorphisms BωCat

and ΩωCat exchange the involutions (−)i-op and (−)(i+1)-op on CatSp for each integer i.
Observe that we have a commutative square

CatSp ωCat∗

CatSp ωCat∗ .

ΩωCat

Ω∞ωCat

ΩωCat

Ω∞ωCat

In other words, the projection Ω∞ωCat : CatSp→ ωCat∗ commutes with the endofunctors ΩωCat

on both sides.

Our next goal is to show that CatSp and its shift automorphism arise formally from
ωCat∗ by inverting the endofunctor ΩωCat.

Notation 13.2.5. Let C be a category. Denote by Cend the pullback

Cend C

Funct([1], C) C × C.

∆

(ev0,ev1)

We let Caut be the full subcategory of Cend on those objects whose projection to Funct([1], C)
corresponds to an invertible arrow in C.
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Remark 13.2.6. Let C be a category. Then Catend is a category whose objects are objects
of C equipped with an endomorphism, and morphisms from (c, α) to (d, β) are commutative
squares

c d

c d.

f

α α

f

Remark 13.2.7. Denote by N the free monoid on one object. Recall that we have a pushout
square of categories

[0] t [0] [1]

[0] BN

(0,1)

where BN denotes the category with a single object, with endomorphisms given by N. It
follows that for every category C we have an equivalence Cend = Funct(BN, C).

Consider now the free abelian group on one object Z, and its classifying space BZ. The
map BN→ BZ is an epimorphism of categories. For every category C, a functor BN→ C
factors through BZ if and only if it corresponds to an object equipped with an automorphism.

It follows from this that for every category C we have a commutative square

Caut Cend

Funct(BZ, C) Funct(BN, C)

where the vertical arrows are equivalences, the top horizontal arrow is the inclusion, and the
bottom horizontal arrow is given by restriction along the map BN→ BZ.

If C admits colimits indexed by the poset of natural numbers, then the bottom horizontal
arrow in the above diagram admits a left adjoint, given by left Kan extension along BN→ BZ.
In this case, each object (c, α) of Cend admits a universal map to an object (d, β) of Caut. Here
the object d is given by the colimit of the diagram

c
α−→ c

α−→ c . . .

and is equipped with the shift automorphism.

Proposition 13.2.8. The inclusion Ĉataut → Ĉatend admits a right adjoint, which maps
(ωCat∗,ΩωCat) to (CatSp,ΩωCat).

Proof. This is a direct consequence of the description of CatSp from remark 13.2.2, together
with remark 13.2.7.
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We now specialize the notion of cell from definition 13.1.20 to the case M = ωCat. This
will make precise the idea that a categorical spectrum has cells whose dimensions are indexed
by arbitrary integers.

Notation 13.2.9. Let i ≥ 0. We denote by

cellsi(−) : ωCat→ Spc

the functor corepresented by the universal i-dimensional cell Ci from example 3.6.3. In other
words, this is the functor that assigns to each ω-category C the space cellsi(C) of i-dimensional
cells in C. Note that this is a special case of the functors from notation 13.1.18.

We will also use the notation cellsi(−) for the functor cellsCi : CatSp → Spc obtained
from definition 13.1.20 by setting M = ωCat and m = Ci.

Warning 13.2.10. Let i ≥ 0. We use the notation cellsi for two different purposes. If C is a
categorical spectrum, there is a map

cellsi(Ω
∞
ωCat(C))→ cellsi(C)

which is in general not an equivalence. It will generally be clear from context which version
of cellsi we are using (see also warning 13.1.21).

Remark 13.2.11. Let i ≥ 0. Then it follows from remark 13.1.23 that there is a commutative
triangle

CatSp CatSp

Spc

ΩωCat

cellsi+1

cellsi

In other words, the inverse equivalences BωCat and ΩωCat shift the dimension of cells by one.
This allows us to extend the functors cellsi to the case i < 0. Namely, we inductively

define for each i < 0 a functor cellsi : CatSp→ Spc by setting cellsi−1 = cellsiBωCat.

Definition 13.2.12. Let C be a categorical spectrum. For each integer i we call cellsi(C) the
space of i-dimensional cells in C.

Notation 13.2.13. We define for each i ≥ 0 a functor

Ci,− : ωCat→ ωCat

inductively by setting C0,− = idωCat, and Ci+1,− = CCi,− . Note in particular that Ci,− maps
[0] to the walking i-dimensional cell Ci.

Remark 13.2.14. The functoriality of the commutative triangle from 13.1.23 implies that
for every i ≥ 0 we have a natural isomorphism

cellsCi,− ΩωCat = cellsCi+1,−

of functors ωCatop×CatSp→ Spc. This allows us to define the functors cellsCi,− for negative
values of i by inductively setting cellsCi−1,− = cellsCi,− BωCat.
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Remark 13.2.15. Let i be an integer. Consider the map [0] → [1] which picks out the
source (resp. target) object. Thanks to remark 13.2.14 this induces a natural transformation
cellsi+1 → cellsi of functors CatSp→ Spc, which we call the source (resp. target) map. For
each categorical spectrum C this produces a map cellsi+1(C)→ cellsi(C) which we think about
as sending each i-dimensional cell in C to its source (resp. target) cell.

Similarly, using the projection [1]→ [0] we obtain a natural transformation cellsi → cellsi+1

which we think about as sending each i-dimensional cell in a categorical spectrum to the
corresponding degenerate (i+ 1)-dimensional cell.

The pushout square of categories

[0] [1]

[1] [2]

0

1

induces a pullback square of functors

cellsCi,[2]
cellsi+1

cellsi+1 cellsi

where the right vertical and bottom horizontal maps are the sources and target. The active
map [1] → [2] induces a natural transformation cellsCi,[2]

→ cellsi+1. If C is a categorical
spectrum and α, β are a pair of i-dimensional cells in C such that the source of β is identified
with the target of α, we can use the above to construct a new i-dimensional cell β ◦ α.

In other words, each cell in a categorical spectrum has a source and a target, and there
are composition and unit maps. A standard argument shows that composition is associative
and unital up to homotopy.

Remark 13.2.16. For each i ≥ 0 the functor Ci,− : ωCat → ωCat from notation 13.2.13
exchanges the involutions (−)j-op and (−)(j+i)-op for j ≥ 1, and is a fixed point for the
involutions (−)k-op on the target for k ≤ i. Hence the functor

cellsCi,− : ωCatop×CatSp→ Spc

is a fixed point for the involutions (id, (−)k-op) with k ≤ i, and ((−)j-op, (−)(j+i)-op) for all
j ≥ 1. This fixed point structure is compatible with shifts, so we may extend it by induction
to all integers i.

It follows from the above that for every pair of integers i, j, the functor cellsi : CatSp→ Spc
is a fixed point for the involution (−)j-op, and furthermore the source and target maps are
invariant except in the case when i = j, in which case they are exchanged. This makes precise
the idea that the involutions (−)j-op invert the direction of j-dimensional cells.
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When working with ω-categories, one is in many cases interested in those which only have
non-invertible cells below a certain dimension. We now explore the analogous notion in the
setting of categorical spectra.

Definition 13.2.17. Let C be a categorical spectrum and let i be an integer. We say
that an i-dimensional cell in C is invertible if it lies in the image of the degeneracy map
cellsi−1(C)→ cellsi(C).

Remark 13.2.18. Let C be a categorical spectrum, corresponding to a sequence Cn of
pointed ω-categories indexed by nonnegative integers, and equivalences ΩωCat(Cn+1) = Cn
for every n ≥ 0. For every positive integer i the degeneracy map cellsi−1(C) → cellsi(C) is
obtained by passing to the colimit the degeneracy map cellsi−1+n(Cn)→ cellsi+n(Cn). Since
the projection Ci+n → Ci−1+n which picks out the degenerate (i + n)-dimensional cell is
an epimorphism, we wee that the maps cellsi−1+n(Cn) → cellsi+n(Cn) are monomorphisms.
Therefore the degeneracy map cellsi−1(C)→ cellsi(C) itself is a monomorphism.

In other words, the space of invertible i-dimensional cells in C is equivalent to the space
of (i− 1)-dimensional cells in C.

Proposition 13.2.19. Let C be a categorical spectrum, corresponding to a sequence Cn of
pointed ω-categories indexed by nonnegative integers, and equivalences ΩωCat(Cn+1) = Cn for
every n ≥ 0. Let i be an integer, and let n ≥ −i+ 1. Then an (n+ i)-dimensional cell in Cn
is invertible if and only if its image in cellsi(C) is invertible.

Proof. If an (n+ i)-dimensional cell in Cn is invertible then its image in cellsi(C) is clearly
invertible. It remains to prove the converse. Let α be an (n+ i)-dimensional cell in Cn whose
induced i-dimensional cell in C is invertible. This implies that the image of α in cellsN+i(CN )
is invertible for some N > n. Working by induction, we may assume that N = n+ 1.

The fact that the (n+ 1 + i)-dimensional cell induced by α in Cn+1 is invertible means
that the composite map

CCn+i
→ ΩωCatCn+1 → Cn+1

of ωCat-algebroids factors through the degeneracy map CCn+i
→ CCn+i−1

, where the first
arrow above is induced from α, and the second arrow is the counit map. Since the second
arrow is fully faithful, we conclude that the first arrow in fact factors through CCn+i−1

. This
means that α itself factors through Cn+i−1, as desired.

Proposition 13.2.20. Let n ≥ 0. Then the inclusion nCat→ ωCat induces an equivalence
between CatSpnCat and the full subcategory of CatSp on those categorical spectra for which
every cell of dimension greater than n is invertible.

Proof. Note that the functor CatSpnCat → CatSp is obtained by passing to the limit the
inclusions (n+m)Cat∗ → ωCat∗. These are fully faithful, and therefore the map CatSpnCat →
CatSp is indeed fully faithful. Let C be a categorical spectrum, corresponding to a sequence Cn
of pointed ω-categories indexed by nonnegative integers, and equivalences ΩωCat(Cn+1) = Cn
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for every n ≥ 0. Then C belongs to CatSpnCat if and only all cells in Cm of dimension greater
than (n + m) are invertible. Our result now follows from an application of proposition
13.2.19.

Notation 13.2.21. For each integer n we denote by nCatSp the full subcategory of CatSp
on those categorical spectra for which every cell of dimension greater than n is invertible.

Warning 13.2.22. Contrary to our conventions with categories, the category 1CatSp is
different from CatSp. In other words, we chose to reserve the simplest notation CatSp for
the most general notion.

Remark 13.2.23. Let C be a categorical spectrum. Recall that for every integer i we have
an equivalence cellsi(ΩωCatC) = cellsi+1 C. This equivalence preserves the invertibility of cells.
It follows that for each integer n the image of the subcategory nCatSp of CatSp under the
automorphism ΩωCat agrees with (n − 1)CatSp. In particular, the categories nCatSp for
different values of n are all equivalent.

Remark 13.2.24. It follows from remark 13.1.12 that for every n ≥ 0 the inclusion of nCatSp
inside CatSp admits both left and right adjoints, induced by the functors ωCat → nCat
which are left and right adjoints to the inclusion nCat→ ωCat.

By remark 13.2.23, the inclusion nCatSp → CatSp admits both left and right adjoints
for every integer n. We think about its left adjoint as the functor that universally inverts
all cells of dimension greater than n, and its right adjoint as the functor that universally
discards all non-invertible cells of dimension greater than n.

13.3 Examples of categorical spectra

We now discuss a variety of examples of categorical spectra. We begin by observing that
ordinary spectra provide examples of categorical spectra.

Example 13.3.1. Observe that there is a commutative square of categories

Spc∗ Spc∗

Spc∗ Cat∗

id

Ω

ΩSpc

where the right vertical arrow is the canonical inclusion. It follows from this that we have a
commutative square

Spc∗ Spc∗

ωCat∗ ωCat∗

Ω

ΩωCat
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where the vertical arrows are the canonical inclusions. We therefore have a commutative
diagram

Spc∗ Spc∗ Spc∗ Spc∗ . . .

ωCat∗ ωCat∗ ωCat∗ ωCat∗ . . . .

Ω Ω Ω

ΩωCat ΩωCat ΩωCat

Passing to the limit, this induces a fully faithful functor Sp → CatSp. In other words,
any spectrum can be thought of as a categorical spectrum in a canonical way. Furthermore,
this assignment exchanges the automorphisms B,Ω on Sp and the functor Ω∞ : Sp→ Spc∗
with the automorphisms BωCat,ΩωCat on CatSp and the functor Ω∞ωCat : CatSp→ ωCat∗.

Remark 13.3.2. It follows from proposition 13.2.19 that the inclusion Sp → CatSp from
example 13.3.1 identifies Sp with the full subcategory of CatSp on those categorical spectra
for which all arrows are invertible.

In other words, this is the intersection of the subcategories nCatSp as n ranges over all
integers. It follows from remark 13.2.24 that each of this subcategories is closed under limits
and colimits inside CatSp. We conclude that Sp is also closed under limits and colimits inside
CatSp. Therefore the inclusion admits both left and right adjoints.

