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Introducción

El objetivo de esta tesis es presentar algunas aplicaciones del álgebra homológica a las
ecuaciones en derivadas parciales no lineales. Nos concentraremos en particular en la
teoŕıa formal de ecuaciones diferenciales, en la que se trabaja al nivel de series formales
de potencias, sin requerir condiciones de convergencia. Varias construcciones homológi-
cas aparecen naturalmente al estudiar sistemas de ecuaciones sobredeterminados, los
cuales pueden poseer obstrucciones a la existencia de soluciones.

La teoŕıa será desarrollada de manera intŕınseca, usando espacios de jets. Este es el
contexto natural para estudiar ecuaciones provenientes de la geometŕıa, en las cuales
no hay un sistema de coordenadas preferencial. Mas aún, este punto de vista es esencial
para tratar problemas globales, en los cuales no existe la posibilidad de trabajar en
coordenadas.

Sea M una variedad diferencial y fijemos n ≤ dimM . Diremos que dos subvariedades
de dimensión n que contienen a un punto q ∈M definen el mismo jet de orden k en q si
tienen orden de contacto al menos k en q. El espacio de jets de orden k de subvariedades
de dimensión n en q se denota Jkn(M)q, y denotaremos Jkn(M) =

⋃
q∈M Jkn(M)q.

Una ecuación diferencial de orden k en las subvariedades de dimensión n de M es
un subconjunto R ⊆ Jkn(M). Se puede pensar a R como una restricción en los posibles
k-jets de subvariedades. Una solución de R es una subvariedad N ⊆M de dimensión n
tal que su k-jet en todo punto pertenece a R.

Esto generaliza la definición usual en coordenadas, como sigue. Supongamos dado
un sistema de ecuaciones diferenciales parciales para funciones u : Rn → Rs

G

(
x, u(x),

∂u

∂xI
(x)

)
= 0 (1)

donde G : Rn+s(n+kn ) → Rλ e I recorre los multi-́ındices de longitud a lo sumo k.
Puede verse que el sistema (1) define una ecuación diferencial R ⊆ Jkn(Rn ×Rs), cuyas
soluciones son exactamente los gráficos de soluciones de (1).

Rećıprocamente, si x1, . . . , xn, u1, . . . , us son coordenadas locales en una variedad M ,
podemos describir (casi todas) las subvariedades de M como el gráfico de una función
u : Rn → Rs. Cualquier ecuación diferencial R ⊆ Jkn(M) toma la forma (1) en este
sistema de coordenadas.
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Es común también desarrollar esta teoŕıa empezando con una variedad fibrada ξ :
Eξ →M (o sea, una submersión suryectiva). En este caso, los objetos de interés son los
espacios Jk(ξ) de k-jets de secciones de ξ, y uno puede definir una ecuación diferencial
en secciones de ξ como un subconjunto R ⊆ Jk(ξ). Como antes, las secciones de ξ se
identifican con ciertas subvariedades del espacio total Eξ, aśı que nuestro punto de vista
es mas general. Sin embargo, esto sigue siendo un caso muy importante. Por ejemplo,
si empezamos con un fibrado trivial ξ : M1×M2 →M1, podemos hablar de ecuaciones
diferenciales en funciones f : M1 →M2. En el caso en que ξ es un fibrado vectorial, se
puede desarrollar la teoŕıa de ecuaciones diferenciales lineales en forma intŕınseca.

Otro enfoque geométrico usado para estudiar ecuaciones en derivadas parciales
está dado por los sistemas diferenciales exteriores. Estos son ecuaciones de primer orden
muy particulares, definidas a partir de un ideal diferencial del álgebra de formas dife-
renciales en la variedad. Resulta que dada cualquier ecuación R ⊆ Jkn(M) de orden k,
existe un sistema diferencial exterior definido sobre R cuyas soluciones están en corres-
pondencia con las soluciones de R. Esta teoŕıa fue usada con muy buenos resultados por
Élie Cartan (quien, en particular, introdujo las formas exteriores de grado mayor que
3 y la derivada exterior), continuando trabajos previos de Pfaff, Frobenius y Darboux
sobre el problema de Pfaff. Un desarrollo moderno de esta teoŕıa puede encontrarse en
[1].

La principal herramienta algebraica usada en esta tesis es la cohomoloǵıa de Spencer
de comódulos graduados sobre una coálgebra de polinomios. Dado un espacio vectorial
V de dimensión n sobre un cuerpo de caracteŕıstica cero, y un comódulo graduado
A sobre la coálgebra SV ∗, pueden construirse ciertos espacios vectoriales graduados
Hq(A) =

⊕
k≥qH

q,k(A), la cohomoloǵıa de Spencer de A. Asumiendo condiciones de
finitud, estos espacios son duales a la homoloǵıa de Koszul del SV -módulo dual. Estos
grupos fueron usados expĺıcitamente por primera vez por Spencer[11, 12] en el contexto
de deformaciones de estructuras dadas por pseudogrupos.

Dada una ecuación diferencial R ⊆ Jkn(M) de orden k puede definirse, para cada
l ≥ 0, el l-ésimo prolongado R(l), que es una ecuación diferencial de orden k + l. En
coordinadas, esto se corresponde con agregarle al sistema las derivadas de orden a lo
sumo l de sus ecuaciones. Decimos que R es formalmente integrable si la proyección
R(l) → R(l−1) es una submersión suryectiva para todo l > 0. Cuando esto ocurre, uno
puede construir soluciones formales a R (en coordenadas, series formales en un punto
que satisfacen la ecuación y todas sus derivadas) empezando de cualquier punto de R
(es decir, a partir de una solución infinitesimal).

El primer problema en la teoŕıa formal de sistemas de ecuaciones sobredeterminados
es el de construir las obstrucciones a que una ecuación sea formalmente integrable.
Luego de trabajos de Bott y Quillen, Goldschmidt [5, 4] construyó las obstrucciones
a la integrabilidad formal, que se encuentran en el segundo grupo de cohomoloǵıa de
Spencer de un cierto fibrado de comódulos asociado al śımbolo de la ecuación.

En la categoŕıa anaĺıtica, la integrabilidad formal implica la existencia de soluciones
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formales. Esto se sigue del δ-Poincaré estimate de Spencer, demostrado por Ehrenpreis,
Guillemin y Sternberg [2], y mas adelante por Sweeney[13] usando técnicas distintas.
En la categoŕıa C∞, la integrabilidad formal no garantiza la existencia de soluciones.
Un ejemplo de esto fue dado por Lewy[8].

Otra pregunta fundamental es la existencia de soluciones al problema de valores
iniciales. Supongamos dada una subvariedad Nn−1 ⊆ M de dimensión n − 1, y con-
diciones iniciales a lo largo de Nn−1 (o sea, una sección Nn−1 → R). Una solución al
problema de valores iniciales es una solución N de R con Nn−1 ⊆ N , que verifique las
condiciones iniciales. Para que puedan existir soluciones, las condiciones iniciales deben
satisfacer una cierta ecuación de primer orden (que corresponde, en coordenadas, con
la conmutatividad de las derivadas parciales). Veremos que si dicha ecuación es formal-
mente integrable entonces las únicas obstrucciones para resolver el problema de valores
iniciales formal con condiciones iniciales genéricas ocurren en el primer orden (es decir,
al resolver el problema con condiciones iniciales dadas a lo largo de un 1-jet de una
subvariedad de dimensión n− 1).

En el caso anaĺıtico, la existencia de soluciones al problema de valores iniciales
está garantizada por el teorema de Cartan-Kahler en la teoŕıa de sistemas diferenciales
exteriores, que depende del teorema de Cauchy-Kowalevski sobre existencia y unicidad
para sistemas determinados de ecuaciones en derivadas parciales anaĺıticas.

Un concepto central en la teoŕıa es el de involución. Las ecuaciones que están en
involución pueden ser resueltas, en el caso anaĺıtico, por una sucesión de problemas
de valores iniciales, y el tamaño del espacio de soluciones puede ser estimado. Serre
fue el primero en observar que la involutividad es también una condición homológica:
es equivalente a la anulación de la cohomoloǵıa de Spencer del comódulo asociado al
śımbolo de la ecuación en (casi) todo grado, junto con integrabilidad a primer orden
(ver Guillemin-Sternberg[6]). De hecho, el concepto de involución resulta ser dual a la
regularidad de Castelnuovo-Mumford en álgebra conmutativa, ver Malgrange[9].

Bajo condiciones bastante técnicas, cualquier ecuación diferencial se vuelve involuti-
va luego de suficientes prolongaciones, resultado que depende del teorema de la base de
Hilbert. Esto es llamado el teorema de prolongación de Cartan-Kuranishi, conjeturado
por Cartan y probado por Kuranishi[7] en el contexto de sistemas diferenciales exte-
riores. En esta tesis probaremos una versión débil de ese teorema: cualquier ecuación
diferencial formalmente integrable puede prolongarse hasta ser involutiva. En parti-
cular, la existencia de soluciones a ecuaciones anaĺıticas formalmente integrables se
reducirá también al teorema de Cartan-Kahler.

Una importante aplicación de esta teoŕıa es al problema de equivalencia de es-
tructuras geométricas. Dada una estructura geométrica en una variedad (una métrica
Riemanniana, estructura casi compleja, distribución, etc) se quiere encontrar un sis-
tema completo de invariantes que (aparte de dar información útil sobre la geometŕıa)
permitan decidir si dos de esas estructuras son (localmente) equivalentes. El problema
de decidir si dos variedades Riemannianas son localmente isométricas es un ejemplo
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básico de ésto.
Cartan desarrolló un método para calcular invariantes, usando la teoŕıa de siste-

mas diferenciales exteriores. La observación básica es que las equivalencias entre dos
estructuras resuelven una ecuación diferencial de primer orden. El método consiste en
modificar las estructuras hasta que (si todos los invariantes coinciden) dicha ecuación se
vuelve involutiva, lo que garantiza la existencia de equivalencias formales. Este proceso
puede involucrar repetidas prolongaciones, y el hecho de que termina es consecuencia del
teorema de la base de Hilbert. Entre las exposiciones modernas del método de Cartan
podemos encontrar Gardner[3] y Olver[10].

Esta tesis está organizada de la siguiente manera:
El caṕıtulo I contiene el formalismo básico de espacios de jets, desde el punto de

vista de jets de subvariedades. Luego los resultados son adaptados al caso de jets de
secciones de variedades fibradas. Consideraremos jets de secciones sobre subvariedades
de codimensión positiva de la variedad base; nuestra principal motivación para esto
es que estos espacios aparecen naturalmente al discutir linearización de ecuaciones y
operadores no lineales.

El caṕıtulo II discute la homoloǵıa de Koszul y la cohomoloǵıa de Spencer. También
contiene una introducción al estudio algebraico de la involución.

El caṕıtulo III trata sobre operadores diferenciales y ecuaciones. Nuevamente, pre-
sentamos todos los temas para espacios de jets de subvariedades, y después los adapta-
mos para jets de secciones. Construiremos las obstrucciones a la integrabilidad formal,
demostrando aśı el teorema de Goldschmidt. Finalmente, discutiremos el problema de
valores iniciales formal.

El caṕıtulo IV discute el método de Cartan para resolver el problema de equivalencia.
Haremos uso del formalismo de jets semi-holonómicos (mas espećıficamente, fibrados
de marcos semi-holonómicos) para tratar el proceso de prolongación que requiere el
método. El principal resultado en este caṕıtulo es un teorema de equivalencia formal
para G-estructuras de orden k. Probaremos también que el método termina.



Introduction

The aim of this thesis is to present several applications of homological algebra to non-
linear partial differential equations. We shall focus on the formal theory of differential
equations, in which one works at the level of formal power series without imposing con-
vegence conditions. Homological constructions arise naturally when studying overde-
termined systems, which may contain obstructions to the existence of solutions.

The theory will be developed in a coordinate free way, using jet spaces. This is the
natural framework for discussing PDE arising from questions in geometry, where there
is no preferred coordinate system. Moreover, this approach is necessary for dealing with
global problems where one does not have the option of working in coordinates.

Let M be a differentiable manifold and fix n ≤ dimM . Two n-dimensional subman-
ifolds passing through a point q ∈ M are said to have the same k-th order jet at q if
they have order of contact at least k at q. The space of k-th order jets of n-dimensional
submanifolds at q is denoted by Jkn(M)q, and one defines Jkn(M) =

⋃
q∈M Jkn(M)q.

A k-th order differential equation on n-dimensional submanifolds of M is a subset
R ⊆ Jkn(M). This may be thought of as a restriction on the possible k-jets of subman-
ifolds. An n-dimensional submanifold N ⊆M is called a solution of the equation if its
k-th jet at each point belongs to R (that is, if it satisfies all the restrictions).

This generalizes the traditional, coordinate dependent definition of a partial differ-
ential equation, as follows. Suppose that we are given a system of k-th order PDE for
maps u : Rn → Rs

G

(
x, u(x),

∂u

∂xI
(x)

)
= 0 (2)

where G : Rn+s(n+kn ) → Rλ and I ranges over all multi-indices of length at most k.
Equation (2) is seen to define a differential equation R ⊆ Jkn(Rn×Rs), whose solutions
are exactly the graphs of solutions of (2).

Reciprocally, when working in local coordinates x1, . . . , xn, u1, . . . , us on a mani-
fold M , we may describe (most) n-dimensional submanifolds N ⊆ M using graphs of
functions u : Rn → Rs. Differential equations R ⊆ Jkn(M) take the form (2) in this
coordinate system.

It is also usual to develop the theory starting with a fibered manifold ξ : Eξ → M
(that is, a surjective submersion). In this case, the objects of interest are the spaces
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Jk(ξ) of k-jets of sections of ξ, and one may define differential equations acting on
sections as subsets R ⊆ Jk(ξ). As above, sections of ξ may be identified with certain
submanifolds of Eξ, and so our approach generalizes this. However, this remains an
important particular case. For example, if one takes ξ to be a trivial bundle M1×M2 →
M1, then one may speak of differential equations on functions f : M1 →M2. One may
also take ξ to be a vector bundle, in which case one may develop the theory of linear
PDE in a coordinate free way.

Another common geometric approach to partial differential equations is via exterior
differential systems. These are special first order equations defined using ideals of the
algebra of differential forms, closed under exterior differentiation. It turns out that for
any k-th order differential equation R ⊆ Jkn(M) there is an exterior differential system
on R whose solutions are in correspondence with the solutions to R. This theory
was used to great effect by Élie Cartan (who, in particular, introduced exterior forms
of degrees greater than 3, and the exterior derivative), after previous work by Pfaff,
Frobenius and Darboux on the Pfaff problem. See [1] for a modern treatment of this
theory.

The main algebraic tool used in this thesis is the Spencer cohomology of graded
comodules over a polynomial coalgebra. Given an n-dimensional vector space V over
a field of characteristic zero and a graded comodule A over the coalgebra SV ∗, one
may construct certain graded vector spaces Hq(A) =

⊕
k≥qH

q,k(A) called the Spencer
cohomology of A. Under finiteness conditions, these spaces are dual to the Koszul
homology of the dual SV module. These groups were first explicitly used by Spencer
[11, 12] in the context of deformations of pseudogroup structures.

Given a smooth k-th order differential equation R ⊆ Jkn(M), one may form the l-th
prolongation R(l) which is a differential equation of order k + l. In coordinates, this
corresponds to adjoining the derivatives of order at most l of the equation in question.
A differential equation is said to be formally integrable if R(l) → R(l−1) is a smooth
submersion for all l > 0. When this happens, one may construct formal solutions to
the equation (in coordinates, formal power series satisfying the equation and all its
derivatives) starting with any point in R.

The first problem in the formal theory of overdetermined systems is to construct
the obstructions for an equation to be formally integrable. Following work by Bott
and Quillen, Goldschmidt [5, 4] constructed the obstructions to integrability, which lie
on the second Spencer cohomology of a certain bundle of comodules associated to the
symbol of the differential equation.

In the analytic category, formal integrability implies the existence of local solutions.
This follows from the δ-Poincaré estimate of Spencer, proved by Ehrenpreis, Guillemin
and Sternberg [2], and later by Sweeney[13] by different means. In the smooth category,
formal integrability does not guarantee the existence of solutions, as shown by Lewy[8].

Another fundamental question is the initial value problem. Suppose that we are
given a (n − 1)-dimensional submanifold Nn−1 ⊆ M and initial conditions along Nn−1
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(i.e., a section Nn−1 → R). A solution to the initial value problem is then a solution
N of R containing Nn−1 and satisfying the initial conditions. In order for solutions
to exist it is necessary that the initial conditions solve a certain first order equation
(corresponding in coordinates to the commutativity of partial derivatives). We shall
see that if the equation satisfied by the initial conditions is formally integrable then
(under mild regularity hypothesis) the only obstructions to the formal initial value
problem with generic initial conditions arise in the first order (that is, when solving
the initial value problem with conditions given along a 1-jet of an (n− 1)-dimensional
submanifold).

In the analytic case, the existence of a solution to the initial value problem is
guaranteed by the Cartan-Kahler theorem in the theory of exterior differential systems,
which ultimately depends on the Cauchy-Kowalevski existence and uniqueness result
for analytic partial differential equations.

A central concept in the theory is that of involution. Equations which are in involu-
tion may be solved (at least in the analytic case) by a sequence of initial value problems,
and one may estimate the size of the solution space. It was observed by Serre that the
involutivity of a differential equation is also of homological nature: it is equivalent to
the vanishing, in almost all degrees, of the Spencer cohomology of the symbol comodule
of the equation, together with integrability to first order (see Guillemin-Sternberg[6]).
In fact, the concept of involution turns out to be dual to the Castelnuovo-Mumford
regularity in commutative algebra, see Malgrange[9].

Under fairly technical conditions, any differential equation becomes involutive after
enough prolongations, a result which ultimately depends on the Hilbert basis theorem.
This is called the Cartan-Kuranishi prolongation theorem, conjectured by Cartan and
proved by Kuranishi[7] in the context of exterior differential systems. In this thesis
we shall prove a weak version of this theorem: any formally integrable differential
equation may be completed to involution (i.e., prolonged until it becomes involutive).
In particular, the existence of solutions to an analytic formally integrable equation may
also be reduced to the Cartan-Kahler theorem.

One remarkable application of this theory is to the equivalence problem for geometric
structures. Given a geometric structure on a manifold (a Riemannian metric, almost
complex structure, distribution, etc.), one wants to compute a complete set of invariants
of the structure, which (apart from giving useful information about the geometry)
allows us to decide whether two such structures are (locally) equivalent. The problem
of deciding when two Riemannian manifolds are isometric is a basic example of this.

Cartan developed a method for computing these invariants, using his theory of
exterior differential systems. The basic observation is that the equivalences between
two structures solve a certain first order differential equation. One then modifies the
structures until (if all the invariants obtained coincide) the equation becomes invo-
lutive, thus establishing the existence of formal solutions. This process may involve
repeated prolongation, and the fact that it terminates is, once more, a consequence of
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the Hilbert basis theorem. Modern expositions of Cartan’s method include Gardner[3]
and Olver[10].

This thesis is organized as follows:
Chapter I contains the basic formalism of jet spaces, from the point of view of jets

of submanifolds. The results are then adapted to the case of jets of sections of a fibered
manifold. We consider jets of sections over submanifolds of the base manifold of positive
codimension; our main motivation for this is that they arise naturally when discussing
linearization of nonlinear equations and operators.

Chapter II presents the necessary background on Koszul homology and Spencer
cohomology. We also give an introduction to the algebraic theory of involution.

Chapter III discusses differential operators and equations. Again, everything is first
presented for spaces of jets of submanifolds, and then adapted to jets of sections. The
obstructions to formal integrability are constructed, proving Goldschmidt’s theorem.
We then discuss the formal initial value problem.

Chapter IV deals with Cartan’s method for solving the equivalence problem. We
make use of semi-holonomic jets (specifically, semi-holonomic frame bundles) in order
to deal with the prolongation step in the method. The main result in this chapter is
a formal equivalence theorem for semi-holonomic higher order G-structures. The fact
that the method terminates is also proven.



Chapter I

Jet Spaces

This chapter deals with the basic theory of jet spaces, which is the framework that will
allow us to discuss differential equations in a coordinate-free way.

In section 1 we define the space Jkn(M) of k-th order jets of n-dimensional subman-
ifolds of a manifold M . These spaces come equipped with a universal bundle which
generalizes the universal bundle on a Grassmannian. The main result in this section is
the fact that the projections Jkn(M)→ Jk−1

n (M) are affine bundles for k ≥ 2, modeled
on the bundle of k-th order homogeneous polynomials from the universal bundle to the
universal quotient bundle. The jet spaces behave (almost) functorially: any differen-
tiable map between two manifolds induces a (partially defined) map between the jet
spaces, called its prolongation. We shall see that prolongued morphisms respect the
affine structure of the jet spaces, and give a precise description for the associated vector
bundle maps. This will be generalized in chapter III when we study the prolongation
of differential operators.

Section 2 deals with the spaces Jkn(ξ) of jets of sections of a fibered manifold ξ :
Eξ → M over n-dimensional submanifolds of M . The image of each section is an
n-dimensional submanifold of the total space Eξ, so this may be studied with the
formalism of jets of submanifolds. In the case when n = dim M , these are the spaces
of jets of sections M → Eξ. Our main motivation for studying the spaces Jkn(ξ) for
n < dimM is that they are needed in order to describe the tangent space to to the jet
spaces Jkn(M). This description will allow us to define the linearization of nonlinear
differential operators and equations in chapter III.

In section 3 we define the contact distribution Ckn on the space Jkn(M). This distribu-
tion has the property that its n-dimensional integral submanifolds which are trasverse
to the vertical distribution are in correspondence with the n-dimensional submanifolds
of M . Unless n = dimM , this distribution will not be Frobenius integrable. We shall
study how the Frobenius condition fails: this is measured in terms of a certain (vector
bundle valued) 2-form [·, ·] on Ckn. The space Jk+1

n (M) is recovered as the space of
n-dimensional planes tangent to Ckn such that the rescriction of [·, ·] vanishes (together

13
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with a trasversality condition). This fundamental fact implies that the spaces Jkn(M)
may be studied in a purely inductive manner.

1 Jets of Submanifolds

1.1 Let M be a differentiable manifold, and fix n ≤ dimM . Let N be an (inmersed) n-
dimensional submanifold of M , and let q ∈ N . Then N defines an ideal Iq(N) ⊂ OM,q of
the ring of germs of smooth functions on M at q, given by those germs that vanish when
restricted to N . This ideal completely characterizes the germ of N at q: if we are given
another submanifold such that the corresponding ideals agree, then the submanifolds
agree near q. We shall adapt this idea to define what it means for two submanifolds to
have order of contact at least k at q.

Let k ≥ 0. Denote by mM,q the maximal ideal of OM,q. Then OM,q/m
k+1
M,q is called

the ring of k-jets of functions at q with values in R. That is, we are identifying two
functions defined around q if they differ by terms of order at least k. In coordinates,
two functions are identified if their derivatives agree up through order k, and we are
left with the possible k-th order Taylor expansions.

The inclusion of a submanifold N induces a restriction map i∗ : OM,q/m
k+1
M,q →

ON,q/mk+1
N,q . Let Ikq (N) be the kernel of i∗. Then Ikq (N) is the ideal of k-jets of functions

at q that vanish when restricted to N . Given another n-dimensional submanifold N ′

which passes through q, we say that N and N ′ have the same k-jet at q if Ikq (N) =
Ikq (N ′). This defines an equivalence relation on the set of submanifolds passing through
q. We denote by Jkn(M)q the set of k-jets of n-dimensional submanifolds passing through

q, and Jkn(M) =
⋃
q∈M Jkn(M)y the set of k-jets of n-dimensional submanifolds of M .

For j ≤ k we have projections πk,j : Jkn(M)→ J jn(M). If y ∈ Jkn(M), we usually denote
by yj its projection to J jn(M).

Notice that J0
n(M) = M . Also, I1

q (N) ⊆ mM,q/m
2
M,q = T ∗qM is the annihilator

of TqN . Thus J1
n(M)q is the Grassmannian of n-dimensional subspaces of TqM , and

J1
n(M) is the Grassmannian bundle associated to TM .

1.2 Let x1, . . . xn, u1, . . . , us local coordinates for M around q, and let p be the pro-
jection of q to the space of coordinates xi. Suppose that N is given by the graph of a
function f in those coordinates. Then N is the zero locus of the functions ui − f i ◦ ξ,
where f i are the coordinates of f , and ξ is the projection to the first n coordinates.
The ideal Ikq (N) is then generated by those s functions. As discussed before, the ring
OM,q/m

k
M,q is isomorphic to R[x1, . . . xn, u1 . . . us]/〈x1, . . . xn, u1, . . . , us〉k, sending each

function to its Taylor expansion at q. It follows that the ideal Ikq (N) only depends on
the k-th order Taylor expansion of f at p. If N ′ is another submanifold passing through
q and given locally by the graph of f ′, then N and N ′ have the same k-jet at q if and
only if the derivatives of f and f ′ agree up through order k at p.
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We are now ready to define the differentiable structure on Jkn(M) for k ≥ 1. Pick
x1, . . . , xn, u1, . . . , us local coordinates on M . The jet of a submanifold transverse to the
vertical depends, as discussed above, on the k-th order Taylor expansion of a function
around a point (x1, . . . , xn). Thus we can introduce coordinates xi, uaI on Jkn(M), where
1 ≤ i ≤ n, 1 ≤ a ≤ s, and I is a symmetric multi-index with 0 ≤ |I| ≤ k. Explicitly,
the jet of the graph of a function f around a point (xi, ua) has coordinates xi and

uaI = ∂|I|

∂xI
f(xi). This defines a differentiable structure on Jkn(M). The projection πk+1,k :

Jk+1
n (M)→ Jkn(M) is given in those coordinate systems by forgetting some coordinates,

so it is a surjective submersion.

1.3 For each n-dimensional submanifold i : N →M , we have a map i(k) : N → Jkn(M),
which sends each point q ∈ N to the k-jet of N at q. It is a smooth inmersion, and
it verifies πk,k−1i

(k) = i(k−1). This defines a submanifold N (k) of Jkn(M) called the
k-th prolongation of N . This is the canonical way of lifting N to a submanifold on
the jet spaces. Of course, not every submanifold of Jkn(M) arises as the prolongation
of a submanifold of M . A first condition is that the given submanifold should be
transverse to the vertical distribution V πk,k−1 = ker πk,k−1∗. Moreover, it turns out
that for every N the prolongation N (k) is an integral manifold of a certain distribution
on Jkn(M), called the contact distribution. This two properties completely characterize
the prolongations N (k) among all submanifolds of Jkn(M), as we will see later in this
chapter.

We may iterate this construction and consider the l-th prolongation of N (k), which
is now a submanifold N (k)(l) of J ln(Jkn(M)). For each q ∈ N the point i(k)(l)(q) ∈
J ln(Jkn(M)) only depends on the (k + l)-th jet of N at q, as can be seen in coordinates.
Thus we get a mapping Jk+l

n (M) → J ln(Jkn(M)), which is in fact an embedding. It is
not surjective; its image may be characterized as a prolongation of the contact system
on Jkn(M). We will go back to this in chapter III.

