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Introduccion

El objetivo de esta tesis es presentar algunas aplicaciones del algebra homoldgica a las
ecuaciones en derivadas parciales no lineales. Nos concentraremos en particular en la
teoria formal de ecuaciones diferenciales, en la que se trabaja al nivel de series formales
de potencias, sin requerir condiciones de convergencia. Varias construcciones homologi-
cas aparecen naturalmente al estudiar sistemas de ecuaciones sobredeterminados, los
cuales pueden poseer obstrucciones a la existencia de soluciones.

La teoria sera desarrollada de manera intrinseca, usando espacios de jets. Este es el
contexto natural para estudiar ecuaciones provenientes de la geometria, en las cuales
no hay un sistema de coordenadas preferencial. Mas atin, este punto de vista es esencial
para tratar problemas globales, en los cuales no existe la posibilidad de trabajar en
coordenadas.

Sea M una variedad diferencial y fijemos n < dim M. Diremos que dos subvariedades
de dimension n que contienen a un punto ¢ € M definen el mismo jet de orden k en ¢ si
tienen orden de contacto al menos k en ¢. El espacio de jets de orden k de subvariedades
de dimensién n en ¢ se denota Jrlf(M)q, y denotaremos J¥(M) = Ugenrr J,’f(M)q.

Una ecuacion diferencial de orden k en las subvariedades de dimension n de M es
un subconjunto R C J¥(M). Se puede pensar a R como una restriccién en los posibles
k-jets de subvariedades. Una solucién de R es una subvariedad N C M de dimension n
tal que su k-jet en todo punto pertenece a R.

Esto generaliza la definicién usual en coordenadas, como sigue. Supongamos dado

un sistema de ecuaciones diferenciales parciales para funciones u : R — R*®

G (x,u(x), %@:)) —0 (1)

donde G : R*™™("2") 5 R* e I recorre los multi-indices de longitud a lo sumo k.
Puede verse que el sistema (1) define una ecuacién diferencial R C J*(R™ x R®), cuyas
soluciones son exactamente los gréficos de soluciones de (1).

Reciprocamente, si 2t, ..., 2" u!, ..., u® son coordenadas locales en una variedad M,
podemos describir (casi todas) las subvariedades de M como el grafico de una funcién
u : R" — R*. Cualquier ecuacién diferencial R C J*(M) toma la forma (1) en este
sistema de coordenadas.
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Es comin también desarrollar esta teoria empezando con una variedad fibrada ¢ :
E¢ — M (o sea, una submersion suryectiva). En este caso, los objetos de interés son los
espacios J*(§) de k-jets de secciones de &, y uno puede definir una ecuacién diferencial
en secciones de & como un subconjunto R C J*(¢). Como antes, las secciones de £ se
identifican con ciertas subvariedades del espacio total E, asi que nuestro punto de vista
es mas general. Sin embargo, esto sigue siendo un caso muy importante. Por ejemplo,
si empezamos con un fibrado trivial £ : M; x My — M, podemos hablar de ecuaciones
diferenciales en funciones f : My — Ms. En el caso en que £ es un fibrado vectorial, se
puede desarrollar la teoria de ecuaciones diferenciales lineales en forma intrinseca.

Otro enfoque geométrico usado para estudiar ecuaciones en derivadas parciales
estd dado por los sistemas diferenciales exteriores. Estos son ecuaciones de primer orden
muy particulares, definidas a partir de un ideal diferencial del algebra de formas dife-
renciales en la variedad. Resulta que dada cualquier ecuacién R C J¥(M) de orden k,
existe un sistema diferencial exterior definido sobre R cuyas soluciones estan en corres-
pondencia con las soluciones de R. Esta teoria fue usada con muy buenos resultados por
Elie Cartan (quien, en particular, introdujo las formas exteriores de grado mayor que
3 y la derivada exterior), continuando trabajos previos de Pfaff, Frobenius y Darboux
sobre el problema de Pfaff. Un desarrollo moderno de esta teoria puede encontrarse en
[1].

La principal herramienta algebraica usada en esta tesis es la cohomologia de Spencer
de comodulos graduados sobre una coalgebra de polinomios. Dado un espacio vectorial
V' de dimensiéon n sobre un cuerpo de caracteristica cero, y un comédulo graduado
A sobre la codlgebra SV*, pueden construirse ciertos espacios vectoriales graduados
HY(A) = @y, H*(A), la cohomologia de Spencer de A. Asumiendo condiciones de
finitud, estos espacios son duales a la homologia de Koszul del SV-moédulo dual. Estos
grupos fueron usados explicitamente por primera vez por Spencer[11, 12] en el contexto
de deformaciones de estructuras dadas por pseudogrupos.

Dada una ecuacién diferencial R C J*(M) de orden k puede definirse, para cada
[ > 0, el l-ésimo prolongado RY, que es una ecuacién diferencial de orden k + {. En
coordinadas, esto se corresponde con agregarle al sistema las derivadas de orden a lo
sumo [ de sus ecuaciones. Decimos que R es formalmente integrable si la proyeccion
R® — RU-D eg una submersién suryectiva para todo [ > 0. Cuando esto ocurre, uno
puede construir soluciones formales a R (en coordenadas, series formales en un punto
que satisfacen la ecuacién y todas sus derivadas) empezando de cualquier punto de R
(es decir, a partir de una solucién infinitesimal).