The left adjoint CatSp→ Sp is the functor that universally inverts all cells. We may think
about this as a stable version of the geometric realization functor from categories to spaces.
The right adjoint CatSp→ Sp is the functor that universally discards all non-invertible cells.
For each categorical spectrum C we call its image under this right adjoint the spectrum
underlying C.

Any grouplike commutative algebra in spaces provides an example of a spectrum, its
Eilenberg-MacLane spectrum. The following example generalizes this to the context of
categorical spectra.

Example 13.3.3. Let M be a symmetric monoidal category. The canonical symmetric
monoidal structure on the functor BM : Alg(M)→ CatM∗ induces a functor

CAlg(M) = CAlg(Alg(M))→ CAlg(CatM∗ ) = CAlg(CatM)

which maps each commutative algebra A inM to a symmetric monoidalM-enriched category
whose underlying M-enriched category is BMA.

Iterating the above, given a commutative algebra A inM we may construct for every n ≥ 1
a symmetric monoidal M-enriched n-category Bn

MA. The underlying pointed M-enriched
higher categories are characterized by the fact that they have a connected space of objects
and they come equipped with equivalences

Ω(n−1)CatMB
n
MA = Bn−1

M A

where we use the convention B0
MA = A.
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We conclude that the higher M-enriched categories Bn
MA can be put together into an

M-categorical spectrum A. We call this the Eilenberg-MacLane M-categorical spectrum
of A. In the case when A is a symmetric monoidal ω-category, we simply call this the
Eilenberg-MacLane categorical spectrum of A.

Remark 13.3.4. Let A be a commutative algebra in spaces. Thinking about A as a
symmetric monoidal ω-category, we may form the symmetric monoidal ω-category BωCatA as
in example 13.3.3. This has a connected space of objects, and moreover the ω-category of
endomorphisms of the basepoint is the space A. It follows that BωCatA is in fact a symmetric
monoidal 1-category.

If A is grouplike then every endomorphism of the unit in BωCatA is invertible, so we have
that BωCatA is again a commutative algebra in spaces. Note that it comes equipped with an
identification

ΩBωCatA = A

as pointed spaces.
Since BωCatA is connected, we have that it is in fact a grouplike commutative algebra in

spaces. Iterating this, we see that for every n ≥ 1 we have a connected grouplike commutative
algebra in spaces Bn

ωCatA, and equivalences of pointed spaces

ΩBn
ωCatA = Bn−1A

We thus see that the Eilenberg-MacLane categorical spectrum of a grouplike commutative
algebra in spaces A lies in the image of the embedding Sp → CatSp of example 13.3.1.
Furthermore, the associated spectrum is connective. As we shall see, the image of A under the
usual equivalence between grouplike commutative algebras in spaces and connective spectra
is equivalent to A.

For later purposes, we provide a functorial enhancement of example 13.3.3.

Construction 13.3.5. LetM be a symmetric monoidal category. Consider the sequence of
categories

CAlg(M)
BM−−→ CAlg(CatM)

B
CatM−−−−→ CAlg(2CatM)

B
2CatM−−−−→ . . . (∗)

where the transition maps are induced from the symmetric monoidal structure on the functors
BnCatM : Alg(nCatM)→ (n+ 1)CatM∗ , as in example 13.3.3.

For each n ≥ 0 the functor BnCatM in the sequence (∗) is fully faithful and admits a right
adjoint

ΩnCatM : CAlg((n+ 1)CatM)→ CAlg(nCatM)

which is compatible with the similarly notated functor from notation 13.1.4 in that there is a
commutative diagram

CAlg(nCatM) CAlg((n+ 1)CatM)

nCatM∗ (n+ 1)CatM∗

Ω
nCatM

Ω
nCatM
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where the vertical arrows are the projections.
For each n ≥ 0 there is a functor

Bn
M : CAlg(M)→ CAlg(nCatM)

obtained by composing the first n functors in the sequence (∗). These come equipped with
identifications ΩnCatMB

n+1
M = Bn

M for all n ≥ 0, and can therefore be put together into a
functor from CAlg(M) into the limit of the sequence (∗). This limit maps into the limit of
the sequence from definition 13.1.9. Composing these two maps we obtain a functor

EM : CAlg(M)→ CatSpM

which sends each commutative algebra in M to its associated Eilenberg-MacLane M-
categorical spectrum. Observe that there is a canonical identification between Ω∞M EM
and the forgetful functor CAlg(M)→M∗.

The theory of higher presentable categories provides an abundant source of categorical
spectra.

Example 13.3.6. Let M be a presentable symmetric monoidal category, thought of as
a commutative algebra in PrL. Recall from section 12.2 that for each n ≥ 0 there is a
presentable symmetric monoidal (n+ 1)-category M -modn, where in the case n = 0 we set
M -mod0 =M. We can therefore define for each n ≥ 0 a symmetric monoidal (n+1)-category
ψn+1(M -modn).

For each n ≥ 0 the unit of the symmetric monoidal structure on M -modn+1 is given by
M -modn. Furthermore, we have an equivalence of (n+ 1)-categories

Endψn+2(M -modn+1)(M -modn) = ψn+1(M -modn)

which respects units. It follows that the ω-categories ψn+1(M -modn) assemble into a
categorical spectrum, which we denote by M. Observe that by definition we have an
equivalence Ω∞ωCat(M) =M.

We now specialize example 13.3.6 to obtain a number of categorical spectra of interest.

Example 13.3.7. Consider the case whereM = Spc is the unit in PrL. Then the categorical
spectrum Spc has as its n-th ω-category the (n+1)-category nPrL of presentable n-categories.

Example 13.3.8. Consider the case where M = Sp is the category of spectra with the
smash product symmetric monoidal structure. Then the categorical spectrum Sp has as its

n-th ω-category the (n+ 1)-category nPrLSt of presentable stable n-categories.

Example 13.3.9. Let A be a commutative ring spectrum. Then the category A -mod of
A-module spectra has a canonical structure of symmetric monoidal presentable category.
We may therefore consider the categorical spectrum A -mod. We will usually denote this by
A -mod. We observe that its image under the automorphism ΩωCat : CatSp → CatSp is a
categorical spectrum whose underlying pointed ω-category is the pointed space Ω∞(A).

Note that we may recover the categorical spectrum of example 13.3.8 by specializing the
above to the case A = S.
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Higher categories of correspondences provide another source of categorical spectra.

Example 13.3.10. Let C be a category admitting finite limits, with final object 1C. For
each n ≥ 1 we have an isomorphism

End(n+1)Corr(C)(1C) = nCorr(C).

It follows that the pointed ω-categories (nCorr(C), 1C) assemble into a categorical spectrum,
which we will denote by Corr(C).

For later purposes, it will be convenient to have a version of example 13.3.10 which is
functorial in C.

Construction 13.3.11. Recall from section 10.2 that the functor 2Corr : Catpb → 2Cat is
by definition a subfunctor of the functor

2Corr : Catpb → Funct(∆op,Cat)

which sends each category with pullbacks C to the simplicial category whose value on [n] is
Funct(Tw([n]), C).

Denote by Catlex the category of categories with finite limits and limit preserving functors.
Observe that there is a subfunctor F of 2Corr|Catlex

that maps each category with finite limits
C to the subobject of 2Corr(C) such that F (C)([n]) is the full subcategory of 2Corr(C)([n]) on
those objects whose image under the evaluation maps 2Corr(C)([n])→ 2Corr(C)([0]) = C≤0

is equivalent to the final object of C. Note that F is also a subfunctor of 2Corr (with values
in simplicial categories). Moreover, since 2Corr takes values in Segal categories, we also have
that F factors through the full subcategory of Funct(∆op,Cat) on the Segal categories.

Recall from [Hin20a] section 5 that there is an equivalence between Segal categories with
a space of objects and algebroids in Cat with a space of objects. We can therefore interpret
the inclusion F → 2Corr as a natural transformation of functors Catlex → Algbrd(Cat)Spc.
It follows from the definition of F that it factors through Algbrd[0](Cat), and that for each
category with finite limits C the map F (C) → 2Corr(C) is cartesian for the projection
Algbrd(Cat)Spc → Spc.

It follows from the above that the functor

Catlex
2Corr−−−→ 2Cat∗

ΩCat−−→ Algbrd[0](Cat)

is in fact equivalent to F . Therefore the composite functor

Catlex
2Corr−−−→ 2Cat∗

ΩCat−−→ Cat∗

is equivalent to the composite functor

Catlex
F−→ Algbrd[0](Cat) ↪→ Funct(∆op,Cat)

ev[1]−−→ Cat∗ .
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Inspecting the definition of F , we see that the above is equivalent to the forgetful functor
Catlex → Cat∗.

Consider now for each n ≥ 1 the commutative diagram

Catlex (2Catpb)∗ (Catpb)∗

(n+ 1)Cat∗ nCat∗.

(n+1)Corr

2Corr

nCorr!

ΩCatpb

nCorr

ΩnCat

The outer commutative square yields an equivalence ΩnCat(n+ 1)Corr |Catlex
= nCorr|Catlex

of
functors Catlex → nCat∗. We conclude that the functors

nCorr |Catlex
: Catlex → nCat∗

fit together into a functor
Corr : Catlex → CatSpCat

such that Ω∞CatCorr : Catlex → Cat∗ is the forgetful functor. For each category with finite
limits C, the image of C under Corr recovers the categorical spectrum from example 13.3.10.

We finish by mentioning one last source of examples, closely related to both the theory of
correspondences, and to higher presentable categories.

Example 13.3.12. Let C be a symmetric monoidal category with good relative tensor
products, in the sense of [Hau17] definition 4.18 (for instance, this is satisfied if C has
geometric realizations which are preserved by the tensor product functor, or if the symmetric
monoidal structure on C is cocartesian and C admits pushouts). Then [Hau17] constructs
for each n ≥ 0 an (n + 1)-category Moritan(C) called the Morita (n + 1)-category of En-
algebras in C. The objects of Moritan(C) are En-algebras in C, morphisms between a pair of
En-algebras A,B are En−1-algebras in A−B-bimodules, and so on (where at the last step
we use morphisms of unpointed E0-algebras).

We equip Moritan(C) with the pointing arising from the unit En-algebra 1C. Then [Hau17]
corollary 5.51 shows that for all n ≥ 0 there is an equivalence

EndMoritan+1(C)(1C) = Moritan(C).

The above equivalence is in fact an equivalence of pointed (n+ 1)-categories. It follows
that the pointed ω-categories (Moritan(C), 1C) fit into a categorical spectrum, which we
denote by Morita(C). We call this the Morita categorical spectrum of C. Observe that the
category Ω∞ωCat(Morita(C)) is equivalent to C.

Remark 13.3.13. Let C be a category admitting finite limits, and equip Cop with its
cocartesian symmetric monoidal structure. It was shown in [HMS20] that for each n ≥ 0
the Morita (n + 1)-category Moritan(Cop) is equivalent to the (n + 1)-category of cospans
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in Cop (in its incarnation as an (n+ 1)-fold complete Segal space). It seems plausible that
these equivalences can be combined into an equivalence of categorical spectra Corr(C) =
Morita(Cop)1-op, which can furthermore be upgraded to an equivalence of functors Catlex →
CatSp.

Let M be a presentable symmetric monoidal category, thought of as a commutative
algebra in PrL. Then for each n ≥ 0 one may relate En-algebras in M and M-linear
presentable n-categories: there is a functor -modn : AlgEn(M)→M -modn. The following
conjecture would provide a stronger link between the Morita theory of M and the theory of
M-linear higher presentable categories, generalizing the fact that bimodules between algebras
provide functors between categories of modules.

Conjecture 13.3.14. Let M be a presentable symmetric monoidal category. Then there is
a morphism of categorical spectra

Morita(M)→M

which sends each En-algebra A in M to the object A -modn in M -modn.

13.4 Relation to symmetric monoidal categories

The category of spectra can be defined formally inverting the loop space functor on either
the category of pointed spaces, or the category of grouplike commutative algebras in spaces.
Our approach to categorical spectra has so far focused on an analogue of the first definition
of spectra. Our next goal is to discuss the analogue of the second perspective.

Notation 13.4.1. Let M be a symmetric monoidal structure. We equip the functor BM :
Alg(M)→ CatM∗ from notation 13.1.4 with its canonical symmetric monoidal structure. We
continue denoting by BM the induced functor

BM : CAlg(M) = CAlg(Alg(M))→ CAlg(CatM∗ ) = CAlg(CatM).

We endow the functor ΩM : CatM∗ → Alg(M) with the induced lax symmetric monoidal
structure. We continue denoting by ΩM the induced functor

ΩM : CAlg(CatM) = CAlg(CatM∗ )→ CAlg(Alg(M)) = CAlg(M).

Note that is is right adjoint to the functor BM.

Proposition 13.4.2. Let M be a symmetric monoidal category. Then the lax symmetric
monoidal structure on ΩM : CatM∗ → Alg(M) is strict.