1.4 Each y ∈ J1
n(M) defines a subspace Uy ⊆ Ty0M , where y0 = π1,0(y). The map

y 7→ Uy defines a subbundle U ⊆ π∗1,0TM called the universal bundle on J1
n(M). From

now on, we implicitly pullback bundles over J jn(M) to Jkn(M) for k > j, as the base
will be clear by context, so we may simply say U ⊆ TM . Let Q = TM/U .

More generally, we may pullback the universal bundle on J1
n(Jkn(M)) to Jk+1

n (M)
via the canonical embedding Jk+1

n (M) ⊆ J1
n(Jkn(M)), and we get a subbundle U (k) ⊆

TJkn(M) defined over Jk+1
n (M), which is called the k-th prolongation of the universal

bundle. Observe that πk,k−1∗ : TJkn(M)→ TJk−1
n (M) restricts to give an isomorphism

U (k) → U (k−1), and so all the prolongations are isomorphic as bundles. We use the
notation U (k) if we want to emphasize its embedding as a subbundle of TJkn(M). When
we are only interested in the bundle structure we may identify them and simply speak
of U . In particular, we usually do not need to distinguish the dual bundles U (k)∗, so we
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simply speak of U∗.
In coordinates, we have

U (k−1) = span

 ∂

∂xi
+

∑
0≤|I|≤k−1

uaIi
∂

∂uaI

 (1)

U∗ = span
{

dxi
}

(2)

Q = span

{
∂

∂ua

}
(3)

1.5 We now want to study the bundles Jkn(M) → Jk−1
n (M). When k = 1, we al-

ready know that J1
n(M) is a bundle of Grassmannians. Its vertical distribution may be

described as follows

Proposition 1.5.1. Let V π1,0 = kerπ1,0∗ be the vertical distribution on J1
n(M). Then

V π1,0 = U∗ ⊗Q.

Proof. Let q ∈M . The fiber π−1
1,0(q) is the Grassmannian of n-dimensional subspaces of

TqM . This is an homogeneous space for the group GL(TqM). If y is an element of the
fiber, then the isotropy of the action at y is the subgroup H of automorphisms fixing
Uy. The Lie algebra of H is the subalgebra h ⊆ End(TqM) of endomorphisms fixing Uy.
The tangent space to the fiber at y is then End(TyM)/h = Hom(Uy, Qy) = U∗y⊗Qy.

In coordinates, V π1,0 is spanned by the vectors ∂/∂uai , and the isomorphism maps
∂/∂uai to dxi ⊗ ∂/∂ua.

There is an alternative way of giving that isomorphism. Let γ be a smooth, vertical
curve on J1

n(M), such that γ(0) = y. Let α be a smooth curve in TqM such that
α(t) ∈ γ(t) for all t. Then the contraction of γ̇(0) with α(0) is the projection of α̇(0)
to Qy.

We now examine the case k ≥ 2. Here we recover the intuitive fact that two k-jets
differ by an homogeneous polynomial of order k.

Proposition 1.5.2. The projection πk,k−1 : Jkn(M) → Jk−1
n (M) is an affine bundle

modeled on SkU∗ ⊗Q for k ≥ 2. In particular, V πk,k−1 = SkU∗ ⊗Q for k ≥ 1.

Proof. Let k ≥ 2 and assume that the proposition has been proven for j < k. For each
y ∈ Jk−1

n (M), let J̌kn(M)y be the space of lifts of U
(k−2)
y to TyJ

k−1
n (M). This is the same

as the splittings of

0→ Vyπk−1,k−2 → π−1
k−1,k−2∗(U

(k−2)
y )→ U (k−2)

y → 0 (4)

and therefore J̌kn(M)y is an affine space modeled on U∗y ⊗Vyπk−1,k−2 = U∗y ⊗ (Sk−1U∗y ⊗
Qy). The spaces J̌kn(M)y form an affine bundle J̌kn(M) over Jk−1

n (M) which embeds in
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J1
n(Jk−1

n (M)), called the space of k-th order sesqui-holonomic jets. The image of the
canonical embedding of Jkn(M) inside J1

n(Jk−1
n (M)) is actually contained in J̌kn(M). We

claim that Jkn(M) it is an affine subbundle of J̌kn(M) modeled on SkU∗ ⊗Q.
To see that, we work locally. Let w, w̄ be elements in the fiber of πk,k−1 over y. Let

(xi, uaI) and (xi, ūaI) be their coordinates, with uaI = ūaI for |I| < k. Then

w̄ − w = (ūaIi − uaIi)dxi ⊗ ∂/∂uaI ∈ U∗y ⊗ Vyπk−1,k−2 (5)

By induction, we may assume that this corresponds to

(ūaIi − uaIi)dxi ⊗ (dxI ⊗ ∂/∂ua) ∈ U∗y ⊗ (Sk−1U∗y ⊗Qy) (6)

Using the canonical embedding SkU∗y ⊗Qy inside U∗y ⊗ (Sk−1U∗y ⊗Qy), this corresponds
to (ūaI −uaI)dxI⊗∂/∂ua. Therefore, the possible differences of two elements in the fiber
are in correspondence with SkU∗y ⊗ Qy, and so Jkn(M) is an affine bundle modeled on
SkU∗ ⊗Q.

1.6 Let M,M ′ be two differentiable manifolds, and n ≤ dimM, dimM ′. Let ϕ : M →
M ′ be a smooth map. Let V be the open subspace of J1

n(M) consisting of those 1-jets y
such that ϕ∗|Uy is a monomorphism. Let i : N →M be an n-dimensional submanifold
passing through a point q ∈ M , such that N (1) is contained in V . Then ϕ(N) is an
n-dimensional submanifold of M ′, and the k-jet of ϕ(N) at ϕ(q) only depends on the
k-jet of N at q. Therefore, we get a well defined map ϕ(k) : π−1

k,1(V )→ Jkn(M ′) called the
k-th prolongation of ϕ. We have already seen a particular case of this: if i : N →M is
an n-dimensional submanifold, then the k-th prolongation of the inclusion is the map
i(k) : Jkn(N) = N → Jkn(M) previously defined. Observe that if ψ : M ′ → M ′′ is a
smooth map then (ψϕ)(k) = ψ(k)ϕ(k) where it makes sense. Moreover, ϕ(k+l) coincides
with the restriction of the iterated prolongation ϕ(k)(l) to Jk+l

n (M) ⊆ J ln(Jkn(M)).
Let U ′ be the universal bundle on J1

n(M ′), and let U ′(k) be its k-th prolongation.
Let Q′ = TM ′/U ′. We denote by πk,j both the projection Jkn(M) → J jn(M ′) and the
projection Jkn(M ′) → J jn(M ′). Observe that the prolongations of ϕ commute with the
projections. We implicitly pullback bundles on Jkn(M ′) to π−1

k,1(V ), using ϕ(k). Observe

that ϕ
(k)
∗ gives an isomorphism between U (k) and U ′(k) over Jk+1

n (M). Therefore, unless
we are interested in the embedding as a subbundle of a particular jet space, we may
identify all the universal bundles and simply speak of U .

Let σϕ : Q → Q′ be the map induced by ϕ∗. It is called the symbol of ϕ. For
k ≥ 0,the k-th prolongation of the symbol of ϕ is the map

σ(k)
ϕ = 1SkU∗ ⊗ σϕ : SkU∗ ⊗Q→ SkU∗ ⊗Q′ (7)

The prolonged symbols determine the behavior of the prolongations of ϕ. We first
prove this for the first prolongation
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Lemma 1.6.1. The map U∗ ⊗Q→ U∗ ⊗Q′ induced by restriction of ϕ(1) to the fibers
of π1,0 coincides with σ

(1)
ϕ .

Proof. Let y ∈ V , and let γ be a smooth vertical curve inside V such that γ(0) = y. Let
α be a smooth curve in Ty0M such that α(t) ∈ γ(t) for all t. Then the contraction of
γ̇(0) with α(0) is given by the projection of α̇(0) to Qy. In the same way, the contraction
of ∂t(ϕ

(1)γ)(0) with ϕ∗α(0) is given by ∂t(ϕ∗α)(0) projected to Q′
ϕ(1)y

. The proposition

then follows from the fact that ∂t(ϕ∗α)(0) = ϕ∗α̇(0).

In general, one has the following

Proposition 1.6.2. The map ϕ(k) : π−1
k,1(V ) → Jkn(M ′) is an affine bundle morphism

over ϕ(k−1) : π−1
k−1,1(V )→ Jk−1

n (M ′) for k ≥ 2, with associated vector bundle map σ
(k)
ϕ .

In particular, the map SkU∗ ⊗Q→ SkU∗ ⊗Q′ induced by the restriction of ϕ
(k)
∗ to the

fibers of πk,k−1 coincides with σ
(k)
ϕ for all k ≥ 1.

Proof. Let k ≥ 2, and suppose that we have already proven the result for all j < k.
Let y, ȳ be two k-jets inside π−1

k,1(V ), such that yk−1 = ȳk−1. Let y′ = ϕ(k)(y) and
ȳ′ = ϕ(k)(ȳ). We know that U

(k−1)
y and U

(k−1)
ȳ are two splittings at yk−1 of

0→ V πk−1,k−2 → π−1
k−1,k−2∗(U

(k−2))→ U (k−2) → 0 (8)

Their difference is, then, an element ∆ ∈ U∗y ⊗ Vyk−1
πk−1,k−2. In the same way, U

′(k−1)
y′

and U
′(k−1)
ȳ′ are two splittings at y′k−1 of

0→ V πk−1,k−2 → π−1
k−1,k−2∗(U

′(k−2))→ U ′(k−2) → 0 (9)

Their difference is an element ∆′ ∈ U∗y ⊗Vy′k−1
πk−1,k−2. Using the inductive hypothesis,

we have,

idU∗ ⊗ σ(k−1)
ϕ (∆) = ∆′ (10)

It follows that y′ − ȳ′ = σ
(k)
ϕ (y − ȳ), as we wanted.

2 Jets of Sections

2.1 Let M be a manifold and ξ : Eξ → M be a fibered manifold over M (that is,
a surjective submersion). Fix n ≤ dimM . For k ≥ 1, we denote by Jkn(ξ) the open
submanifold of Jkn(Eξ) given by those jets of submanifolds transverse to the vertical of
ξ. We also set J0

n(ξ) = Eξ.
The space Jkn(ξ) is called the space of k-jets of sections of ξ along n-dimensional

submanifolds of M . An element of Jkn(ξ) over x ∈M may be (non uniquely) represented
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by a pair (N, s), where N is an n-dimensional submanifold of M passing through x,
and s is a section of ξ|N .

The prolongations of ξ are maps ξ(k) : Jkn(ξ)→ Jkn(M) giving Jkn(ξ) the structure of
a fibered manifold over Jkn(M). Given a section s : M → Eξ, its k-th prolongation s(k) :
Jkn(M)→ Jkn(ξ) is a section of ξ(k). Given a morphism of fibered manifolds ϕ : Eξ → Eη
over M , its k-th prolongation is a morphism of fibered manifolds ϕ(k) : Jkn(ξ)→ Jkn(η)
over Jkn(M). Prolongation is compatible with pullbacks: if ϕ : M ′ → M is a smooth
map, then (ϕ∗ξ)(k) is the pullback of ξ(k) over ϕ(k).

Let xi, ua be local coordinates on M , and choose functions vb on Eξ such that
xi, ua, vb is a system of coordinates on Eξ. This induces a coordinate system xi, uaI , v

b
J

on Jkn(Eξ). The domain of definition of this coordinate system is contained in Jkn(ξ), so
they form a coordinate system for this manifold. Moreover, any point of Jkn(ξ) belongs
to one of these domains, so these coordinate systems form an atlas for Jkn(ξ). The map
ξ(k) : Jkn(ξ) → Jkn(M) is given locally by forgetting the coordinates vbJ . If s : M → Eξ
is given in coordinates by vb = sb(xi, ua), then s(k) is given by vbJ = DJs

b(xi, uaI), where
DJs

b denotes the derivative with respect to xJ1 , . . . , xJn , treating ua as functions of the
variables xi (with derivatives uaJ).

2.2 An important particular case of the theory in this section is when n = dimM .
In this case we drop the n and use the notation Jk(ξ). It is the space of k-th jets of
sections of ξ. Two sections represent the same k-th jet at x ∈M if, on any coordinate
system, their derivatives agree up through order k. An even more particular case of
this (which is still very important) is the case of a trivial bundle M × F → M . Here
sections are in correspondence with smooth functions from M to F , and so the theory
that we develop naturally includes the theory of differential equations and differential
operators on functions.

When n = dimM , we have that Jkn(M) = M for all k, so the spaces Jk(ξ) should all
be considered over the same base M . In this case, the universal bundle on Jk(ξ) may
be considered as a connection on ξ(k) : Jk(ξ)→M , which is only well defined when we
pass to Jk+1(ξ).

Even if one is only interested in this case, when linearising one needs to consider the
space Jkn(V ξ → Eξ), and so spaces of sections over (non necessarily top dimensional)
submanifolds necessarily turn up (the exception being when the fibers of ξ are paraleliz-
able: here V ξ is actually defined over M , and so one stays in the realm of sections over
open submanifolds).

2.3 When n < dimM , the spaces Jkn(ξ) are fibered manifolds over different base

manifolds. As usual, we shall implicitly pullback ξ(k) along πk+l,k : Jk+l
n (M)→ Jkn(M)

for l ≥ 0. For example, if we speak of the map Jk+1
n (ξ) → Jkn(ξ), we shall assume

that Jkn(ξ) has been pullbacked over πk+1,k, so that we are dealing with a morphism of
fibered manifolds over Jk+1

n (M).
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Some results from the first section will have to be adapted to be consistent with
this philosophy. For example, we already know that the fibers of Jk+1

n (Eξ) → Jkn(Eξ)
are affine spaces modeled on a certain bundle of polynomials. However, this does not
directly apply to the fibers of Jk+1

n (ξ) → Jkn(ξ) since one has to take into account the
fact that Jkn(ξ) has been pullbacked.

As a general rule, when n = dimM all the results and definitions from the theory
of jets of submanifolds apply directly, and in the case n < dimM definitions have to
be modified in order to be compatible with pullbacks M ′ →M .

For example, there is no problem with the vertical bundle V ξ: this is independent
of the base of the fibered manifold, and only depends on the fibers. However, the
tangent bundle TEξ depends on the base manifold M . The correct analogue of the
tangent bundle TEξ when working with sections over n-dimensional submanifolds is
Tn(Eξ) = ξ−1

∗ (U), where U is the universal bundle on J1
n(M). This is a bundle defined

over the pullback of Eξ to J1
n(M). It is obviously compatible with pullbacks, and in the

case n = dimM we are left with ξ−1
∗ (TM) = TEξ. After one adapts all the concepts

to be compatible with this rule, the general theory is indistinguishable from the case
n = dimM . Indeed, most results may be proven by restricting to this case, after
pullbacking ξ to an n-dimensional submanifold of M .

2.4 The universal bundle on Jkn(Eξ) restricts to give a subbundle U
(k−1)
ξ ⊆ TnJ

k−1
n (ξ).

Set Uξ = U
(0)
ξ . Observe that we have an exact sequence

0→ Uξ → TnEξ → V ξ → 0 (11)

and so the correct analogue of the universal quotient bundle is V ξ. Of course, ξ(k)

induces isomorphisms between the bundles U (k) and U
(k)
ξ , so we will sometimes identify

them and simply speak of U .
If ϕ : Eξ → Eη is a morphism of fibered manifolds, we define its symbol as σϕ =

ϕ∗|V ξ : V ξ → V η. The k-th prolongation of the symbol is defined as

σ(k)
ϕ = 1SkU∗ ⊗ σϕ : SkU∗ ⊗ V ξ → SkU∗ ⊗ V η (12)

The analogue of propositions 1.5.2 and 1.6.2 in this context is

Proposition 2.4.1. Let k ≥ 1. The map Jkn(ξ)→ Jk−1
n (ξ) is an affine bundle modeled

on SkU∗ ⊗ V ξ. Moreover, if ϕ : Eξ → Eη is a morphism of fibered manifolds, then
ϕ(k) : Jkn(ξ)→ Jkn(η) is a morphism of affine bundles over ϕ(k−1), with associated vector

bundle map σ
(k)
ϕ .

Proof. Consider first the case k = 1. Let q ∈ M , and let y ∈ π−1
1,0(q) and e ∈ ξ−1(x).

The fiber of J1
n(ξ) over (y, e) is in correspondence with the splittings of

0→ Veξ → ξ−1
∗ (Uy)

ξ∗−→ Uy → 0 (13)
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and therefore it is an affine space modeled on U∗y ⊗ Veξ. This gives the desired affine
bundle structure on J1

n(ξ).
We now let k ≥ 2. Consider the following commutative diagram

Jkn(ξ) Jkn(M)

Jk−1
n (ξ) Jk−1

n (M)

ξ(k)

ξ(k−1)

(14)

We know that ξ(k) is a morphism of affine bundles over ξ(k−1), with associated vector
bundle map σ

(k)
ξ . We now pullback this diagram to lie over Jkn(M). In order to avoid

confusion, we shall make the pullbacks explicit

Jkn(ξ)×Jk−1
n (M) J

k
n(M) Jkn(M)×Jk−1

n (M) J
k
n(M)

Jk−1
n (ξ)×Jk−1

n (M) J
k
n(M) Jkn(M)

ξ(k)×1
Jkn(M)

ξ(k−1)×1
Jkn(M)

(15)

The vertical arrows are still affine bundles, and the horizontal arrows define an affine
bundle map. There is now a canonical section of the right vertical arrow, so this is now
a vector bundle. The bundle

Jkn(ξ)→ Jk−1
n (ξ)×Jk−1

n (M) J
k
n(M) (16)

is obtained as the kernel of ξ(k)× 1Jkn(M), so it is an affine bundle modeled on kerσ
(k)
ξ =

SkU∗ ⊗ kerσξ = SkU∗ ⊗ V ξ, as we wanted
The fact that the prolongation ϕ(k) of a fibered map ϕ is an affine bundle morphism

with associated vector bundle map σ
(k)
ϕ follows from proposition 1.6.2 in the case k ≥ 2.

We leave the case k = 1 for the reader.

In coordinates, two points w, w̄ in the same fiber of Jkn(ξ)→ Jk−1
n (ξ) may be written

as (xi, uaI , v
b
I) and (xi, uaI , v̄

b
I), where vbI = v̄bI unless |I| = k. Their difference w̄ − w ∈

SkU∗ ⊗ V ξ is then (v̄bI − vbI)dxI ⊗ ∂/∂vb.

2.5 If ξ : Eξ → M is a vector bundle, then the prolongations ξ(k) : Jkn(ξ) → Jkn(M)
have vector bundle structures defined as follows. Let z, z̄ be two points in the fiber
of y ∈ Jkn(M)x, represented by the pairs (N, s) and (N, s̄). Then z + z̄ is given by
the class of (N, s + s̄), and, for λ ∈ R a scalar, λy is given by the class of (N, λs).
Prolongation respects sends vector bundle morphisms to vector bundle morphisms, and
respects exact sequences.
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Observe that πk,k−1 : Jkn(ξ) → Jkn(ξ) is a vector bundle map. Proposition 2.4.1
implies that ker(πk,k−1 : Jkn(ξ)→ Jk−1

n (ξ)) = SkU∗ ⊗Eξ as vector bundles over Jkn(M).
Let ϕ : Eξ → Eη be a morphism of vector bundles. Then the symbol σϕ may be
identified with ϕ. Moreover, ϕ(k) restricts to a morphism SkU∗ ⊗ Eξ which coincides

with σ
(k)
ϕ .

2.6 Let M be an n-dimensional manifold and fix n ≤ dimM . Let ξU , ξQ denote the
projections from U and Q to J1

n(M), and ξTM denote the projection from TM to M .
For each k ≥ 0 we may consider Jkn(ξU) and Jkn(ξQ) as vector bundles over Jk+1

n (M),
via the canonical embedding Jk+1

n (M) ⊆ Jkn(J1
n(M)). The following proposition and its

corollary will be useful when we discuss linearization of nonlinear differential operators
and equations.

Proposition 2.6.1. Let M be a differentiable manifold and n ≤ dimM . Let k ≥ 0.
There is a short exact sequence of bundles over Jk+1

n (M)

0→ Hk → Jkn(ξTM)→ TJkn(M)→ 0 (17)

where Hk is the kernel of the canonical map Jkn(ξU)→ U .

Proof. We begin by constructing the map Jkn(ξTM) → TJkn(M). Let i : N → M be
an n-dimensional submanifold of M passing through a point q, and s be a section of
TM |N . Let it : N →M be a one-parameter family of immersions such that i0 = i and

s = ∂t|t=0it. Then the tangent vector ∂t|t=0i
(k)
t (q) to Jkn(M) only depends on the k-th

jet of (N, s), and so this defines a map Jkn(ξTM) → TJkn(M) over Jkn(M). It is easily
seen that any tangent vector in TJkn(M) may be obtained from a family of immersions
it : N →M , so this map is surjective.

The inclusion U ⊆ TM induces an inclusion Jkn(ξU) ⊆ Jkn(ξM) over Jk+1
n (M), which

restricts to give the first map in the short exact sequence of the statement. Moreover,
observe that the composition is zero. Indeed, an element of Hk ⊆ Jkn(ξTM) may be
represented as a pair (N, s) where N is an n-dimensional submanifold of M passing
through a point q, and s is a section of TN which vanishes at q. The variation it may
be constructed so that it(q) is constant, and it(N) ⊆ i0(N) near q. This implies that
the k-jet of it(N) at q remains constant, and therefore its derivative is zero.

It remains to prove exactness at Jkn(ξTM). We proceed by induction. When k = 0,
the sequence is simply

0→ 0→ TM → TM → 0 (18)

which is obviously exact. The inductive step follows from looking at the following
commutative diagram of bundles over Jk+1

n (M):
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0 0 0

0 SkU∗ ⊗ U SkU∗ ⊗ TM SkU∗ ⊗Q 0

0 Hk Jkn(ξTM) TJkn(M) 0

0 Hk−1 Jk−1
n (ξTM) TJk−1

n (M) 0

0 0 0

(19)

The columns are exact and the rows are exact except possibly at Jkn(ξTM). From
this and some diagram chasing, we get that it must also be exact at Jkn(ξTM), as we
wanted.

Corollary 2.6.2. Let M be a differentiable manifold and n ≤ dimM . Let k ≥ 0.
There is an exact sequence of bundles over Jk+1

n (M)

0→ U (k) → TJkn(M)→ Jkn(ξQ)→ 0 (20)

Proof. Prolongation preserves exact sequences, so we have the following exact sequence
of bundles over Jk+1

n (M)

0→ Jkn(ξU)→ Jkn(ξTM)→ Jkn(ξQ)→ 0 (21)

Taking the quotient of the first two bundles by Hk, we get an exact sequence

0→ U → TJkn(M)→ Jkn(ξQ)→ 0 (22)

We claim that the first map is the canonical embedding of U inside TJkn(M) (i.e., the
k-th prolongation of U). To see this, let y ∈ Jk+1

n (M) be a k-jet, and v ∈ Uy. Let w

be an element in the fiber of ξ
(k)
U over y such that its projection to U equals v. Then

the image of w inside Jkn(ξTM) may be represented as a pair (N, s) where N is an n-
dimensional submanifold of M passing through y0, and s is a section of TN such that
s(y0) = v. As before, from this we may construct a variation of N contained inside

i0(N). The basepoint y0 has initial speed v, and so ∂t|t=0i
(k)
t (y0) is the lift of v to U

(k)
y ,

which proves the claim.
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The correct linearization result in the context of fibered manifolds is the following

Proposition 2.6.3. Let η : Eη →M be a fibered manifold. We denote by ξUη , ξV η and
ξTnEη the projections of the corresponding bundles. Let k ≥ 0.

1. There is a short exact sequence of bundles over Jk+1
n (η)

0→ Hk → Jkn(ξTnEη)→ TnJ
k
n(η)→ 0 (23)

where Hk is the kernel of the canonical map Jkn(ξUη)→ Uη.

2. There is an isomorphism V η(k) = Jkn(ξV η) of bundles over Jkn(η).

The exact sequence in the first item is contained inside the sequence that proposition
2.6.1 gives for Eξ. To obtain the isomorphism in the second item one first restricts the
sequence from corollary 2.6.2 and then uses the identity TnJ

k
n(η)/Uη = V η(k). We leave

the details of the proof to the reader.

3 The Contact Distribution

3.1 Let M be a differentiable manifold and fix n ≤ dimM . The contact distribution

on Jkn(M) is the subbundle Ckn = π−1
k,k−1∗(U

(k−1)) ⊆ TJkn(M). This sits in a short exact
sequence

0→ SkU∗ ⊗Q→ Ckn → U (k−1) → 0 (24)

The bundle of contact forms I(k−1) ⊆ T ∗Jkn(M) is the annihilator of Ckn. Using 2.6.2,
we have

I(k−1) = (TJkn(M)/Ckn)∗ = (TJk−1
n (M)/U (k−1))∗ = Jk−1

n (ξQ)∗ (25)

Observe that I(0) = Q∗. Moreover, I(k−2) ⊆ I(k−1) as subbundles of T ∗Jkn(M), and
I(k−1)/I(k−2) = Sk−1U ⊗Q∗.

In coordinates xi, uaI on Jkn(M), the contact forms are spanned by the 1-forms duaI −
uaIidx

i, for 0 ≤ |I| < k. The quotient I(k−1)/I(k−2) is spanned by the forms duaI −uaIidxi
for |I| = k − 1, and the isomorphism with Sk−1U ⊗Q∗ is given by

θaI = duaI − uaIidxi 7→ ∂I ⊗ dua (26)

where ∂I = ∂I1 . . . ∂Ik−1
, with ∂i the basis of U dual to dxi.

The contact distribution allows us to determine which submanifolds of Jkn(M) arise
as prolongations of submanifolds of M :

Proposition 3.1.1. Prolongation N 7→ N (k) defines a correspondence between n-
dimensional submanifolds of M and n-dimensional integral manifolds of Ckn which are
transverse to V πk,k−1.
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Proof. Observe that if N is a submanifold of M , then N (k) is an integral manifold
submanifold of Ckn transverse to V πk,k−1, and we recover N as (πk,0N)(k). The only thing
left to do is to show that if N̄ is an n-dimensional integral manifold of Ckn transverse to
V πk,k−1, then N̄ = (πk,0N̄)(k).

We proceed by induction. The case k = 1 is immediate. Now, let k ≥ 2. Applying
the result for πk,k−1(N̄), we see that πk,k−1N̄ = (πk,0N̄)(k−1). The fact that N̄ is integral
for Ckn implies that N̄ = ((πk,0N̄)(k−1))(1) inside of J1

n(Jk−1
n (M)). Restricting to Jkn(M)

we get the desired equality N̄ = (πk,0N̄)(k).

3.2 From the coordinate description we see that, unless n = dimM , the contact
distribution is not integrable. This means that the map

[·, ·] : Λ2Ckn → TJkn(M)/Ckn = Jk−1
n (ξQ) (27)

induced by the Lie bracket, is typically nonzero. Our next goal is to understand this
morphism.