El primer problema en la teoria formal de sistemas de ecuaciones sobredeterminados
es el de construir las obstrucciones a que una ecuacion sea formalmente integrable.
Luego de trabajos de Bott y Quillen, Goldschmidt [5, 4] construyé las obstrucciones
a la integrabilidad formal, que se encuentran en el segundo grupo de cohomologia de
Spencer de un cierto fibrado de comoédulos asociado al simbolo de la ecuacién.

En la categoria analitica, la integrabilidad formal implica la existencia de soluciones
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formales. Esto se sigue del )-Poincaré estimate de Spencer, demostrado por Ehrenpreis,
Guillemin y Sternberg [2], y mas adelante por Sweeney[13] usando técnicas distintas.
En la categoria C'°, la integrabilidad formal no garantiza la existencia de soluciones.
Un ejemplo de esto fue dado por Lewy|[8].

Otra pregunta fundamental es la existencia de soluciones al problema de valores
iniciales. Supongamos dada una subvariedad N, ; € M de dimensién n — 1, y con-
diciones iniciales a lo largo de N,_; (o sea, una secciéon N,,_; — R). Una solucién al
problema de valores iniciales es una soluciéon N de R con N,,_; C N, que verifique las
condiciones iniciales. Para que puedan existir soluciones, las condiciones iniciales deben
satisfacer una cierta ecuacién de primer orden (que corresponde, en coordenadas, con
la conmutatividad de las derivadas parciales). Veremos que si dicha ecuacién es formal-
mente integrable entonces las tinicas obstrucciones para resolver el problema de valores
iniciales formal con condiciones iniciales genéricas ocurren en el primer orden (es decir,
al resolver el problema con condiciones iniciales dadas a lo largo de un 1-jet de una
subvariedad de dimensién n — 1).

En el caso analitico, la existencia de soluciones al problema de valores iniciales
estd garantizada por el teorema de Cartan-Kahler en la teoria de sistemas diferenciales
exteriores, que depende del teorema de Cauchy-Kowalevski sobre existencia y unicidad
para sistemas determinados de ecuaciones en derivadas parciales analiticas.

Un concepto central en la teoria es el de involucién. Las ecuaciones que estan en
involucién pueden ser resueltas, en el caso analitico, por una sucesiéon de problemas
de valores iniciales, y el tamano del espacio de soluciones puede ser estimado. Serre
fue el primero en observar que la involutividad es también una condiciéon homoldgica:
es equivalente a la anulacién de la cohomologia de Spencer del comdédulo asociado al
simbolo de la ecuacién en (casi) todo grado, junto con integrabilidad a primer orden
(ver Guillemin-Sternberg[6]). De hecho, el concepto de involucién resulta ser dual a la
regularidad de Castelnuovo-Mumford en algebra conmutativa, ver Malgrange[9].

Bajo condiciones bastante técnicas, cualquier ecuacion diferencial se vuelve involuti-
va luego de suficientes prolongaciones, resultado que depende del teorema de la base de
Hilbert. Esto es llamado el teorema de prolongacion de Cartan-Kuranishi, conjeturado
por Cartan y probado por Kuranishi[7] en el contexto de sistemas diferenciales exte-
riores. En esta tesis probaremos una versién débil de ese teorema: cualquier ecuacion
diferencial formalmente integrable puede prolongarse hasta ser involutiva. En parti-
cular, la existencia de soluciones a ecuaciones analiticas formalmente integrables se
reducira también al teorema de Cartan-Kahler.

Una importante aplicaciéon de esta teoria es al problema de equivalencia de es-
tructuras geométricas. Dada una estructura geométrica en una variedad (una métrica
Riemanniana, estructura casi compleja, distribucion, etc) se quiere encontrar un sis-
tema completo de invariantes que (aparte de dar informaciéon 1til sobre la geometria)
permitan decidir si dos de esas estructuras son (localmente) equivalentes. El problema
de decidir si dos variedades Riemannianas son localmente isométricas es un ejemplo
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bésico de ésto.

Cartan desarrollé un método para calcular invariantes, usando la teoria de siste-
mas diferenciales exteriores. La observacién basica es que las equivalencias entre dos
estructuras resuelven una ecuacién diferencial de primer orden. El método consiste en
modificar las estructuras hasta que (si todos los invariantes coinciden) dicha ecuacién se
vuelve involutiva, lo que garantiza la existencia de equivalencias formales. Este proceso
puede involucrar repetidas prolongaciones, y el hecho de que termina es consecuencia del
teorema de la base de Hilbert. Entre las exposiciones modernas del método de Cartan
podemos encontrar Gardner[3] y Olver[10].

Esta tesis estda organizada de la siguiente manera:

El capitulo I contiene el formalismo basico de espacios de jets, desde el punto de
vista de jets de subvariedades. Luego los resultados son adaptados al caso de jets de
secciones de variedades fibradas. Consideraremos jets de secciones sobre subvariedades
de codimensién positiva de la variedad base; nuestra principal motivacién para esto
es que estos espacios aparecen naturalmente al discutir linearizacién de ecuaciones y
operadores no lineales.

El capitulo II discute la homologia de Koszul y la cohomologia de Spencer. También
contiene una introduccion al estudio algebraico de la involucion.

El capitulo III trata sobre operadores diferenciales y ecuaciones. Nuevamente, pre-
sentamos todos los temas para espacios de jets de subvariedades, y después los adapta-
mos para jets de secciones. Construiremos las obstrucciones a la integrabilidad formal,
demostrando asi el teorema de Goldschmidt. Finalmente, discutiremos el problema de
valores iniciales formal.