Proof. Let C,D be two pointedM-enriched categories. The lax symmetric monoidal structure
on ΩM induces a morphism of algebras ΩM(C)⊗ ΩM(D)→ ΩM(C ⊗ D) which we have to
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show is an isomorphism. Since BM is fully faithful, we have that the above is the image
under ΩM of the map

α : BM(ΩM(C)⊗ ΩM(D)) = BM(ΩM(C))⊗BM(ΩM(D)))→ C ⊗D

obtained by tensoring the unit morphisms BMΩM(C)→ C and BMΩM(D)→ D. The map
α is equivalent to the image under the localization functor Algbrd∗(M)Spc → CatM∗ of the
morphism of algebroids

β : ΩM(C)⊗ ΩM(D)→ C ⊗D

obtained by tensoring the unit morphisms ΩM(C)→ C and ΩM(D)→ D.
Since the localization functor Algbrd∗(M)Spc → CatM∗ maps fully faithful functors to fully

faithful functors, and the colocalization map ΩM : CatM∗ → Alg(M) inverts fully faithful
functor, we reduce to showing that β is fully faithful.

It follows from remark 3.5.7 that β is the image under the map m! : Algbrd(M×M)→
Algbrd(M) of the morphism of M×M-algebroids

ΩM(C)� ΩM(D)→ C �D

obtained as the exterior tensor product of the unit morphisms ΩM(C)→ C and ΩM(D)→ D.
Our result now follows from the fact that exterior tensor products of fully faithful functors
are fully faithful, which is a consequence of part (i) of proposition 3.5.5.

Corollary 13.4.3. Let M be a symmetric monoidal category. Then there is an induced
symmetric monoidal structure on CatSpM, which makes it into the limit of the sequence of
symmetric monoidal categories and symmetric monoidal functors

M∗
ΩM←−− CatM∗

Ω
CatM←−−−− 2CatM∗

Ω
2CatM←−−−− 3CatM∗ . . . .

Proof. This is a direct consequence of the fact that the forgetful functor CAlg(Cat)→ Cat
creates limits.

Proposition 13.4.4. LetM be a symmetric monoidal category. Then there is an equivalence
of symmetric monoidal categories between CatSpM and the limit of the sequence

CAlg(M)
ΩM←−− CAlg(CatM)

Ω
CatM←−−−− CAlg(2CatM)

Ω
2CatM←−−−− CAlg(3CatM) . . . .

Proof. Consider the following commutative diagram of symmetric monoidal categories and
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symmetric monoidal functors:

...
...

...
...

Alg(Alg(Alg(M∗))) Alg(Alg(CatM∗ )) Alg(2CatM∗ ) 3CatM∗ . . .

Alg(Alg(M∗)) Alg(CatM∗ ) 2CatM∗ 3CatM∗ . . .

Alg(M∗) CatM∗ 2CatM∗ 3CatM∗ . . .

M∗ CatM∗ 2CatM∗ 3CatM∗ . . .

ΩM Ω
CatM Ω

2CatM

ΩM Ω
CatM Ω

2CatM

ΩM Ω
CatM Ω

2CatM

ΩM Ω
CatM Ω

2CatM

Here the downwards vertical arrows are forgetful functors (or identities). Every row has limit
CatSpM, with identity transition maps between them. Hence the limit of the above diagram
is the symmetric monoidal category CatSpM from corollary 13.4.3.

We can compute this limit alternatively by first passing to limits of the columns, and
then taking the limit of the resulting sequence. Observe that the limit row receives a map
from the following sequence of symmetric monoidal categories:

CAlg(M∗)
ΩM←−− CAlg(CatM∗ )

Ω
CatM←−−−− CAlg(2CatM∗ )

Ω
2CatM←−−−− CAlg(3CatM∗ ) . . . .

Our result will follow if we are able to show that this map is an isomorphism. It suffices
then to show that for each n ≥ 0 the symmetric monoidal category CAlg(nCatM∗ ) is the
limit of the symmetric monoidal categories Alg(Alg(. . . (Alg(nCatM∗ )) . . .)). This is a direct
consequence of the fact that the commutative operad is the colimit of the operads Assos⊗n

(see [Lur17] corollary 5.1.1.5).

Corollary 13.4.5. Let M be a symmetric monoidal category. Then the induced symmetric
monoidal structure on CatSpM is cocartesian.

Proof. This follows directly from proposition 13.4.4, using the fact that the symmetric
monoidal structure on the category of commutative algebras in a symmetric monoidal
category is always cocartesian.

Remark 13.4.6. LetM be a cartesian symmetric monoidal category. Then, as discussed in
proposition 3.5.8, the symmetric monoidal structures on nCatM are also cartesian. It follows
that the induced symmetric monoidal structure on CatSpM is both cartesian and cocartesian.

Notation 13.4.7. Let M be a symmetric monoidal category. The symmetric monoidal
functor Ω∞M : CatSpM →M induces a symmetric monoidal functor

CatSpM = CAlg(CatSpM)→ CAlg(M)
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which we will continue denoting by Ω∞M. For each M-categorical spectrum C, we call Ω∞MC
the commutative algebra underlying M.

Remark 13.4.8. Let M be a symmetric monoidal category. It follows directly from the
definition of CatSpM that the limit of the sequence of symmetric monoidal categories and
symmetric monoidal functors

CAlg(M)
ΩM←−− CAlg(CatM)

Ω
CatM←−−−− CAlg(2CatM)

Ω
2CatM←−−−− CAlg(3CatM) . . .

from proposition 13.4.4 recovers CAlg(CatSpM). Corollary 13.4.5 implies that the forgetful
functor CAlg(CatSpM)→ CatSpM is an equivalence of symmetric monoidal categories. This
equivalence agrees with the one produced in the proof of proposition 13.4.4.

In particular, we see that the functor Ω∞M : CatSpM → CAlg(M) is equivalent to the
projection arising from proposition 13.4.4.

Remark 13.4.9. Let M be a symmetric monoidal category. Then the sequence

CAlg(CatM)
Ω

CatM←−−−− CAlg(2CatM)
Ω

2CatM←−−−− CAlg(3CatM)
Ω

3CatM←−−−− CAlg(4CatM) . . .

computing CatSpCatM is a shift of the sequence from proposition 13.4.4 computing CatSpCatM .
The induced equivalence CatSpCatM = CatSp agrees with the one given by the shift functors
from notation 13.1.15.

In particular, we have commutative a commutative square

CatSpCatM CatSpM

CAlg(CatM) CAlg(M)

ΩM

Ω∞
CatM Ω∞M

ΩM

which upgrades the equivalence Ω∞MΩM = ΩMΩ∞
CatM

from remark 13.1.17.

Remark 13.4.10. Consider the case M = ωCat, equipped with its cartesian symmetric
monoidal structure. Then the induced symmetric monoidal structure on CatSp is both
cartesian and cocartesian. We will continue denoting by BωCat and ΩωCat the adjoint functors

BωCat : CAlg(ωCat) CAlg(ωCat) : ΩωCat

obtained from the adjunction from notation 13.4.1 by using the equivalence CatωCat = ωCat.
Note that the right adjoint ΩωCat is induced from the product preserving functor ΩωCat :
ωCat∗ → ωCat∗ from remark 13.2.2.

Consider the sequence of categories

CAlg(ωCat)
ΩωCat←−−− CAlg(ωCat)

ΩωCat←−−− CAlg(ωCat)
ΩωCat←−−− CAlg(ωCat) . . . .
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The forgetful functors CAlg(ωCat)→ ωCat∗ induce a morphism from the above sequence to
the sequence of remark 13.2.2. Passing to the limit we obtain an equivalence CAlg(CatSp)→
CatSp. This agrees with the equivalence obtained from the proof of proposition 13.4.4 by
using the usual equivalences nCatωCat = ωCat.

Specializing remark 13.4.9 we obtain a commutative square

CatSp CatSp

CAlg(ωCat) CAlg(ωCat)

ΩωCat

Ω∞ωCat Ω∞ωCat

ΩωCat

which enhances the commutative square from remark 13.2.4.

Example 13.4.11. Recall the functor Corr : Catlex → CatSp from construction 13.3.11
which sends each category with finite limits C to its categorical spectrum of correspondences.
For each n ≥ 0 the composition of Corr with the n-th projection Ω∞−nωCat : CatSp → ωCat
recovers the functor nCorr, which is limit preserving. Hence Corr is limit preserving.

Consider for each n ≥ 0 the commutative triangle of categories

Catlex CatSp

ωCat .

Corr

nCorr
Ω∞−nωCat

This can be upgraded to a commutative triangle of cartesian symmetric monoidal categories
and symmetric monoidal functors. Passing to categories of commutative algebras we obtain
a commutative triangle of categories

CAlg(Catlex) CAlg(CatSp)

CAlg(ωCat).

Corr

nCorr
Ω∞−nωCat

We enhance the above commutative triangle as follows:

Catlex CatSp

CAlg(Catlex) CAlg(CatSp)

CAlg(ωCat)

Corr

Corr

nCorr
Ω∞−nωCat
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Here the upward arrows are the forgetful functors, and in particular the right upward arrow
is an isomorphism.

Note that there is a fully faithful section Catlex → CAlg(Catlex) to the forgetful functor,
which maps each category with finite limits C to itself equipped with the cartesian symmetric
monoidal structure. We thus obtain a commutative diagram

Catlex CatSp

CAlg(Catlex) CAlg(CatSp)

CAlg(ωCat).

Corr

Corr

nCorr
Ω∞−nωCat

Looking at the outer commutative square, we conclude that the enhancement of nCorr :
Catlex → ωCat to a functor into CAlg(ωCat) obtained by virtue of the fact that nCorr is
part of a functor into CatSp, agrees with its enhancement arising from the fact that nCorr
preserves products. In particular, for every category with finite limits C, the symmetric
monoidal structure on nCorr(C) arising by virtue of its presentation as Ω∞−nωCat (Corr(C)) agrees
with the symmetric monoidal structure used in chapter 11.

Recall that in the setting of spectra there is a functor Ω∞ : Sp → CAlggrplike(Sp) that
sends each spectrum to its underlying grouplike commutative algebra in spaces. This is
known to admit a fully faithful left adjoint which identifies CAlggrplike(Sp) with the category
of connective spectra. We now explore the analogue of this in the setting of M-categorical
spectra.

Definition 13.4.12. LetM be a symmetric monoidal category and let C be anM-categorical
spectrum, corresponding to a sequence of M-enriched higher categories Cn and equivalences
ΩnCatM(Cn+1) = Cn for all n ≥ 0. We say that C is connective if the space of objects of Cn is
connected for all n ≥ 1.

Example 13.4.13. Let S be a spectrum. Then S is connective if and only if the associated
categorical spectrum from example 13.3.1 is connective.

Proposition 13.4.14. Let M be a symmetric monoidal category. Then the functor

Ω∞M : CAlg(CatSpM)→ CAlg(M)

from notation 13.4.7 admits a fully faithful left adjoint, given by the functor

EM : CAlg(M)→ CatSp

from construction 13.3.5, which sends each commutative algebra in M to its Eilenberg-
MacLane M-categorical spectrum. Furthermore, this identifies CAlg(M) with the full subcat-
egory of CatSpM on the connective M-categorical spectra.
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The proof of proposition 13.4.14 will need some preliminary lemmas.

Lemma 13.4.15. Let I be a category admitting an initial object 0, and let F : I → Cat be
a functor. Assume that for all arrows α in I, the functor F (α) is fully faithful and admits
a right adjoint. Denote by FR : Iop → Cat the functor obtained from F by passing to right
adjoints. Then the projection q : limIop FR → F (0) admits a fully faithful left adjoint.

Proof. Let G : Iop → Cat be the constant functor F (0). The projection q is the limit of
the natural transformation η : FR → G that arises from the fact that G is the right Kan
extension along the inclusion {0} → Iop of the constant functor F (0).

To show that q admits a left adjoint it suffices to show that for every arrow α : i→ j in
I the resulting commutative square of categories

F (j) F (i)

G(j) G(i)

FR(α)

η(j) η(i)

G(α)

is vertically left adjointable. Observe that the above square has the form

F (j) F (i)

F (0) F (0)

FR(α)

FR(µ) FR(ν)

id

where µ, ν are the unique morphisms 0 → j and 0 → i. Since the vertical arrows are
colocalizations, to show that the above square is vertically left adjointable, it suffices to
show that the image of FR(α)F (µ) is contained in the image of F (ν). This follows from the
equivalence

FR(α)F (µ) = FR(α)F (α)F (ν) = F (ν).

This shows that the limit of the natural transformation η is indeed left adjointable. The
fully faithfulness of the left adjoint follows from the fact that for every i in I the left adjoint
to η(i) is fully faithful.