From (24) we get a filtration

F0 ⊂ F1 ⊂ F2 = Λ2(Ckn) (28)

where F0 = Λ2V πk,k−1 and F1 = im(V πk,k−1 ⊗ Ckn
∧−→ Λ2Ckn). We have that F1/F0 =

V πk,k−1 ⊗ U (k−1) and F2/F1 = Λ2(U (k−1)), where the first isomorphism is induced by
contraction with U∗, and the second is induced by the projection Ckn → U (k−1).

The vertical distribution is integrable, and so [·, ·] passes to the quotient F2/F0 →
Jk−1
n (ξQ). Moreover, when working over Jk+1

n (M), sequence (24) splits, and so we get
a decomposition Λ2(Ckn) = F0 ⊕ (F1/F0) ⊕ (F2/F1). Since for each y ∈ Jk+1

n (M) the

plane U
(k)
y may be extended to an integral submanifold of Ckn, we have that [·, ·] vanishes

when restricted to F2/F1 = Λ2U (k). As a consequence of this, the image of [·, ·] does not
change when we restrict it to F1/F0. The following proposition describes this restriction:

Proposition 3.2.1. The image of [·, ·] is contained in Sk−1U∗⊗Q ⊆ Jk−1
n (ξQ). More-

over, the induced map

F1/F0 = (SkU∗ ⊗Q)⊗ U → Sk−1U∗ ⊗Q (29)

is the contraction mapping.

Proof. Let y ∈ Jkn(M), and Xy, Yy be two tangent vectors at y, with Xy ∈ V πk,k−1 and
Yy ∈ Ckn. We extend Xy to a vector field X tangent to V πk,k−1. Let Z be a section
of U (k−2) over Jk−1

n (M) such that Zyk−1
= πk,k−2∗(Yy). Extend Yy to a vector field on

Jkn(M), tangent to Ckn, such that πk,k−2∗Y = Z. Observe that the flow of X preserves
the projection πk,k−2, and πk,k−2∗Y is constant along the flowlines of X. These two
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facts combined imply that πk,k−2∗LXY = 0. This shows that [X, Y ] ∈ Sk−1U∗ ⊗ Q, as
we claimed.

To see that the induced map on F1/F0 is contraction, we work in local coordinates
xi, uaI on Jkn(M). The bundle U∗ is spanned by dxi, and Q is spanned by (the classes
of) ∂/∂ua. Let ∂i be the basis of U dual to dxi. We want to compute [dxI ⊗ ∂/∂ua, ∂i].
To do this, observe that dxI ⊗ ∂/∂ua corresponds to the vertical vector ∂/∂uaI , and ∂i
may be lifted to the contact vector field ∂/∂xi + ubJi∂/∂u

b
J . The Lie bracket of these

two fields is ∂/∂uaJ , where J is the multi-index such that Ji = I. This is the vector
corresponding to the contraction of dxI ⊗ ua with ∂i, which is what we wanted.

3.3 The above discussion on the Lie bracket of contact vector fields may be dualised
to give us information about the exterior derivative of contact forms. Concretely, we
are interested in the map

δ : I(k−1) → Λ2Ck∗n (30)

induced by exterior differentiation, which coincides with −[·, ·]
∗
. The dual to sequence

(24) induces a filtration

F 0 ⊂ F 1 ⊂ F 2 = Λ2Ck∗n (31)

where F 0 = Λ2U∗ and F 1 = im(U∗ ⊗ Ck∗n
∧−→ Λ2Ck∗n ). We have that F 1/F 0 = U∗ ⊗

V ∗πk,k−1 and F 2/F 1 = Λ2V ∗πk,k−1. Here F 0 is the annihilator of F1 and F 1 is the
annihilator of F0. Therefore, the image of δ is contained in F 1. Proposition 3.2.1
dualises to give

Proposition 3.3.1. The map δ factors through I(k−1)/I(k−2). The induced map

δ̄ : Sk−1U ⊗Q∗ → F 1/F 0 = U∗ ⊗ (SkU ⊗Q∗) (32)

is the map induced by multiplication U ⊗ (Sk−1U ⊗Q∗)→ SkU ⊗Q∗.

Of course, we could have seen this directly using local coordinates, without appealing
to proposition 3.2.1. We have

F 0 = span{dxi ∧ dxj} (33)

F 1 = span{dxi ∧ dxj, dxi ∧ duaI} (34)

Let θaI = duaI−uaIidxi, for |I| ≤ k−1. The fact that dθaI = dxi∧θaIi for |I| ≤ k−2 implies
that δ vanishes when restricted to I(k−2). Moreover, the formula dθaI = dxi∧duaIi shows
that the image of δ is contained in F 1, and that the induced map δ̄ is given as in the
above proposition.
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3.4 We now discuss a kind of infinitesimal analogue to the correspondence in propo-
sition 3.1.1. Let y ∈ Jkn(M). We want to characterize the subspaces of TyJ

k
n(M) of

the form U
(k)
z , for z in the fiber of πk+1,k over y. Of course, they are contained in Ckn,y,

and are transverse to Vyπk,k−1. Moreover, as we observed before, the form [·, ·] vanishes
when restricted to these planes, since they may be extended to integral submanifolds
of Ckn.

This motivates the following definition: an n-dimensional subspace Π ⊆ TyJ
k
n(M)

is called an integral element for the contact distribution if it is contained in Ckn,y, the

projection πk,k−1∗ restricts to give an isomorphism Π = U
(k−1)
y , and the form [·, ·]y

vanishes when restricted to Π. Equivalently, Π is called an integral element of the
contact distribution if for every θ ∈ I(k−1)

y we have that both θ|Π and δθ|Π vanish, and
moreover the induced map U∗ → Π∗ is an isomorphism.

It turns out that any integral element is of the form U
(k)
z for some z:

Proposition 3.4.1. The image of the canonical embedding Jk+1
n (M) ⊆ J1

n(Jkn(M))
consists of the integral elements of the contact distribution on Jkn(M).

Proof. We have already observed that Jk+1
n (M) is contained inside the bundle of contact

elements, so we only have to prove the other inclusion. Observe that the bundle of
contact elements sits inside the bundle J̌k+1

n (M) of sesqui-holonomic jets, (see the proof
of proposition 1.5.2 for the definition of this space). Therefore, to show that it equals
Jkn(M) it suffices to see that the difference between two contact elements elements Π, Π̄
at a point y ∈ Jkn(M) belongs to Sk+1U∗ ⊗Q.

Let X, Y ∈ Uy, and let XΠ, YΠ be their lifts to Π. Then their lifts to Π̄ are XΠ+∆(X)
and YΠ + ∆(Y ), where ∆ = Π̄− Π ∈ U∗ ⊗ V πk,k−1 = U∗ ⊗ (Sk−1U∗ ⊗Q). Using that
Π and Π̄ are integral elements for the contact distribution, we have

0 = [XΠ + ∆(X), YΠ + ∆(Y )] = [∆(X), YΠ]− [∆(Y ), XΠ] (35)

By 3.2.1, this equals Y y∆(X) − Xy∆(Y ). The fact that this vanishes for all X, Y
implies that ∆ is symmetric, which finishes the proof.

In particular, we recover Jk+1
n (M) from the knowledge of the space Jkn(M), the

contact distribution Ckn and the vertical distribution V πk,k−1, as the submanifold of
integral elements inside J1

n(Jkn(M)). This embedding also provides us with the bundle
U (k), and therefore we may also recover Ck+1

n . Moreover, V πk+1,k is simply the restriction
to Jk+1

n (M) of the vertical of the projection J1
n(Jkn(M)) → Jkn(M). In this way, one

could develop the theory of jet spaces in an inductive way. This is the viewpoint often
taken in the literature on exterior differential systems.
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Chapter II

Spencer Cohomology

This chapter contains the algebraic background needed throughout the rest of the thesis.

We begin in section 1 by discussing the Koszul homology of graded modules over a
polynomial algebra. The polynomial Poincaré lemma implies that the Koszul homology
may be computed in terms of a certain de Rham like complex, called the Koszul com-
plex. We shall also give another description using a minimal resolution of the module;
the equivalence of both descriptions depends on the commutativity of Tor.

Section 2 deals with the dual construction: the Spencer cohomology of graded co-
modules over a polynomial coalgebra. The concept of a tableau is introduced, which
provides a common way of constructing comodules. We finish this section by computing
the cohomology of some basic first order tableaux.

Section 3 is an introduction to the algebraic theory of involution. We begin by
recalling the relationship between the existence of regular sequences and the vanishing
of the Koszul homology (and dually, of the Spencer cohomology). Cartan’s test is
proven, which gives a practical way of determining if a tableau is involutive. We then
give a normal form for first order tableaux in coordinates, and discuss the consequences
of involutivity on this normal form.

This theory will be applied in chapter III: to any (sufficiently regular) differential
equation there is an associated bundle of graded comodules over a certain polynomial
coalgebra, constructed from the symbol of the equation. It turns out that the obstruc-
tions to the integrability of the equation live inside the second Spencer cohomology
group of these comodules. Moreover, the involutivity of the equation is equivalent to
the involutivity of the associated comodule.

The fact that for any finitely generated comodule the Spencer cohomology van-
ishes in sufficiently high degrees (which is a simple consequence of the Hilbert basis
theorem) implies that certain prolongation processes terminate. This will be used in
chapter III to prove a weak version of the Cartan-Kuranishi prolongation theorem, and
again in chapter IV to prove that Cartan’s method for solving the equivalence problem
terminates.

29
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1 Koszul Homology

1.1 Throughout this section, V is an n-dimensional vector space over a field F of char-
acteristic zero. We denote by SV its symmetric algebra, and set S+V =

⊕
k>0 S

kV . We
say that a graded SV moduleM = ⊕k∈ZMk is quasi-finitely generated (QFG for short)
if the graded pieces Mk are finite dimensional vector spaces. Let QFGMod≥0

SV be the
(abelian) category of QFG non-negatively graded SV modules and degree-preserving
morphisms.

Let M∈ QFGMod≥0
SV. We say that a free resolution

. . .→ F2
ψ2−→ F1

ψ1−→ F0
ε−→M→ 0 (1)

of M in QFGMod≥0
SV is minimal if imψq ⊆ S+V Fq−1 for all q > 0 (where S+V Fq−1

denotes the submodule of Fq−1 spanned by the elements of the form Px with P ∈ S+V
and x ∈ Fq−1). Equivalently, the resolution is minimal if kerψq ⊆ S+V Fq for all q ≥ 0.

Proposition 1.1.1. Let M be a QFG non-negatively graded SV module. There exists
a unique minimal resolution of M up to (non unique) isomorphism.

Proof. We may construct a minimal resolution ofM as follows. Let Q be a complement
for S+VM ⊆M as graded vector spaces. Set F0 = SV ⊗R Q. Multiplication induces
an epimorphism ε : F0 → M. Let K0 be its kernel and let Q0 be a complement for
S+K0 ⊆ K0 as graded vector spaces. Set F1 = SV ⊗R Q0. Multiplication induces an
epimorphism ψ1 : F1 → K0. Continuing in this way, one gets a resolution

. . .→ F2
ψ2−→ F1

ψ1−→ F0
ε−→M→ 0 (2)

of M by free QFG SV modules, which is easily seen to be minimal
Let F ′∗ be another minimal resolution. We will prove that there exists an isomor-

phism F0 ' F ′0 which commutes with the augmentation morphisms, where F∗ is a
fixed resolution constructed as above (which depends choices of complements Q for
S+VM and Qq for S+VKq). By induction it follows that F∗ and F ′∗ are isomorphic,
and therefore any two minimal resolutions are isomorphic.

The fact that ε′ : F ′0 :→ M is an epimorphism implies that there exists a graded
vector subspace Q′ ⊆ F ′0 such that ε′ restricts to give an isomorphism Q′ → Q. This
induces a morphism α : F0 = SV ⊗F Q → F ′0 which commutes with the augmentation
morphisms. We claim that it is an isomorphism.

Observe that Q′ does not intersect S+V F ′0. Now, let x ∈ F ′0. Write ε′(x) = y + z
for y ∈ Q and z ∈ S+VM. Let y′ be the element of Q′ such that ε′(y′) = y, and choose
z′ ∈ S+V F ′0 such that ε′(z′) = z. Then ε′(x− y′− z′) = 0, and therefore, by minimality
of F ′∗, we have that x − y′ − z′ belongs to S+V F ′0. This shows that Q′ complements
S+V F ′0.
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Note that the multiplication map SV ⊗F Q′ → F ′0 is an epimorphism. Moreover,
the fact that Q′ complements S+V F ′0 implies that the graded pieces of Q′ have the
same dimension as any set of generators of F ′0. Therefore, checking the dimension of
each graded piece we see that SV ⊗F Q′ → F ′0 has to be an isomorphism. From this,
it follows that the map α : F0 = SV ⊗F Q → F ′0 is an isomorphism, as we wanted to
show.

1.2 Consider the field F as a module concentrated in degree 0 (so that the action of
V is trivial). The polynomial Poincaré lemma states that there is a minimal resolution

. . .→ SV ⊗F
2∧
V → SV ⊗F V → SV → F → 0 (3)

where we consider
∧q V as a graded vector space concentrated in degree q. The maps

SV ⊗F
q+1∧

V → SV ⊗F
q∧
V (4)

are induced by the vector space maps

q+1∧
V → V ⊗F

q∧
V (5)

which are given by the inclusion
∧q+1 V ⊆ V ⊗F

∧q V inside V ⊗(q+1).
Concretely, if v1, . . . , vn is a basis for V , the map (5) is given by

vi1 ∧ . . . ∧ viq+1 7→
q+1∑
j=1

(−1)jvij ⊗ (vi1 ∧ . . . v̂ij . . . ∧ vin) (6)

Tensoring (3) with a finite dimensional vector space W gives a minimal resolution
of W considered as a SV module concentrated in degree 0.

1.3 ForM,N modules in QFGMod≥0
SV, the tensor productM⊗SV N has the structure

of a non-negatively graded QFG SV module. To see this, consider the vector space
M ⊗F N . It has a natural grading, defined by (M ⊗F N )k =

⊕
jMj ⊗F N k−j,

where we identify M⊗F N with
⊕

i,jMi ⊗F N j. The canonical vector space map
M⊗F N → M⊗SV N is an epimorphism. Its kernel is the homogeneous subspace
of M⊗F N spanned by the elements of the form vx ⊗ y − x ⊗ vy, where v ∈ V , and
x ∈M, y ∈ N are homogeneous. Therefore, there is an induced grading onM⊗SV N ,
and it is easily seen that it is compatible with the SV module structure. This defines
a bifunctor

⊗SV : QFGMod≥0
SV ×QFGMod≥0

SV → QFGMod≥0
SV (7)
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which satisfies the usual properties.
Fix N ∈ QFGMod≥0

SV. We define Torq(·,N ) as the q-th left derived functor of
· ⊗SV N . If we forget about the grading, this coincides with the usual Tor of modules
over SV . We have Torq(M,N ) = Torq(N ,M) with the usual proof.

1.4 Let M ∈ QFGMod≥0
SV. The Koszul homology of M in degree q is defined as

Hq(M) = Torq(F,M), where F is seen as a trivial SV module as before. In particular,
observe that we have H0(M) =M/S+VM. We may compute the spaces Hq(M) using
the above resolution of F . That is, the Koszul homology of M is the homology of the
Koszul complex

0→M⊗F
n∧
V → . . .→M⊗F

2∧
V →M⊗F V →M→ 0 (8)

From this we have that Hq(M) vanishes for q > n.
Alternatively, as Hq(M) is also Torq(M, F ), we may compute these spaces using

a minimal resolution F∗ of M. That is, the Koszul homology is the homology of the
complex

. . .→ F2 ⊗SV F → F1 ⊗SV F → F0 ⊗SV F → 0 (9)

Observe that Fq ⊗SV F = Fq/S+V Fq. The fact that F∗ is minimal implies that the
differentials on (9) are all zero, and so Hq(M) = Fq/S+V Fq for any minimal resolution
F∗. In particular, we have that Fq = 0 for q > n, for any minimal resolution F∗.
Moreover, if Hq(M) = 0 for some q, then the resolution F∗ has length less than q, and
so Hq′(M) = 0 for all q′ ≥ q.

The action of V on Fq/S+V Fq is trivial, and so Hq(M) is simply a graded vector
space. We denote by Hk

q (M) the degree k part of Hq(M). It is common in the literature
to denote this space by Hk−q

q (M), however we shall stick to our grading, which is the

natural one once one agrees to work within QFGMod≥0
SV. Using a minimal resolution of

M, it is easily seen that Hk
q (M) = 0 for k < q. Moreover, we have the following

Proposition 1.4.1. Let M be a finitely generated non-negatively graded SV module,
and q > 0. There exists k0 such that Hk

q (M) = 0 for k ≥ k0.

Proof. Since M is finitely generated and SV is a Noetherian ring, we have that the
homology of (8) is finitely generated as a SV module. Since we know that the action of
V on the homology is trivial, we have that Hq(M) is a finite dimensional vector space,
and so it vanishes above a certain degree.

In fact, ifM is the quotient of a free module SV ⊗W ∗, where W is a finite dimen-
sional vector space concentrated in degree 0, then the integer k0 in the above proposition
may be taken to only depend on dimW and the Hilbert function PM(k) = dimMk of
M. See [1] for a proof.
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2 Spencer Cohomology

2.1 Let V be an n-dimensional vector space over a field F of characteristic zero. Con-
sider the dual coalgebra SV ∗ to the symmetric algebra SV . We say that a graded
SV ∗ comodule A is quasi-finitely generated if the graded pieces Ak are finite dimen-
sional vector spaces. Let QFGCoMod≥0

SV be the category of QFG non-negatively graded
SV ∗ comodules and degree preserving morphisms. Observe that QFGCoMod≥0

SV and
QFGMod≥0

SV are dual categories, the anti-equivalence being given by taking dual as
graded vector spaces. That is, given A ∈ QFGCoMod≥0

SV, its associated graded module
isM = ⊕k hom(Ak, F ), and in the same way, ifM∈ QFGMod≥0

SV, its associated graded
comodule is A = ⊕k hom(Mk, F ). Therefore, the abelian category QFGCoMod≥0

SV has
enough injectives. In fact, every object has a canonical isomorphism class of resolutions,
which may be called minimal.

Observe that if A is a QFG graded vector space, graded SV ∗ comodule structures
A → A⊗F SV ∗ are in correspondence with SV module structures A⊗F SV → A such
that the action of V is homogeneous of degree −1. This is dual to the action of V onM
by multiplication. We say that V acts on A by contraction. In the case that A = SV ∗,
this is the usual contraction V ⊗F SV ∗ → SV ∗.

2.2 Let A,A′ ∈ QFGCoMod≥0
SV, and let δ, δ′ be their respective comultiplications. The

cotensor product A� A′ is defined as the kernel of the map

A⊗F A′ → A⊗F SV ∗ ⊗F A′ (10)

sending x⊗y to ∆(x)⊗y−x⊗∆(y). This is a graded SV ∗ comodule, dual to the tensor
product M⊗SV M′ of the associated graded modules. Observe that A � F = ker ∆,
where F is consider as a graded comodule concentrated in degree zero.

Fix A′ ∈ QFGCoMod≥0
SV. The functor · � A′ : QFGCoMod≥0

SV → QFGCoMod≥0
SV is

left exact. The Cotor functors are the right derived functors of ·�A′, and are denoted
Cotorq(·, A′). Of course, Cotorq(A,A′) is just the dual comodule to Torq(M,M′).

2.3 Let A ∈ QFGCoMod≥0
SV. The Spencer cohomology of A in degree q is defined as

Hq(A) = Cotorq(A, F ). This is dual to the Koszul homology of the associated graded
module. In particular, the comultiplication Hq(A)→ Hq(A)⊗F SV ∗ is trivial, and one
has Hq(A) = 0 for q > n. We denote by Hq,k(A) the k-th graded piece of Hq(A). As
before, we have that Hq,k(A) = 0 for k < q, and there exists k0 such that Hq,k(A) = 0
for k ≥ k0.

We may compute these spaces using the dual of the Koszul complex. This gives a
complex

0→ A→ A⊗F V ∗ → A⊗F Λ2V ∗ → . . .→ A⊗F ΛnV ∗ → 0 (11)



34 CHAPTER II. SPENCER COHOMOLOGY

where ΛqV ∗ is consider as a graded comodule concentrated in degree q. The first map
A → A⊗F V ∗ is the comultiplication. In general, the map A⊗F ΛqV ∗ → A⊗F Λq+V ∗

is given by the composition

A⊗F ΛqV ∗ → A⊗F V ∗ ⊗F ΛqV ∗ → A⊗F Λq+1V ∗ (12)

where the first map is induced by comultiplication, and the second map is induced by
the wedge product. Observe that the complex (11) is a right ΛV ∗ module, and the
differential is ΛV ∗ linear.

Concretely, if v1, . . . , vn is a basis for V and v1, . . . , vn is its dual basis, the differen-
tials are given by

x⊗ (vi1 ∧ . . . ∧ viq) 7→
n∑
j=1

vjyx⊗ (vj ∧ vi1 ∧ . . . ∧ viq) (13)

where vjyx denotes contraction by vj.

2.4 Let V,W be finite dimensional vector spaces over F . Let A ⊆ S≤kV ∗ ⊗F W be
a graded subcomodule. That is, A is a graded subspace of the space of polynomials
of order at most k, closed under contraction. We may extend A to higher degrees, by
setting

Ak+l = (SlV ∗ ⊗F W k) ∩ (Sk+lV ∗ ⊗F W ) (14)

for l ≥ 0. That is, Ak+l consists of those polynomials of order k + l such that all
their derivatives of order l belong to Ak. The space A is now a graded subcomodule
of SV ∗ ⊗F W . Its associated graded module M is a quotient of SV ⊗F W ∗. Let B be
the kernel of the quotient map. The way that A was constructed implies that B is the
span of B≤k.

From the long exact sequence induced by

0→ B → SV ⊗F W ∗ →M→ 0 (15)

we get Hq(B) = Hq+1(M) for q ≥ 0. In particular, we have that H1(A) vanishes in
degrees greater than k.

A particular case of interest is when A is obtained from a comodule of the form
(S<kV ∗ ⊗F W ) ⊕ A with A ⊆ SkV ∗ ⊗F W a subspace. Here we use the notation
Hq(A) = Hq(A). The space A is called a k-th order tableau. The (k + l)-th order
tableau A(l) = Ak+l is called the l-th prolongation of A.

Example 2.4.1. Let V be an n-dimensional vector space over F and set W = V ∗.
Consider the subspace A ⊆ V ∗ ⊗ V ∗ of symmetric bilinear forms. Then A = S[1]V ∗

where [d] denotes a shift in degree, so that (S[1]V ∗)j = Sj+1V ∗ (and we drop the
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space S0V ∗). By the polynomial Poincaré lemma (i.e., the vanishing of the Spencer
cohomology for SV ∗), we have Hq,j(A) = 0 for j > q ≥ 0.

Now, for j = q we have

Hq,q(A) = A0 ⊗F ΛqV ∗/im δq−1 = V ∗ ⊗F ΛqV ∗/im δq−1 (16)

where δq−1 : S2V ∗ ⊗F Λq−1V ∗ → V ∗ ⊗F ΛqV ∗ is the Spencer coboundary. Using the
polynomial Poincaré lemma again, we get Hq,q(A) = Λq+1V ∗ for q ≥ 0.

Example 2.4.2. Let V be an n-dimensional vector space over F and set W = V ∗.
Consider the subspace A ⊆ V ∗ ⊗ V ∗ of anti-symmetric bilinear forms. The space A2

is the space of trilinear forms on V which are symmetric in the first two entries and
anti-symmetric in the last two entries. It is easily seen that these forms necessarily
vanish, so we have A2 = 0. Therefore, Hq,j(A) = 0 for j ≥ q + 2.

When j = q we have

Hq,q(A) = V ∗ ⊗F ΛqV ∗/im δq−1 (17)

where δq−1 : A ⊗F Λq−1V ∗ → V ∗ ⊗F ΛqV ∗ is the Spencer coboundary. From this, we
get H1,1(A) = S2V ∗. Now, let x, y, z ∈ V ∗. We have

x⊗ y ∧ z = δ1(x ∧ y ⊗ z − y ∧ z ⊗ x+ z ∧ x⊗ y)/2 (18)

and therefore δ1 : A ⊗F V ∗ → V ∗ ⊗F Λ2V ∗ is surjective. The fact that δ is right
ΛV ∗-linear implies that δq−1 is surjective for q ≥ 2. Therefore, Hq,q(A) = 0 for q ≥ 2.

The only spaces left are those of the form Hq,q+1(A). This is the kernel of δq :
A⊗FΛqV ∗ → V ∗⊗FΛq+1V ∗. SinceA is obtained from the comodule V ∗⊕A ⊆ S1V ∗⊗W ,
we have H1,2(A) = 0. When q ≥ 2, we shall only mention that the space Hq,q+1(A) may
be non-zero. One may try to decompose this space into irreducible GL(V ) modules,
however we shall not discuss this here.

Example 2.4.3. Let V,W be two finite dimensional vector spaces over the real num-
bers, equipped with complex structures. Consider the subspace A ⊆ V ∗ ⊗R W of
complex linear transformations. Then A = SCV

∨ ⊗C W , where V ∨ denotes the dual
as a complex vector space, and SC denotes the symmetric algebra as a complex vector
space. Of course, the complex polynomial Poincaré lemma tells us that the cohomology
of A as a SCV

∨ comodule vanishes, however we are interested in its cohomology as a
SV ∗ comodule. This is the cohomology of the complex

0→ A→ A⊗R V
∗ → A⊗R Λ2V ∗ . . .→ A⊗R Λ2nV ∗ → 0 (19)

Observe that A⊗R ΛqV ∗ = A⊗C Λq
C(V ∗ ⊗R C), where ΛC denotes the exterior powers

as a complex vector space. Therefore, (19) becomes

0→ A→ A⊗C (V ∗ ⊗R C)→ A⊗C Λ2
C(V ∗ ⊗R C) . . .→ A⊗C Λ2n

C (V ∗ ⊗R C)→ 0 (20)
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Denote by V
∨

the space of complex anti-liner functionals V → C. The decomposi-
tion of V ∗ ⊗R C as V ∨ ⊕ V ∨ induces a bigrading on its exterior algebra. We denote by
Λr,s

C (V ∗ ⊗R C) the space generated by wedges of r linear and s anti-linear functionals.
This induces a bigrading on (20). Consider the spectral sequence corresponding to the
filtration induced by F s(ΛC(V ∗⊗RC)) =

⊕
r≥0 Λr,s

C (V ∗⊗RC). The zeroth page consists
of the spaces

(A⊗C Λr,s
C (V ∗ ⊗R C))/(A⊗C Λr,s+1

C (V ∗ ⊗R C)) = A⊗C Λr
CV
∨ ⊗C Λs

CV
∨

(21)

These spaces form complexes of the form

0→ A⊗C Λs
CV
∨ → A⊗C V

∨ ⊗C Λs
CV
∨ → . . .→ A⊗C Λn

CV
∨ ⊗C Λs

CV
∨ → 0 (22)

This is the tensor product with Λs
CV of the Spencer complex of A as a SCV

∨ comodule.
By the complex polynomial Poincaré lemma, the first page has Er,s

1 = 0 for r > 0,

and E0,s
1 = W ⊗C Λs

CV
∨
, which is a complex vector space concentrated in degree s.