El capitulo IV discute el método de Cartan para resolver el problema de equivalencia.
Haremos uso del formalismo de jets semi-holonémicos (mas especificamente, fibrados
de marcos semi-holonémicos) para tratar el proceso de prolongacién que requiere el
método. El principal resultado en este capitulo es un teorema de equivalencia formal
para G-estructuras de orden k. Probaremos también que el método termina.



Introduction

The aim of this thesis is to present several applications of homological algebra to non-
linear partial differential equations. We shall focus on the formal theory of differential
equations, in which one works at the level of formal power series without imposing con-
vegence conditions. Homological constructions arise naturally when studying overde-
termined systems, which may contain obstructions to the existence of solutions.

The theory will be developed in a coordinate free way, using jet spaces. This is the
natural framework for discussing PDE arising from questions in geometry, where there
is no preferred coordinate system. Moreover, this approach is necessary for dealing with
global problems where one does not have the option of working in coordinates.

Let M be a differentiable manifold and fix n < dim M. Two n-dimensional subman-
ifolds passing through a point ¢ € M are said to have the same k-th order jet at ¢ if
they have order of contact at least k at q. The space of k-th order jets of n-dimensional
submanifolds at ¢ is denoted by Jff(M)q, and one defines J*(M) = J’“(M)q.

M “n
A k-th order differential equation on n-dimensional submanifolds qoef M is a subset
R C J¥(M). This may be thought of as a restriction on the possible k-jets of subman-
ifolds. An n-dimensional submanifold N C M is called a solution of the equation if its
k-th jet at each point belongs to R (that is, if it satisfies all the restrictions).
This generalizes the traditional, coordinate dependent definition of a partial differ-
ential equation, as follows. Suppose that we are given a system of k-th order PDE for

maps v : R" — R?

ou
G (x,u(m), w(x)) =0 (2)
where G : R™*("2") 5 RY and I ranges over all multi-indices of length at most k.
Equation (2) is seen to define a differential equation R C J*(R" x R*), whose solutions
are exactly the graphs of solutions of (2).

Reciprocally, when working in local coordinates x
fold M, we may describe (most) n-dimensional submanifolds N C M using graphs of
functions u : R™ — R®. Differential equations R C J¥(M) take the form (2) in this
coordinate system.

It is also usual to develop the theory starting with a fibered manifold £ : Ee — M
(that is, a surjective submersion). In this case, the objects of interest are the spaces

1 1

.., u, ..., v’ on a mani-

9
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JF(€) of k-jets of sections of £, and one may define differential equations acting on
sections as subsets R C J*(£). As above, sections of ¢ may be identified with certain
submanifolds of E¢, and so our approach generalizes this. However, this remains an
important particular case. For example, if one takes & to be a trivial bundle M; x My —
M, then one may speak of differential equations on functions f : M; — M. One may
also take £ to be a vector bundle, in which case one may develop the theory of linear
PDE in a coordinate free way.

Another common geometric approach to partial differential equations is via exterior
differential systems. These are special first order equations defined using ideals of the
algebra of differential forms, closed under exterior differentiation. It turns out that for
any k-th order differential equation R C J*(M) there is an exterior differential system
on R whose solutions are in correspondence with the solutions to R. This theory
was used to great effect by Elie Cartan (who, in particular, introduced exterior forms
of degrees greater than 3, and the exterior derivative), after previous work by Pfaff,
Frobenius and Darboux on the Pfaff problem. See [1] for a modern treatment of this
theory.

The main algebraic tool used in this thesis is the Spencer cohomology of graded
comodules over a polynomial coalgebra. Given an n-dimensional vector space V' over
a field of characteristic zero and a graded comodule A over the coalgebra SV*, one
may construct certain graded vector spaces H(A) = @, H**(A) called the Spencer
cohomology of 4. Under finiteness conditions, these spaces are dual to the Koszul
homology of the dual SV module. These groups were first explicitly used by Spencer
[11, 12] in the context of deformations of pseudogroup structures.

Given a smooth k-th order differential equation R C J*(M), one may form the I-th
prolongation R which is a differential equation of order k + [. In coordinates, this
corresponds to adjoining the derivatives of order at most [ of the equation in question.
A differential equation is said to be formally integrable if R® — R~V is a smooth
submersion for all [ > 0. When this happens, one may construct formal solutions to
the equation (in coordinates, formal power series satisfying the equation and all its
derivatives) starting with any point in R.

The first problem in the formal theory of overdetermined systems is to construct
the obstructions for an equation to be formally integrable. Following work by Bott
and Quillen, Goldschmidt [5, 4] constructed the obstructions to integrability, which lie
on the second Spencer cohomology of a certain bundle of comodules associated to the
symbol of the differential equation.

In the analytic category, formal integrability implies the existence of local solutions.
This follows from the J-Poincaré estimate of Spencer, proved by Ehrenpreis, Guillemin
and Sternberg [2], and later by Sweeney|[13] by different means. In the smooth category,
formal integrability does not guarantee the existence of solutions, as shown by Lewy|8§].

Another fundamental question is the initial value problem. Suppose that we are
given a (n — 1)-dimensional submanifold N,,_; € M and initial conditions along N,,_;
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(i.e., a section N,_; — R). A solution to the initial value problem is then a solution
N of R containing N,,_; and satisfying the initial conditions. In order for solutions
to exist it is necessary that the initial conditions solve a certain first order equation
(corresponding in coordinates to the commutativity of partial derivatives). We shall
see that if the equation satisfied by the initial conditions is formally integrable then
(under mild regularity hypothesis) the only obstructions to the formal initial value
problem with generic initial conditions arise in the first order (that is, when solving
the initial value problem with conditions given along a 1-jet of an (n — 1)-dimensional
submanifold).