Lemma 13.4.16. Let
C0

q0←− C1
q1←− C2

q2←− . . .

be a sequence of categories, and let C be its limit. Assume that for every n ≥ 0 the functor qn
admits a fully faithful left adjoint in. Then the projection q : C → C0 admits a fully faithful
left adjoint, whose image is the full subcategory of C on those objects whose projection to Cn+1

belongs to the image of in for all n ≥ 0.
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Proof. The existence of a fully faithful left adjoint for q is a direct consequence of lemma
13.4.15, applied to the functor F : N→ Cat associated to the sequence obtained from the one
in the statement by passing to left adjoints of all arrows, where N is the poset of nonnegative
integers. Inspecting the proof of lemma 13.4.15, we see that an object x in C belongs to the
image of the left adjoint to q if and only if for all n ≥ 0 its projection xn to Cn belongs to the
image of the inclusion C0 → Cn. This happens if and only if xn+1 belongs to the image of in
for all n ≥ 0, as desired.

Proof of proposition 13.4.14. For each n ≥ 0 the functor

ΩnCatM : CAlg((n+ 1)CatM)→ CAlg(nCatM)

has a left adjoint which is induced from the canonical symmetric monoidal structure on the
functor

BM : Alg(nCatM)→ (n+ 1)CatM∗ .

As discussed in remark 13.1.6, the latter is fully faithful, and identifies Alg(nCatM) with
the full subcategory of (n+ 1)CatM∗ on those pointed M-enriched (n+ 1)-categories with a
connected space of objects.

Applying lemma 13.4.16 to the sequence of categories from proposition 13.4.4 we conclude
that Ω∞M : CatSpM → CAlg(M) admits a fully faithful left adjoint whose image is the full
subcategory of CatSpM on the connective M-categorical spectra.

It remains to show that the left adjoint to Ω∞M recovers the functor EM from construction
13.3.5. Observe that for every commutative algebra A inM theM-categorical spectrum EM
is indeed connective. Hence we can write EM = (Ω∞M)LF for some functor F : CAlg(M)→
CAlg(M), where (Ω∞M)L denotes the left adjoint to Ω∞M.

Inspecting the construction, we see that the composite functor

CAlg(M)
EM−−→ CatSp

Ω∞M−−→ CAlg(M)

is equivalent to the identity. Since Ω∞M is a colocalization, we conclude that F is equivalent
to the identity. Therefore EM is equivalent to (Ω∞M)L, as desired.

Example 13.4.17. Recall the inclusion Sp→ CatSp from example 13.3.1. This fits into a
commutative square of presentable categories and right adjoints

Spc∗ Sp

ωCat∗ CatSp .

Ω∞

Ω∞ωCat

The cartesian symmetric monoidal structures on CatSp and Sp are also cocartesian. Passing
to categories of commutative algebras and restricting to grouplike commutative algebras in
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spaces we obtain a commutative square of categories

CAlggrplike(Spc) Sp

CAlg(ωCat) CatSp .

Ω∞

Ω∞ωCat

It follows from a combination of remark 13.3.4 and proposition 13.4.14 that the above
commutative square is horizontally left adjointable. Passing to left adjoints of the horizontal
arrows we obtain a commutative square

CAlggrplike(Spc) Sp

CAlg(ωCat) CatSp .EM

The top horizontal arrow in the above diagram is the standard inclusion of grouplike com-
mutative algebras in spaces into spectra, as the full subcategory of connective spectra. The
commutativity of the above square shows that this is compatible with our functor EM.

The next result provides a more concrete description of the functor that sends each
categorical spectrum to its underlying spectrum.

Proposition 13.4.18. The commutative square of categories

CAlggrplike(Spc) Sp

CAlg(ωCat) CatSp .

Ω∞

Ω∞ωCat

from example 13.4.17, is vertically right adjointable.

Proof. The left vertical arrow is the composition of the inclusions

CAlggrplike(Spc)→ CAlg(Spc)→ CAlg(ωCat).

The first arrow admits a right adjoint, which sends a commutative algebra in spaces to its
subspace of invertible elements with its induced commutative algebra structure. The second
arrow admits a right adjoint induced by the truncation functor (−)≤0 : ωCat→ Spc . Hence
we see that the left vertical arrow in the square of the statement is right adjointable.

As observed in remark 13.3.2, the right vertical arrow in the above square is also right
adjointable. Our result now follows from the fact, observed in example 13.4.17, that this
square is horizontally left adjointable.
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Corollary 13.4.19. Let C be a categorical spectrum and let C≤−∞ be the spectrum underlying
C. Then Ω∞(C≤−∞) is the image of Ω∞ωCat(C) under the right adjoint to the inclusion
CAlggrplike(Spc)→ CAlg(ωCat).

Remark 13.4.20. Let C be a categorical spectrum, corresponding to a sequence of symmetric
monoidal ω-categories Cn and equivalences ΩωCat(Cn+1) = Cn for all n ≥ 0. Recall that the
inclusion Sp→ CatSp exchanges the shift automorphisms B,Ω on Sp with the automorphisms
BωCat,ΩωCat on CatSp. It follows from corollary 13.4.19 that for every n ≥ 0 the grouplike
commutative algebra in spaces Ω∞−n(C≤−∞) is the image of the symmetric monoidal ω-
category Cn under the right adjoint to the inclusion CAlggrouplike(Spc)→ CAlg(ωCat).

In other words, the n-th space of the spectrum C≤−∞ is obtained from Cn by discarding
all non-invertible cells and objects.

Remark 13.4.21. The commutative square from proposition 13.4.18 is not vertically left
adjointable. Given a categorical spectrum C , corresponding to a sequence of symmetric
monoidal ω-categories Cn and equivalences ΩωCat(Cn+1) = Cn for all n ≥ 0, it is not true in
general that the pointed spaces obtained from Cn by inverting all objects and morphisms
assemble into a spectrum.

For instance, take C = ΩωCat(EM(F )), where F is the free symmetric monoidal category
on one object (in other words, F is the category of finite sets and bijections with the disjoint
union symmetric monoidal structure). Then C0 is the terminal symmetric monoidal category,
which is already a grouplike commutative algebra object in spaces. Meanwhile, C1 = F and
the space obtained by inverting all objects in C1 is the space underlying the sphere spectrum,
whose loopspace is nontrivial.
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Chapter 14

Higher quasicoherent sheaves

Let X be a prestack. Then one may attach to X a presentable stable category QCoh(X),
defined as the limit over all affine schemes Spec(A) over X of the category A -mod. We
call QCoh(X) the category of quasicoherent sheaves on X. The goal of this chapter is to
introduce higher categorical generalizations of QCoh(X), and study the functoriality, descent,
and affineness properties of the resulting sheaf theories.

We begin in 14.1 by introducing the notion of quasicoherent sheaf of higher categories
on affine schemes. We then prove the first main result of this chapter (theorem 14.1.4)
which states that the theory nQCoh of quasicoherent sheaves of n-categories gives rise to
a representation of the (n + 1)-category of correspondences of affine schemes, and these
representations are compatible as we change the parameter n: in other words, they give rise
to a representation of the categorical spectrum of correspondences of affine schemes. As
a consequence, we obtain very strong functoriality properties: the theory nQCoh on affine
schemes has pullbacks and pushforwards which are adjoints to each other to both sides, as
soon as n ≥ 2.

In 14.2 we introduce the notion of quasicoherent sheaf of higher categories on arbitrary
prestacks, by right Kan extension from the affine case. We then prove the second main
result of this chapter (theorem 14.2.9) which states that the theory nQCoh gives rise to a
representation of the n-category of correspondences of prestacks, and the (n+ 1)-category
of correspondences of prestacks and affine-schematic morphisms. These representations are
once again compatible as we change the parameter n, so they give rise to a representation of
the categorical spectrum of correspondences of prestacks. We use this theorem to show that
the theory nQCoh on prestacks has pullbacks and pushforwards which are adjoints to each
other to both sides as soon as n ≥ 3, and in the case n ≥ 2 it comes equipped with a strictly
symmetric monoidal structure.

In 14.3 we study the class of morphisms for which the pullback (resp. pushforward)
functor on nQCoh is comonadic (resp. monadic). In the case of pullbacks, we show that
comonadicity reduces to a descent statement. On the other hand, monadicity of pushforwards
reduces to an affineness assertion, as in [Gai15]. We prove here two fundamental results which
allow one to reduce descent and affineness questions to the case n = 2. In particular, we
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conclude that the theory nQCoh satisfies étale descent, and that prestacks with quasicompact,
quasiseparated schematic diagonal are n-affine for all n ≥ 2.

14.1 Quasicoherent sheaves of n-categories on affine schemes

We begin by reinterpreting the higher module categories from definition 12.2.5 from the point
of view of spectral algebraic geometry.

Notation 14.1.1. Let SchAff be the opposite of the category of connective commutative
ring spectra. We call its objects affine schemes. For each commutative ring spectrum A we
denote by Spec(A) the corresponding affine scheme. For each n ≥ 0 we denote by nQCoh
the composite symmetric monoidal functor

SchAffop = CAlg(Sp)cn
-modn−−−→ nPrLSt .

For each morphism of affine schemes f : X → Y we denote by f ∗ : nQCoh(Y )→ nQCoh(X)
the induced pullback functor.

In the case n = 0 we will sometimes use the notation O(X) instead of 0QCoh(X). In the
case n = 1 we will use the notation QCoh(X) instead of 1QCoh(X).

Definition 14.1.2. Let X be an affine scheme. For each n ≥ 2 we call nQCoh(X) the
presentable stable n-category of quasicoherent sheaves of (n− 1)-categories on X.

We now state our main result concerning the functoriality of the theory of higher quasico-
herent sheaves on affine schemes.

Notation 14.1.3. Let C be a category admitting pullbacks and let n ≥ 2. We denote by
(ιnC)

R the composite inclusion

Cop ιRC−→ 2Corr(C)
ι2,nC−−→ nCorr(C).

Theorem 14.1.4. Let n ≥ 1. There exists a unique extension of the symmetric monoidal
functor nQCoh from notation 14.1.1 along the inclusion (ιn+1

SchAff)R to a symmetric monoidal
functor

nQCoh(n+1)Corr(SchAff) : (n+ 1)Corr(SchAff)→ (nPrLSt)
(n+1)-op.

Furthermore, for each n ≥ 2 the square of ω-categories

nCorr(SchAff) ((n− 1)PrLSt)
n-op

End(n+1)Corr(SchAff)(Spec(S)) End(nPrLSt)
(n+1)-op((n− 1)PrLSt)

(n−1)QCohnCorr(SchAff)

= =

(nQCoh(n+1)Corr(SchAff))∗

commutes.
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Before giving a proof of theorem 14.1.4, we study a few consequences.

Corollary 14.1.5. Let f : X → Y be a morphism of affine schemes and let n ≥ 2. Then
the morphism f ∗ : nQCoh(Y ) → nQCoh(X) admits both right and left adjoints, and these
are equivalent.

Proof. Combine theorem 14.1.4 with proposition 11.1.9.

Remark 14.1.6. Let n ≥ 1 and letM be a commutative algebra object in Spc -modn. Let F :
C → D be a morphism ofM-modules. Then F is right adjointable in ψn+1(M -mod(Spc -modn))
if and only if the functor of categories underlying F admits a colimit preserving right adjoint
G : D → C, and the canonical structure of lax morphism of M-modules on G is strict. In
this case, the morphism ofM-modules G is right adjoint to F in ψn+1(M -mod(Spc -modn)).
Furthermore, a commutative square

C ′ C

D′ D

in ψn+1(M -mod(nPrL)) is vertically right adjointable if and only if the vertical arrows
admit right adjoints, and the underlying commutative square of categories is vertically right
adjointable.

It follows from the above that there is no ambiguity in the statement of 14.1.5 as to where
the right and left adjoints are considered (that is, as morphisms in nPrLSt, or as functors of
categories). Furthermore, the base change properties that are guaranteed to hold by theorem
14.1.4 also hold at the level of functors of categories.

Notation 14.1.7. Let f : X → Y be a morphism of affine schemes and let n ≥ 2. We will
usually denote by f∗ : nQCoh(X)→ nQCoh(Y ) the (right and left) adjoint to f ∗. We call
this the functor of pushforward along f . In the case when Y = Spec(S), this recovers a
morphism

Γ(X,−) : nQCoh(X)→ (n− 1)PrLSt

which we call the global sections functor for X.

Corollary 14.1.8. The sequence of functors nQCoh(n+1)Corr(SchAff) may be assembled into a
morphism of categorical spectra

O : Corr(SchAff)→ Sp1-op.

Proof. This is a restatement of the compatibility between the functors for different values of
n that appears in theorem 14.1.4.
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Remark 14.1.9. Let n ≥ 1. Then the morphism of categorical spectra O induces a
symmetric monoidal functor

(n+ 1)O : (n+ 1)Corr(SchAff)→ (nPrLSt)
n+1-op

whose underlying functor is nQCoh(n+1)Corr(SchAff). By the uniqueness part of theorem 14.1.4,
we see that this agrees with the usual symmetric monoidal structure on nQCoh(n+1)Corr(SchAff).
In particular, we have that the equivalence of functors

(n− 1)QCohnCorr(SchAff) = ΩωCatnQCoh(n+1)Corr(SchAff)

from theorem 14.1.4 can be upgraded to an equivalence of symmetric monoidal functors.

Our proof of theorem 14.1.4 requires a few lemmas.