This implies that the differential E0,s
1 → E0,s+1

1 vanishes, and so the sequence already
converges in the first page. Since this sequence computes the cohomology of (20), we

have that Hq,j(A) = 0 if j > q ≥ 0, and Hq,q(A) = W ⊗C Λq
CV
∨

for q ≥ 0.

3 Involution

3.1 Let F be a field of characteristic zero, and V be an n-dimensional vector space
over F . Let M be a QFG non-negatively graded SV module. An element v ∈ V
is said to be regular for M if multiplication by v is a monomorphism. A sequence
v1, . . . , vn+1−q of elements in V is said to be a regular sequence for M if vj is regular
for M/(v1, . . . , vj−1)M for all 1 ≤ j ≤ n+ 1− q.

The existence of regular sequence is related to the vanishing of the Koszul homology
of M, as follows

Proposition 3.1.1. Let M be a QFG non-negatively graded SV module, and 0 ≤ q ≤
n. If there exists a regular sequence of length n+ 1− q for M, then Hq(M) vanishes.
Conversely, if M is finitely generated and Hq(M) vanishes, then a generic sequence
v1, . . . , vn+1−q is regular for M.

Proof. Consider first the case q = n. Suppose that there is a v which is regular forM,
and complete it to a basis for V . From the expression of the Koszul boundary in this
basis it is easily seen that δn : M⊗F ΛnV → M⊗F Λn−1V is a monomorphism, and
so Hn(M) = 0.

Conversely, suppose that Hn(M) vanishes. Let m ∈ M− {0}, and v1, . . . , vn be a
basis for V . The fact that δn(m⊗ v1 ∧ . . .∧ vn) 6= 0 implies that there is a index i such
that vim 6= 0. Therefore, SV is not an associated prime for M. Since we assume that
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M is finitely generated, there are only a finite number of associated primes P1, . . . ,Pr
for M. The non-regular elements for M are then the elements of ∪iP1

i ⊆ V , which is
a finite union of proper subspaces of V .

Now, suppose that v ∈M is a regular element, and consider the short exact sequence

0→M[−1] µv−→M→M/vM→ 0 (23)

where µv is multiplication by v, and [−1] denotes a shift in the grading so that µv
preserves degree. The action of V on the Koszul homology is always trivial, so the
maps induced by µv on the homology are zero. Therefore, from (23) we get short exact
sequences

0→ Hi(M)→ Hi(M/vM)→ Hi−1(M)[−1] → 0 (24)

from which the proposition follows, by induction.

We say that a module M in QFGMod≥0
SV is l-involutive if Hj

q (M) = 0 for all q ≥ 0
and j ≥ q + l. By proposition 1.4.1, any finitely generated module is l-involutive for
some l. An element v ∈ V is said to be l-regular for M if multiplication by v is a
monomorphism in degrees greater or equal to l. A sequence v1, . . . , vn+1−q of elements
in V is said to be a l-regular sequence for M if vj is l-regular for M/(v1, . . . , vj−1)M
for all 1 ≤ j ≤ n + 1 − q. The following proposition follows from the same kind of
arguments as proposition 3.1.1

Proposition 3.1.2. LetM be a QFG non-negatively graded SV -module, and 0 ≤ q0 ≤
n. If there exists a l-regular sequence of length n+ 1− q0 for M, then Hj

q (M) = 0 for
all q ≥ q0 and j ≥ q + l. Conversely, if M is finitely generated and Hj

q (M) = 0 for all
q ≥ q0 and j ≥ q + l, a generic sequence v1, . . . , vn+1−q is regular for M.

In particular, it follows that l-involutivity is equivalent to the existence of l-regular
sequences of length n.

3.2 Let A be a QFG non-negatively graded SV ∗ comodule. A sequence of elements
v1, . . . , vn+1−q in V is said to be l-regular for A if it is l-regular for its associated graded
module M. Denote by ιv : A → A the contraction by v ∈ V , and let

Aj = ker ιv1 ∩ . . . ∩ ker ιvj (25)

Then v1, . . . , vn+1−q is l-regular if and only if ιvj+1
: A≥l+1

j → A≥lj is surjective for all
0 ≤ j ≤ n− q. We say that A is l-involutive if Hq,j(A) = 0 for all q ≥ 0 and j ≥ q + l.
Of course, the existence of l-regular sequences is related to l-involutivity, via the dual
to proposition 3.1.2.
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3.3 Let V,W be two finite dimensional vector spaces over F , with dimV = n. Let
A ⊆ SkV ∗ ⊗W be a k-th order tableau, and A ⊆ SV ∗ ⊗W be the associated SV ∗

comodule. We say that A is involutive if A is k-involutive. By proposition 1.4.1, we
have that A(l) is involutive for l large enough.

A quasi-regular sequence for A is a k-regular sequence for A. By proposition 3.1.2,
the involutivity of A is equivalent to the existence of a quasi-regular sequence of length
n. If v1, . . . , vn is a sequence of elements in V , let Aj be the subspace of A consisting of
those polynomials P such that viyP = 0 for all i ≤ j. Observe that Aj may be thought
of as a k-th order tableau in two different ways, corresponding to the coalgebras SV ∗

and S(V/(v1))∗. Both notions of prolongation coincide, and we have (Aj)
(l) = (A(l))j.

Proposition 3.3.1. A sequence v1, . . . , vn is quasi-regular for A if and only if the
contraction ιvj+1

: A
(1)
j → Aj is surjective for all 0 ≤ j ≤ n− 1.

Proof. Of course, quasi-regularity implies that all those contractions are surjective, so
we only need to show the converse. Assume that it holds when dimV = n − 1, so we
only need to prove that ιv1 : A → A is surjective. By induction on k, we only need to
show that ιv1 : A(2) → A(1) is surjective.

Let Q ∈ A(1) and consider the 1-form δ0(Q) ∈ A⊗ V ∗, where δ0 denotes the zeroth
Spencer coboundary. By hypothesis, there exists T ∈ A(1)⊗V ∗ such that ιv1T = δ0(Q).
We have that ιv1δ

1T = δ1δ0Q = 0, and so δ1T belongs to A1 ⊗ Λ2V ∗. We claim that
we could have chosen T so that δ1T = 0.

To see that, let V ∗1 = (V/(v1))∗, and consider the following commutative diagram
with exact rows

0 A
(1)
1 ⊗ V ∗1 A

(1)
1 ⊗ V ∗ A

(1)
1 ⊗ (Rv1)∗ 0

0 A1 ⊗ Λ2V ∗1 A1 ⊗ Λ2V ∗ A1 ⊗ (Rv1)∗ ⊗ V ∗1 0

0 W ⊗ Λ3V ∗1 W ⊗ Λ3V ∗ W ⊗ (Rv1)∗ ⊗ Λ2V ∗1 0

(26)

The left column computes the cohomology H2,k+2(A1) as a SV ∗1 comodule, which
vanishes since A1 is involutive by induction. The right column computes H1,k+1(A1)⊗
(Rv1)∗ = 0. From this, we see that the middle column is exact. Since δ1T ∈ A1⊗Λ2V ∗

is δ2 closed, it follows that we may change T so that δ1T vanishes, as we claimed.
By the polynomial Poincaré lemma, there exists P ∈ A(2) such that T = δ0P . From

this, we have
δ0ιv1P = ιv1δ

0P = ιv1T = δ0Q (27)



3. INVOLUTION 39

and so ιv1P = Q. Since Q was arbitrary, it follows that ιv1 : A(2) → A(1) is surjective,
as we wanted.

Corollary 3.3.2 (Cartan’s test). Let A be a k-th order tableau and v1, . . . , vn be a
basis for V . We have

dimA(1) ≤ dimA+ dimA1 + . . .+ dimAn−1 (28)

with equality if and only if v1, . . . , vn is a quasi-regular sequence for A.

Proof. Consider for each 0 ≤ j ≤ n− 1 the following exact sequence

0→ A
(1)
j+1 → A

(1)
j

ιvj+1−−−→ Aj (29)

Counting dimensions, we have

dimA
(1)
j ≤ dimA

(1)
j+1 + dimAj (30)

for all 0 ≤ j ≤ n − 1, which proves the inequality in the statement. By proposition
3.3.1, v1, . . . , vn is quasi-regular for A if and only if all the sequences (29) are exact.
This happens if and only we have equality in (30) for all j, which is equivalent to the
equality in the statement.

3.4 Let X ⊆ V be a j-dimensional subspace. Consider the subspace AX of A consisting
of those polynomials P ∈ A such that vyP = 0 for all v ∈ X. The dimension of AX is
upper semicontinuous with respect to X. Moreover, the minimum dimension is attained
for X in an open dense subset of the Grassmanian Gj(V ). We say that X is generic
(with respect to A) if the dimension of AX is minimal. An ordered basis v1, . . . , vn for
V is said to be generic if the subspaces (v1, . . . , vj) are generic for all 1 ≤ j ≤ n. By
Cartan’s test, when A is involutive, a basis is generic if and only if it is a quasi-regular
sequence.

The Cartan characters of A are the integers s1, . . . , sn such that for all 0 ≤ j ≤ n
we have

dimAX = sj+1 + . . .+ sn (31)

for a generic X ∈ Gj(V ). Alternatively, they may be defined as sj = dimAj−1−dimAj
for any generic basis v1, . . . , vn. Cartan’s test may be reformulated as follows

Proposition 3.4.1. Let A be a k-th order tableau. We have

dimA(1) ≤ s1 + 2s2 + . . .+ nsn (32)

with equality if and only if A is involutive.

Moreover by proposition 3.1.1 we have that Hq(A) vanishes in all degrees if and
only if s1 = . . . = sn+1−q = dimW .
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3.5 The following result will let us put first order tableaux in a normalized form in
coordinates.

Proposition 3.5.1. Let A be a first order tableau, and v1, . . . , vn be a generic basis for
A. For each 1 ≤ j ≤ n, let Wj be the image of the contraction ιvj : Aj−1 → W . Then
Wj+1 ⊆ Wj for all 1 ≤ j ≤ n− 1.

Proof. Take P1, . . . Ps1 linearly independent elements of A such that v1yPi form a basis
for W1. Suppose that W2 is not contained inside W1, so that there is Q ∈ A1 such that
v2yQ /∈ W1. Let v̄1 = v1 + εv2, for some ε ∈ R. If ε is sufficiently small, we have that
v̄1yP1, v̄1yP2, . . . , v̄1yPs1 , v̄1yQ are s1 + 1 linearly independent elements of ιv1(A). This
contradicts the fact that v1 is generic, and so we must have W2 ⊆ W1. The case j > 1
follows by applying this result for the first order tableau Aj−1.

Corollary 3.5.2. The Cartan characters of any k-th order tableau satisfy

s1 ≥ s2 ≥ . . . ≥ sn (33)

Proof. The case k = 1 is a direct consequence of the above proposition, since dimWj =
sj. In general, any k-th order tableau A ⊆ SkV ∗⊗W may be interpreted as a first order
tableau contained in V ∗ ⊗ (Sk−1V ∗ ⊗W ), so the corollary also holds in this case.

Let A ⊆ V ∗ ⊗W be a first order tableau. Let v1, . . . , vn be a generic basis, and
w1, . . . , ws be a basis for W such that Wj is spanned by w1, . . . , wsj . Let vi and wa

be the dual basis. Then, for each 1 ≤ j ≤ n, the quotient Aj−1/Aj ⊆ (Rvj)∗ ⊗W is
spanned by the vectors vj ⊗ wa with a ≤ sj. Therefore, A has a basis of the form

vj ⊗ wa + Ajbaiv
i ⊗ wb (34)

where we have 1 ≤ j ≤ n, a ≤ sj, and Ajbai = 0 unless i > j and b > si. Dually, the
annihilator B ⊆ V ⊗W ∗ of A has a basis of the form

vj ⊗ wa +Bai
jbvi ⊗ wb (35)

where we have 1 ≤ j ≤ n, a > sj, and Bai
jb = 0 unless i < j and b ≤ si.

The tableau A is sometimes represented as a matrix, and this says that the matrix
may be taken to have a specific block form. In the case that A is involutive there
are extra relations that the coefficients Ajbai must satisfy. This leads to the Guillemin
Normal form for involutive tableaux (see [1]). As a first step in that direction, we offer
the following

Proposition 3.5.3. If A is involutive, we have that Ajbai = 0 when b > sj.
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Proof. By induction, we may assume that it holds when j >, so we must prove that
A1b
ai = 0 when b > s1. Let 1 ≤ a ≤ s1, and choose P ∈ A(1) such that

v1yP = v1 ⊗ wa + A1b
aiv

i ⊗ wb (36)

For each i > 1, we have that viy(v1yP ) ∈ W1. Therefore A1b
aiwb ∈ W1, so we must have

A1b
ai = 0 for b > s1, as we claimed.

It may be seen that if A is a tableau such that those coefficients vanish, involutivity
is equivalent to a quadratic condition on the remaining coefficients.
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Chapter III

Differential Equations

In this chapter we present the basic theory of differential operators and equations using
the jet formalism developed in chapter I.

Section 1 deals with differential operators. We begin by discussing the general case
of k-th order differential operators sending n-dimensional submanifolds of a manifold
M to n-dimensional submanifolds of a manifold M ′. These may be prolonged to form
higher order differential operators. It turns out that the prolongations respect the
affine structure on the jet spaces. The associated vector bundle maps depend on the
principal symbol of the operator, which is an object which describes its highest order
behavior. Finally, these concepts are adapted to the case of differential operators acting
on sections of a fibered manifold.

In section 2 we study k-th order differential equations on n-dimensional submanifolds
of a manifold M , that is, subsets R ⊆ Jkn(M). Assuming smoothness, these may
be prolonged to form higher order differential equations having the same solutions
as the original one. We discuss how one may present a differential equation using a
differential operator, and the relationship between the prolongations of the equation and
the operator. We introduce the principal and sub-principal symbols of the equation.
From these (under mild conditions) one may construct a bundle AR of graded SU∗

comodules over R. This comodule governs the behavior of the prolongations of the
equation. Lastly, we observe how this theory adapts to the case of differential equations
on sections of a fibered manifold.

In section 3 we introduce the concept of formal integrability of a differential equation.
If R is nonempty, this guarantees the existence of formal solutions (in coordinates, for-
mal series solving the equation and all its derivatives). In the analytic category, it may
be seen that formal integrability implies the existence of local solutions, however this is
false in the C∞ case without extra assumptions. We construct the first obstruction to
integrability, which is a section of the bundle H2,k+1(AR). Proceeding inductively, we
will prove the theorem of Goldschmidt which asserts that if H2,k+l+1(AR) vanishes for
all l ≥ 0, then R is formally integrable. To finish this section, we give an alternative

43
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construction of the curvature in the case where R is a differential equation on sections
of a fibered manifold given by a differential operator. This depends on the description
of the Spencer cohomology of AR via minimal resolutions.

Section 4 deals with the initial value problem: given a k-th order differential equation
R ⊆ Jkn(M) and (generic) initial conditions along a n − 1 dimensional submanifold of
M , we want conditions that assure that it is possible to extend this to a solution of
R. It is easily seen that the initial conditions have to satisfy a first order equation
(corresponding in coordinates to the commutativity of derivatives). We shall see that
if this equation is formally integrable then the only obstruction to the solvability of
the formal initial value problem lies in the first order (i.e., whether or not any generic
initial conditions along a 1-jet of an (n − 1)-dimensional submanifold satisfying the
equation may be extended to a (k + 1)-jet of a solution to R). This is related to the
Cartan-Kahler existence theorem in the theory of analytic exterior differential systems.

1 Differential Operators

1.1 Let M,M ′ be two differentiable manifolds, and fix n ≤ dimM . Let k ≥ 0. A
k-order differential operator taking n-dimensional submanifolds of M to n-dimensional
submanifolds of M ′ is a smooth function ϕ : V → M ′ where V ⊆ Jkn(M) is an open
subspace. Given an n-dimensional submanifold i : N → M such that N (k) ⊆ V and
ϕ|TyN(k) is a monomorphism for all y ∈ N (k), the composition ∆ϕ(i) = ϕ ◦ i(k) is an
immersion from N to M ′. We denote by ∆ϕ(N) the manifold N when seen as an
immersed submanifold of M ′. For simplicity of exposition, we assume that ϕ is globally
defined on Jkn(M), and that it is a monomorphism when restricted to any integral
element of the contact distribution on Jkn(M), so that ∆ϕ(N) is defined for all N .

Strictly speaking, one should define a differential operator to be an operator ∆
sending submanifolds of M to submanifolds of M ′, for which there exists a function ϕ
as above such that ∆ = ∆ϕ. The order of ∆ is then defined as the least k for which on
may take ϕ to be defined on Jkn(M). Observe that even if ϕ is a function on Jkn(M),
the operator ∆ϕ may have order less than k. Having said this, we shall stick to our
original definition most of the time.

Let N be an n-dimensional submanifold of M . Let l ≥ 0, and consider the subman-
ifold ∆ϕ(N)(l) inside J ln(M ′). For each q ∈ N , the l-jet ∆ϕ(i)(l)(q) only depends on the
(k + l)-jet of N at x, so we get a well defined map

ϕ(l) : Jk+l
n (M)→ J ln(M ′) (1)

which is a (k + l)-th order operator with values in J ln(M ′) called the l-th prolongation

of ϕ. We set ∆
(l)
ϕ = ∆ϕ(l) . By definition, ∆

(l)
ϕ (N) = ∆ϕ(N)(l). Observe that we have
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the following commutative diagrams

Jk+l+1
n (M) J l+1

n (M ′)

Jk+l
n (M) J ln(M ′)

ϕ(l+1)

ϕ(l)

(2)

For zeroth order operators (i.e., functions), this notion of prolongation coincides with
the prolongation defined in chapter I. If ϕ is of order k > 0, there is some ambiguity
when talking about ϕ(l): it could also be interpreted as being the l-th prolongation of
ϕ as a function, in which case it should be a map J ln(Jkn(M)) → J ln(M ′). The l-th
prolongation of ϕ as a differential operator is the restriction of this map to Jk+l

n (M)
via the canonical embedding Jk+l

n (M) ⊆ J ln(Jkn(M)). From now on, we shall use ϕ(l)

for the l-th prolongation of ϕ as a differential operator.
Consider the iterated prolongation ϕ(l)(m) : Jk+l+m

n (M)→ Jmn (J ln(M ′)). The image
of this map belongs to J l+mn (M ′), and its co-restriction equals ϕ(l+m). One could there-
fore define the prolongations of ϕ in an inductive way using that ϕ(l+1) = ϕ(l)(1), where
the first prolongation ϕ(1) of an operator may be obtained as the restriction to Jk+1

n (M)
of the map J1

n(Jkn(M)) → J1
n(M ′) induced by ϕ. Observe that this construction only

depends on the space Jkn(M) and the distributions Ckn and V πk,k−1; we do not need to
use that Jkn(M) is a space of jets.

Using the concept of prolongation, we may define the composition of two differential
operators ϕ : Jkn(M) → M ′ and ψ : J ln(M ′) → M ′′ as the (k + l)-th order operator
ψ ◦ ϕ(l) : Jk+l

n (M) → M ′′. We use the notation ∆ψ ◦ ∆φ = ∆ψ◦ϕ(l) . Observe that

∆ψ ◦∆ϕ(N) = ∆ψ(∆ϕ(N)). It may happen that ψ ◦ ϕ(l) is actually defined on a lower
order jet space, in this case the operator ∆ψ ◦∆ϕ would have order less than k + l.

Example 1.1.1. Consider the case M ′ = Jkn(M) and ϕ = idJkn(M). This is the k-th order
universal differential operator, and is denoted by idk. Any k-th order operator is then
obtained by composing the universal operator with a function. We have ∆idk(N) =

N (k). The l-th prolongation id
(l)
k is given by the canonical embedding Jk+l

n (M) ↪→
J ln(Jkn(M)).

1.2 Let U ,U ′ be the universal bundles on J1
n(M) and J1

n(M ′). Let Q = TM/U and

Q′ = TM ′/U ′. As usual, we pullback bundles on J ln(M ′) to Jk+l
n (M) via ϕ(l). As in the

case of zeroth order operators, ϕ
(l)
∗ gives an isomorphism U (k+l) = U ′(l) over Jk+l+1

n (M).
Unless we are interested in its embedding inside the tangent space to a particular jet
space, we shall identify all the universal bundles and simply speak of U .

From now on, we assume k ≥ 1. The principal symbol of the differential operator ϕ
is the map of bundles over Jk+1

n (M)

σϕ : V πk,k−1 = SkU∗ ⊗Q→ Q′ (3)
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induced by ϕ∗. Again, there is some ambiguity to this: if we forget that ϕ is a differential
operator and treat it as a function, its symbol is a map Jkn(Q→ J1

n(M))→ Q′. When
we restrict it to SkU∗ ⊗Q we get the map (3). We shall always use σϕ for the symbol
of ϕ as a differential operator.

The l-th prolongation of the symbol is the map

σ(l)
ϕ = Sk+lU∗ ⊗Q→ SlU∗ ⊗Q′ (4)

given by the restriction of

1SlU∗ ⊗ σϕ : SlU∗ ⊗ (SkU∗ ⊗Q)→ SlU∗ ⊗Q′ (5)

to Sk+lU∗⊗Q. These maps determine the behavior of the prolongations of ϕ, as follows

Proposition 1.2.1. The map V πk+l,k+l−1 → V πl,l−1 induced by ϕ
(l)
∗ may be identified

with σ
(l)
ϕ for each l ≥ 1. Moreover, if l ≥ 2, the map ϕ(l) is an affine bundle morphism

over ϕ(l−1), with associated vector bundle map σ
(l)
ϕ .

The proof of this goes along the same lines as the proof of proposition I.1.6.2, and
is left to the reader.

1.3 Let M be a manifold and n ≤ dimM . Let ξ : Eξ → M and η : Eη → Jkn(M) be
two fibered manifolds. A k-th order differential operator acting on sections of ξ over
n-dimensional submanifolds of M with values in η is a differential operator ϕ : Jkn(ξ)→
Eη such that η ◦ ϕ = ξ(k). In other words, this is a morphism of fibered manifolds
Jkn(ξ) → Eη over Jkn(M). For each pair (N, s) of an n-dimensional submanifold N of
M and a section s of ξ|N , we may write ∆ϕ(N, s) as (N (k),∆ϕ(s)) for a certain section
∆ϕ(s) of η|N(k) . An important particular case of this is when η is pullbacked from M :
here the operator may be interpreted as sending sections of ξ over N to sections of η
over N .

The l-th prolongation of ϕ is a map ϕ(l) : Jk+l
n (ξ) → J ln(η) of fibered manifolds

over Jk+l
n (M). Let xi, ua be coordinates on M , and extend them to coordinate systems

xi, ua, vb and xi, uaI , v
′c on Eξ and Eη. The operator ϕ may be written as

ϕ(xi, uaI , v
b
J) = (xi, uaI , ϕ

c(xi, uaI , v
b
J)) (6)

Then the l-th prolongation is given by the formula

ϕ(l)(xi, uaI , v
b
J) = (xi, uaI , DJ ′ϕ

c(xi, uaI , v
b
J)) (7)

where DJ ′ϕ
c denotes the iterated derivative of ϕc with respect to xJ

′
1 , . . . , xJ

′
l , treating

the variables uaI and vbJ as functions.
In this case, the definition of the symbol should be adapted to reflect the fibered

nature of the spaces. The map πk,k−1 : Jkn(ξ)→ Jk−1
n (ξ) should now be considered as a
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morphism of fibered manifolds over Jkn(M). The symbol of ϕ is defined to be the map
of bundles over Jkn(ξ)

σϕ : SkU∗ ⊗ V ξ → V η (8)

induced by ϕ∗ : V πk,k−1 → V η. The l-th prolongation of the symbol is the map

σ(l)
ϕ : Sk+lU∗ ⊗ V ξ → SlU∗ ⊗ V η (9)

given by the restriction of

1SlU∗ ⊗ σϕ : SlU∗ ⊗ (SkU∗ ⊗Q)→ SlU∗ ⊗Q (10)

to Sk+lU∗⊗Q. Proposition 1.2.1 is still valid in this context when interpreted correctly.
Moreover, ϕ(l) is a morphism of affine bundles over ϕ(l−1) for l = 1 too.

1.4 Consider now the case when ξ : Eξ →M and η : Eη → Jkn(M) are vector bundles.
A k-th order linear differential operator acting on sections of ξ over n-dimensional
submanifolds with values in η is a morphism of vector bundles ϕ : Jkn(ξ)→ Eη. In this
case, the prolongations ϕ(l) are also linear. The symbol of ϕ may be identified with the
restriction of ϕ to ker(πk,k−1) = SkU∗ ⊗Q. More generally, ϕ(l) restricts to a map

ker(πk+l,k+l−1 : Jk+l
n (ξ)→ Jk+l−1

n (ξ))→ ker(πl,l−1 : J ln(η)→ J l−1
n (η)) (11)

which may be identified with the prolonged symbol σ
(l)
ϕ .

Let M,M ′ be two manifolds and ϕ : Jkn(M) → M ′ be a differential operator. Its
linearization is the morphism

`ϕ : Jkn(Q→ J1
n(M)) = TJkn(M)/U (k) → Q′ (12)

of vector bundles over Jk+1
n (M), induced by ϕ∗. This is a k-th order linear differential

operator from Q to Q′.
In the case that we have a (nonlinear) differential operator ϕ : Jkn(ξ)→ Eη between

fibered manifolds, the linearization is defined as the morphism

`ϕ : Jkn(V ξ → Eξ) = V ξ(k) → V η (13)

of vector bundles over Jkn(ξ) induced by ϕ∗. This is a k-th order linear differential
operator from V ξ to V η.

2 Differential Equations

2.1 Let M be a manifold, and fix n ≤ dimM . Let k > 0. A k-th order differential
equation on n-dimensional submanifolds ofM is a subsetR ⊆ Jkn(M). An n-dimensional
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submanifold N ⊆M is said to be a solution of R if N (k) ⊆ R. We say that R is smooth
if it is a smooth submanifold of Jkn(M).

A k-th order differential equation R is said to be differentially closed if for every
smooth function f : Jk−1

n (M) → R which (when pullbacked to Jkn(M)) vanishes along
R and every section X of U (k−1) over Jkn(M), we have that X(f) also vanishes along R.
In coordinates, this means that if R satisfies f(xi, uaI) = 0 for some function f which
only depends on uaI for |I| ≤ k − 1, then R also satisfies Dj(x

i, uaI) for all 1 ≤ j ≤ n,
where Dj denotes the derivative with respect to xj treating uaI as functions of x. A
differential equation R is said to be locally differentially closed if V ∩R is differentially
closed for every open subspace V ⊆ Jkn(M). If an equation does not satisfy this, we may
replace it by the largest locally differentially closed equation contained inside it, and
its solutions would not change (although one may lose smoothness when doing this).