In the analytic case, the existence of a solution to the initial value problem is
guaranteed by the Cartan-Kahler theorem in the theory of exterior differential systems,
which ultimately depends on the Cauchy-Kowalevski existence and uniqueness result
for analytic partial differential equations.

A central concept in the theory is that of involution. Equations which are in involu-
tion may be solved (at least in the analytic case) by a sequence of initial value problems,
and one may estimate the size of the solution space. It was observed by Serre that the
involutivity of a differential equation is also of homological nature: it is equivalent to
the vanishing, in almost all degrees, of the Spencer cohomology of the symbol comodule
of the equation, together with integrability to first order (see Guillemin-Sternberg6]).
In fact, the concept of involution turns out to be dual to the Castelnuovo-Mumford
regularity in commutative algebra, see Malgrange[9].

Under fairly technical conditions, any differential equation becomes involutive after
enough prolongations, a result which ultimately depends on the Hilbert basis theorem.
This is called the Cartan-Kuranishi prolongation theorem, conjectured by Cartan and
proved by Kuranishi[7] in the context of exterior differential systems. In this thesis
we shall prove a weak version of this theorem: any formally integrable differential
equation may be completed to involution (i.e., prolonged until it becomes involutive).
In particular, the existence of solutions to an analytic formally integrable equation may
also be reduced to the Cartan-Kahler theorem.

One remarkable application of this theory is to the equivalence problem for geometric
structures. Given a geometric structure on a manifold (a Riemannian metric, almost
complex structure, distribution, etc.), one wants to compute a complete set of invariants
of the structure, which (apart from giving useful information about the geometry)
allows us to decide whether two such structures are (locally) equivalent. The problem
of deciding when two Riemannian manifolds are isometric is a basic example of this.

Cartan developed a method for computing these invariants, using his theory of
exterior differential systems. The basic observation is that the equivalences between
two structures solve a certain first order differential equation. One then modifies the
structures until (if all the invariants obtained coincide) the equation becomes invo-
lutive, thus establishing the existence of formal solutions. This process may involve
repeated prolongation, and the fact that it terminates is, once more, a consequence of
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the Hilbert basis theorem. Modern expositions of Cartan’s method include Gardner|[3]
and Olver[10].

This thesis is organized as follows:

Chapter I contains the basic formalism of jet spaces, from the point of view of jets
of submanifolds. The results are then adapted to the case of jets of sections of a fibered
manifold. We consider jets of sections over submanifolds of the base manifold of positive
codimension; our main motivation for this is that they arise naturally when discussing
linearization of nonlinear equations and operators.

Chapter II presents the necessary background on Koszul homology and Spencer
cohomology. We also give an introduction to the algebraic theory of involution.

Chapter III discusses differential operators and equations. Again, everything is first
presented for spaces of jets of submanifolds, and then adapted to jets of sections. The
obstructions to formal integrability are constructed, proving Goldschmidt’s theorem.
We then discuss the formal initial value problem.

Chapter IV deals with Cartan’s method for solving the equivalence problem. We
make use of semi-holonomic jets (specifically, semi-holonomic frame bundles) in order
to deal with the prolongation step in the method. The main result in this chapter is
a formal equivalence theorem for semi-holonomic higher order G-structures. The fact
that the method terminates is also proven.



Chapter I

Jet Spaces

This chapter deals with the basic theory of jet spaces, which is the framework that will
allow us to discuss differential equations in a coordinate-free way.

In section 1 we define the space J*(M) of k-th order jets of n-dimensional subman-
ifolds of a manifold M. These spaces come equipped with a universal bundle which
generalizes the universal bundle on a Grassmannian. The main result in this section is
the fact that the projections J¥(M) — JE=1(M) are affine bundles for k > 2, modeled
on the bundle of k-th order homogeneous polynomials from the universal bundle to the
universal quotient bundle. The jet spaces behave (almost) functorially: any differen-
tiable map between two manifolds induces a (partially defined) map between the jet
spaces, called its prolongation. We shall see that prolongued morphisms respect the
affine structure of the jet spaces, and give a precise description for the associated vector
bundle maps. This will be generalized in chapter III when we study the prolongation
of differential operators.

Section 2 deals with the spaces J¥(€) of jets of sections of a fibered manifold ¢ :
Ee — M over n-dimensional submanifolds of M. The image of each section is an
n-dimensional submanifold of the total space Eg, so this may be studied with the
formalism of jets of submanifolds. In the case when n = dim M, these are the spaces
of jets of sections M — E¢. Our main motivation for studying the spaces J¥(&) for
n < dim M is that they are needed in order to describe the tangent space to to the jet
spaces JF(M). This description will allow us to define the linearization of nonlinear
differential operators and equations in chapter III.

In section 3 we define the contact distribution C¥ on the space J¥(M). This distribu-
tion has the property that its n-dimensional integral submanifolds which are trasverse
to the vertical distribution are in correspondence with the n-dimensional submanifolds
of M. Unless n = dim M, this distribution will not be Frobenius integrable. We shall
study how the Frobenius condition fails: this is measured in terms of a certain (vector
bundle valued) 2-form [-,-] on C¥. The space J51(M) is recovered as the space of
n-dimensional planes tangent to C* such that the rescriction of [-,-] vanishes (together

13
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with a trasversality condition). This fundamental fact implies that the spaces J¥(M)
may be studied in a purely inductive manner.