Lemma 14.1.10. Let M be a symmetric monoidal category with symmetric monoidal
structure compatible with colimits, and let

A A′

B B′

f

g g′

f ′

be a pushout square of commutative algebras in M. Then the induced commutative square of
categories

A -mod A′ -mod

B -mod B′ -mod

f∗

g∗ g′∗

f ′∗

is horizontally right adjointable.

Proof. Denote by CAlgMod(M) the symmetric monoidal category whose objects are pairs
(A,M) of a commutative algebra A in M and an A-module M . This comes equipped with a
symmetric monoidal functor p : CAlgMod(M)→ CAlg(M) which is a cocartesian fibration of
operads, and a cartesian fibration. There is moreover a symmetric monoidal forgetful functor
q : CAlgMod(M)→M (taking the underlying module), and an arrow in CAlgMod(M) is
p-cartesian if and only if its image under q is an isomorphism.

We assume first that A is the trivial commutative algebra in M. We interpret the first
square in the statement as a functor C : [1]× [1]→ CAlg(M). Our goal is to show that the
base change of p along C is a bivariant fibration. This is evidently both a cocartesian and
cartesian fibration. Assume now given a p-cartesian lift

f : (A,M)→ (A′,M ′)



CHAPTER 14. HIGHER QUASICOHERENT SHEAVES 315

for f . Tensoring with the p-cocartesian morphism (A,A) → (B,B) yields a commutative
square

(A,M) (A′,M ′)

(B,N) (A′ ⊗B,N ′)

f

g

where the horizontal arrows are p-cartesian, and the vertical arrows are p-cocartesian. The
projection of the above square under p recovers the commutative square of commutative
algebras

A A′

B A′ ⊗B

f

g

where the bottom horizontal arrow is obtained by tensoring f with B, and the right vertical
arrow is obtained by tensoring g with A′. Since the symmetric monoidal structure on
CAlg(M) is cocartesian, we see that the above square is equivalent to our original square C.
We conclude that there exists a lift of C with p-cartesian horizontal arrows and p-cocartesian
vertical arrows, whose top-right entry is (A′,M ′). Since (A′,M ′) is arbitrary, we conclude
that the base change of p along C is a two-sided fibration. By symmetry, we have that this is
in fact a bivariant fibration, as desired.

Assume now that A is arbitrary. Recall that there is an equivalence CAlg(M)A/ =
CAlg(A -mod(M)). Base change along this equivalence sends CAlgMod(A -mod(M)) to
CAlgMod(M)×CAlg(M) CAlg(M)A/. We can thus interpret the first square in the statement
as a pushout square in CAlg(A -mod(M)), and the second square is in turn equivalent to the
commutative square of categories

A -mod(A -mod(M)) A′ -mod(A -mod(M))

B -mod(A -mod(M)) B′ -mod(A -mod(M)).

f∗

g∗ g′∗

f ′∗

Our lemma now follows from the fact that A is the trivial commutative algebra in A -mod(M).

Lemma 14.1.11. Let M be a symmetric monoidal category with symmetric monoidal
structure compatible with colimits , and let

A A′

B B′

f

g g′

f ′
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be a pushout square of commutative algebras in M. Then the induced commutative square

A -mod A′ -mod

B -mod B′ -mod

f∗

g∗ g′∗

f ′∗

of M-commutative algebras in Ĉatcocompl, is a pushout square.

Proof. Since the category of M-commutative algebras in Ĉatcocompl is equivalent to the

undercategory CAlg(Ĉatcocompl)M/, the second square in the statement is a pushout of M-
commutative algebras if and only if it is a pushout square of commutative algebras in
Ĉatcocompl. As in the proof of lemma 14.1.10, replacing M with A -mod(M) if necessary, we
may assume that A is the trivial commutative algebra in M.

We can think about the second square in the statement as arising by applying the
symmetric monoidal functor

-mod : CAlg(M)→M -mod(Ĉatcocompl)

to the first square. In other words, it can be obtained by applying the (symmetric monoidal)
functor

CAlg(-mod) : CAlg(M) = CAlg(CAlg(M))→ CAlg(M -mod(Ĉatcocompl)).

Our claim now follows from the fact that the symmetric monoidal structures above are
cocartesian, and therefore CAlg(-mod) preserves finite coproducts.

Lemma 14.1.12. Let n ≥ 1. Then the functor nQCohop : SchAff → (nPrLSt)
1-op satisfies

the right Beck-Chevalley condition.

Proof. Since the inclusion SchAffop = CAlgcn(Sp) → CAlg(Sp) preserves colimits, we see
that it suffices to show that the functor

-modn : CAlg(Sp)→ nPrLSt

maps pushout squares of commutative algebras to squares which are right adjointable in
nPrLSt. By remark 14.1.6, it suffices to check that the composition of -modn with the forgetful

functor nPrLSt → Ĉat maps pushout squares of commutative algebras to right adjointable
squares of categories. We can factor this as the composition

CAlg(Sp)
-modn−1

−−−−−→ CAlg((n− 1)PrLSt)
-mod−−−→ Ĉat.

The second functor sends pushout squares to right adjointable squares of categories by virtue
of lemma 14.1.10. Our lemma is now a consequence of the fact that the first functor in the
above composition preserves pushouts, which follows inductively from lemma 14.1.11.
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Construction 14.1.13. Let C be a category and D be a 2-category. Let F : C → D be
a functor such that F (α) is right adjointable for every arrow α in C. Let c, c′ be a pair of
objects of C. Denote by p : E → C the cartesian fibration associated to the composite functor

Cop F 1-op

−−−→ D1-op HomD(−,F (c′))−−−−−−−−−→ Cat.

Let s be the unique cartesian section of p|C/c′ such that s(c′) = idF (c′). Observe that the
projection E ×C C/c → C/c is a cocartesian fibration, and hence the inclusion of the fiber
Ec over the final object c admits a left adjoint q : E ×C C/c → Ec. We denote by Fc,c′ the
composite functor

C/c,c′
s|C/c,c′−−−−→ E ×C C/c,c′ → E ×C C/c

q−→ Ec = HomD(F (c), F (c′)).

where the middle arrow is the canonical projection.

Example 14.1.14. Let D be a 2-category, and let

d′ d

e′ e

be a commutative square in D, such that all arrows admit right adjoints. We can think about
the above as a functor F : [1]× [1]→ D. The functor

F(1,1),(1,1) : [1]× [1]→ EndD(e)

defines a commutative square in the category EndD(e), which agrees with the commutative
square from construction 11.2.1.

Lemma 14.1.15. Let C be a category admitting pullbacks. Let D be a 2-category and let
F : 2Corr(C)→ D be a functor. Let c, c′ be objects of C. Then the functor

(F |C)c,c′ : C/c,c′ → HomD(F (c), F (c′))

is equivalent to the composite functor

C/c,c′ = Hom2Corr(C)(c, c
′)

F∗−→ HomD(F (c), F (c′)).

Proof. We have natural transformations of functors Cop × C → Cat

HomC(−,−)
(ιC)∗−−−→ Hom2Corr(C)(−,−)|Cop×C

(F∗)|Cop×C−−−−−−→ HomD(F (−), F (−))|Cop×C.

Applying the two-sided Grothendieck construction∫
Cop×C

: Funct(Cop × C,Cat)→ Cat/C×C
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we obtain morphisms∫
Cop×C

HomC(−,−) −→
∫
Cop×C

Hom2Corr(C)(−,−)|Cop×C −→
∫
Cop×C

HomD(F (−), F (−))|Cop×C

of two-sided fibrations over C × C.
Let Λ2

0 be the category with objects 0, 1, 2 and nontrivial morphisms 1← 0→ 2. Thanks
to lemma 10.4.17, the first morphism above is equivalent to the morphism

Funct([1], C) Funct(Λ2
0, C)

C × C

φ′

(ev0,ev1)

(ev1,ev2)

where φ′ is the functor of precomposition with the map Λ2
0 → [1] which sends 0, 1, 2 to 0, 0, 1,

respectively.
We now base change the above series of maps along the functor

idC ×{c′} : C → C × C.
to obtain morphisms∫

Cop

HomC(−, c′) −→
∫
Cop

Hom2Corr(C)(−, c′)|Cop −→
∫
Cop

HomD(F (−), F (c′))|Cop

of cartesian fibrations over C. It follows from lemma 10.4.14 that the second and third
fibrations are in fact also cocartesian fibrations, and the morphism between them is also a
morphism of cocartesian fibrations. Furthermore, we may identify the first morphism above
as the map

ξ : C/c′ → Funct(Λ2
0, C)|C×{c′}

induced by base change from φ′.
Denote by p : E → C the cartesian-cocartesian fibration

∫
Cop HomD(F (−), F (c′))|Cop , and

by G : Funct(Λ2
0, C)|C×{c′} → E the induced morphism of cartesian and cocartesian fibrations

over C.
Note that the diagonal map ∆ : C/c′ → C/c′ ×C C/c′ is a cartesian section, since the

projection C/c′ → C is a right fibration. Its image under (the base change of) the morphism
Gξ yields a cartesian section s for p|C/c′ whose value on c′ recovers idF (c′).

Consider now the composite functor

J : C/c,c′
∆|C/c,c′−−−−→ C/c,c′ ×C C/c′ → C/c ×C C/c′

ξ|C/c−−→ C/c ×C Funct(Λ2
0, C)|C×{c′}

where the middle arrow is the canonical projection. Observe that the right side category fits
into a pullback diagram

C/c ×C Funct(Λ2
0, C)|C×{c′} Funct(I, C)

[0] C × C

(ev3,ev2)

(c,c′)
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where I is the category with objects 0, 1, 2, 3 and morphisms generated by arrows

3← 1← 0→ 2.

The functor J is then induced from the functor ρ : I → Λ2
0 which maps 0, 1, 2, 3 to 0, 0, 2, 1,

respectively.
Note that there is a unique natural transformation η : ρ→ ρ′ where ρ′ : I → Λ2

0 which
maps 0, 1, 2, 3 to 0, 1, 2, 1. This induces a natural transformation µ : J → J ′ of functors

C/c,c′ → C/c ×C Funct(Λ2
0, C)|C×{c′}. Concretely, for each span c

α←− s
β−→ y in C/c,c′ , we have

J(s) = (s, s
ids←− s

β−→ y)

and
J ′(s) = (c, c

α←− s
β−→ y),

and the morphism µ(s) has components α and

s

s s y

c y.

ids
ids

β

α
ids

β
idy

It follows that µ(s) is a cocartesian arrow for the projection C/c ×C Funct(Λ2
0, C). Further-

more, observe that the functor J ′ is equivalent to the canonical inclusion of C/c,c′ as the fiber
of C/c ×C Funct(Λ2

0, C)|C×{c′} over c.
Observe that the composite functor

C/c,c′
J−→ C/c ×C Funct(Λ2

0, C)|C×{c′}
G|C/c−−−→ C/c ×C E

is equivalent to the composite functor

C/c,c′
s|Cc,c′−−−→ C/c,c′ ×C E → C/c ×C E

where the second arrow is the canonical projection. Since G is a morphism of cocartesian
fibrations over C, we see that G|C/cµ presents GJ ′ as the composition of G|C/cJ under the
localization C/c ×C E → Ec. Unwinding the definition, we see that the corestriction of GJ ′ to
the fiber Ec over c is equivalent to (F |C)c,c′ . The lemma now follows from the observation
that GJ ′ is equivalent the functor F∗ : C/c,c′ → HomD(c, c′) induced by F .

Notation 14.1.16. Let n ≥ 1. We denote by

nQCoh′2Corr(SchAff) : 2Corr(SchAff)→ (nPrLSt)
1-op,2-op

the unique extension of nQCohop along ι2SchAff (which exists thanks to a combination of lemma
14.1.12 and theorem 11.2.6).



CHAPTER 14. HIGHER QUASICOHERENT SHEAVES 320

Lemma 14.1.17. Let n ≥ 1. The functor

SchAff = End2Corr(SchAff)(Spec(S))→ End(nPrLSt)
1-op,2-op((n− 1)PrLSt) = ((n− 1)PrLSt)

1-op

induced from nQCoh′2Corr(SchAff) is equivalent to (n− 1)QCohop.

Proof. Thanks to lemma 14.1.15, we have that the functor in the statement is equivalent to
the functor

(nQCohop)Spec(S),Spec(S) : SchAff → End(nPrLSt)
1-op,2-op((n− 1)PrLSt) = ((n− 1)PrLSt)

1-op.

To compute this, we need to understand the cartesian fibration associated to the composite
functor

SchAffop nQCoh−−−−→ ((nPrLSt)
2-op)≤2

Hom
((nPrL

St
)1-op,2-op)≤2 (−,(n−1)PrLSt))

−−−−−−−−−−−−−−−−−−−−−−→ Ĉat.