We say that a smooth differential equation R is infinitesimally differentially closed
if for every y ∈ R we have U

(k−1)
y ⊆ πk,k−1∗TyR. The motivation for this last definition

comes from the following

Proposition 2.1.1. Any infinitesimally differentially closed equation R ⊆ Jkn(M) is
also locally differentially closed. The converse is true provided that R is smooth and
πk,k−1|R has constant rank.

Proof. Suppose that R is infinitesimally differentially closed. Let V ⊆ Jkn(M) be an
open subspace, and f : Jk−1

n (M) → R be a smooth function vanishing along R ∩ V .

Let y ∈ R ∩ V . For each X ∈ U (k−1)
y , we have that X(f) = df(X). Now, df vanishes

on TyR, and so it vanishes on U
(k−1)
y . This implies that X(f) = 0, so we conclude that

R is locally differentially closed.
Now, assume that R is smooth and U

(k−1)
y * πk,k−1∗TyR for some y ∈ R. If πk,k−1∗

has constant rank near y, one may find a smooth function f : Jk−1
n (M) → R which

vanishes along R in a neighborhood of y, such that df |
U

(k−1)
y

6= 0. This implies that

there exists X ∈ U (k−1)
y such that X(f)(y) 6= 0, and so R is not locally differentially

closed.

Let ϕ : Jkn(M) → M ′ be a differential operator, and S ⊆ M ′ be a subset. Then
ϕ−1(S) is a differential equation. We say that R is given (or presented) by ϕ ∈ S. The
presentation is said to be regular if R is smooth, S is a submanifold of M ′, and the
induced map ϕ∗ from the normal bundle of R to the normal bundle of S is injective.

Observe that any equation may be presented in this way. Indeed, if R ⊆ Jkn(M), then
R is given by idk ∈ R, for idk the k-th order universal differential operator. Moreover,
if R is smooth then this presentation is regular.

2.2 Let R be a smooth k-th order differential equation and let l ≥ 0. The l-th pro-

longation of R is the (k + l)-th order equation R(l) = J ln(R) ∩ Jk+l
n (M), where the

intersection is taken inside J ln(Jkn(M)). This equation is not necessarily smooth.
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Observe that R(l) is given by id
(l)
k ∈ J ln(R). That is true more generally if the

equation is given regularly by ϕ ∈ S, as we shall now prove. Here we assume as usual
that our operators and their prolongations are globally defined. If not, one only recovers
the intersection of R(l) with the domain of definition of ϕ(l). Before proving this, we
need the following lemma

Lemma 2.2.1. Let N ≥ n ≥ 0 and r ≥ 0 be natural numbers, and g : RN → Rr be
a smooth function such that g−1({0}) is a smooth submanifold of RN and for every
y ∈ g−1({0}) we have that Tyg

−1({0}) = g−1
∗ ({0}). Let h : Rn → RN be a smooth

function and k ≥ 0. We have that the k-jet of gh at 0 vanishes if and only if the k-jet
of h at 0 factors through g−1({0}).

Proof. If the k-jet of h at 0 factors through g−1({0}) then the k-jet of gh at 0 vanishes
by the chain rule.

Reciprocally, suppose that the k-jet of gh at 0 vanishes. Changing coordinates if
necessary, we may assume that g−1({0}) is an hyperplane on RN . In this case, the
k-jet of g at 0 factors through g−1({0}) if and only if g∗D

j(g)(0) = 0 for all j ≤ k. By
induction, we may assume that the (k − 1)-jet of h at 0 factors through g−1({0}). If
we apply the chain rule to Dk(gh), the only surviving term is g∗D

k(h)(0), which must
therefore vanish.

Proposition 2.2.2. Let R ⊆ Jkn(M) be a smooth equation given regularly by ϕ ∈ S.
Then R(l) is given by ϕ(l) ∈ Jkn(S).

Proof. Let y ∈ Jk+l
n (M) and choose functions f 1, . . . , f r on M ′ defined around ϕ(yk)

such that f = (f 1, . . . , f r) : M ′ → Rr is a (locally defined) submersion and S coincides
with the zero locus of f near ϕ(yk). Then R is defined near yk by fϕ = 0.

Let N be an n-dimensional submanifold of M passing through a point q ∈ M ,
and such that i(k+l)(q) = y. The fact that ϕ ∈ S is regular implies, by the lemma,
that i(k+l)(q) ∈ R(l) if and only if fϕ|N(k) vanishes at yk up through order l. This is
equivalent to f |ϕ(N(k)) vanishing at ϕ(yk) up through order l, and this happens if and

only if ϕ(l)(y) ∈ J ln(S).

We say that R is integrable up through order l if R(j) is smooth for 0 ≤ j ≤ l,
and the projections R(j+1) → R(j) are surjective submersions for j < l. In this case,
proposition 2.2.2 may be strengthened to give

Proposition 2.2.3. Let R ⊆ Jkn(M) be a smooth equation given regularly by ϕ ∈ S,
and suppose that R is integrable up through order l. Then R(l) is given regularly by
ϕ(l) ∈ Jkn(S).

Proof. We have to check that the map induced by ϕ
(l)
∗ between the normal bundles

NorR(l) and NorJ ln(S) is injective. Assume that this is true for l − 1. Let NorVR
(l) =
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V πk+l,k+l−1/(V πk+l,k+l−1|R) and NorV J
l
n(S) = V πl,l−1/(V πl,l−1|J ln(S)) be the vertical

part of the normal bundles to R(l) and J ln(S), respectively. Consider the following
commutative diagram with exact rows

0 NorVR
(l) NorR(l) NorR(l−1) 0

0 NorV J
l
n(S) NorJ ln(S) NorJ l−1

n (S) 0

(14)

By the inductive hypothesis, the third vertical arrow is injective. Therefore, to prove
that ϕ

(l)
∗ : NorR(l) → NorJ ln(S) is injective we only need to show that the corresponding

map between the vertical normal bundles is injective.

We consider first the case l = 1. Let y ∈ R(1) and let y′ = ϕ(1)y. Let v ∈ Vyπk+1,k =

Sk+1U∗y ⊗Qy be a vertical vector at y such that σ
(1)
ϕ (v) ∈ Vy′π1,0|J1

n(S). We want to show

that v ∈ Vyπk+1,k|R(1) . For each X ∈ Uy, we have σϕ(Xyv) = Xyσ(1)
ϕ (v) ∈ Ty′0S/U

′
y′ .

This implies that ϕ∗(Xyv) is tangent to S, and therefore (since the presentation is
regular) Xyv ∈ Vykπk,k−1|R. The fact that this is true for all X implies that y+tv ∈ R(1)

for all t ∈ R. Therefore v ∈ Vyπk+1,k|R(1) , as we wanted.

We now let l > 1. As before, let y ∈ R(l) and y′ = ϕ(l)(y). Let v ∈ Vyπk+l,k+l−1 be a

vertical vector at y such that σ
(l)
ϕ (v) ∈ Vy′πl,l−1|J ln(S). Now, for any t ∈ R we have that

ϕ(l)(y + tv) = y′ + tσ(l)(v), which belongs to J ln(S) (using the fact that this is an affine
subbundle of J ln(M ′) over J l−1

n (S)). Therefore v ∈ Vyπk+l,k+l−1|R(l) , as we wanted.

Corollary 2.2.4. Let R ⊆ Jkn(M) be a differential equation which is integrable up
through order l. Then R(l)(m) = R(l+m) for all m ≥ 0.

Proof. We know that R(l) is given regularly by id
(l)
k ∈ J ln(R). Therefore, R(l)(m) is given

by id
(l)(m)
k ∈ Jmn (J ln(R)) ⊆ Jmn (J ln(Jkn(M))). Now, the image of id

(l)(m)
k is contained

inside J l+mn (Jkn(M)), and its co-restriction equals id
(l+m)
k . Therefore R(l)(m) is given by

id
(l+m)
k ∈ J l+mn (Jkn(M))∩Jmn (J ln(R)). This space equals J l+mn (R) by induction on l, and

so R(l)(m) coincides with R(l+m).

This corollary implies that one could also define R(l) inductively, taking first pro-
longation l times. To define R(1) one only needs knowledge of R, the restriction of the
contact distribution Ckn to R, and the vertical distribution V πk,k−1|R. Moreover, from
this information one may also recover the solutions of R, as the integral submanifolds of
Ckn|R transverse to the vertical. Therefore, one could develop the theory of differential
equations inductively, and forget about the fact that R embeds inside a jet space. This
is the point of view usually taken in the literature on exterior differential systems.
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2.3 Let R ⊆ Jkn(M) be a smooth k-th order differential equation. The principal symbol
of R is the (possibly singular) vector bundle

AkR = V πk,k−1|R = ker(πk,k−1∗|TR) ⊆ SkU∗ ⊗Q (15)

defined over R. The sub-principal symbols of R are the (possibly singular) vector
bundles

AjR = ker(πj,j−1∗|πk,j∗TR) ⊆ SjU∗ ⊗Q (16)

defined for 1 ≤ j ≤ k. We also set A0
R = pQπk,0TR, where pQ : TM → Q is the

projection.
Let l ≥ 0. The l-th prolongation of the principal symbol of R is the (possibly

singular) vector bundle

Ak+l
R = (SlU∗ ⊗ AR) ∩ (Sk+lU∗ ⊗Q) (17)

where the intersection is taken inside SlU∗ ⊗ (SkU∗ ⊗Q). In other words, the fiber of
Ak+l
R at a point y ∈ R consists of those polynomials in Sk+lU∗y ⊗Qy such that all their

derivatives of order l belong to AkR,y. If R is given regularly by ϕ ∈ S, then we have

Ak+l
R = (σ

(l)
ϕ )−1(SlU∗ ⊗ (TS/U ′)) for l ≥ 0.

Let j ≥ 0. We say that R is j-regular if the dimension of the fibers of AjR is
constant. In particular, observe that R is k-regular if and only if πk,k−1|R has constant
rank. Moreover, R is j-regular for all 0 ≤ j ≤ k if and only if pQπk,0|R and πk,j|R have
constant rank, for all 0 ≤ j < k.

The total prolongation of the symbol of R is the (infinite dimensional) vector bundle

AR =
∞⊕
j=0

AjR ⊆ SU∗ ⊗Q (18)

Proposition 2.3.1. Let j0 ≥ 1, and let R ⊆ Jkn(M) be an infinitesimally differentially
closed equation which is j-regular for all j0 ≤ j ≤ k. Then the image of the contraction
map U ⊗AjR → Sj−1U∗ ⊗Q is contained in Aj−1

R for all j ≥ j0.

Proof. This is true in degrees greater than k by definition. Let j0 ≤ j ≤ k. Let y ∈ R,
and v ∈ AjR,y. We have to prove that Xyv ∈ Aj−1

R for each X ∈ Uy.
Let γ be a curve on R such that γ(0) = y and ∂t(πk,jγ)(0) = v. By regularity, we may

assume that πk,j−1γ is constant. Let X
(j−1)
γ(t) be the lift of X to U

(j−1)
γ(t) ⊆ Tyj−1

J j−1
n (M).

When j ≥ 2, Xyv ∈ V πj−1,j−2 may be computed, as ∂t(X
(j−1)
γ )(0) (in the case j = 1

one needs to project this vector to Q to obtain Xyv).

Now, consider the curve α = (γ,X
(j−1)
γ ) on the pullback of TJ j−1

n (M) to Jkn(M).
The fact that R is infinitesimally differentially closed implies that α is contained in
πk,j−1∗TR which, by regularity, is a smooth subbundle of TJ j−1

n (M) over Jkn(M). The
derivative of α at 0 belongs to the fiber of πk,j−1∗TR at y, and may be identified with

the derivative of X
(j−1)
γ at 0. This implies that Xyv ∈ Aj−1

R , as we wanted.
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As a consequence of this proposition, if R is an infinitesimally differentially closed
equation which is j-regular for 1 ≤ j ≤ k we have that AR ⊆ SU∗ ⊗ Q is a bundle
of SU∗ subcomodules, and we may form the Spencer cohomology bundles Hq,j(AR).
Even if AR is only k-regular, the dual of the Koszul complex still makes sense in some
degrees, so the bundles Hq,j+q(AR) may still be computed for j ≥ k. Moreover, the
bundle Hq,k+q−1(AR) may be defined as the cohomology of the sequence

AkR ⊗ Λq−1U∗
δq−1

−−→ Ak−1
R ⊗ ΛqU∗

δq−→ (Sk−2U∗ ⊗Q)⊗ Λq+1U∗ (19)

The prolonged symbols govern the behavior of the prolongations of R, as follows

Proposition 2.3.2. Let R ⊆ Jkn(M) be a smooth k-th order differential equation and
let l ≥ 1. The non-empty fibers of πk+l,k+l−1|R(l) are affine spaces modeled on Ak+l

R .

Proof. Consider first the case l = 1. Let y ∈ R, and let z, z̄ be two points in the fiber
of πk+1,k over y, with z ∈ R(1). Then z̄ ∈ R(1) if and only if U

(k)
z̄ is tangent to R.

As we already know that U
(k)
z is tangent to R, we have that z̄ ∈ R(1) if and only if

Xy(z̄ − z) ∈ AkR for all X ∈ Uy, which is the same as saying z̄ − z ∈ Ak+1
R .

Now, let l ≥ 2. The fiber of R(l) over a point y ∈ R(l−1) is the intersection of fibers
of Jk+l

n (M) and J ln(R) over y. These are two affine subspaces of the fiber of J ln(Jkn(M))
over y, modeled on Sk+lU∗⊗Q and SlU∗⊗ (TR/U (k)), so their intersection is an affine
space modeled on (Sk+lU∗ ⊗ Q) ∩ (SlU∗ ⊗ (TR/U (k))) = Ak+l

R (here we are implicitly
using proposition 1.2.1 in the case of the universal differential operator, to conclude the
compatibility of the affine structure on Jk+l

n (M) and J ln(Jkn(M)).

Corollary 2.3.3. If R is integrable up through order l, then it is j-regular for k <
j ≤ k + l, and R(m) → R(m−1) is an affine bundle modeled on Ak+m

R for all 1 ≤ m ≤ l.
In particular, AR(l) = AR.

2.4 Let ξ : Eξ → M be a fibered manifold. A k-th order differential equation on
sections of ξ over n-dimensional submanifolds of M is a subset R ⊆ Jkn(ξ). We say that
R is smooth if it is a smooth submanifold of Jkn(ξ) and TR∩TnJkn(ξ) is a smooth vector
bundle over R×Jkn(M) J

k+1
n (M). If R is smooth, then its l-th prolongation R(l) belongs

to Jk+l
n (ξ) so it is still a differential equation on sections of ξ.
Let ϕ : Jkn(ξ)→ Eη be a differential operator taking values in the fibered manifold

η : Eη → Jkn(M). Let s : Jkn(M) → Eη be a section. We may define the k-th order
differential equation R ⊆ Jkn(ξ) consisting of those y ∈ Jkn(ξ) such that ϕ(y) = sξ(k)y.
Observe that R is given by ϕ ∈ S, where S is the image of s.

Now, assume that R is smooth. We say that R is infinitesimally differentially closed
if U

(k−1)
ξ |R ⊆ πk,k−1∗TR. One may define analogues to the definitions of local and global

differential closedness, so that proposition 2.1.1 continues to hold. The (local) clausure
of an equation makes sense only as a subset of Jkn(ξ) over J∞n (M) = lim←− J

k
n(M).
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The principal and sub-principal symbols of R are now defined as

AjR = ker(πj,j−1∗|πk,j∗(V ξ(k)|R)) ⊆ V ξ(j) = SjU∗ ⊗ V ξ (20)

for 0 < j ≤ k. This coincides with what get from the previous definition if we interpret
the maps πk,j and πj,j−1 as being morphisms of fibered manifolds over Jkn(M). We also
set A0

R = πk,0∗(V ξ
(k)|R).

When j ≥ k, we define AjR = (Sj−kU∗ ⊗ AkR) ∩ (SjU∗ ⊗ V ξ). We say that R is
j-regular if AjR is smooth. The total prolongation is again defined as AR =

⊕∞
0 A

j
R ⊆

SU∗⊗V ξ. Propositions 2.3.1, 2.3.2 and corollary 2.3.3 continue to hold in this context
when interpreted properly (in particular, the notion of integrability up through order l
reads the same as before, only that R(m) → R(m−1) has to be considered over Jk+m

n (M)).
In the case when ξ is a vector bundle, a k-th order differential equation R ⊆ Jkn(ξ)

is said to be linear if it is a (possibly singular) vector subbundle of Jkn(ξ) over Jkn(M).
If R is smooth, then its l-th prolongation R(l) is again a linear differential equation
. For l ≤ 0, the sub-principal symbol A

(l)
R may be identified with the vector bundle

ker(πk+l,k+l−1|πk,k+lR) ⊆ Sk+lU∗ ⊗ Eξ over Jkn(M). Proposition 2.3.2 implies that for

l ≥ 1 we have ker(πk+l,k+l−1|R(l)) = Ak+l
R as vector bundles over Jk+l

n (M).

2.5 Let R ⊆ Jkn(M) be a smooth k-th order differential equation, integrable up to first
order. The linearization of R is the subbundle

`R = TR/U (k) ⊆ TJkn(M)/U (k) = Jkn(Q→ J1
n(M)) (21)

where Jkn(Q → J1
n(M)) is considered as a vector bundle over R(1). One should note

that this is not a differential equation in the above sense, since it is only defined over
R(1). However, if one assumes integrability of R, the linearization `R behaves as a linear
differential equation, whose prolongations are only defined over R(l). If i : N →M is a
solution of R, then the pullback i(k+1)∗`R is a k-th order differential equation on sections
of the normal bundle of N , called the linearization of R at N .

3 Formal Integrability

3.1 Let M be a differentiable manifold and fix n ≤ dimM . Let k > 0, and let
R ⊆ Jkn(M) be a k-th order differential equation. We say that R is formally integrable
if it is integrable up through order l for all l > 0. In this case, any element of R(l) lying
over q ∈ M may be extended to an element of R(∞) = lim←−R

(m) over q, which may be
thought of as a formal solution to the equation at q. This is still not an actual solution
of the equation, however in the analytic category there is the following

Theorem 3.1.1. Let M be an analytic manifold, and R ⊆ Jkn(M) be a formally in-
tegrable analytic differential equation. Then for every l > 0 and y ∈ R(l), there is an
analytic solution N of R such that y ∈ N (k+l).



54 CHAPTER III. DIFFERENTIAL EQUATIONS

We refer the reader to Goldschmidt[5] for a proof, which depends on the “δ-Poincaré
estimate” of Spencer. See Ehrenpreis, Guillemin, Sternberg[2] or Sweeney[13] for a
discussion and proof of the estimate. One may also prove this theorem using the
Cartan-Kahler theorem in the theory of exterior differential systems, which ultimately
depends on the Cauchy-Kowalevski existence theorem for analytic partial differential
equations, see [1].

In the fibered case, we have the following

Theorem 3.1.2. Let ξ : Eξ → M be an analytic fibered manifold, and R ⊆ Jkn(ξ) be
an analytic formally integrable differential equation on sections. Let i : N → M be an
n-dimensional submanifold of M passing through a point q ∈M . Then, for every l > 0
and y ∈ R(l) such that ξ(k+l)(y) = i(k+l)(q), there exists a section s of ξ|N defined near
q, such that s(k+l)(q) = y.

This follows from the above result, applied to the pullbacked equation i(k)∗R ⊆
Jk(ξ|N).

3.2 Let M be a manifold and fix n ≤ dimM . Let J̌k+1
n (M) be the bundle of sesqui-

holonomic jets of order k + 1. Recall that this is the bundle over Jkn(M) whose fiber
over a point y consists of the planes Π ⊆ Ckn,y giving a splitting of

0→ Vyπk,k−1 → Ckn,y → U (k−1)
y → 0 (22)

This is an affine bundle modeled on U∗ ⊗ (SkU∗ ⊗ Q). The form [·, ·] defined in I.3.2
may be restricted to each sesqui-holonomic jet, so we have a map

C : J̌k+1
n (M)→ (Sk−1U∗ ⊗Q)⊗ Λ2U∗ (23)

Of course, this map also has a dual description in terms of exterior differentiation of
contact forms.

Proposition 3.2.1. The map C is an affine bundle map modeled on minus the first
Spencer coboundary map

−δ1 : (SkU∗ ⊗Q)⊗ U∗ → (Sk−1U∗ ⊗Q)⊗ Λ2U∗ (24)

Moreover, we have that δ2C = 0, where

δ2 : (Sk−1U∗ ⊗Q)⊗ Λ2U∗ → (Sk−2U∗ ⊗Q)⊗ Λ3U∗ (25)

is the second Spencer coboundary map.
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Proof. Let y ∈ Jkn(M), and Π ∈ J̌k+1
n (M)y. We want to compute C(Π + ∆)−C(Π) for

each ∆ ∈ (SkU∗ ⊗Q)y ⊗ U∗y .

Let X, Y ∈ Uy, and denote by XΠ, YΠ their lifts to Π. By definition, we have
C(Π)(X, Y ) = [XΠ, YΠ]. Now,

C(Π + ∆)(X, Y ) = [XΠ + ∆(X), YΠ + ∆(Y )] (26)

= C(Π)(X, Y ) + [∆(X), YΠ]− [∆(Y ), XΠ] (27)

Now, by proposition I.3.2.1, [∆(X), YΠ] − [∆(Y ), XΠ] = −δ1(∆)(X, Y ), which proves
the first part of the proposition.

For the second part, let Π′ be an integral element of the contact system at y. We
know that C(Π′) = 0, and therefore C(Π) = δ1(Π − Π′), which implies that C(Π) is
closed.

3.3 We are now ready to describe the obstruction for an equation to be integrable to
first order. Proceeding inductively, we will have a series of obstructions for an equation
to be formally integrable.

Let R ⊆ Jkn(M) be a k-regular infinitesimally differentially closed equation. Let R〈1〉

be the subspace of J̌k+1
n (M) consisting of those planes tangent to R. The projection

R〈1〉 → R is an affine subbundle of J̌k+1
n (M) modeled on AkR ⊗ U∗. Moreover, the map

C restricts to give a map

C : R〈1〉 → Ak−1
R ⊗ Λ2U∗ (28)

By proposition 3.2.1, this descends to a well defined section

κR : R→ H2,k+1(AR) (29)

called the curvature of R. This is the obstruction to integrability that we needed:

Proposition 3.3.1. Let R ⊆ Jkn(M) be a k-regular infinitesimally differentially closed
equation. Then R is integrable to first order if and only if it is (k + 1)-regular and the
curvature κR vanishes.

Proof. If R is integrable to first order, then Ak+1
R = V πk+1,k|R(1) is smooth. Moreover,

for every y ∈ R there exists a plane Π ∈ R(1) which is integral for the contact system
on Jkn(M) (namely, Π = U

(k)
z for any z ∈ R(1) over y). This plane satisfies C(Π) = 0,

and so the curvature vanishes.

Conversely, suppose that κR vanishes and that R is (k + 1)-regular. Let s be a
smooth section of R〈1〉. Then Cs is a smooth section of (Sk−1U∗ ⊗ Q) ⊗ Λ2U∗, which
belongs to δ1(AkR ⊗ U∗) since the curvature vanishes. One may therefore replace s by
a section s′ such that C(s′) = 0. We claim that we may do this smoothly.
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By the polynomial Poincaré lemma, the kernel of δ1|AkR⊗U∗ is contained in δ0(SkU∗⊗
Q). However, by definition of Ak+1

R one has that (δ0)−1(AkR ⊗ U∗) = Ak+1
R , and so we

have an exact sequence

0→ Ak+1
R

δ0−→ AkR ⊗ U∗
δ1−→ Ak−1

R ⊗ Λ2U∗ (30)

Since Ak+1
R and AkR are smooth vector bundles, we see that δ1|AkR⊗U∗ has constant rank.

Therefore, there is a smooth section ∆ of AkR ⊗ U∗ such that δ1(∆) = C(s). Now,
s′ = s+ ∆ is a smooth section of R(1) over R. The existence of such a section, together
with the fact that the fibers of R(1) are affine spaces modeled on Ak+1

R (which is smooth),
implies that R(1) → R is a (surjective) smooth submersion.

Corollary 3.3.2. Let R ⊆ Jkn(M) be a k-regular infinitesimally differentially closed
equation. If H2,j(AR) = 0 for j ≥ k + 1, we have that R is formally integrable.

Proof. For each j ≥ k + 1, consider the following sequence of bundles over R

0→ AjR
δ0−→ Aj−1

R ⊗ U∗ δ1−→ Aj−2
R ⊗ Λ2U∗

δ2−→ (Sj−3U∗ ⊗Q)⊗ Λ3U∗ (31)

This is exact at Aj−2
R ⊗Λ2U∗ by hypothesis, and at Aj−1 ⊗U∗ as a consequence of the

polynomial Poincaré lemma together with the definition of AjR.
We claim that R is j-regular for all j ≥ k. Assume that we know this for i < j.

Observe that the rank of δ1|Aj−1
R ⊗U∗ is lower semi-continuous. Since the image of δ1

coincides with the kernel of δ2, it must also be upper semi-continuous, and so δ1|Aj−1
R ⊗U∗

must have constant rank. Since its kernel equals AjR, it follows that R is also j-regular,
completing the inductive step.

The corollary now follows from proposition 3.3.1 together with the fact that, if R is
integrable up through some order l ≥ 0, the curvature κR(l) belongs to H2,k+l+1(AR)

3.4 As a first application, we shall see how the Frobenius integrability condition arises
from this point of view. Let M be a manifold, and C be a distribution on M . Let
n ≤ rank C, and consider the first order differential equation R ⊆ J1

n(M) consisting
of those n-dimensional planes tangent to C. We have A1

R = U∗ ⊗ C/U , and therefore
AjR = SjU∗⊗C/U for j ≥ 1. From the polynomial Poincaré lemma we get H2,2(AR) =
Λ2U∗ ⊗ TM/C and H2,j(AR) = 0 for j ≥ 3.

We want to compute κR(y) ∈ (TM/C)y0 ⊗ Λ2U∗y for y ∈ R. Let X, Y ∈ Uy. Let s
be a smooth section of R such that s(y0) = y. Extend X, Y to vector fields X̄, Ȳ on
M , tangent to the distribution q 7→ Usq. Let Π = s∗Uy. Observe that s∗X̄, s∗Ȳ may be
extended to contact vector fields on R, so we have

C(Π)(X, Y ) = [s∗X̄, s∗Ȳ ]y = [X̄, Ȳ ]y0 (32)
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where [X̄, Ȳ ]y0 denotes the projection of [X̄, Ȳ ]y0 to Qy. Therefore, κR(y)(X, Y ) equals

the class of [X̄, Ȳ ]y0 in (TM/C)y0 , for any choice of section s and extensions X̄, Ȳ .
In particular, when n = rank C the vanishing of the curvature is equivalent to the
Frobenius integrability condition on C.