1 Jets of Submanifolds

1.1 Let M be a differentiable manifold, and fix n < dim M. Let N be an (inmersed) n-
dimensional submanifold of M, and let ¢ € N. Then N defines an ideal 1,(N) C Oy, of
the ring of germs of smooth functions on M at ¢, given by those germs that vanish when
restricted to N. This ideal completely characterizes the germ of N at g: if we are given
another submanifold such that the corresponding ideals agree, then the submanifolds
agree near q. We shall adapt this idea to define what it means for two submanifolds to
have order of contact at least k at ¢.

Let k£ > 0. Denote by mj;, the maximal ideal of Ops,. Then Oy, / mﬁj ; is called
the ring of k-jets of functions at ¢ with values in R. That is, we are identifying two
functions defined around ¢ if they differ by terms of order at least k. In coordinates,
two functions are identified if their derivatives agree up through order k, and we are
left with the possible k-th order Taylor expansions.

The inclusion of a submanifold N induces a restriction map * : Opq /mﬂ+ ; —
On,g/myf,). Let IF(N) be the kernel of i*. Then I*(N) is the ideal of k-jets of functions
at ¢ that vanish when restricted to N. Given another n-dimensional submanifold N’
which passes through ¢, we say that N and N’ have the same k-jet at q if Ié“(N) =
I §(N "). This defines an equivalence relation on the set of submanifolds passing through
q. We denote by J*(M) , the set of k-jets of n-dimensional submanifolds passing through
¢, and Ji(M) = U,ep JE(M), the set of k-jets of n-dimensional submanifolds of M.,
For j < k we have projections g ; : J¥(M) — JI(M). If y € J*(M), we usually denote
by y; its projection to J(M).

Notice that J)(M) = M. Also, I;(N) C my,/m3,, = T, M is the annihilator
of T,N. Thus J}(M), is the Grassmannian of n-dimensional subspaces of T,M, and
JY(M) is the Grassmannian bundle associated to T M.

1.2 Let o',... 2™ !, ..., u® local coordinates for M around ¢, and let p be the pro-
jection of ¢ to the space of coordinates 2. Suppose that N is given by the graph of a
function f in those coordinates. Then N is the zero locus of the functions v’ — ffo ¢,
where f* are the coordinates of f, and £ is the projection to the first n coordinates.
The ideal I 5 (N) is then generated by those s functions. As discussed before, the ring
Oqu/mﬁ/l,q is isomorphic to R[z!, ... 2" ub ... uf]/(x, ... 2™ ul, ... u®)*, sending each
function to its Taylor expansion at ¢g. It follows that the ideal I [’j(N ) only depends on
the k-th order Taylor expansion of f at p. If N’ is another submanifold passing through
g and given locally by the graph of f’, then N and N’ have the same k-jet at ¢ if and
only if the derivatives of f and f’ agree up through order k at p.
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We are now ready to define the differentiable structure on J*(M) for k > 1. Pick
1 ...,u*local coordinates on M. The jet of a submanifold transverse to the
vertical depends, as discussed above, on the k-th order Taylor expansion of a function
around a point (z!,...,2z"). Thus we can introduce coordinates z*,u% on J*(M), where
1<i<n,1<a<s, and [ is a symmetric multi-index with 0 < |I| < k. Explicitly,
the jet of the graph of a function f around a point (z°,u®) has coordinates x’ and
u§ = % (z'). This defines a differentiable structure on J¥(M). The projection Ty
JHL(M) — J*¥(M) is given in those coordinate systems by forgetting some coordinates,
so it is a surjective submersion.

zh 2

1.3 For each n-dimensional submanifold i : N — M, we have a map i*) : N — J*(M),
which sends each point ¢ € N to the k-jet of N at ¢. It is a smooth inmersion, and
it verifies 7y _1i® = i*~Y. This defines a submanifold N of J*(M) called the
k-th prolongation of N. This is the canonical way of lifting N to a submanifold on
the jet spaces. Of course, not every submanifold of J¥(M) arises as the prolongation
of a submanifold of M. A first condition is that the given submanifold should be
transverse to the vertical distribution V1 = ker my p_1.. Moreover, it turns out
that for every N the prolongation N®*) is an integral manifold of a certain distribution
on J¥(M), called the contact distribution. This two properties completely characterize
the prolongations N among all submanifolds of J¥(M), as we will see later in this
chapter.

We may iterate this construction and consider the I-th prolongation of N®*), which
is now a submanifold N®W of JL(J*¥(M)). For each ¢ € N the point i®W(q) €
JL(J*¥(M)) only depends on the (k + [)-th jet of N at g, as can be seen in coordinates.
Thus we get a mapping J*T (M) — JL(J¥(M)), which is in fact an embedding. It is
not surjective; its image may be characterized as a prolongation of the contact system
on J¥(M). We will go back to this in chapter III.

1.4 Each y € J} (M) defines a subspace U, C T,,M, where yo = m1(y). The map
y — Uy defines a subbundle U C 7f (T M called the universal bundle on J(M). From
now on, we implicitly pullback bundles over Ji(M) to J¥(M) for k > j, as the base
will be clear by context, so we may simply say U C TM. Let Q =TM/U.