The above is induced by the composite functor

SchAffop nQCoh−−−−→ nPrLSt

Hom
nPrL

St
((n−1)PrLSt,−)

−−−−−−−−−−−−−−→ nPrLSt → Ĉat
(−)op

−−−→ Ĉat

where the second to last arrow is the forgetful functor. The cartesian fibration associated
to the above is the opposite of the cocartesian fibration p : E → CAlgcn(Sp) associated to

the functor -modn : CAlgcn(Sp)
-modn−−−→ Ĉat. The functor (nQCohop)Spec(S),Spec(S) is thus the

opposite of the composite functor

CAlgcn(Sp)→ E → (n− 1)PrLSt

where the first arrow is the unique cocartesian section that maps S to (n − 2)PrLSt, and
the second arrow is the right adjoint to the inclusion of the fiber over S. The lemma now
follows from the fact that the above composite map is equivalent to -modn−1 : CAlgcn(Sp)→
(n− 1)PrLSt.

Notation 14.1.18. Let D be an ω-category. For each set S of positive integers we denote by
DS-op the ω-category obtained from D by inverting the direction of all cells whose dimension
belongs to S. If i ≤ j are positive integers, we denote by [i, j] the set of all integers k such
that i ≤ k ≤ j, so that D[i,j]-op is the ω-category obtained from D by inverting all cells of
dimension between i and j.

Lemma 14.1.19. Let n ≥ 1. Then the functor

nQCohop : SchAff → (nPrLSt)
[1,n+1]-op

satisfies the left n-fold Beck-Chevalley condition.
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Proof. We argue by induction on n. When n = 1 this is the content of lemma 14.1.12, so we
assume n > 1. By lemma 11.2.9, it suffices to show that for each pair of affine schemes X, Y
the functor

Hom2Corr(SchAff)(X, Y )→ Hom(nPrLSt)
[1,n+1]-op(nQCoh(X), nQCoh(Y ))

induced by nQCoh′2Corr(SchAff), satisfies the left (n− 1)-fold Beck-Chevalley condition.
Let πY : Y → Spec(S) be the projection. The morphism ιSchAff(πY ) induces a commutative

square of n-categories

Hom2Corr(SchAff)(X, Y ) Hom(nPrLSt)
[1,n+1]-op(nQCoh(X), nQCoh(Y ))

Hom2Corr(SchAff)(X, Spec(S)) Hom(nPrLSt)
[1,n+1]-op(nQCoh(X), nQCoh(Spec(S))).

Here the left vertical arrow is the canonical projection, the horizontal arrows are induced by
nQCoh′2Corr(SchAff). The right vertical arrow is equivalent to the functor

HomnPrLSt
(nQCoh(Y ), nQCoh(X))[1,n]-op → HomnPrLSt

(nQCoh(Spec(S)), nQCoh(X))[1,n]-op

induced by precomposition with nQCoh(πY ). This functor is the image under the composite
functor

nPrLSt

ψn−→ nCat
(−)[1,n]-op

−−−−−−→ nCat

of the morphism nQCoh(πY )∗ of presentable stable n-categories

HomnPrLSt
(nQCoh(Y ), nQCoh(X))→HomnPrLSt

(nQCoh(Spec(S)), nQCoh(X))

induced by precomposition with nQCoh(πY ).
Observe that the objects nQCoh(Y ) and nQCoh(Spec(S)) in nPrLSt = (n− 1) PrLSt -modpr

are modules over commutative algebra objects in (n− 1) PrLSt. By a combination of [Lur17]
remark 4.8.4.8 and proposition 4.6.2.19, we see that nQCoh(Y ) and nQCoh(Spec(S)) are self
dual objects of the symmetric monoidal category nPrLSt. Hence we see that nQCoh(πY )∗ is
given by tensoring with nQCoh(X) the morphism nQCoh(Y ) → nQCoh(Spec(S)) dual to
nQCoh(πY ). Since nQCoh(X) is also self dual and the functor nQCoh is symmetric monoidal,
we see that nQCoh(πY )∗ is equivalent to the dual of the morphism

nQCoh(πY × idX) : nQCoh(X)→ nQCoh(Y ×X).

It follows that nQCoh(πY )∗ is the morphism of restriction of scalars along the morphism of
commutative algebras

(n− 1)QCoh(πY × idX) : (n− 1)QCoh(X)→ (n− 1)QCoh(Y ×X).
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It now follows from remark 14.1.6 that a commutative square in the n-category

ψn(HomnPrLSt
(nQCoh(Y ), nQCoh(X)))

is vertically right adjointable if and only if its image under ψn(nQCoh(πY )∗) is vertically
right adjointable. The same remains true after reversing the directions of all cells. Hence we
see that a commutative square in

Hom(nPrLSt)
[1,n+1]-op(nQCoh(X), nQCoh(Y ))

is vertically right adjointable if and only if its image in

Hom(nPrLSt)
[1,n+1]-op(nQCoh(X), nQCoh(Spec(S)))

is vertically right adjointable. Since the map

(ιSchAff(πY ))∗ : Hom2Corr(SchAff)(X, Y )→ Hom2Corr(SchAff)(X, Spec(S))

preserves pullbacks, we see that the functor

Hom2Corr(SchAff)(X, Y )→ Hom(nPrLSt)
[1,n+1]-op(nQCoh(X), nQCoh(Y ))

induced by nQCoh′2Corr(SchAff) satisfies the left (n− 1)-fold Beck-Chevalley condition if the
functor

Hom2Corr(SchAff)(X, Spec(S))→ Hom(nPrLSt)
[1,n+1]-op(nQCoh(X), Spec(S))

satisfies the left (n− 1)-fold Beck-Chevalley condition. In other words, we may now assume
that Y = Spec(S).

Let πX : X → Spec(S) be the projection. The morphism ιRSchAff(πX) induces a commutative
square of n-categories as follows:

Hom2Corr(SchAff)(X, Spec(S)) Hom(nPrLSt)
[1,n+1]-op(nQCoh(X), nQCoh(Spec(S)))

Hom2Corr(SchAff)(Spec(S), Spec(S)) Hom(nPrLSt)
[1,n+1]-op(nQCoh(Spec(S)), nQCoh(Spec(S)))

Here the left vertical arrow is the canonical projection, the horizontal arrows are induced by
nQCoh′2Corr(SchAff). The right vertical arrow is equivalent, after passing to opposites of arrows
of dimension at most n, to the functor

HomnPrLSt
(nQCoh(Spec(S)), nQCoh(X))→ HomnPrLSt

(nQCoh(Spec(S)), nQCoh(Spec(S)))

induced by composition with the right adjoint to nQCoh(πX). It follows that the right
vertical arrow is the image under the composite functor

nPrLSt

ψn−→ nCat
(−)[1,n]-op

−−−−−−→ nCat
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of the morphism of presentable stable n-categories

HomnPrLSt
(nQCoh(Spec(S)), nQCoh(X))→HomnPrLSt

(nQCoh(Spec(S)), nQCoh(Spec(S)))

induced by composition with the right adjoint to nQCoh(πX). Since nQCoh(Spec(S)) is the
unit in nPrLSt, the above is in fact equivalent to the right adjoint to nQCoh(πX). Using remark
14.1.6 we see that the above morphism is given by restriction of scalars along the morphism
of commutative algebras (n− 1)QCoh(πX). Furthermore, we see that a commutative square
in the n-category

ψn(HomnPrLSt
(nQCoh(Spec(S)), nQCoh(X)))

is vertically right adjointable if and only if its image in

ψn(HomnPrLSt
(nQCoh(Spec(S)), nQCoh(Spec(S))))

is vertically right adjointable. The same remains true after reversing the directions of all cells.
Hence we see that a commutative square in

Hom(nPrLSt)
[1,n+1]-op(nQCoh(X), nQCoh(Spec(S)))

is vertically right adjointable if and only if its image in

Hom(nPrLSt)
[1,n+1]-op(nQCoh(Spec(S)), nQCoh(Spec(S)))

is vertically right adjointable. Since the map

Hom2Corr(SchAff)(X, Spec(S))→ Hom2Corr(SchAff)(Spec(S), Spec(S))

of precomposition with ιRSchAff(πX) preserves pullbacks, we reduce to showing that the functor

Hom2Corr(SchAff)(Spec(S), Spec(S))→ Hom(nPrLSt)
[1,n+1]-op(nQCoh(Spec(S)), nQCoh(Spec(S)))

induced by nQCoh′2Corr(SchAff) satisfies the left (n− 1)-fold Beck-Chevalley condition. In other
words, we have now reduced to checking the case X = Y = Spec(S). This follows from our
inductive hypothesis, by using lemma 14.1.17.

Notation 14.1.20. Let Catpb be the subcategory of Cat on those categories admitting
pullbacks, and pullback preserving functors. We denote by iCatpb

: Catpb → ωCat the
canonical inclusion.

Lemma 14.1.21. Let n ≥ 1 and let S be a subset of [1, n] not containing 1. Then there is a
commutative square

iCatpb
(n+ 1)Corr

iCatpb
(n+ 1)CorrS-op

id

ιn+1

(ιn+1)S-op

of functors Catpb → (n+ 1)Cat, where the vertical arrows are isomorphisms.
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Proof. We work by induction on n. Note that the result clearly holds when S is empty, and
in particular it holds when n = 1. Assume now that n > 1 and that the result holds for n− 1.

Consider first the case when S does not contain 2. Let S∗ be the set of integers i such
that i+ 1 belongs to S. By inductive hypothesis, we have a commutative square

iCatpb
nCorr

iCatpb
nCorrS

∗-op

id

ιn

(ιn)S
∗-op

of functors Catpb → nCat, where the vertical arrows are isomorphisms.
The above square admits a unique enhancement to a commutative square of symmetric

monoidal functors Catpb → nCat and symmetric monoidal natural transformations, where we
equip Catpb and nCat with their cartesian symmetric monoidal structures. In particular, it
induces a commutative square of functors 2Catpb → (n+ 1)Cat, where 2Catpb is the category
of categories enriched in Catpb. Composing with the functor 2Corr : Catpb → 2Catpb yields
a commutative square

2Corr (n+ 1)Corr

2Corr (n+ 1)CorrS-op

id

ι2,n+1

(ι2,n+1)S-op

of functors Catpb → (n+ 1)Cat, with invertible vertical arrows. Then the result follows by
considering the outer commutative square in the following commutative diagram:

iCatpb
2Corr (n+ 1)Corr

iCatpb
2Corr (n+ 1)CorrS-op

id

ι2

id

ι2,n+1

ι2 (ι2,n+1)S-op

Consider now the case S = {2}. Denote by iSpc(−)≤0 the composition of the truncation
functor Catpb → Spc and the inclusion Spc → ω- Cat. It follows from remark 10.2.6 that
there is a commutative square

iSpc(−)≤0 2Corr

iSpc(−)≤0 2Corr1-op

id

of functors Catpb → 2Cat, where the horizontal arrows are the canonical inclusions, and
the vertical arrows are isomorphisms. The above can be enhanced to a commutative square
of symmetric monoidal functors and symmetric monoidal natural transformations, and it
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therefore induces a commutative square of functors 2Catpb → 3Cat. Composing with the
functor 2Corr yields a commutative square

2Corr≤1 3Corr

2Corr≤1 3Corr2-op

id

of functors Catpb → 3Catpb, where the horizontal arrows are the canonical inclusions, and
the vertical arrows are isomorphisms.

Applying the natural transformation (ιn−2)! : (iCatpb
)! → (n− 2)Corr! to the right vertical

arrow yields a commutative square

3Corr (n+ 1)Corr

3Corr2-op (n+ 1)Corr2-op

i3,n+1

(i3,n+1)2-op

with invertible vertical arrows. We now have a commutative diagram

iCatpb
2Corr≤1 3Corr (n+ 1)Corr

iCatpb
2Corr≤1 3Corr2-op (n+ 1)Corr2-op

id id

i3,n+1

(i3,n+1)2-op

of functors Catpb → (n + 1)Cat, with invertible vertical arrows. The case S = {2} of the
lemma now follows by looking at the outer commutative square in the above diagram.

Assume now S arbitrary, containing 2. Let S ′ = S − {2}. Using the previous two cases
we can construct a commutative diagram

iCatpb
(n+ 1)Corr

iCatpb
(n+ 1)CorrS

′-op

iCatpb
(n+ 1)CorrS-op

id

ιn+1

id

(ιn+1)S
′-op

(ιn+1)S-op

of functors Catpb → (n+ 1)Cat, with invertible vertical arrows. Our lemma now follows by
looking at the outer commutative square in the above diagram.
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Lemma 14.1.22. Let n ≥ 1 and let S be a subset of [1, n] containing 1. Then there is a
commutative square

i1-op
Catpb

(n+ 1)Corr

i1-op
Catpb

(n+ 1)CorrS-op

id

(ιn+1)R

(ιn+1)S-op

of functors Catpb → (n+ 1)Cat, where the vertical arrows are isomorphisms.

Proof. Consider first the case S = {1}. If n = 1 our result follows from remark 10.2.6, so we
do indeed have a commutative square

i1-op
Catpb

2Corr

i1-op
Catpb

2Corr1-op

id

(ι2)R

(ι2)1-op

of functors Catpb → 2Cat with invertible vertical arrows. Applying the natural transformation
ιn : (ιCatpb

)! → nCorr! to the right vertical arrow in the above diagram yields a commutative
square

2Corr (n+ 1)Corr

2Corr1-op (n+ 1)Corr1-op .