In the case where we take C to be the contact distribution Ckn on the jet space Jkn(M),
the elements of R transverse to the vertical such that the curvature vanishes are exactly
the integral elements of the contact system. Hence, when we restrict this equation to
(an open subset of) the vanishing locus of the curvature, we get a formally integrable
equation. This does not hold for a general distribution C. Even though H2,j(AR) = 0
for j ≥ 3, when we restrict R the symbol changes and new integrability conditions may
arise. For instance, this is the case when we take our distribution to be the contact
distribution on a k-th order equation which is not formally integrable.

3.5 Let ξ : Eξ → M and η : Eη → M be fibered manifolds, and ϕ : Jk(ξ) → Eη be a
k-th order differential operator. Let s : M → Eη be a section of η. Let R ⊆ Jk(ξ) be
the equation consisting of those k-jets y such that ϕ(y) = s(ξ(y)). Assume that

ϕ× πk,k−1 : Jk(ξ)→ Eη ×M Jk−1(ξ) (33)

is a surjective submersion, so that R is smooth and R → Jk−1(ξ) is a surjective sub-
mersion. We are going to construct the curvature κR in an alternative way, making use
of the fact that R is given by a differential operator.

Let y ∈ R and q = ξπk,0y. For each z in the fiber of Jk+1(ξ) over y, consider the

element C̄(z) = ϕ(1)(z)− s(1)(q) ∈ T ∗M ⊗ V η. The class of C̄(z) in T ∗M ⊗ V η/imσ(1)
ϕ

does not depend on z, and is denoted κ̄R(y). Observe that

0→ AR → ST ∗M ⊗ V ξ
σ•ϕ−→ S[−k]T ∗M ⊗ V η (34)

is the beginning of a minimal resolution for AR, where σ•ϕ denotes the sum of the

prolonged symbols of ϕ. Therefore κ̄R is a section of T ∗M ⊗ V η/imσ(1)
ϕ = H2,k+1(AR).

Since R(1) is given by those z such that ϕ(1)(z) = s(1)(q), we see that R is integrable to
the first order if and only if κ̄R vanishes. In fact, we have the following

Proposition 3.5.1. The curvature κR of R coincides with κ̄R.

Proof. Observe that to construct κR we used the description of the Spencer cohomology
via the dual to the Koszul complex, while for κ̄R we used a minimal resolution of AR.
Therefore, to show that both curvatures coincide, we will have to pass from one descrip-
tion of the cohomology to the other, which ultimately depends on the commutativity
of the Cotor. The relevant diagram is the following
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0 Ak−1
R ⊗ Λ2T ∗M (Sk−1T ∗M ⊗ V ξ)⊗ Λ2T ∗M

0 AkR ⊗ T ∗M (SkT ∗M ⊗ V ξ)⊗ T ∗M V η ⊗ T ∗M

0 Ak+1
R Sk+1T ∗M ⊗ V ξ T ∗M ⊗ V η

σϕ⊗1T∗M

δ1

σ
(1)
ϕ

δ0

(35)
Let y ∈ R and z be a point in the fiber of Jk+1(ξ) over y. Let Π ⊆ Ckn|R,y be an

n-dimensional plane giving a splitting of

0→ AkR → Ckn|R → U (k−1) → 0 (36)

at y. Let Π′ = U
(k)
z . This gives a splitting of

0→ SkT ∗M ⊗ V ξ → Ckn → U (k−1) → 0 (37)

at y. Therefore, Π′−Π defines an element of (SkT ∗M ⊗V ξ)⊗T ∗M , and we have that
(σϕ ⊗ 1T ∗M)(Π′ − Π) = δ0(C̄(z)).

We now have that δ1(Π′ − Π) ∈ Ak−1
R ⊗ Λ2T ∗M is closed, and its class in the

cohomology equals κ̄R(y). By proposition 3.2.1, δ1(Π′ − Π) = C(Π) − C(Π′). By
construction, Π′ is an integral element of the contact system on Jkn(ξ), so C(Π′) vanishes.
Therefore δ1(Π′ − Π) = C(Π), whose class is, by definition, κR(y).

The curvatures of the prolongations of R may be constructed in a similar way.
Assume that R is integrable up through order l for some l ≥ 0. Let y ∈ R(l). For each
z in the fiber of Jk+l+1(ξ) over y, consider the element C̄(z) = ϕ(k+l+1)(z)− s(k+l+1)(q)

in Sl+1T ∗M ⊗ V η. Denote by κ̄R(l)(y) the class of C̄(z) modulo imσ
(k+l+1)
ϕ .

Proposition 3.5.2. We have that κ̄R(l) vanishes under contraction by sections of TM ,
so κ̄R(l) is a section of H2,k+l+1(AR). Moreover, κ̄R(l) coincides with the curvature κR(l).

The proof of this goes along the same lines as the one given for proposition 3.5.1.
The fact that κ̄R(l) is closed under contraction (which in the case l = 0 was obvious),

now follows from the fact that δ0(C̄(z)) belongs to the image of σ
(l)
ϕ ⊗ 1T ∗M .

4 Initial Value Problems

4.1 Let M be a manifold and fix n ≤ dimM . Let k > 0. Denote by Jkn(M)(1,0)

the bundle over Jkn(M) whose fiber over a point y consists of the (n − 1)-dimensional
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subspaces Πn−1 ⊆ Ckn,y transverse to V πk,k−1, and such that [·, ·]|Πn−1 vanishes. Let

Jkn(M)(1,1) ⊆ J1
n−1(Jkn(M)) ×Jkn(M) J

k+1
n (M) be the collection of pairs (Πn−1, w) such

that Πn−1 ⊆ U
(k)
w . Notice that the image of the projection Jkn(M)(1,1) → J1

n−1(Jkn(M)) is
contained in Jkn(M)(1,0). Denote by α1 : Jkn(M)(1,1) → Jkn(M)(1,0) and β1 : Jkn(M)(1,1) →
Jk+1
n (M) the projections. Observe that Jkn(M)(1,1) is smooth and β1 is a surjective

submersion.
Let Gn−1(U) be the Grassmannian of hyperplanes of the universal bundle on Jkn(M).

Let Un−1 be the universal bundle on Gn−1(U). Denote by (SU∗ ⊗ Q)|Un−1 the bundle
SU∗ ⊗Q over Gn−1(U), considered as a bundle of SU∗n−1 comodules. The dual bundle
is a bundle of free SUn−1 modules, and in particular (SU∗⊗Q)|Un−1 is acyclic. Observe
that we have a map Jkn(M)(1,0) → Gn−1(U) over Jkn(M), sending each plane Πn−1 in
the fiber of Jkn(M)(1,0) over y to its projection to Uy.

Proposition 4.1.1. The projection Jkn(M)(1,0) → Gn−1(U) is a smooth affine bundle
modeled on the kernel of the first Spencer coboundary map

(SkU∗ ⊗Q)|Un−1 ⊗ U∗n−1
δ1−→ (Sk−1U∗ ⊗Q)|Un−1 ⊗ Λ2U∗n−1 (38)

Proof. Let Y → Gn−1(U) be the bundle whose fiber over E ∈ Gn−1(Uy) consists of those
(n − 1)-dimensional subspaces of Ckn,y transverse to Vyπk,k−1, and whose projection to

Uy equals E. This is a smooth affine bundle modeled on V πk,k−1⊗U∗n−1. The form [·, ·]
induces, by restriction, a map

Cn−1 : Y → (Sk−1U∗ ⊗Q)⊗ Λ2U∗n−1 (39)

over Y , whose vanishing locus coincides with Jkn(M)(1,0). As in propostion 3.2.1, this
is seen to be an affine bundle map modeled on minus the map (38). This implies that
Jkn(M)(1,0) → Gn−1(U) is an affine bundle modeled on the kernel of δ1. The fact that
(38) has constant rank implies that any smooth section of Y may be transformed into
a smooth section with image inside Jkn(M)(1,0). This, together with the smoothness of
the kernel of (38), implies that Jkn(M)(1,0) → Gn−1(U) is a smooth affine bundle, as we
wanted.

The following proposition gives, in particular, an alternative characterization of the
elements of Jkn(M)(1,0), as those planes which may be extended to an integral element
of the contact system.

Proposition 4.1.2. The projection α1 : Jkn(M)(1,1) → Jkn(M)(1,0) is a (smooth) affine
bundle modeled on H0,k+1((SU∗ ⊗Q)|Un−1)⊗ (U/Un−1)∗.

Proof. Let Πn−1 be an element in the fiber of Jkn(M)(1,0) over y ∈ Jkn(M), and extend it
to an n-dimensional subspace Π ⊆ Ckn,y complementing V πk,k−1. Let X be the projection
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of Πn−1 to Uy, and let QX = Uy/X. Observe that the form C(Π) vanishes when
restricted to X, and so it may be considered as an element of (Sk−1U∗⊗Q)y⊗X∗⊗Q∗X .

Consider the following exact sequence

(SkU∗ ⊗Q)y ⊗ U∗y
δ1−→ (Sk−1U∗ ⊗Q)y ⊗ Λ2U∗y

δ2−→ (Sk−2U∗ ⊗Q)y ⊗ Λ3U∗y (40)

If we consider only forms which vanish when restricted to X, we have

(SkU∗⊗Q)y⊗Q∗X
δ1−→ (Sk−1U∗⊗Q)y⊗X∗⊗Q∗X

δ2−→ (Sk−2U∗⊗Q)y⊗Λ2X∗⊗Q∗X (41)

This computes the space H1,k((SU∗⊗Q)|X)⊗Q∗X which vanishes, and so the sequence
(41) is exact. Therefore, there exists ∆ ∈ (SkU∗ ⊗Q)y ⊗Q∗X such that δ1(∆) = C(Π).
The plane Π + ∆ is then an integral element of the contact system contained Πn−1.
Since Πn−1 was arbitrary, the surjectivity of α1 follows.

If Π, Π′ are two planes containing Πn−1, we have that Π − Π′ belongs to (SkU∗ ⊗
Q)y ⊗QX . If Π′ is an integral element of the contact system, the same is true for Π if
and only if Π−Π′ is δ1 closed. The kernel of δ1 is H0,k+1((SU∗⊗Q)|Un−1)⊗ (U/Un−1)∗,
and so we have the desired affine structure on the fibers of α1. The existence of smooth
sections for α1 follows from the fact that δ1 has constant rank.

Proposition 4.1.3. The first order differential equation Jkn(M)(1,0) ⊆ J1
n−1(Jkn(M)) is

formally integrable.

Proof. By homogeneity, Jkn(M)(1,0) is j-regular for all j. Let Πn−1 be a point in the
fiber of Jkn(M)(1,0) over y ∈ Jkn(M). By the previous proposition, we may extend Πn−1

to an integral element of the contact system at y, which in turn may be extended to
an integral submanifold N (k) of Ckn. The plane Πn−1 may be extended to an (n − 1)-
dimensional submanifold of N . The 2-jet of this submanifold is an element in the fiber
of the first prolongation of Jkn(M)(1,0) over Πn−1. Since Πn−1 was arbitrary, we see that
Jkn(M)(1,0) is integrable to first order.

Let L = Π/Πn−1. Let A be the principal symbol of Jkn(M)(1,0) at Πn−1. This is a
first order tableau contained in

Π∗n−1 ⊗ Ckn,y/Πn−1 = (Π∗n−1 ⊗ (SkU∗ ⊗Q)y)⊕ (Π∗n−1 ⊗ L) (42)

By proposition 4.1.1, we have

A = ker δ1 ⊕ (Π∗n−1 ⊗ L) (43)

where δ1 : Π∗n−1⊗(SkU∗⊗Q)y → (Sk−1U∗⊗Q)y⊗Λ2Π∗n−1 is the first Spencer cobound-
ary. Therefore, the cohomology H2(A) of the first order tableau A equals H2(ker δ1).

Observe that (SkU∗ ⊗Q)y may be decomposed as

k⊕
j=0

(Sk−jL∗ ⊗Qy)⊗ SjΠ∗n−1 (44)
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By the polynomial Poincaré lemma, we have

ker δ1 =
k⊕
j=0

(Sk−jL∗ ⊗Qy)⊗ Sj+1Π∗n−1 (45)

and so the SΠ∗n−1-comodule associated to ker δ1 is

k⊕
j=0

(Sk−jL∗ ⊗Qy)⊗ S≥jΠ∗n−1 (46)

where (Sk−jL∗ ⊗ Qy) ⊗ SjΠ∗n−1 is taken to have degree 0. From the following exact
sequence

0→ Sj−1Π∗n−1 → S≥j−1Π∗n−1 → S≥jΠ∗n−1 → 0 (47)

one may see, by induction, that S≥jΠ∗n−1 is j-involutive for all j ≥ 0 (where SjΠ∗n−1 is
taken to have degree j). From this, we have that (46) is a 1-involutive comodule. The
proposition now follows, since one has H2,j(A) = 0 for j > 2, and so the higher order
obstructions to the integrability vanish.

4.2 For each l ≥ 1, let Jkn(M)(l,0) be the (l − 1)-th prolongation of Jkn(M)(1,0). We

also set Jkn(M)(0,0) = Jkn(M). We denote by πl,m both the projection Jkn(M)(l,0) →
Jkn(M)(m,0) and J ln(M) → Jmn (M), since it will be clear by context which one we are
considering.

Let Jkn(M)(l,l) be the subset of J ln−1(Jkn(M)) ×Jkn(M) J
k+l
n (M) consisting of those

pairs (z, w) with z contained in w (where we interpret w as a l-jet of a submanifold
on Jkn(M)). Observe that we have Jkn(M)(l,l) ⊆ Jkn(M)(l,0) ×Jkn(M) J

k+l
n (M). Let αl :

Jkn(M)(l,l) → Jkn(M)(l,0) and βl : Jkn(M)(l,l) → Jk+l
n (M) be the projections.

Proposition 4.2.1. The space Jkn(M)(l,l) is a smooth manifold, and αl, βl are surjective
submersions.

Proof. The fact that Jkn(M)(l,l) is smooth and βl is a surjective submersion is evident in
coordinates. One may also use coordinates to show that αl is a surjective submersion,
however we shall prove this using an intrinsic argument which contains the basic idea
of our approach to solving the initial value problem.

Assume that αj is a surjective submersion for j < l. Let z ∈ Jkn(M)(l,0) and set
y = πl,0z. Let Nn−1 be an (n− 1)-dimensional submanifold of Jkn(M), passing through
y, and whose l-jet at y equals z. Denote by in−1 : Nn−1 → Jkn(M) the inclusion. By
proposition 4.1.2, there exists a section s : Nn−1 → Jk+1

n (M) such that the induced
section

N
(1)
n−1 → J1

n−1(Jkn(M))×Jkn(M) J
k+1
n (M) (48)
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is tangent to Jkn(M)(1,1) with order (l− 1) at i
(1)
n−1(y). Equivalently, the l-jet of s(Nn−1)

at s(y) is integral to the contact distribution Ck+1
n . This implies that the (l − 1)-jet

of s(Nn−1) at s(y) belongs to Jk+1
n (M)(l−1,0). By induction, there exists a (k + l)-jet

w ∈ Jk+l
n (M) such that the (l−1)-jet of s(Nn−1) at s(y) is contained in w ∈ Jk+l

n (M) ⊆
J l−1
n (Jk+1

n (M)). This implies that z = i
(l)
n−1(y) is contained in w. Since z was arbitrary,

we have that αl is surjective. Moreover, by induction one may take w to depend
smoothly on z, and so one has that αl is a submersion.

4.3 Let M be a manifold and n ≤ dimM . Let R ⊆ Jkn(M) be a smooth k-th order
equation. A subspace Π ⊆ Ckn|R,y of the contact distribution restricted to R at a
point y is said to be generic if it is trasverse to V πk,k−1 and its projection to Uy is a
generic subspace for the k-th order tableau AkR,y. The Cartan characters s1, . . . , sn of
R are the functions on R such that sj(y) is the j-th character of AkR,y. We say that R is
involutive if it is integrable to first order and AkR is a bundle of involutive tableaux. The
involutivity of AkR is equivalent to the k-involutivity of AR, and therefore, by corollary
3.3.2, involutive equations are formally integrable (provided that the Cartan characters
are constant). The following proposition is a weak version of the Cartan-Kuranishi
prolongation theorem.

Proposition 4.3.1. Let R be a k-th order formally integrable differential equation. We
have that R(l) is involutive for l large enough.

Proof. Consider the smooth bundle of (k+1)-th order tableaux Ak+1
R . From proposition

II.1.4.1 (specifically, the observation that the bound may be taken to only depend on the
Hilbert function), we have that Ak+l

R is involutive for l large enough, as we needed.

4.4 Let R be a smooth k-th order differential equation. Let R(1,0) be the subset of

Jkn(M)(1,0) consisting of panes Πn−1 tangent to R and generic. This is a first order
equation on (n− 1)-dimensional submanifolds of R.

Let R(1,1) ⊆ Jkn(M)(1,1) be the collection of pairs (Πn−1,Π) ∈ R(1,0) ×R R(1) such
that Πn−1 ⊆ Π. The nonempty fibers of α1 : R(1,1) → R(1,0) are affine spaces modeled
on (Ak+1

R )Un−1 where (Ak+1
R )Un−1 denotes the subbundle of Ak+1

R consisting of those
polynomials which vanish under contraction by vectors in the universal bundle Un−1.
In particular, observe the nonempty fibers of α1 have dimension sn. On the other hand,
the fibers of β1 : R(1,1) → R(1,0) are dense open subsets of the fibers of the Grassmannian
of hyperplanes of U , and so they have dimension n− 1.

The following lemma will be the basis for our inductive approach to solving the
initial value problem.

Lemma 4.4.1. Let R ⊆ Jkn(M) be a k-th order differential equation, integrable to first
order. If α1 : R(1,1) → R(1,0) is surjective then α1 : R(1)(1,1) → R(1)(1,0) is also surjective.
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Proof. Let Πn−1 be an element in the fiber of R(1)(1,0) at y ∈ R(1). Let X be the
projection of Πn−1 to Uy and let QX = Uy/X. Extend Πn−1 to an n-dimensional
subspace Π ⊆ (Ck+1

n |R(1))y complementing the vertical V πk+1,k|R(1) .

Since the form [·, ·] vanishes when restricted to Πn−1, we have that C(Π) belongs to
AkR,y ⊗X∗ ⊗Q∗X . Consider the following sequence

Ak+1
R,y ⊗ U

∗
y

δ1−→ AkR,y ⊗ Λ2U∗y
δ2−→ (Sk−1U∗y ⊗Qy)⊗ Λ3U∗y (49)

which computes the cohomology H2,k+2(AR,y). If we only consider forms which vanish
when restricted to X, we get a sequence

Ak+1
R,y ⊗Q

∗
X

δ1−→ AkR,y ⊗X∗ ⊗Q∗X
δ2−→ (Sk−1U∗y ⊗Qy)⊗ Λ2X∗ ⊗Q∗X (50)

We claim that the cohomology of this sequence vanishes. This implies that one may
find ∆ ∈ Ak+1

R,y ⊗Q∗X such that C(Π + ∆) = 0. The sesqui-holonomic jet Π + ∆ is then

an element in the fiber of R(1)(1,1) over R(1)(1,0).
Let K be the kernel of the first Spencer coboundary map

AkR,y ⊗X∗ → (Sk−1U∗y ⊗Qy)⊗ Λ2X∗ (51)

We claim that
dimK = dimAk+1

R,y − sn(y) (52)

from which the exactness of (50) would follow, since the kernel of the map δ1 in (50) is
(Ak+1

R,y )X , and the kernel of δ2 is K ⊗Q∗X .

To see that, let R
(1,0)
X be the subset of the fiber of R(1,0) over yk = πk+1,ky given by

those planes En−1 such that the projection of En−1 to Uy equals X. By proposition

4.1.1, this is an affine space modeled on K. Consider the map R
(1)
yk → R

(1,0)
X which sends

each element z in the fiber of R(1) over yk to the lift of X to U
(k)
z . This is an affine

bundle modeled on the trivial vector bundle with fiber (Ak+1
R )X , which has dimension

sn(y) (here we use that R(1,1) → R(1,0) is surjective). Putting this all together, we have

dimR(1)
yk

= dimK + sn(y) (53)

from which (52) follows.

The following lemma guarantees that R(1,0) will be smooth under the conditions of
4.4.1, provided that sn is constant.

Lemma 4.4.2. Let R ⊆ Jkn(M) be a k-th order differential equation, integrable to first
order and with constant sn. Suppose that α1 : R(1,1) → R(1,0) is surjective. Then R(1,0)

is smooth and π1,0 : R(1,0) →M is a surjective submersion.
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Proof. Let Gg
n−1(U) be the bundle over R whose fiber over y ∈ R consists of those

hyperplanes of Uy generic for AkR,y. The nonempty fibers of the canonical projection

R(1,0) → Gg
n−1(U) (54)

are affine spaces modeled on the fibers of AkR|
(1)
Un−1

, where Un−1 denotes the universal

bundle on Gg
n−1(U), and AkR|

(1)
Un−1

is the first prolongation of the first order tableau

bundle AkR|Un−1 ⊆ U∗n−1⊗ (Sk−1U∗⊗Q). From (52) in the previous lemma, we see that

AkR|
(1)
Un−1

is a smooth bundle over Gg
n−1(U). The fact that R is integrable to first order

implies that (54) is surjective, since any plane in Gg
n−1(U) may be lifted to a hyperplane

of an integral element of the contact system. This may be done smoothly, so (54) is a
smooth affine bundle and the lemma follows.

4.5 Let R be a smooth k-th order equation. For each l ≥ 0, set

R(l,0) = Jkn(M)(l,0) ∩ J ln−1(R) ∩ J l−1
n−1(R(1,0)) (55)

If R(1,0) is smooth, then R(l,0) is its (l − 1)-th prolongation. Let R(l,l) = Jkn(M)(l,l) ∩
(R(l,0) ×R(l)).

We may now state our main theorem regarding initial value problems

Theorem 4.5.1. Let R ⊆ Jkn(M) be a smooth k-th order differential equation, j-regular
for j ≥ k + 1 and with constant sn. Assume that R is integrable to first order and that
R(1,1) → R(1,0) is surjective. Let l ≥ 1. If R(1,0) is integrable up through order l−1, then
R is integrable up through order l and we have that the projection αl : R(l,l) → R(l,0) is
a surjective submersion.

Proof. We already know that this holds for l = 1. Let l ≥ 2 and assume that the
theorem holds for m < l.

We first prove that R is integrable to second order. Let Π ∈ R(1), and let Πn−1 be
a generic hyperplane of Π. Set y = πk+1,kΠ. We know that Πn−1 may be extended to
an (n − 1)-dimensional submanifold in−1 : Nn−1 → R such that the 2-jet of Nn−1 at y
belongs to R(2,0). Let s : Nn−1 → R(1) be a section such that the induced section

N
(1)
n−1 → J1

n−1(R)×R R(1) (56)

is tangent to R(1,1) with order 1 at i
(1)
n−1(y). This implies that the 2-jet of s(Nn−1) is

tangent to Ck+1
n at s(y) = Π with order 2. Therefore, TΠs(Nn−1) belongs to the fiber

of R(1)(1,0) over Π. Since Π was arbitrary, we see that R(1)(1,0) → R(1) is surjective, and
by lemma 4.4.1 we have that R is integrable to second order, as we wanted.

We now claim that R(1)(1,0) is integrable to order l−2. By the inductive hypothesis,
we know that it is integrable to order l − 3. Let z ∈ R(1)(l−2,0). Let y = πl−2,0z ∈ R(1)
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and yk = πk+1,ky. Observe that π
(l−2)
k+1,kz belongs to R(l−2,0). Let w ∈ R(l,0) be a jet such

that πl,l−2w = z. As usual, we represent w by a submanifold Nn−1, and choose a section
s : Nn−1 → R(1) such that the induced section

N
(1)
n−1 → J1

n−1(R)×R R(1) (57)

is tangent to R(1,1) with order l−1 at y. This implies that the l-jet of s(Nn−1) is tangent
to Ck+1

n and therefore the (l− 1)-jet belongs to R(1)(l−1,0). The section s may be chosen
so that the (l − 2)-jet of s(Nn−1) at y equals z. Therefore, the fiber of R(1)(l−1,0) →
R(1)(l−2,0) over z is nonempty. Since z was arbitrary, we see that R(1)(l−1,0) → R(1)(l−2,0)

is surjective. Moreover, this construction may be done so as to depend smoothly over
z, so we have that R(1)(l−2,0) is integrable to first order, as we claimed.

We now have that R(1) falls into the hypothesis of the theorem for l− 1, so we have
that R(1) is integrable up through order l − 1, which implies that R is integrable up
through order l. Moreover, starting with an element w ∈ R(l,0) one may construct an
element w′ ∈ R(1)(l−1,0) as above. By the inductive hypothesis, this may be extended
to a jet u ∈ R(k+l) containing w′. This implies that u contains w, and since w was
arbitrary, we get that R(l,l) → R(l,0) is surjective. Since w′ may be taken to depend
smoothly on w, it is also a submersion, which is what we had to prove.

4.6 Our next goal is to generalize the theory in this section, to deal with the initial
value problem when the initial conditions are given along a submanifold of arbitrary
codimension.

Let M be a manifold and n ≤ dimM . For each d ≤ n, let Jkn(M)d be the set of
d-dimensional planes Πd tangent to the contact distribution on Jkn(M), transverse to
the vertical V πk,k−1, and such that [·, ·]|Πd = 0. Denote by Ud the universal bundle
on Jkn(M)d. Let Gd(U) be Grassmannian of d-dimensional subspaces of the universal
bundle U over Jkn(M). Generalizing proposition 4.1.1, we have

Proposition 4.6.1. The projection Jkn(M)d → Gd(U) is a smooth affine bundle mod-
eled on the kernel of the first Spencer coboundary map

(SkU∗ ⊗Q)⊗ U∗d → (Sk−1U∗ ⊗Q)⊗ Λ2U∗d (58)

Moreover, the arguments in propositions 4.1.2 and 4.1.3 generalize to yield proofs
of the following propositions

Proposition 4.6.2. Every plane in Jkn(M)d−1 extends to a plane in Jkn(M)d.

Proposition 4.6.3. The first order equation Jkn(M)d is formally integrable.



66 CHAPTER III. DIFFERENTIAL EQUATIONS

4.7 Let R ⊆ Jkn(M) be a smooth k-th order differential equation. Let Rd ⊆ Jkn(M)d
be the set of generic d-dimensional planes Πd tangent to R such that [·, ·]|Πd = 0. Let
AR,d be the kernel of the following Spencer coboundary map

AkR ⊗ U∗d
δ1−→ (Sk−1U∗ ⊗Q)⊗ Λ2U∗d (59)

Observe that the nonempty fibers of the projection Rd → Gd(U) are affine subspaces
of the fibers of Jkn(M)d → Gd(U), modeled on the fibers of AR,d. Let Gg

d(U) be the
subbundle of Gd(U) over R consisting of the generic d-dimensional subspaces of U . If
Rd is smooth and the projection Rd → Gg

d(U) is a surjective submersion, we have an
exact sequence

0→ AR,d → A1
Rd
→ (U/Ud)⊗ U∗d → 0 (60)

Lemma 4.7.1. Let R ⊆ Jkn(M) be a smooth k-th order differential equation. Let 1 ≤ d ≤
n. Suppose that Rd is smooth, the projection Rd → Gg

d(U) is a surjective submersion,

and moreover every plane in Rd−1 extends to a plane in Rd. Then the projection R
(1,1)
d →

R
(1,0)
d is surjective.