More generally, we may pullback the universal bundle on J(J*(M)) to JE1(M)
via the canonical embedding J**1(M) C J}(J¥(M)), and we get a subbundle U*) C
TJF(M) defined over J*1(M), which is called the k-th prolongation of the universal
bundle. Observe that 7y ;1. : TJF(M) — TJ*1(M) restricts to give an isomorphism
U® — U®-1 and so all the prolongations are isomorphic as bundles. We use the
notation U™ if we want to emphasize its embedding as a subbundle of T'J¥(M). When
we are only interested in the bundle structure we may identify them and simply speak
of U. In particular, we usually do not need to distinguish the dual bundles U®)*, so we
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simply speak of U*.
In coordinates, we have

0 0
U*Y = span By + Z u?l% (1)
0<|1|<k—1 I
U* = span {dz'} (2)
0
Q=spun {71 ®)

1.5 We now want to study the bundles J*(M) — J*'(M). When k = 1, we al-
ready know that J!(M) is a bundle of Grassmannians. Its vertical distribution may be
described as follows

PROPOSITION 1.5.1. Let V1o = ker my o be the vertical distribution on J}(M). Then
V7T170 = (]>k ® Q

Proof. Let ¢ € M. The fiber 7y, 5(q) is the Grassmannian of n-dimensional subspaces of
T,M. This is an homogeneous space for the group GL(T,M). If y is an element of the
fiber, then the isotropy of the action at y is the subgroup H of automorphisms fixing
U,. The Lie algebra of H is the subalgebra h C End(T,M) of endomorphisms fixing U,,.
The tangent space to the fiber at y is then End(T,M)/b = Hom(U,, Q) = U;®Q,. O

In coordinates, V' is spanned by the vectors 0/0u?, and the isomorphism maps
d/0u? to dz' ® d/ou’.

There is an alternative way of giving that isomorphism. Let « be a smooth, vertical
curve on J}(M), such that v(0) = y. Let o be a smooth curve in T,M such that
a(t) € y(t) for all t. Then the contraction of 4(0) with «a/(0) is the projection of &(0)
to @Qy.

We now examine the case k > 2. Here we recover the intuitive fact that two k-jets
differ by an homogeneous polynomial of order k.

PROPOSITION 1.5.2. The projection myp—y : JX(M) — JE=Y(M) is an affine bundle

n

modeled on S*U* ® Q for k > 2. In particular, V1 = S*U* ® Q for k > 1.

Proof. Let k > 2 and assume that the proposition has been proven for j < k. For each
y € JEL(M), let JE(M), be the space of lifts of Uy to T,.JE=(M). This is the same
as the splittings of

0= Vyhoth-2 = Tty 4o, (USD) = U =0 (4)

and therefore jff(M)y is an affine space modeled on U, @Vym1p2=U;® (SkilU;‘ ®
Q,). The spaces J*(M), form an affine bundle J*(M) over J*~!(M) which embeds in
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JY(JE1(M)), called the space of k-th order sesqui-holonomic jets. The image of the
canonical embedding of J¥(M) inside J}(J*~'(M)) is actually contained in J¥(M). We
claim that J*(M) it is an affine subbundle of J*(M) modeled on S*U* ® Q.

To see that, we work locally. Let w,w be elements in the fiber of 7,1 over y. Let
(%, u%) and (z',u%) be their coordinates, with u¢ = u¢ for |I| < k. Then

w—w = (uf; — uf;)de' ® 0/0uf € Uy @ Vymp_1 2 (5)
By induction, we may assume that this corresponds to
(a}; — ug;)da' ® (da’ ® 0/0u”) € U, ® (S’“_lU:,;k ® Qy) (6)

Using the canonical embedding S kU; ® Qy inside Uy @ (S k’lU;‘ ® @), this corresponds
to (¢ —ud)dz! ® 9/0u®. Therefore, the possible differences of two elements in the fiber
are in correspondence with SkUl}k ® Qy, and so J¥(M) is an affine bundle modeled on

SEU* @ Q. O

1.6 Let M, M’ be two differentiable manifolds, and n < dim M, dim M’. Let ¢ : M —
M’ be a smooth map. Let V be the open subspace of J} (M) consisting of those 1-jets y
such that g0*|Uy is a monomorphism. Let ¢ : N — M be an n-dimensional submanifold
passing through a point ¢ € M, such that N is contained in V. Then (N) is an
n-dimensional submanifold of M’, and the k-jet of ¢(N) at ¢(q) only depends on the
k-jet of N at q. Therefore, we get a well defined map p®*) T (V) = JE(M') called the
k-th prolongation of ¢. We have already seen a particular case of this: if i : N — M is
an n-dimensional submanifold, then the k-th prolongation of the inclusion is the map
i®) . JE(N) = N — J*(M) previously defined. Observe that if ¢ : M’ — M" is a
smooth map then (1¢)*) = 1 p*) where it makes sense. Moreover, ¢*+)) coincides
with the restriction of the iterated prolongation ¢®® to JEH(M) C J!(J*(M)).

Let U’ be the universal bundle on J!(M’), and let U'® be its k-th prolongation.
Let @' = TM'/U'. We denote by . ; both the projection J¥(M) — Ji(M’) and the
projection J*¥(M') — JJ(M’). Observe that the prolongations of ¢ commute with the
projections. We implicitly pullback bundles on J*(M’) to W;}(V), using ¢©®). Observe

that o gives an isomorphism between U®) and U'® over J¥(M). Therefore, unless
we are interested in the embedding as a subbundle of a particular jet space, we may
identify all the universal bundles and simply speak of U.

Let 0, : @ — Q" be the map induced by ¢,. It is called the symbol of ¢. For
k > 0,the k-th prolongation of the symbol of ¢ is the map

o) =1gun @0, SUT @ Q — ST @ Q) (7)

The prolonged symbols determine the behavior of the prolongations of ¢. We first
prove this for the first prolongation



18 CHAPTER I. JET SPACES

LEMMA 1.6.1. The map U* @ Q — U* ® Q' induced by restriction of o) to the fibers
of 1o coincides with aél).