ι2,n

(ι2,n)1-op

of functors Catpb → (n+ 1)Cat with invertible vertical arrows.
Pasting the previous two commutative squares yields a commutative diagram

i1-op
Catpb

2Corr (n+ 1)Corr

i1-op
Catpb

2Corr1-op (n+ 1)Corr1-op

id

(ι2)R ι2,n

(ι2)1-op (ι2,n)1-op

with invertible vertical arrows, and the outer commutative square proves our result in the
case S = {1}.
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We now assume that S is arbitrary. Applying lemma 14.1.21 with S − {1} we obtain a
commutative diagram

i1-op
Catpb

(n+ 1)Corr

i1-op
Catpb

(n+ 1)Corr1-op

i1-op
Catpb

(n+ 1)CorrS-op

id

(ιn+1)R

(ιn+1)1-op

id

(ιn+1)S-op

with invertible vertical arrows. Our result now follows by considering the outer commutative
square.

Lemma 14.1.23. Let C be a category admitting finite limits and let n ≥ 1. Let S be a
subset of [1, n] containing 1. Then there is a commutative square of symmetric monoidal
(n+ 1)-categories

Cop (n+ 1)Corr(C)

Cop (n+ 1)Corr(C)S-op

id

(ιn+1
C )R

(ιn+1
C )S-op

where the vertical arrows are isomorphisms.

Proof. Equipping Catpb and ω- Cat with their cartesian symmetric monoidal structures,
we see that the commutative square from the statement of 14.1.22 can be enhanced to
a commutative square of symmetric monoidal functors and symmetric monoidal natural
transformations. Our lemma now follows by evaluating this square on C (thought of as a
commutative algebra in Catpb).

Proof of theorem 14.1.4. We first prove that the extension nQCoh(n+1)Corr(SchAff) exists and
is unique. Combining lemma 14.1.19 together with theorem 11.2.6 (in its symmetric monoidal
incarnation, see remark 11.2.10) we see that there exists a unique symmetric monoidal functor

(n+ 1)Corr(SchAff)→ (nPrLSt)
[1,n+1]-op

whose restriction along ιn+1
SchAff recovers the symmetric monoidal functor

nQCohop : SchAff → (nPrLSt)
[1,n+1]-op.

Passing to opposites of cells of dimension 1 to n we see that there exists a unique symmetric
monoidal functor

(n+ 1)Corr(SchAff)[1,n]-op → (nPrLSt)
(n+1)-op
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whose restriction along (ιn+1
SchAff)[1,n]-op recovers the symmetric monoidal functor nQCoh. Our

result now follows from an application of lemma 14.1.23.
We now prove the second half of the theorem, concerning the compatibility between

nQCoh(n+1)Corr(SchAff) and (n − 1)QCohnCorr(SchAff). It suffices to show that the restriction

along (inSchAff)R of the map nCorr(SchAff)→ (n− 1)PrLSt induced by nQCoh(n+1)Corr(SchAff)

is equivalent to (n− 1)QCoh.
Consider the functor

nQCoh
{1,2}-op
(n+1)Corr(SchAff) : (n+ 1)Corr(SchAff){1,2}-op → (nPrLSt)

{1,2,n}-op.

By lemma 14.1.23 we see that the functor of 2-categories underlying nQCoh
{1,2}-op
(n+1)Corr(SchAff) is

equivalent to the functor of 2-categories underlying the functor

nQCoh′2Corr(SchAff) : 2Corr(SchAff)→ (nPrLSt)
1-op,2-op

from notation 14.1.16. Under this equivalence, the composite functor

SchAff
(ιnSchAff)R

−−−−−→ nCorr(SchAff)1-op
(nQCoh

{1,2}-op
(n+1)Corr(SchAff)

)∗
−−−−−−−−−−−−−−→ ((n− 1)PrLSt)

{1,n}-op

gets exchanged with the functor (nQCoh′2Corr(SchAff))∗ : SchAff → ((n − 1)PrLSt)
1-op. Our

claim now follows from an application of lemma 14.1.17.

14.2 Extension to prestacks

We now study the theory of higher quasicoherent sheaves on prestacks.

Notation 14.2.1. We denote by PreStk the category of accessible presheaves on SchAff. In
other words, PreStk is the smallest full subcategory of Funct(SchAffop, Spc) containing the
representable presheaves and closed under small colimits. We call PreStk the category of
prestacks.

Proposition 14.2.2. Let n ≥ 1. Then the functor nQCoh : SchAffop → nPrLSt admits a
right Kan extension along the inclusion SchAffop → PreStkop.

Proof. This is a consequence of corollary 14.1.5, together with the fact that nPrL admits
limits of left adjointable diagrams (see corollary 12.5.7).

Notation 14.2.3. Let n ≥ 0. We denote by nQCohPreStk the right Kan extension of nQCoh
along the inclusion SchAffop → PreStkop. For each prestack X we will continue denoting
by nQCoh(X) the value of nQCohPreStk on X. As before, in the special cases n = 0 and
n = 1 we will use the notation O(X) and QCoh(X) instead. Given a morphism of prestacks
f : X → Y , we will denote by f ∗ : nQCoh(Y )→ nQCoh(X) the induced pullback functor.

Definition 14.2.4. Let X be a prestack and let n ≥ 2. We call nQCoh(X) the presentable
stable n-category of quasicoherent sheaves of (n− 1)-categories on X.
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Remark 14.2.5. Let X be a prestack and let n ≥ 1. Then there is an equivalence

nQCoh(X) = lim
S∈SchAff/X

nQCoh(S).

In other words, a higher quasicoherent sheaf on X is a compatible family of higher quasico-
herent sheaves on all affine schemes equipped with a map to X.

Remark 14.2.6. In the case n = 2, definition 14.1.2 recovers the notion of sheaf of categories
from [Gai15], and the notion of stable quasicoherent stack from [Lur18] definition 10.1.2.1.

We now state our main result concerning the functoriality of the theory of higher quasico-
herent sheaves on prestacks.

Notation 14.2.7. Let n ≥ 2 and denote by nQCohcov : SchAff → nPrLSt the restriction of
nQCoh(n+1)Corr(SchAff) along the inclusion ιn+1

SchAff . We let nQCohcov
PreStk be the left Kan extension

of nQCohcov along the inclusion SchAff → PreStk.

Notation 14.2.8. Denote by PreStkrep the wide subcategory of PreStk whose morphisms
are the affine schematic morphisms of prestacks.

Theorem 14.2.9. Let n ≥ 2. Then there is a unique extension of nQCohPreStk along
(inPreStk)R to a functor

nQCohnCorr(PreStk) : nCorr(PreStk)→ nPrLSt.

This satisfies the following properties:

(i) The restriction of nQCohnCorr(PreStk) along the inclusion ιnPreStk recovers the functor
nQCohcov

PreStk from notation 14.2.7.

(ii) The restriction of nQCohnCorr(PreStk) to nCorr(PreStkrep) admits a unique extension to
a functor

nQCoh(n+1)Corr(PreStkrep) : (n+ 1)Corr(PreStkrep)→ (nPrLSt)
(n+1)-op

(iii) In the case n ≥ 3, the square of ω-categories

(n− 1)Corr(PreStk) (n− 1)PrLSt

EndnCorr(PreStk)(Spec(S)) EndnPrLSt
((n− 1)PrLSt)

(n−1)QCoh(n−1)Corr(PreStk)

= =

(nQCohnCorr(PreStk))∗

commutes.
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Proof. The uniqueness part follows from a combination of lemma 14.1.23 and theorem 11.2.6.
Thanks to theorems 11.2.6 and 11.3.9, the functor nQCohcov

PreStk admits a unique extension
along ιnPreStk to a functor

nQCohcov
nCorr(PreStk) : nCorr(PreStk)→ nPrLSt.

Denote by Q the restriction of nQCohcov
nCorr(PreStk) along (inPreStk)R. To show that the

functor nQCohnCorr(PreStk) in the statement exists, and that item (i) holds, it suffices to show
that Q is equivalent to nQCohPreStk. To see this, it suffices to show that Q preserves limits.
Indeed, this follows from the fact that nQCohcov

PreStk preserves colimits, together with the fact
that nPrLSt satisfies the passage to adjoints property.

Item (ii) now follows from theorem 11.3.9. Item (iii) is a consequence of the compatibility
part of theorem 14.1.4, together with lemma 11.3.18.

We now study a few consequences of theorem 14.2.9.

Corollary 14.2.10. Let f : X → Y be a morphism of prestacks and let n ≥ 2. Then the
morphism f ∗ : nQCoh(Y ) → nQCoh(X) admits a left adjoint. In the case n ≥ 3, it also
admits a right adjoint, and the left and right adjoints are equivalent. The same holds in the
case n = 2 if f is assumed to be affine schematic.

Proof. Combine theorem 14.2.9 with propositions 10.3.1 and 11.1.9.

Notation 14.2.11. Let f : X → Y be a morphism of prestacks and let n ≥ 3 (or n ≥ 2 in
the case when f is affine schematic). We denote by f∗ : nQCoh(X) → nQCoh(Y ) the left
and right adjoint to f ∗. We call this the functor of pushforward along f . In the case when
Y = Spec(S), this recovers a morphism

Γ(X,−) : nQCoh(X)→ (n− 1)PrLSt

which we call the global sections functor for X.

Remark 14.2.12. Throughout this chapter we have worked with the sphere spectrum as
our coefficients. This is not essential: given any base connective commutative ring spectrum
A, one may define variants of the functors nQCoh and nQCohPreStk which are defined over
Spec(A), and take values in A-linear higher presentable stable categories. Theorems 14.1.4
and 14.2.9 still work in this context, with the same proofs (although note that the case of a
general base is in fact implied by the spectral case: higher categories of correspondences over
a base Spec(A) are Hom-categories in the higher categories of correspondences over Spec(S)).

Corollary 14.2.13. The sequence of functors nQCohnCorr(PreStk) for n ≥ 2 may be assembled
into a morphism of categorical spectra

QCoh : Corr(PreStk)→ BωCatSp.

Proof. This is a restatement of item (iii) in theorem 14.2.9.
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Remark 14.2.14. Let C be a category admitting coproducts and let D be a symmetric
monoidal category. Equip C with its cocartesian symmetric monoidal structure. Recall
from [Lur17] proposition 3.2.4.6 that the morphism of operads C → C ⊗ Comm induced by
tensoring with the unique map [0] → Comm, is an equivalence. It follows from this that
composition with the forgetful functor CAlg(D) → D induces an equivalence between the
space of lax symmetric monoidal functors C → CAlg(D) and the space of lax symmetric
monoidal functors C → D. By a combination of [Lur17] proposition 2.4.3.16 and proposition
3.2.4.7, the data of a lax symmetric monoidal functor C → CAlg(D) is in fact equivalent to
the data of a functor C → CAlg(D).

Let F : C → D be a functor. It follows from the above that the space of lax symmetric
monoidal structures on F is equivalent to the space of lifts of F along the projection
CAlg(D)→ D. Given such a lift F enh, one recovers a lax symmetric monoidal structure on F
by composing the lax symmetric monoidal forgetful functor CAlg(D)→ D with the unique
lax symmetric monoidal enhancement of F enh. Conversely, given a lax symmetric monoidal
structure on F , the induced functor

C = CAlg(C) CAlg(F )−−−−−→ CAlg(D)

provides a lift for F .

Proposition 14.2.15. Let n ≥ 1. Equip PreStk with its cartesian symmetric monoidal
structure, so that SchAffop inherits a cocartesian symmetric monoidal structure. Then there
is a unique lax symmetric monoidal structure on the functor nQCohPreStk extending the
symmetric monoidal structure on nQCoh. Furthermore, in the case n ≥ 2 this lax symmetric
monoidal structure is strict.

Proof. It follows from corollary 14.2.13 that in the case n ≥ 2, the functor nQCohnCorr(PreStk)

(and therefore nQCohPreStk) admits a symmetric monoidal structure. The restriction of the
morphism of categorical spectra QCoh from corollary 14.2.13 to Corr(SchAff) recovers the
restriction along the inclusion Corr(SchAff)→ BωCat(Corr(SchAff))2-op of the morphism of
categorical spectra BωCat(O)2-op, where O is as in corollary 14.1.8. By remark 14.1.9 we
conclude that the above symmetric monoidal structure on nQCohPreStk extends the one on
nQCoh.

It remains to prove the uniqueness part of the statement. By virtue of remark 14.2.14,
we need to show that nQCohPreStk admits a unique lift to a functor PreStkop → CAlg(nPrLSt)
extending the functor

SchAffop = CAlg(SchAffop)
CAlg(nQCoh)−−−−−−−−→ CAlg(nPrLSt).