Proof. The proof of this will be similar to the one given for lemma 4.4.1. However, it
requires some extra steps, and moreover this lemma is fundamental to the theory, so
we shall give the full argument in detail.

Let Πd−1 be an element in the fiber of R
(1,0)
d over z ∈ Rd. Let y = π1,0z ∈ R. Let

Ud be the universal bundle on Rd. Let Xd−1 and Xd be the projections of Πd−1 and
Ud,z to Uy, and set QX = Xd/Xd−1. Extend Πd−1 to a sesqui-holonomic jet Πd ⊆ TzRd.
Observe that C(Πd) vanishes when restricted to Xd−1, so we have

C(Πd) ∈ (TyR/Ud,z)⊗X∗d−1 ⊗Q∗d (61)

By the previous lemma, we know that there exists an integral element of the contact
system Π̄d ⊆ TzJ

k
n(M)d. Hence, we have

C(Πd) = δ1(Π̄d − Πd) ∈ (Ckn,y/Ud,z)⊗ Λ2X∗d (62)

Putting (61) and (62) together, we get

C(Πd) ∈ (Ckn|R,y/Ud,z)⊗X∗d−1 ⊗Q∗d (63)

Denote by Pd this space. Consider the following commutative diagram with exact rows

0 AR,d ⊗Q∗d A1
Rd,z
⊗Q∗d Uy/Xd ⊗X∗d ⊗Q∗d 0

0 AkR,y ⊗X∗d−1 ⊗Q∗d Pd Uy/Xd ⊗X∗d−1 ⊗Q∗d 0

δ1 δ1

(64)
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The right vertical arrow is surjective. Therefore, changing Πd if necessary, one may
assume that C(Πd) belongs to AkR,y ⊗X∗d−1 ⊗Qd.

This space sits inside a sequence

AR,d ⊗Q∗d
δ1−→ AkR,y ⊗X∗d−1 ⊗Q∗d

δ2−→ (Sk−1U∗ ⊗Q)y ⊗ Λ2X∗d−1 ⊗Q∗d (65)

We claim that C(Πd) is δ2-closed. To see this, recall that one has the identity (62) for
any Π̄d integral element of the contact system of Jkn(M)d at z. Choose Π ⊆ TyJ

k
n(M)

an integral element of the contact system, so that the sequence

0→ AJkn(M),d → A1
Jkn(M)d

→ (U/Ud)⊗ U∗d → 0 (66)

splits at y. Therefore, one may write

Π̄d − Πd = ∆1 + ∆2 (67)

with ∆1 ∈ (AJkn(M),d)y ⊗X∗d and ∆2 ∈ Uy/Xd ⊗X∗d ⊗X∗d . We have

C(Π) = δ1(Π̄d − Πd) = δ1(∆1) + δ1(∆2) (68)

The fact that C(Π) belongs to AkR,y ⊗X∗d−1⊗Q∗d (and, in particular, to (SkU∗⊗Q)y ⊗
Λ2X∗d) implies that δ1(∆2) = 0. Therefore, C(Π) belongs to the image of

(AJkn(M),d)y ⊗X∗d
δ1−→ (SkU∗ ⊗Q)y ⊗ Λ2X∗d (69)

Now, observe that

(AJkn(M),d)y ⊕ (S≤kU∗ ⊗Q)y (70)

has a structure of SX∗d comodule, and the map (69) is part of the complex which
computes its Spencer cohomology. The second coboundary of this complex is the usual
Spencer coboundary

(SkU∗ ⊗Q)y ⊗ Λ2X∗d
δ2−→ (Sk−1U∗ ⊗Q)y ⊗ Λ3X∗d (71)

Since C(Π) is in the image of (69), we have δ2C(Π) = 0, as we claimed.
The only thing that remains it to prove that (65) is exact. This is equivalent to the

equality

dim (AR,d−1)y = dim (AR,d)y − dim ((AR,d)y)Xd−1
(72)

where ((AR,d)y)Xd−1
denotes the subspace of (AR,d)y consisting of those elements which

vanish under contraction by all vectors in Xd−1.
Denote by Rd−1,Xd−1

(resp. Rd,Xd) the subset of Rd−1 (resp. Rd) consisting of those
planes whose projection to U equals Xd−1 (resp. Xd). Recall that Rd−1,Xd−1

is an affine
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space modeled on (AR,d−1)y and Rd,Xd is an affine space modeled on (AR,d)y. Moreover,
we have an affine bundle

Rd,Xd → Rd−1,Xd−1
(73)

modeled on the trivial vector bundle with fiber ((AR,d)y)Xd−1
. Therefore, we have

dim AR,d = dim AR,d−1 + dim((AR,d)y)Xd−1
(74)

as we wanted.

4.8 Following the same strategy as in the case d = n, one may now prove

Theorem 4.8.1. Let R ⊆ Jkn(M) be a smooth k-th order differential equation. Let
d ≤ n and assume that Rd is j-regular for all j and that sd is constant. Suppose that
Rd → Gg

d(U) is a surjective submersion and that every plane Πd−1 ∈ Rd−1 extends to a
plane Πd ∈ Rd. Let l ≥ 0. If Rd−1 is integrable to order l then Rd is integrable to order

l. Moreover, every jet in R
(l)
d−1 may be extended (smoothly) to a jet in R

(l)
d .

This is related to the Cartan-Kahler theorem in the theory of analytic exterior
differential systems (see [1]).

One possible strategy for proving that a differential equation is formally integrable
is to try to apply theorem 4.8.1 inductively for Rd, 1 ≤ d ≤ n. It turns out that the
class of equations for which this is possible are the involutive equations.

Theorem 4.8.2. Let R ⊆ Jkn(M) be a smooth k-th order differential equation with
constant Cartan characters. The following are equivalent

1. R is involutive.

2. For every plane Πd−1 ∈ Rd−1 (with 1 ≤ d ≤ n) there exists Πd ∈ Rd with
Πd−1 ⊆ Πd.

Proof. First, assume that 2 holds. Observe that one may construct points in Rn = R(1)

by induction, starting with elements in R0 = R, and so we have that πk+1,k : R(1) → R
is surjective. Now, let y ∈ R and choose a generic flag X0 ⊆ X1 ⊆ . . . Xn for Uy. Let
(Rd)Xd be the submanifold of Rd,y consisting of those planes Πd whose projection to Uy
equals Xd. Observe that we have a chain of projections

R(1)
y = Rn,y → (Rn−1)Xn−1 → (Rn−2)Xn−2 → . . .→ (R1)X1 → {y} (75)

where the map (Rd)Xd → (Rd−1)Xd−1
sends Πd to the lift of Xd−1 to Πd. Each (Rd)Xd

is an affine space and the projection (Rd)Xd → (Rd−1)Xd−1
is an affine bundle modeled

on the trivial vector bundle with fiber ((AR,d)y)Xd−1
. Therefore, one has

dimAk+1
R,y =

n∑
d=1

dim((AR,d)y)Xd−1
(76)
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Now, the space ((AR,d)y)Xd−1
may be computed as the kernel of

AkR,y ⊗ (Xd/Xd−1)∗
δ1−→ (Sk−1U∗ ⊗Q)y ⊗X∗d−1 ⊗ (Xd/Xd−1)∗ (77)

and so we have ((AR,d)y)Xd−1
= (AkR,y)Xd−1

⊗ (Xd/Xd−1)∗. The equality (76) becomes

dimAk+1
R,y =

n∑
d=1

dim(AkR,y)Xd−1
(78)

and so AkR,y satisfies Cartan’s test for involutivity.
Conversely, if R is involutive, for each y ∈ R and generic flag X0 ⊆ Xn for Uy we

have that (76) holds. Observe that each map in (75) is a morphism of affine spaces.
From (76) we get that all the maps in (75) are surjective, and the theorem follows.

As we commented before, the formal integrability of involutive equations actually
follows from 3.3.2, so this inductive approach is not needed in order to find solutions.
Nevertheless, there are some advantages to knowing that a formally integrable equa-
tion is involutive. For instance, one may estimate the size of the space of solutions to
involutive equations, using that such estimates are possible for each initial value prob-
lem. Moreover, the construction of Spencer complexes in the linear theory (essentially,
resolutions of the sheaf of solutions to formally integrable linear differential equations)
becomes specially simple in the involutive case. We refer the reader to [1] for a full
discussion of involutivity and the applications mentioned above.
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Chapter IV

Equivalence Problems

In this chapter we study Cartan’s method for obtaining a complete set of invariants of
a geometric structure. This is also called the equivalence method, since it may be used
to decide when two structures are locally isomorphic (at least in the analytic case).

In section 1 we introduce the concept of a G-structure on a manifold M . This is
a reduction of the structure group of the principal GLn(R) bundle of frames FM to
a subgroup G ⊆ GLn(R). Several classic geometric structures may be interpreted in
this way. For example, On(R)-structures correspond to Riemannian metrics, and in the
2n-dimensional case GLn(C)-structures correspond to almost complex structures. We
define the essential torsion of a G-structure, which is the obstruction for the structure
to being flat to second order. Equivalently, this is the obstruction to the existence of
torsion free connections for the structure.

In section 2 we begin the study of Cartan’s method. We first show how this works
in the case when G is the trivial group, in which case the method gives a complete
set of invariants for a coframing on a manifold (i.e., a trivialization of the cotangent
bundle). We then present the general case, which consists of three steps: normalizing
the invariants to reduce the structure group, checking if the conditions of our formal
integrability theorem hold, and prolongation.

Section 3 is an introduction to the theory of semi-holonomic jets. In the same way
that k-jets of submanifolds of a manifold M correspond in coordinates to polynomials
of degree k in commuting variables, semi-holonomic jets correspond to polynomials of
degree k in non-commuting variables. Most of the definitions and results in this section
have a holonomic analogue found in the earlier chapters of this thesis.

In section 4 we discuss the theory of semi-holonomic higher order G-structures.
These are needed in order to understand the process of prolongation in the equivalence
method. We define the total curvature of a higher order G-structure and prove our main
equivalence result which shows that, if a structure has been normalized, the derivatives
of its total curvature completely characterize it (at a formal level), provided that certain
Spencer cohomology groups vanish. We finish by giving a complete description of the

71
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equivalence method and prove that it terminates in a finite number of steps.

1 G-Structures

1.1 Let M be an n-dimensional manifold. Let Jkiso(M,Rn) be the open subset of
Jkn(M×Rn) consisting of those k-jets which are transverse to the horizontal and vertical
distributions TM and TRn on M×Rn. In other words, Jkiso(M,Rn) consists of the k-jets
of diffeomorphisms between M and Rn.

We define the k-th order frame bundle of M as F k(M) = π−1
k,0(M × {0}). In partic-

ular, F (M) = F 1(M) is the bundle of frames of M (where a frame at x ∈ M consists
of a basis for the tangent space TxM). Observe that Jkiso(M,Rn) = F k(M)× Rn.

We have an isomorphism TM = TRn of bundles over J1
iso(M,Rn). Let θ1, . . . , θn

be the induced basis for T ∗M . These are called the tautological (or canonical) forms.
Observe that the forms θi − dxi give a basis for the contact forms on J1

iso(M,Rn).
Moreover, the contact distribution on J1

iso(M,Rn) = F (M) × Rn may be identified
with TF (M). An n-dimensional plane Π ⊆ TωF (M) induces an integral element of
the contact system at (ω, x) ∈ F (M)× Rn = J1

iso(M,Rn) if and only if it is transverse
to Vωπ1,0 and dθi|Π vanishes for all i. Therefore, F 2(M) defines a first order equation
on sections of F (M) → M . Solutions to this equation are coframings ωi on M such
that dωi = 0 for all i. Locally, Poincaré’s lemma implies that these define a coordinate
system xi on M such that dxi = θi.

Using the linearization theorem I.2.6.3 in the case of the bundle ξ : M × Rn → M ,
we have that V (ξ(k)) = Jkn(R → M). When working over Jkiso(M,Rn), this may be
identified with Jkn(Rn ×Rn → Rn) =

⊕
0≤j≤k S

jRn∗ ⊗Rn. Let ψaI be the induced basis
on V π∗k,0, where 1 ≤ a ≤ n and I is a symmetric multi-index of length 1 ≤ |I| ≤
k. When working over Jk+1

iso (M,Rn), the universal bundle complements the vertical
distribution V πk,0, and so we have a trivialization of T ∗Jkiso(M,Rn) given by the forms
θi, dxa, ψaI . Observe that the forms θi and ψaI annihilate the distribution TRn, and so
they may be thought of as forms on F kM . These give a trivialization of T ∗F kM over
F k+1M , and are called the canonical forms on F k+1M . From this, we get an embedding
F k+1M ⊆ FF kM .

The contact bundle on Jk+1
iso (M,Rn) is spanned by the forms θi−dxi, ψaI . The projec-

tion Jk+1
iso (M,Rn)→ F k+1M induces an isomorphism between the contact distribution

and the bundle TF k+1M . An n-dimensional subspace Π ⊆ TωF
k+1M complementing

V πk+1,k corresponds to an integral element of the contact system on Jk+1
iso (M,Rn) if and

only if the forms dθi and dψaI vanish when restricted to Π. Therefore, F k+2M may be
considered as a first order equation on sections of F k+1M → F kM . The contact system
for this equation is spanned by the forms θi, ψaI (where 1 ≤ |I| ≤ k+ 1). From this, one
may see, inductively, that F k+2M is the k-th prolongation of the first order equation
F 2M on sections of FM →M .
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1.2 Let G ⊆ GLn(R) be a Lie subgroup. A G-structure on M is a reduction FG of the
structure group of the GLn(R) principal bundle F (M) to G. In other words, this is a
subfibered manifold FG ⊆ F (M) such that the right GLn(R) action on F (M) restricts
to an action of G on FG giving FG the structure of a principal G-bundle.

The submanifold FG×Rn ⊆ F (M)×Rn = J1
iso(M,Rn) is a first order equation. Its

symbol is the vertical distribution on FG, which is a trivial bundle with fiber g the Lie
algebra of G. For each ω ∈ FG, the curvature of the equation at a point (ω, x) does
not depend on x, and belongs to the space H2,2(g). This gives a section of the trivial
bundle with fiber H2,2(g) over FG called the essential torsion of the G-structure.

The prolongations of FG × Rn have the form F k
G × Rn ⊆ F k(M) × Rn. The G-

equivariant sections of F 2
G → FG are in correspondence with distributions H on FG

transverse to the vertical, such that the two-forms dθi vanish along H. These are
the torsion free principal connections on FG. Therefore, the vanishing of the essential
torsion of the G-structure is equivalent to the existence of a torsion-free connection.

Set g(1) = (Rn∗⊗ g)∩ (S2Rn∗⊗Rn). If the essential torsion vanishes then F 2
G → FG

is an affine bundle modeled on the trivial bundle with fiber g(1). Therefore, principal
connections are an affine bundle modeled on the vector space of G-equivariant sections
of FG × g(1), which is the same thing as the space of sections of the bundle associated
to FG with fiber g(1).

We may interpret a torsion free principal connection as giving a (G-equivariant)
way of extending frames in FG to 2-jets of coordinate systems in F 2

G. In the presence of
such a connection, one has a distinguished class of 2-jets of coordinate systems on M .

Fix a torsion free principal connection ∇ on FG. Let s : FG → F 2
G be the associated

section. Consider the second order differential equation R∇ = im(s)×Rn ⊆ J2
iso(M,Rn).

Solutions of this equation are in correspondence with local (connection preserving) iso-
morphisms between (M,FG) and Rn with the canonical (flat) G-structure and connec-
tion.

Observe that we have A0
R∇

= Rn, A1
R∇

= g and AjR∇ = 0 for j ≥ 2. The curvature
of R∇ is then a G-equivariant function from R∇ = FG × Rn to H2,2(g) = ker(δ2 :
g⊗Λ2Rn∗ → Rn ⊗Λ3Rn∗). This is invariant under Rn, and may be identified with the
curvature of the connection ∇. The fact that δ2 annihilates the curvature of ∇ is called
the second Bianchi identity.

We may also consider R∇ as a first order differential equation on submanifolds of
FG×Rn. Then R∇ is induced by a distribution as in III.3.4. By the Frobenius theorem,
if the curvature vanishes then (FG,∇) is locally isomorphic to Rn.

Example 1.2.1. Consider the case when G is the orthogonal group On(R). An On(R)-
structure FOn(R) on an n-dimensional manifold M is the same as a Riemannian metric
on M , so that FOn(R) is the bundle of orthonormal frames for the induced metric.

Example II.2.4.2 shows that o
(1)
n and H2,2(on) vanish. This implies that there exists a

unique torsion free connection (indeed, the usual proof of the existence and uniqueness
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of the Levi-Civita connection depends on the same arguments that we used to show
that those two spaces vanish).

The Levi-Civita connection gives us a distinguished class of 2-jets of coordinate
systems around each point q ∈ M . The property that these coordinate systems have
is that the metric is Euclidean to the first order. That is, if we let x1, . . . , xn be one
such system, then the metric g at q is the Euclidean metric (dx1)2 + . . .+ (dxn)2, and
the directional derivatives ∂g

∂xi
vanish at q. This is called a normal coordinate system,

and is usually constructed using the exponential map (which, of course, depends on the
existence of a connection compatible with the metric).

The curvature of the Levi-Civita connection is the obstruction to the existence of
3-jets of coordinate systems where the metric is Euclidean to the second order. This
is a manifestation of the fact that the curvature coefficients arise in the second order
Taylor expansion of the metric in a normal coordinate system.

2 Cartan’s Method

2.1 Let FG and F ′G be G-structures on two n-dimensional manifolds M and M ′. The
equivalence problem asks if there exists a local isomorphism between (M,FG) and
(M,F ′G). We already have already solved a particular case of this: a On(R)-structure
is locally isomorphic to Rn if and only if the curvature vanishes.

A basic case of this is when G is the trivial group e. In this case, a e-structure on
M is a coframe ω1, . . . ωn (i.e., a global trivialization of T ∗M). Given (M,ω), (M ′, ω′)
two e-structures, the equivalence problem asks if there exists a (locally defined) diffeo-
morphism ψ : M →M ′ such that ψ∗ω′i = ωi for all i.

Write dωi = λijkω
j ∧ ωk. The numbers λijk are called the structure coefficients of

the coframe ω. They define a smooth function λ : M → Rn ⊗ Λ2Rn∗. More generally,
for each K ≥ 0 one may consider the derivatives ∂|I|

∂wI
(λ) of λ for |I| ≤ K. This may be

considered as a function DKλ : M → S≤KRn∗⊗ (Rn⊗Λ2Rn∗). We say that λ stabilizes
at order K around q ∈M if DKλ and DK+1λ have constant rank near q, and both ranks
are the same. It is easily seen that λ stabilizes at order n around q for q in an open dense
subset of M . If λ stabilizes at order K around q, then we may write DK+1λ = fDKλ for
some (locally defined) section f : S≤KRn∗⊗(Rn⊗Λ2Rn∗)→ S≤K+1Rn∗⊗(Rn⊗Λ2Rn∗).
By the chain rule, the same thing is true for higher order derivatives. Therefore, λ also
stabilizes at order L for all L ≥ K.

Let λ′ be the structure coefficients of ω′. Observe that in order for there to exist
an equivalence sending q ∈ M to q′ ∈ M ′, we must have DKλ(q) = DKλ′(q′) for all
K. Moreover, if λ and λ′ stabilize at order K near q and q′, then necessarily the ranks
of DKλ and DKλ′ are the same, and the images of DK+1λ and DK+1λ′ coincide near
DK+1λ(q). Conversely, we have the following
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Proposition 2.1.1. Let M,M ′ be two n-dimensional manifolds, and let ω and ω′ be
coframes for M and M ′ respectively. Let q ∈ M and q′ ∈ M ′. Suppose that λ and
λ′ stabilize at order K near q and q′. If DK+1λ(q) = DK+1λ′(q′) and the images of
DK+1λ and DK+1λ′ coincide near DK+1λ(q), then there exists a unique local equivalence
sending q to q′.

Proof. Consider the distribution C on M × M ′ defined by the 1-forms ωi − ω′i for
1 ≤ i ≤ n. Local isomorphisms between (M,ω) and (M ′, ω′) are in correspondence
with n-dimensional integral submanifolds of C.

Let S ⊆M ×M ′ be the subset consisting of the pairs (y, y′) such that DK+1λ(y) =
DK+1λ′(y′). The n-dimensional integral submanifolds of C must necessarily be con-
tained inside S. Near (q, q′), we have that S is a smooth submanifold of codimension r
and the projections S →M and S →M ′ are submersions.

Now, write DK+1λ = fDKλ and DK+1λ′ = f ′DKλ′ near (q, q′). Since the images
of DK+1λ and DK+1λ′ coincide, we may take f = f ′. By the chain rule, we have
DK+2λ = gDKλ and DK+2λ′ = gDKλ′ for the same function g. Therefore, we conclude
that DK+2λ(y) = DK+2λ(y′) for (y, y′) ∈ S near (q, q′).

Observe that the distribution C is spanned by the vector fields Xi = ∂/∂ωi−∂/∂ω′i
for 1 ≤ i ≤ n. The fact that DK+2λ and DK+2λ′ coincide implies that Xi(D

K+1λ −
DK+1λ′) = 0 for all i. Therefore, the distribution C is tangent to S. Since λ−λ′ vanishes
along S, we have that C is Frobenius integrable, and the proposition follows.

Observe that from the proof of the proposition one also gets a local description of
the space of equivalences: it may be parameterised as a smooth manifold of dimension
n− r, where r is the rank of DKλ.

2.2 The general equivalence problem may be solved (in principle) using the method

of Élie Cartan. This algorithm is a systematic way of finding invariants for a given
G-structure. If the invariants for two structures coincide at each step in the algorithm,
then they are shown to be formally equivalent. In the analytic case, this implies the
existence of local isomorphism.

We shall present the method in three steps. The first one is normalization, where
one uses invariants which vary along the fibers of the structure to reduce the structure
group as much as possible. The second one is to check for formal integrability of a
certain differential equation whose solutions are the local equivalences. The third step
is prolongation, where one passes to higher order structures and starts back at step one.

(i) Let (M,FG) and (M ′, F ′G) be two G structures. Let q ∈ M and q′ ∈ M ′. We shall
work in sufficiently small neighborhoods of q and q′. Assume that G is connected, if not
one restricts to the connected components of of the structures. Let T : FG → H2,2(g)
and T ′ : F ′G → H2,2(g) be the essential torsions of the two structures.
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The first step will be to normalize the torsion to reduce the structure groups. A
submanifold S ⊆ H2,2(g) is called a normalizing submanifold if S ∩ O has at most
one point and is transverse for all the orbits O for the right G action on H2,2(g), and
moreover the isotropy of the action is constant along S. Assume that there exists a
normalizing submanifold S with isotropy H such that S intersects the orbit of T (ω)
for every coframe ω ∈ FG. This happens for example if all those orbits coincide, in
which case one may take S to be a single point. If there exists an equivalence sending
q to q′, then the same must be true for the orbits of T ′(ω′) for ω′ ∈ F ′G. In this case,
FH = T−1(S) and F ′H = T ′−1(S) are reductions of the structure groups of FG and F ′G
to H, and the equivalences between FG and F ′G coincide with the equivalences between
FH and F ′H . If H is a proper subgroup of G, one starts the algorithm again with
the reduced structures. Observe that one has to compute the essential torsions again
with the new structures, so it may happen that further normalization of the torsion is
possible after reducing the group.

Now, assume that H = G. This means that the action of G fixes the torsions
T and T ′, which implies that T and T ′ are constant along the fibers of FG and F ′G.
Write dT = ∂

∂ωi
Tωi. This defines a function DT : FG → Rn∗ ⊗ H2,2(g), which is

equivariant under the action of G. We may now repeat the same thing that we did for
T . Assume that there exists a normalizing submanifold S ⊆ Rn∗⊗H2,2(g) with isotropy
H1, intersecting the orbits of the points in the image of DT . The same must be true
for the image of DT ′ if the structures are to be equivalent. If H1 is a proper subgroup
of G, one may reduce the structure group to H1, and start the algorithm again.

If H1 = G, the function DT is constant along the fibers of FG, and we may consider
its derivatives, which define a G-equivariant function D2T : FG → S2Rn∗ ⊗ H2,2(g).
This process goes on, considering at each step derivatives of T of increasing order. If
no further reductions are possible, then all the functions DKT and DKT ′ are constant
along the fibers of the structures, so they may be thought as functions defined on M .

(ii) We now assume that T stabilizes at order K near q, meaning that DKT and
DK+1T have constant rank near q, and both ranks coincide. We may take K = n for q
in an open dense subset of M . If the structures are to be equivalent, then T ′ must also
stabilize at order K around q′. Moreover, we must have that DK+1T (q) = DK+1T ′(q′)
and the images of DK+1T and DK+1T ′ must coincide near DK+1T (q).

Let R ⊆ J1
iso(M,M ′) be the first order differential equation consisting of those

1-jets of diffeomorphisms compatible with the G-structures. Solutions of R are in
correspondence with (local) equivalences between (M,FG) and (M ′, F ′G). Let S ⊆
M ×M ′ be the submanifold defined by the equation DK+1T = DK+1T ′. Observe that
all the solutions of R have to be contained inside S. Let R|S = J1

n(S) ∩R.

Proposition 2.2.1. We have that R|S = R∩π−1
1,0(S) and its curvature vanishes. More-

over, if H2,j(g) = 0 for j ≥ 3, the equation R|S is formally integrable.
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Proof. This goes along the same lines as the proof of proposition 2.1.1. Let ω and ω′

be sections of FG and F ′G. Then there is an induced section ψ of R over M ×M ′, whose
value at a point (y, y′) is the isomorphism ψy,y′ : TyM → Ty′M

′ such that ψ∗y,y′ω
′ = ω.

From this, we get a trivialization R = M×M ′×G, where the point (y, y′, g) corresponds
to the isomorphism ψy,y′g such that (ψy,y′g)∗(ω′g) = ω. The contact system is defined
by the vector valued 1-form ω − ω′g.

Let z = (y, y′, g) ∈ R∩π−1
1,0(S). Then z is an n-dimensional plane at (y, y′), spanned

by the vectors ∂/∂ωi − ∂/∂(ω′g)i. Using that DK+1T ′ is invariant under the action of
g, we have(

∂

∂ωi
− ∂

∂(ω′g)i

)
(DK+1T −DK+1T ′) =

∂

∂ωi
DK+1T − ∂

∂ω′i
DK+1T ′ (1)

And this vanishes along S by the same arguments as in the proof of 2.1.1. This proves
that R|S = R ∩ π−1

1,0(S), which is the first part of the proposition.
Now, let z = (y, y′, g) ∈ R and Π be the subspace of TzR defined by the equations

ωy−ω′y′g = 0 and dg = 0. We have that d(ω−ω′g)|Π = (dω− (dω′)g)|Π ∈ Rn⊗Λ2Rn∗.
Since the essential torsions T (y) and T ′(y′) coincide, we have that d(ω−ω′g)|Π projects
to zero in H2,2(g), which means that the curvature of R vanishes at z.