Proof. Let y € V, and let y be a smooth vertical curve inside V' such that (0) = y. Let
a be a smooth curve in T}, M such that a(t) € y(¢) for all t. Then the contraction of
4(0) with «(0) is given by the projection of &(0) to ¢,. In the same way, the contraction
of 0;(¢™M~)(0) with ,a(0) is given by d;(¢.a)(0) projected to Q:o“)y' The proposition
then follows from the fact that 0,(¢.)(0) = p.&(0). O

In general, one has the following

PROPOSITION 1.6.2. The map ©® : W];%(V) — JE(M") is an affine bundle morphism

over =1 ﬂ,;_lm(V) — JE=L (M) for k > 2, with associated vector bundle map aff).
In particular, the map S*U* @ Q — S*U* ® Q' induced by the restriction of cpfkk) to the

fibers of my k—1 coincides with awk) forall k > 1.

Proof. Let k > 2, and suppose that we have already proven the result for all j < k.
Let y,y be two k-jets inside W];i(‘/), such that yr_1 = Zr_1. Let ¥ = ©®(y) and
¥ = ™ (7). We know that U;k_ ) and Uygk_l) are two splittings at y,_1 of

0= ViTpothoz = Tty g (UF2) > UF2) 0 (8)
Their difference is, then, an element A € U;‘ ® Vi, Tk—1—2. In the same way, U;gk_l)
and U;Ek_l) are two splittings at y;,_, of

0= Vpothoz = Tty g (UFD) = U2 50 (9)

Their difference is an element A" € Uy ® Vi Tk—1k—2. Using the inductive hypothesis,
we have,

idy- @ oV (A) = A (10)
It follows that ¢/ — ¢ = afpk)(y —7), as we wanted. O

2 Jets of Sections

2.1 Let M be a manifold and £ : £ — M be a fibered manifold over M (that is,
a surjective submersion). Fix n < dim M. For k > 1, we denote by J¥(£) the open
submanifold of J¥(E¢) given by those jets of submanifolds transverse to the vertical of
£. We also set J2(§) = Ek.

The space J¥(€) is called the space of k-jets of sections of & along n-dimensional
submanifolds of M. An element of J*(£) over z € M may be (non uniquely) represented
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by a pair (N,s), where N is an n-dimensional submanifold of M passing through z,
and s is a section of &|y.

The prolongations of & are maps £*) : J*(&) — J*(M) giving J*(€) the structure of
a fibered manifold over J*(M). Given a section s : M — E, its k-th prolongation s*) :
JE(M) — Jk(€) is a section of ). Given a morphism of fibered manifolds ¢ : Bz — E,
over M, its k-th prolongation is a morphism of fibered manifolds ¢® : J*(&) — J*(n)
over J¥(M). Prolongation is compatible with pullbacks: if ¢ : M’ — M is a smooth
map, then (¢*¢)®) is the pullback of £ over o*).

Let z',u® be local coordinates on M, and choose functions v* on E¢ such that
z' u® v is a system of coordinates on E¢. This induces a coordinate system z?, u¢, v’
on J¥(E¢). The domain of definition of this coordinate system is contained in J*(€), so
they form a coordinate system for this manifold. Moreover, any point of J*(¢) belongs
to one of these domains, so these coordinate systems form an atlas for J*(¢). The map
W o JE(€) — JF(M) is given locally by forgetting the coordinates vY. If s : M — E
is given in coordinates by v® = s°(x%,u®), then s is given by v = D;s’(2%, u%), where
D ;s denotes the derivative with respect to 27, ..., 2’», treating u® as functions of the
variables o’ (with derivatives u%).

2.2 An important particular case of the theory in this section is when n = dim M.
In this case we drop the n and use the notation J*(£). It is the space of k-th jets of
sections of £&. Two sections represent the same k-th jet at x € M if, on any coordinate
system, their derivatives agree up through order k. An even more particular case of
this (which is still very important) is the case of a trivial bundle M x F' — M. Here
sections are in correspondence with smooth functions from M to F, and so the theory
that we develop naturally includes the theory of differential equations and differential
operators on functions.

When n = dim M, we have that J*(M) = M for all k, so the spaces J*(£) should all
be considered over the same base M. In this case, the universal bundle on J*(¢) may
be considered as a connection on £®) : J (&) — M, which is only well defined when we
pass to JF1(€).

Even if one is only interested in this case, when linearising one needs to consider the
space J¥(VE — Eg), and so spaces of sections over (non necessarily top dimensional)
submanifolds necessarily turn up (the exception being when the fibers of ¢ are paraleliz-
able: here V¢ is actually defined over M, and so one stays in the realm of sections over
open submanifolds).

2.3 When n < dim M, the spaces J¥(£) are fibered manifolds over different base
manifolds. As usual, we shall implicitly pullback ¢*) along 7y : J¥H(M) — J*(M)
for [ > 0. For example, if we speak of the map J*T1(&) — J*(¢), we shall assume

that J¥(€) has been pullbacked over 7y, so that we are dealing with a morphism of
fibered manifolds over J*1(M).
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Some results from the first section will have to be adapted to be consistent with
this philosophy. For example, we already know that the fibers of J**1(E;) — JF(E)
are affine spaces modeled on a certain bundle of polynomials. However, this does not
directly apply to the fibers of J*1(£) — J¥(€) since one has to take into account the
fact that J*(£) has been pullbacked.

As a general rule, when n = dim M all the results and definitions from the theory
of jets of submanifolds apply directly, and in the case n < dim M definitions have to
be modified in order to be compatible with pullbacks M’ — M.