Indeed, it follows from [Lur17] corollary 3.2.2.4 that the space of such lifts is equivalent to the
space of right Kan extensions of the above along the inclusion SchAffop → PreStkop, which is
contractible thanks to proposition 14.2.2.
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Warning 14.2.16. In the case n = 1, the lax symmetric monoidal structure on QCohPreStk

from proposition 14.2.15 is not strict. In other words, given a pair of prestacks X, Y , the
external tensor product functor QCoh(X)⊗QCoh(Y )→ QCoh(X×Y ) is not an equivalence
in general (although it becomes an equivalence if one assumes that at least one of QCoh(X)
or QCoh(Y ) is a dualizable object in PrLSt).

Remark 14.2.17. Let n ≥ 1 and let X be a prestack. We usually endow nQCoh(X) with the
structure of commutative algebra in nPrLSt arising from the unique structure of commutative
algebra in PreStkop on X, and the lax symmetric monoidal structure on nQCohPreStk from
proposition 14.2.15. Note that if X = Spec(A) is an affine scheme, then this coincides with
the standard commutative algebra structure on A -modn.

14.3 Descent and affineness

Our next goal is to study the descent and affineness properties of the theory of higher
quasicoherent sheaves.

Proposition 14.3.1. Let f : X → Y be a morphism of affine schemes and let n ≥ 1. The
following conditions are equivalent:

(i) The map f ∗ : nQCoh(Y ) → nQCoh(X) is monadic as a morphism in the ω-category
(nPrLSt)

[2,n+1]-op.

(ii) The augmented cosimplicial object nQCoh(X •/Y ) obtained by applying the contravariant
functor nQCoh to the augmented Čech nerve of f , is a conical limit diagram in nPrLSt.

(iii) The augmented cosimplicial object nQCoh(X •/Y ) obtained by applying the contravariant
functor nQCoh to the augmented Čech nerve of f , is a conical limit diagram of categories.

Proof. The equivalence between items (ii) and (iii) follows from theorem 12.4.6. It now
follows from [Lur17] corollary 4.7.5.3 that item (iii) is equivalent to the functor of categories
underlying f ∗ being comonadic. A combination of theorems 12.4.6 and 7.4.10 shows that this
happens if and only if the functor ψn(nQCoh(Y ))[1,n]-op → ψn(nQCoh(X))[1,n]-op induced by
f , is monadic. This functor is equivalent to the functor

Hom(nPrLSt)
[2,n+1]-op((n− 1)PrLSt, nQCoh(Y ))→ Hom(nPrLSt)

[2,n+1]-op((n− 1)PrLSt, nQCoh(X))

of composition with f ∗. This shows that condition (i) implies condition (iii).
It remains to see that (iii) implies (i). This amounts to showing that for every object C in

nPrLSt, the functor

Hom(nPrLSt)
[2,n+1]-op(C, nQCoh(Y ))→ Hom(nPrLSt)

[2,n+1]-op(C, nQCoh(X))

of composition with f ∗ is monadic. It follows from proposition 7.3.10 that the collection of
objects C for which this holds is closed under colimits. Hence it suffices to show that this
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holds in the case C = (n− 1)PrLSt⊗I for a small category I. In this case, the above functor
becomes the functor

ψn(Funct(I, nQCoh(Y ))[1,n]-op → ψn(Funct(I, nQCoh(X))[1,n]-op

induced by f ∗. The fact that the above is monadic follows from another application of
theorems 12.4.6 and 7.4.10.

Definition 14.3.2. Let f : X → Y be a morphism of affine schemes and let n ≥ 1. We say
that nQCoh satisfies descent along f if the equivalent conditions of proposition 14.3.1 are
satisfied.

Proposition 14.3.3. Let n ≥ 3 and let f : X → Y be a morphism of affine schemes. Assume
that (n− 1)QCoh satisfies descent along f . Then nQCoh also satisfies descent along f .

Proof. By corollary 14.1.5, the functor of categories underlying f ∗ : nQCoh(Y )→ nQCoh(X)
admits adjoints to both sides. It suffices then to show that f ∗ is conservative. Equivalently,
we have to show that the image of f∗ : nQCoh(X)→ nQCoh(Y ) generates nQCoh(Y ) under
colimits. Since f∗ is a morphism of nQCoh(Y )-module categories, it suffices to show that the
unit (n− 1)QCoh(Y ) is a colimit of objects in the image of f∗.

Since (n − 1)QCoh satisfies descent along f , we have that the augmented cosimplicial

object (n − 1)QCoh(X •/Y ) is a limit diagram in (n − 1)QCoh(Y ) -mod(Ĉatcocompl). The
result now follows from an application of proposition 12.5.7.

Corollary 14.3.4. Let n ≥ 1. Then nQCoh satisfies descent along étale covers of affine
schemes.

Proof. The case n = 1 follows for instance from [Lur11a] proposition 2.7.14. The case n = 2
follows from [Lur11b] theorem 5.4. The case n ≥ 3 follows inductively from this, by virtue of
proposition 14.3.3.

Corollary 14.3.5. Let n ≥ 1. Then the functor nQCoh : SchAffop → nPrLSt is a sheaf for
the étale topology.

We finish by studying the notion of higher affineness.

Proposition 14.3.6. Let n ≥ 2 and let X be a prestack. Then the following are equivalent:

(i) The global sections functor Γ(X,−) : (n+ 1)QCoh(X)→ nPrLSt is a monadic morphism
in (n+ 1)PrLSt.

(ii) The global sections functor Γ(X,−) : (n+ 1)QCoh(X)→ nPrLSt is a monadic functor
of categories.
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Proof. Assume first that item (i) holds. Then the functor of (n + 1)-categories ψn+1((n +
1)QCoh(X))→ ψn+1(nPrLSt) induced by Γ(X,−) is monadic. This implies that the functor
of categories underlying Γ(X,−) is monadic, which means that item (ii) holds.

Assume now that item (ii) holds. We have to show that for every C in (n+ 1)PrLSt the
functor

Hom(n+1)PrLSt
(C, (n+ 1)QCoh(X))→ Hom(n+1)PrLSt

(C, nPrLSt))

is monadic. It follows from proposition 7.3.10 that the collection of objects C for which
this holds is closed under colimits. Hence it suffices to show that this holds in the case
C = (n − 1)PrLSt⊗I for a small category I. In this case, the above functor becomes the
functor

ψn+1(Funct(I, (n+ 1)QCoh(X)))→ ψn+1(Funct(I, nPrLSt))

induced by Γ(X,−). The fact that the above is monadic follows from a combination of
theorems 12.4.6 and 7.4.10.

Definition 14.3.7. Let n ≥ 2 and let X be a prestack. We say that X is n-affine if the
equivalent conditions of proposition 14.3.6 are satisfied. We say that a morphism of prestacks
f : X → Y is n-affine if for every affine scheme S equipped with a map to Y , the prestack
X ×Y S is n-affine.

Remark 14.3.8. One may extend definition 14.3.7 in the case n = 1 as follows: a prestack
X is 1-affine if the pullback morphism

π∗ : PrLSt = 2QCoh(Spec(S))→ 2QCoh(X)

admits a monadic right adjoint in 2PrLSt. A variant of the argument in proposition 14.3.6
shows that this happens if and only if the functor of categories underlying π∗ admits a colimit
preserving monadic right adjoint. This agrees with the notion of 1-affineness studied in
[Gai15].

If X is perfect and 1-affine, then the functor π∗ forms part of an ambidextrous adjunction.
In particular, we see that in this case the left adjoint to π∗ is also monadic.

Theorem 14.3.9. Let n ≥ 2 and let X be a prestack. Assume that the diagonal of X is
(n− 1)-affine. Then X is n-affine.

Remark 14.3.10. A consequence of theorem 14.3.9 is that (quasicompact quasiseparated)
schemes are n-affine for all n ≥ 1. Using this fact one can show that in the statement of
theorem 14.1.4 one may replace the categories of correspondences of affine schemes with
categories of correspondences of schemes, with a similar proof.

Our proof of theorem 14.3.9 will need some preliminaries.

Definition 14.3.11. We say that an ω-category C is locally conically cocomplete if HomC(c, c
′)

is conically cocomplete for all pair of objects c, c′ in C, and moreover the composition maps in
C preserve conical colimits in each coordinate.
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Lemma 14.3.12. Let C be a locally conically cocomplete ω-category. Let g : x → y be a
morphism in C admitting a left adjoint, and denote by SB the augmented simplicial object in
EndC(x) given informally as follows:

. . .→→→ gLggLg ⇒ gLg → idx .

In other words, SB is the Bar construction for the endomorphism monad of g. Then g is
monadic if and only if SB is a conical colimit diagram.

Proof. Assume first that that g is monadic. Then we have that the functor of ω-categories

g∗ : HomC(x, x)→ HomC(x, y)

is monadic, and therefore the functor of categories

g≤1
∗ : HomC(x, x)≤1 → HomC(x, y)≤1

is also monadic. The augmented simplicial object SB is the Bar construction of g≤1
∗ and is

therefore a (conical) colimit diagram.
Assume now that SB is a conical colimit diagram. We need to show that for every z in C

the morphism
g∗ : HomC(z, x)→ HomC(z, y)

is a monadic functor of ω-categories. Since both ω-categories above admit all conical colimits
which are preserved by g∗ and moreover g admits a left adjoint, we see that g∗ is monadic if
and only if it is conservative. Assume given a morphism α in HomC(z, x) such that g∗α is
invertible. Then SBα is a conical colimit diagram, which expresses α as a conical colimit of
morphisms of the form (gLg)nα. It follows that α is a conical colimit of invertible arrows,
and therefore α is invertible.

Lemma 14.3.13. Let F : C → D be a functor of locally conically cocomplete ω-categories
such that for every pair of objects c, c′ in C, the induced functor

F∗ : HomC(c, c
′)→ HomD(Fc, Fc′)

preserves conical colimits. Then F maps monadic morphisms in C to monadic morphisms in
D.

Proof. This is a direct consequence of lemma 14.3.12.

Notation 14.3.14. Let f : X → Y be a morphism of prestacks and let n ≥ 2. We
denote by nQCohX/Y the object in (n + 1)QCoh(Y ) obtained as the image of the span

Spec(S)← X
f−→ Y under the functor (n+ 1)QCoh(n+1)CorrPreStk

.

Lemma 14.3.15. Let n ≥ 2 and let f : X → Y be an (n− 1)-affine morphism of prestacks.
Then there exists a monadic morphism nQCohX/Y → nQCohY/Y in ψn+1((n+ 1)QCoh(Y )).
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Proof. Consider the morphism f ∗ : nQCohX/Y → nQCohY/Y obtained as the image under
(n+ 1)QCoh(n+1)CorrPreStk

of the morphism of spans

X

Y

Spec(S) Y.

f

f

id

We claim that f ∗ admits a monadic right adjoint. It follows from lemma 14.3.12 that a
morphism in ψn+1((n+1)QCoh(Y )) is monadic if and only if its image in ψn+1((n+1)QCoh(S))
is monadic for every affine scheme S over Y . We may therefore assume that Y is affine.
In this case, f ∗ is a morphism in ψn+1(nQCoh(Y ) -mod((n − 1)PrLSt)). As in the proof of
proposition 14.3.6, to show that it admits a monadic right adjoint it suffices to show that the
functor of categories underlying f ∗ admits a colimit preserving monadic right adjoint. Let f∗
be the (possibly discontinuous) right adjoint for f ∗. To show that f∗ is colimit preserving and
monadic it suffices to show that the functor Γ(Y, f∗) : nQCoh(X)→ (n− 1)PrLSt is colimit
preserving and monadic. This follows from our hypothesis.

Proof of theorem 14.3.9. Let π : X → Spec(S) be the projection. Using corollary 14.2.10 we
reduce to showing that π∗ : (n+ 1)QCoh(X)→ (n+ 1)QCoh(Spec(S)) is conservative. Let
α : C → D be a morphism in (n+ 1)QCoh(X) which is inverted by π∗. We need to see that
α is an isomorphism.

Let p1, p2 : X×X → X be the projection maps. Then for every object E in (n+1)QCoh(X)
we have an equivalence π∗π∗E = (p1)∗(p2)

∗E . Since α is inverted by π∗, we have that the
induced map

α∗ : Homψn+1((n+1)QCoh(X))(D, (p1)∗(p2)∗E)→ Homψn+1((n+1)QCoh(X))(C, (p1)∗(p2)∗E)

is an equivalence.
Let ∆ : X → X × X be the diagonal map. By lemma 14.3.15, we have that there

exists a monadic morphism nQCohX/X×X → nQCohX×X/X×X in ψn+1((n+1)QCoh(X×X)).
Tensoring with (p2)∗E we obtain a monadic morphism β : F → (p2)∗E , where F is equivalent
to

(∆∗nQCohX/X)⊗ (p2)∗E = ∆∗∆
∗(p2)∗E = ∆∗E .

Composing with (p1)∗ we obtain a monadic morphism

(p1)∗β : E → (p1)∗(p2)∗E .

It follows from this that the map

α∗ : Homψn+1((n+1)QCoh(X))(D, E)→ Homψn+1((n+1)QCoh(X))(C, E)

is an isomorphism. Since E was arbitrary, we conclude that α is an isomorphism, as desired.
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