The last part of the proposition follows from the fact that the symbol of R|S may
be identified with g after choosing sections ω and ω′ of FG and F ′G.

(iii) If H2,j(g) does not vanish for some j ≥ 3, one fixes a section α : H2,2(g) →
Rn⊗Λ2Rn∗. We consider (non necessarily equivariant) connections on FG with torsion
constant along the fibers, equal to αT : FG → Rn ⊗ Λ2Rn∗. If we fix a basis for g, the
connection forms complement the tautological forms to give a coframing on FG. These
coframings define a g(1)-structure Fg(1) on FG, where g(1) = (Rn∗⊗ g)∩ (S2Rn∗⊗Rn) is
considered as a subgroup of GL(Rn ⊕ g) via L 7→ L+ id. This is called a prolongation
of FG.

Analogously, one constructs a prolongation of F ′G using the same section α. The
following result tells us that both equivalence problems are essentially the same.

Proposition 2.2.2. If ψ : M → M ′ is an equivalence, then its lift ψ(1) : FG → F ′G
is an equivalence of g(1)-structures. Conversely, each equivalence of g(1)-structures ψ̄ :
FG → F ′G is induced by a unique equivalence ψ : M →M ′.

Proof. The first part of the statement is a consequence of the fact that equivalences
preserve the torsion of connections. For the second part, observe that an equivalence ψ̄ :
FG → F ′G of g(1)-structures must be compatible with the canonical forms, that is, ψ∗θ′i =
θi. The distributions defined by the canonical forms are the vertical distributions of FG
and F ′G. Since we are assuming that G is connected, we have that ψ̄ commutes with the
projections FG →M and F ′G →M ′, and therefore we get an induced map ψ : M →M ′.
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Let s and s′ be sections of FG and F ′G such that ψ̄s = s′ψ. Then ψ∗s′∗θ′i = s∗θi for all
i. Since s∗θi and s′∗θ′i are coframes belonging to FG and F ′G, this means that ψ is an
equivalence, as we wanted.

Observe that the result as stated holds for global equivalences (or in neighborhoods
of q and q′). However, one could also allow local equivalences between Fg(1) and F ′

g(1)

in which case the same correspondence holds, modulo a suitable equivalence relation.

The algorithm now starts again at the first step with the prolonged structures,
although some modifications are to be made. Suppose that at some point we normalize
the essential torsion of Fg(1) so that we get an invariant FG → H2,2(g(1)). If this function
is not constant along the fibers of FG, it may be used to reduce the structure group G
to a proper subgroup H. In this case one may start the method again, with the reduced
structure FH .

Further prolongation may be needed. One could simply take, once more, connections
on the bundle Fg(1) → FG, which are simply sections of J1(Fg(1) → FG) over Fg(1) .

However, Fg(1) → FG is not only a g(1)-structure, but there is also an inclusion Fg(1) ⊆
J1
n(FG) as well. Therefore, it is natural to consider sections of the bundle F̃g(1) → Fg(1)

whose fiber over a point y ∈ Fg(1) consists of the lifts of U
(1)
y ⊆ Tπ2,1yFG to TyFg(1) .

Points in F̃g(1) may be thought of as coframes on Fg(1) with values in the vector space

Rn× e, where e is a certain extension of g by the abelian Lie algebra g(1) such that the
vertical distribution of the projection Fg(1) →M is the trivial bundle with fiber e.

The process of prolongation may be better understood in terms of semi-holonomic
higher order G-structures. After discussing this, we shall be in a position to give a
complete description of the method and prove that it terminates in a finite number of
steps.

3 Semi-Holonomic Jets

In this section we give a brief introduction to the theory of semi-holonomic jets. This
is what one gets if one drops the requirement that derivatives should commute when
taking jet prolongation. Most results have a holonomic analogue in the theory that we
discussed earlier in this thesis, so we shall skip the proofs.

3.1 Let M be a differentiable manifold and fix n ≤ dimM . Let U be the universal

bundle on J1
n(M) and Q = TM/U . Set J

〈0〉
n (M) = M and J

〈1〉
n (M) = J1

n(M). The

space J
〈2〉
n (M) of second order semi-holonomic jets of n-dimensional submanifolds of M

is the bundle over J
〈1〉
n (M) whose fiber over a point y ∈ J 〈1〉n (M) consists of the lifts of

Uy to TyJ
〈1〉
n (M). Of course, the space J2

n(M) of (holonomic) 2-jets sits inside J
〈2〉
n (M)
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as the bundle of integral elements of the contact system on J1
n(M). Let U 〈1〉 be the

pullback of the universal bundle on J1
n(J

〈1〉
n (M)) to J

〈2〉
n (M).

Inductively, we define the space J
〈k〉
n (M) of k-th order semi-holonomic jets of n-

dimensional submanifolds of M as the bundle over J
〈k−1〉
n (M) whose fiber over a point

y consists of the lifts of U
〈k−2〉
y to TyJ

〈k−1〉
n (M), where U 〈k−2〉 is the pullback of the

universal bundle on J1
n(J

〈k−2〉
n (M)) to J

〈k−1〉
n (M). Let πk,j : J

〈k〉
n (M)→ J

〈j〉
n (M) be the

canonical projection. Observe that the space Jkn(M) of holonomic k-th order jets is

contained inside J
〈k〉
n (M).

Locally, a coordinate system xi, ua on M extends to coordinates xi, uaI on J
〈k〉
n (M),

where I is a multi-index of length at most k. A point defines a holonomic jet if its
coordinates uaI are symmetric.

Proposition 3.1.1. Let k ≥ 2. The bundle J
〈k〉
n (M)→ J

〈k−1〉
n (M) is an affine bundle

modeled on (U∗)⊗k ⊗Q.

A k-th order semi-holonomic differential operator is a smooth map ϕ : J
〈k〉
n (M) →

M ′, where M ′ is another smooth manifold. As usual, we may form the l-th prolongation
ϕ(l) which is a (partially defined) map from J

〈k+l〉
n (M) to J

〈l〉
n (M ′). The symbol of ϕ is

the map σϕ : (U∗)⊗k⊗Q obtained by restriction of ϕ∗ to V πk,k−1. If l ≥ 2, we have that

ϕ(l) is a affine bundle map over ϕ(l−1) modeled on σ
(l)
ϕ = 1(U∗)⊗l ⊗ σϕ. Prolongation of

the universal differential operator id : J
〈k〉
n (M)→ J

〈k〉
n (M) gives the canonical inclusion

J
〈k+l〉
n (M) ↪→ J

〈l〉
n (J

〈k〉
n (M)).

All the theory may be extended to the fibered case in the usual way. The following
linearization result may be proven inductively

Proposition 3.1.2. 1. There is a short exact sequence of bundles over J
〈k+1〉
n (M)

0→ H̃k → J 〈k〉n (TM →M)→ TJ 〈k〉n (M)→ 0 (2)

where H̃k is the kernel of the canonical map

J 〈k〉n (U → J1
n(M))→ U (3)

2. There is a short exact sequence of bundles over J
〈k+1〉
n (M)

0→ U 〈k〉 → TJ 〈k〉n (M)→ J 〈k〉n (Q→ J1
n(M))→ 0 (4)

3.2 We define the contact distribution on J
〈k〉
n (M) as C̃kn = π−1

k,k−1∗(U
〈k−1〉). As usual,

the Lie bracket induces a form

[·, ·] : Λ2C̃kn → TJ 〈k〉n (M)/C̃kn = J 〈k−1〉
n (Q→ J1

n(M)) (5)
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The induced map

((U∗)⊗k ⊗Q)⊗ U = V πk,k−1 ⊗ U → J 〈k−1〉
n (Q→ J1

n(M)) (6)

has its image contained in (U∗)⊗k−1 ⊗Q, and coincides with contraction.
There is a map

C : J 〈k〉n (M)→ Λ2U∗ ⊗ J 〈k−2〉
n (Q→ J1

n(M)) (7)

given by C(y) = [·, ·]|
U

(k−1)
y

. This commutes with the projections, and the zero locus of

C consists of the holonomic k-th order jets.

3.3 Let k > 0. A k-th order semi-holonomic differential equation on n-dimensional

submanifolds of M is a subset R ⊆ J
〈k〉
n (M). We say that R is smooth if it is a smooth

submanifold of J
〈k〉
n (M). We say that R is (globally, locally, infinitesimally) differentially

closed if it is so considered as a first order equation on submanifolds of J
〈k−1〉
n (M) via

the inclusion J
〈k〉
n (M) ⊆ J1

n(J
〈k−1〉
n (M)). For 1 ≤ j ≤ k, the j-th symbol of a smooth

equation R is defined as

ÃjR = ker(πj,j−1∗|πk,j∗TR) ⊆ (U∗)⊗j ⊗Q (8)

We also set Ã0
R = pQπk,0∗TR, where pQ : TM → Q is the projection to the quotient.

When j > k, we set ÃjR = (U∗)⊗j−k ⊗ ÃkR. The total symbol is then defined as
ÃR =

⊕
j≥0 Ã

j
R.

A smooth equation R is said to be j-regular if ÃjR is a smooth vector bundle over
R. If R is infinitesimally differentially closed and j-regular for all 1 ≤ j ≤ k, then ÃkR
is closed under contraction.

When R is infinitesimally differentially closed, we may form the first semi-holonomic
prolongation of R as R〈1〉 = J

〈k+1〉
n (M) ∩ J1

n(R). If R is regular in degrees k and k + 1,
this is an infinitesimally differentially closed (k+ 1)-th order semi-holonomic equation,
and we have ÃR = ÃR〈1〉 . Moreover, R〈1〉 → R is an affine bundle modeled on Ãk+1

R .
More generally, the l-th semi-holonomic prolongation of R is defined as R〈l〉 =

J
〈k+l〉
n (M) ∩ J 〈l〉n (R), where the intersection is taken inside J

〈l〉
n (J

〈k〉
n (M)). When R is

j-regular for all k ≤ j ≤ k + l − 1, this coincides with the first prolongation of R〈l−1〉.
When R is infinitesimally differentially closed and k-regular, the map (7) restricted

to R〈1〉 induces a well defined map

KR : R→ (Λ2U∗ ⊗ (TR/Ckn|R))/δ1(Ãk+1
R ) (9)

called the total curvature of R, where

δ1 : U∗ ⊗ U∗ ⊗ ((U∗)⊗k−1 ⊗Q)→ Λ2U∗ ⊗ ((U∗)⊗k−1 ⊗Q) ⊆ Λ2U∗ ⊗ (TR/Ckn|R) (10)

is the map induced by wedge product U∗ ⊗ U∗ → Λ2U∗. The zero locus of KR consists
of those holonomic elements of R which extend to a holonomic (k + 1)-jet.
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3.4 Let M be an n-dimensional manifold. Let J
〈k〉
iso (M,Rn) = π−1

k,1(J1
iso(M,Rn)), where

πk,1 : J
〈k〉
n (M × Rn) → J

〈1〉
n (M × Rn) is the projection. This is the space of semi-

holonomic k-jets of diffeomorphisms between M and Rn. We may write J
〈k〉
iso (M,Rn) =

F̃ kM ×Rn. The space F̃ kM is called the k-th order semi-holonomic frame bundle over
M . Observe that the holonomic frame bundle F kM sits inside F̃ kM . It is easily seen
that F̃ kM is the space of semi-holonomic k-jets of sections of FM →M . In particular,
we have that F̃ 2M = J1(FM →M).

Consider the space (Rn∗)⊗≤k ⊗ Rn of polynomials (in non-commutative variables)

of order at most k. Let G̃L
k

n(R) be set of polynomials with zero constant term such
that the term of order 1 belongs to GLn(R) ⊆ R∗ ⊗ Rn. This forms a Lie group under
composition. Observe that the additive group (Rn∗)⊗k⊗Rn embeds as a closed normal

subgroup of G̃L
k

n(R) (where the embedding sends P to P + id). We have an exact
sequence

0→ (Rn∗)⊗k → G̃L
k

n(R)→ G̃L
k−1

n (R)→ 1 (11)

There is another, more convenient description of this group. Consider the frame
bundle FRn = Rn × GLn(Rn). The group structure in the fibers prolongs to give
a group structure in the fibers of F̃ kRn → Rn. It turns out that the fibers may be

identified with G̃L
k

n(R). Moreover, we have the following

Proposition 3.4.1. Let k ≥ 0. The bundle F̃ kM → M is a principal bundle with

structure group G̃L
k

n(R). Moreover, for k ≥ 2 we have that F̃ kM/((Rn∗)⊗k ⊗ Rn) =
F̃ k−1M .

The holonomic frame bundle F kM is then a reduction of the structure group of
F̃ kM to the group GLkn(R) of k-jets of automorphisms of Rn at 0.

4 Higher Order G-Structures

4.1 Let k ≥ 0 and G ⊆ G̃L
k

n(R) be a Lie subgroup. A (semi-holonomic) k-th order
G-structure on an n-dimensional manifold M is a reduction FG of the structure group of
F̃ kM to G. If FG is contained inside F̃ kM then the structure is said to be holonomic. It
is common in the literature to define higher order structures to be holonomic, however
we need the more general concept in order to deal with possibly non-vanishing torsion in
the last step of the equivalence method. Indeed, after the first prolongation, Fg(1) may
be thought of as a second order structure on M , which is holonomic if and only if the
torsion vanishes. From now on we shall assume all our structures to be semi-holonomic.

Let g be the Lie algebra of G. For each 1 ≤ j ≤ k, set

Ãjg =
(
g ∩ (Rn∗)⊗≥j ⊗ Rn

)
/
(
g ∩ (Rn∗)⊗≥j+1

)
⊆ (Rn∗)⊗j ⊗ Rn (12)
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In the case j = 0, we let Ãjg = Rn. When j > k, let Ãjg = (Rn∗)⊗j−k ⊗ Ãkg . Set

Ãg =
⊕

j≥0 Ã
j
g.

Observe that FG×Rn is a k-th order equation on sections of M ×Rn →M , and its
total symbol is a trivial bundle with fiber Ãg.

For each 0 ≤ j ≤ k, let Gj be the image of G under the projection F̃ kM → F̃ jM .
We have exact sequences

0→ Ãjg → Gj → Gj−1 → 0 (13)

Let FGj = πk,jFG. This is a j-th order Gj-structure on M . Observe that the vertical

distribution of the projection FGj → FGj−1
is a trivial bundle with fiber Ãjg.

We say that a k-th order structure FG is differentially closed if the corresponding
k-th order equation FG×Rn is differentially closed (in this case, the notions of globally,
locally and infinitesimally differentially closed coincide). When this happens, Ãg is
closed under contraction by vectors in Rn. Observe that first order structures are
always differentially closed.

When FG is differentially closed, we may form its first (semi-holonomic) prolongation

F
〈1〉
G which is the bundle over FG whose fiber over a point y consists of the lifts of

U
(k−1)
y to TyFG. Alternatively, we have F

〈1〉
G = F̃ kM ∩ J1

n(FG). This is a (k + 1)-th

order differentially closed structure for the group G〈1〉 ⊆ G̃L
k+1

n (R) consisting of those
polynomials whose terms of order at most k belong to G, and with the term of order k+1
belonging to Ãk+1

g . Inductively, one may define the l-th semi-holonomic prolongation

F
〈l〉
G as F

〈l−1〉〈1〉
G .

In general, if FG is not differentially closed, one may form its clausure as follows.
First, replace FG with F

〈k−1〉
G1

∩ FG. Then, replace the new FG with F
〈k−2〉
G2

∩ FG. In

general, in the step i we replace FG with F
〈k−i〉
Gi

∩FG. At the end of this process, one is
left with the largest differentially closed k-th order structure contained in the original
one.

4.2 Let FG be a differentially closed k-th order G-structure on the n-dimensional
manifold M . The total curvature KR of the semi-holonomic equation FG × Rn ⊆
J
〈k〉
iso (M,Rn) restricts to a map

KFG : FG → (Λ2Rn∗ ⊗ (gk−1 ⊕ Rn))/δ1(Ãk+1
g ) (14)

where gk−1 is the Lie algebra of Gk−1 and

δ1 : Rn∗ ⊗ Rn∗ ⊗ ((Rn∗)⊗k−1 ⊗ Rn)→ Λ2Rn∗ ⊗ ((Rn∗)⊗k−1 ⊗ Rn) (15)

is the map induced by wedge product. The map KFG is called the total curvature of
FG.
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Example 4.2.1. Let FG be a first order G-structure and ∇ : FG → FG〈1〉 be a section
(i.e., a connection). The image of ∇ is a differentially closed second order G-structure
(where G embeds into GL2

n(Rn) as a subgroup of the homogeneous polynomials of order
1). In this case, Ãk+1

g = 0, and the total curvature is a map from FG to Λ2Rn∗⊗(g⊕Rn).
The components of this map are the curvature and the torsion of ∇.

Observe that if KFG is constant in the fibers of πk,0|FG , we may write dKFG =
∂
∂θi
KFGθi, where θi are the canonical forms on FG. The derivatives ∂

∂θi
KFG are defined

on FG1 . In the same way, if the first l derivatives of KFG are defined on M , we may
form the (l + 1)-th total derivative Dl+1KFG , which a function on FG1 .

We say that FG has been normalized if KFG and all its derivatives are defined on
M . If FG has been normalized, we say that KFG stabilizes at order K if DKKFG and
DK+1KFG have (locally) constant rank and both ranks coincide. We may set K = n if
we restrict to an open dense subspace of M .

The following proposition restricts the possible values that the lie algebra g may
take when the structure has been normalized.

Proposition 4.2.2. Let G ⊆ G̃L
k

n(R) be a closed subgroup, and let FG be a normalized
differentially closed G-structure on M . Then Ãjg ⊆ SjRn∗ ⊗ Rn for all 0 ≤ j ≤ n.

Proof. Let 1 ≤ j < k and let z, w be two points in FGj+1
such that πj+1,jz = πj+1,jw.

Then by the semi-holonomic analogue of proposition III.3.2.1, we have

0 = C(w)− C(z) = δ1(z − w) (16)

where z − w is considered as an element of

(Rn∗ ⊗ Rn∗ ⊗ (Rn∗)⊗j−1) ∩ Ãj+1
g (17)

and C is the map on J
〈j+1〉
iso (M,Rn) given by (7). It follows that elements of Ãj+1

g are
symmetric in the first two entries. By induction, we have the desired result.

When this happens, we let Ajg = Ãjg for j ≤ k, and

Ajg = (Sj−kRn∗ ⊗Akg) ∩ (SjRn∗ ⊗ Rn) (18)

for j ≥ k. Then Ag =
⊕

j≥0Ajg is a SRn∗ comodule, so it makes sense to compute its
Spencer cohomology, which shall be denoted by H(g).

4.3 We now state our main equivalence result for higher order structures. As usual,
we shall only conclude the existence of formal equivalences, i.e., jets of infinite order of
equivalences. The precise meaning of this will be clear from the proof. In the analytic
category, this implies the existence of local equivalences.
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Theorem 4.3.1. Let M,M ′ be two n-dimensional manifolds. Let FG, F
′
G be two nor-

malized differentially closed k-th order G-structures on M and M ′ such that the total
curvatures KFG and KF ′G stabilize at order K. Let q, q′ be two points in M,M ′ such

that DK+1KFG(q) = DK+1KF ′G(q′) and the images of DK+1KFG and DK+1KF ′G coincide

near DK+1KFG(q). If H2,j(g) = 0 for j ≥ k + 2, there is a formal equivalence between
FG and F ′G sending q to q′.

Proof. The proof will generalize the proofs of propositions 2.1.1 and 2.2.1. We shall first
define a semi-holonomic k-th order differential equation on submanifolds of M ×M ′,
whose solutions are in correspondence with (local) equivalences between the structures.
Then we restrict to a submanifold of M ×M ′ so that the equation becomes holonomic,
and use the vanishing of the cohomology to conclude that it is formally integrable.

Let ψ1 : FM × FM ′ → J1
iso(M,M ′) be the map which sends each pair of coframes

(ω, ω′) over a pair (y, y′) ∈ M ×M ′ to ω′−1ω : TyM → Ty′M
′. From this, one gets an

inclusion
F̃ 2M × F̃ 2M ′ ⊆ J1

n(FM × FM ′ →M ×M ′) (19)

The restriction of (ψ1)〈1〉 defines a map

ψ2 : F̃ 2M × F̃ 2M ′ → J
〈2〉
iso (M,M ′) (20)

Proceeding inductively, for all j one may construct a Gj-invariant map

ψj : F̃ jM × F̃ jM ′ → J
〈j〉
iso(M,M ′) (21)

which gives F̃ jM × F̃ jM ′ the structure of a principal Gj bundle over J
〈j〉
iso(M,M ′).

Let R be the image of ψk|FG×F ′G . This is a differentially closed k-th order semi-
holonomic equation, regular in all degrees, whose solutions are in correspondence with
local equivalences between FG and F ′G. The pullback of the symbol ÃR over ψk is a
trivial bundle and sits in an exact sequence of SRn∗ comodules

0→ Ãg → Ãg × Ãg → ÃR → 0 (22)

where the first map is the diagonal. From this we have that ÃjR ⊆ SjT ∗M ⊗ TM ′ for
j ≤ k. Therefore, we may define AjR = ÃjR for j ≤ k and

AjR = (Sj−kT ∗M ⊗ TM ′ ⊗AkR) ∩ (SjT ∗M ⊗ TM ′) (23)

for j ≥ k. The sum AR =
⊕

j≥0A
j
R is a bundle of ST ∗M comodules over R. The

pullback of AR via ψk is a trivial bundle with fiber isomorphic to Ag. Therefore, we
have that H2,j(AR) = 0 for all j ≥ k + 2.

Now, let S be the subset of M×M ′ where the equality DK+1KFG = DK+1KF ′G holds.

We work near (q, q′), so that S is smooth. Let R|S = R ∩ J 〈j〉n (S). The same argument
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as in proposition 2.2.1 shows that π−1
1,0(S) ∩ πk,1(R) = J1

n(S) ∩ πk,1R. Now, if z ∈
π−1

2,0(S)∩πk,2R, we have that U
〈1〉
z is tangent to J1

n(S) and therefore z ∈ J 〈2〉n (S)∩πk,2R.

Proceeding inductively, we get R|S = π−1
k,0(S) ∩R.

From (22) we see that the total curvature of R|S vanishes. This means that R|S ⊆
Jkn(M ×M ′) is a holonomic equation integrable to first order. Since H2,j(R|S) = 0 for
j ≥ k + 2, we conclude that R|S is formally integrable, and the result follows.

It is also common to formulate this result requiring that H l,j(g) vanishes for l ≥ 0
and j ≥ k+2. In this case, R is involutive and one may estimate the size of the solution
space.

In the case when Ajg = 0 for some j > 0, the equation R may be prolonged until it
becomes a Frobenius system. In this case, one does not need analiticity to guarantee the
existence of solutions. This happens, for example, in the case of Riemannian manifolds.

4.4 We now give an full description of Cartan’s method for obtaining a complete set
of invariants for a first order structure. Let M be an n-dimensional manifold and FG
be a first order G-structure on M .

(i) Suppose that FG is not normalized, so that for some K, the derivative DKK does
not descend to M . Choose a normalizing manifold for DKK and use this to reduce
the structure group to a proper subgroup H. This reduced structure may not be
differentially closed. Let j be the least index such that Hj ( Gj. Start again with the
j-th order structure FHj .

(ii) If FG is normalized, and H2,j(g) = 0 for j ≥ k + 2 then the derivatives of the
curvatures of FG constitute the desired invariants and the algorithm terminates.

(iii) If FG is normalized but H2,j(g) 6= 0 for some j ≥ k + 2, start the algorithm again

with the first semi-holonomic prolongation F
〈1〉
G .

Observe that we are assuming, at each step, that normalizing submanifolds exist.
This may not be the case, and the method may be generalized to take into account these
situations, however we shall not be concerned with this case. Moreover, the algorithm
and the invariants obtained depend on the choice of normalizing submanifolds at each
step.

In principle, one could need an arbitrary number of prolongations to reach a com-
plete set of invariants, however in practice most problems do not require more than
two. In any case, the algorithm is guaranteed to finish in finite time:

Theorem 4.4.1. Cartan’s algorithm terminates after a finite number of steps.
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Proof. Suppose that we may choose normalizations so that the algorithm does not
terminate. Observe that we have to perform step (iii) an infinite number of times.
Indeed, each normalization either diminishes the order of the structure or the dimension
of the group, so after a finite number of normalization one is forced to go to step (ii) and
then to step (iii). Let F (0), F (1), . . . be the normalized differentially closed structures
that we have each time that we go to step (iii) (before prolongation), where F (i) is a
k(i)-th order structure for the group G(i). Let g(i) be the Lie algebra of G(i).

Since G(i + 1)1 ⊆ G(i)1 for all i, there exists m1 such that G(i + 1)1 = G(i)1 for
all i ≥ m1. Take m1 to be the minimum of those integers. Observe that we must have
k(m1) = 1 and k(i) > 1 for all i > m1. In the same way, there exists m2 > m1 such that
G(i + 1)2 = G(i)2 for all i ≥ m2. Taking m2 to be minimum, we have that k(m2) = 2
and k(i) > 2 for i > m2. Inductively, one constructs an increasing sequence mk such
that G(i+ 1)k = G(i)k for all i ≥ mk, and furthermore k(mk) = k and k(i) > k for all
i > mk.

Now, Ag(mk) is a decreasing sequence of SRn∗ subcomodules of SRn∗ ⊗ Rn. Since
SRn is a Noetherian ring, there exists k0 such that Ag(mk+1) = Ag(mk) for all k ≥ k0. Let
j0 ≥ mk0 be a natural number such that H2,j(Ag(mk0 )) = 0 for all j ≥ j0 + 2. It follows
that the algorithm terminates after reaching F (j0), which is a contradiction.

This algorithm may be used to solve the formal equivalence problem for first orderG-
structures, in the following way. Suppose that we are given two first order G-structures.
We run the algorithm on both of them, trying to use the same normalizations for both
at each step. If this is not possible, then the two structures cannot be equivalent. If
one is able to do this, in the end one arrives a two k-th order structures for which
the equivalence problem has the same solutions as the original one. Then (away from
singularities) the original problem has a formal solution if and only if the derivatives of
the curvatures coincide in the sense given by theorem 4.3.1.

The observation that makes this work is that after each step in the algorithm, the
equivalences between FG1 and F ′G1

coincide with the equivalences between FG and F ′G,
and moreover they are the same as the equivalences in the initial problem. This does
not hold if we start the algorithm with k-th order structures: one may be forced to
reduce them to structures of order less than k, which may cause new equivalences to
appear. Therefore, this method may not be directly applied for higher order structures.
However, if one is given a k-th order G-structure FG, its first semi-holonomic prolon-
gation F

〈1〉
G may be interpreted as a first order structure on FG for the abelian group

Ak+1
g . It may be seen that the solutions to an equivalence problem for G-structures

are in correspondence with the solutions to the corresponding equivalence problem for
Ak+1

g -structures (see 2.2.2 for the case k = 1), and so one may always assume that the
starting structure is of first order.
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