For example, there is no problem with the vertical bundle V¢: this is independent
of the base of the fibered manifold, and only depends on the fibers. However, the
tangent bundle T'E; depends on the base manifold M. The correct analogue of the
tangent bundle T'E; when working with sections over n-dimensional submanifolds is
T.(E¢) = & 1(U), where U is the universal bundle on J}(M). This is a bundle defined
over the pullback of E¢ to JL(M). It is obviously compatible with pullbacks, and in the
case n = dim M we are left with £, '(TM) = TFE,. After one adapts all the concepts
to be compatible with this rule, the general theory is indistinguishable from the case
n = dim M. Indeed, most results may be proven by restricting to this case, after
pullbacking £ to an n-dimensional submanifold of M.

2.4 The universal bundle on J¥(E;) restricts to give a subbundle Uékil) C T, JF1(€).

Set Ug = Ug(o). Observe that we have an exact sequence
0—=-U—=T,E—=VE—O (11)

and so the correct analogue of the universal quotient bundle is V¢, Of course, £*)
induces isomorphisms between the bundles U*) and Uék), so we will sometimes identify
them and simply speak of U.

If o : B¢ — E, is a morphism of fibered manifolds, we define its symbol as o, =
Oilve : V€ — V. The k-th prolongation of the symbol is defined as

o) =1gup @0, STUTQVE— SFUT @V (12)
The analogue of propositions 1.5.2 and 1.6.2 in this context is

PROPOSITION 2.4.1. Let k > 1. The map J*(&) — JE1(€) is an affine bundle modeled
on S*U* @ VE. Moreover, if ¢ : Ee — E, is a morphism of fibered manifolds, then
©®) 2 JE(€) — JE(n) is a morphism of affine bundles over =V with associated vector

bundle map O'S(Dk .

Proof. Consider first the case k = 1. Let ¢ € M, and let y € 7 4(q) and e € {7 (x).
The fiber of J!(&) over (y,e) is in correspondence with the splittings of

0= Vil > &Y(U) S U, — 0 (13)
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and therefore it is an affine space modeled on U; ® V.. This gives the desired affine
bundle structure on J} ().
We now let £ > 2. Consider the following commutative diagram

JEe) — s (M)

l (14)

TEHE) S T ()

We know that (%) is a morphism of affine bundles over £~V with associated vector
bundle map a . We now pullback this diagram to lie over J*(M). In order to avoid
confusion, we shall make the pullbacks explicit

€01 1k M
Jr]f(f) X 7k () Jr]f(M) = )Jk(M> Xk ) J,’j(M)

L “5>

TENE) X ja1 gy JE(M) 0D s TR (M)

The vertical arrows are still affine bundles, and the horizontal arrows define an affine
bundle map. There is now a canonical section of the right vertical arrow, so this is now
a vector bundle. The bundle

TEE) = TEHE) % gy TE(M) (16)
is obtained as the kernel of £ x 1 Jk(M), SO 1t is an affine bundle modeled on ker aék) =
SFU* @ ker o = SFU* @ V&, as we wanted

The fact that the prolongation ¢*) of a fibered map ¢ is an affine bundle morphism

with associated vector bundle map Jc(pk) follows from proposition 1.6.2 in the case k > 2.
We leave the case k = 1 for the reader. O

In coordinates, two points w, w in the same fiber of J*(¢) — J*~1(£) may be written

as (2%, u4,v}) and (¢, u4,v}), where v4 = ©% unless |I| = k. Their difference w — w €

SkU* @ VE is then (0% — v?)dz! ® 9/00°.

2.5 If £ : B — M is a vector bundle, then the prolongations £®) . J*(¢) — JF(M)
have vector bundle structures defined as follows. Let 2,z be two points in the fiber
of y € JE(M),, represented by the pairs (N, s) and (N,5). Then z + z is given by
the class of (N, s + 3), and, for A € R a scalar, Ay is given by the class of (N, \s).
Prolongation respects sends vector bundle morphisms to vector bundle morphisms, and
respects exact sequences.
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Observe that m 1 @ J¥(E) — J¥(€) is a vector bundle map. Proposition 2.4.1
implies that ker(my 51 : J¥(&) — J¥1(€)) = S*U* @ E as vector bundles over JF(M).
Let ¢ : B¢ — E, be a morphism of vector bundles. Then the symbol o, may be
identified with . Moreover, ¢*) restricts to a morphism S*U* ® E¢ which coincides

with afak) .

2.6 Let M be an n-dimensional manifold and fix n < dim M. Let &y, &g denote the
projections from U and @ to J!(M), and &7y denote the projection from T'M to M.
For each k > 0 we may consider J*(&) and J%(&g) as vector bundles over JE+1(M),
via the canonical embedding J**1(M) C J¥(JL(M)). The following proposition and its
corollary will be useful when we discuss linearization of nonlinear differential operators
and equations.

PROPOSITION 2.6.1. Let M be a differentiable manifold and n < dim M. Let k > 0.
There is a short exact sequence of bundles over J*1(M)

0 — H* — J¥(&rpr) — TIH(M) — 0 (17)
where H* is the kernel of the canonical map J*(&y) — U.

Proof. We begin by constructing the map J*(&ra) — TJR(M). Let i : N — M be
an n-dimensional submanifold of M passing through a point ¢, and s be a section of
TM|y. Let i, : N — M be a one-parameter family of immersions such that iqg = i and
s = O¢li=0%¢. Then the tangent vector 8t]t:0i§k)(q) to J¥(M) only depends on the k-th
jet of (N, s), and so this defines a map J*(&rar) — TJF(M) over J¥(M). Tt is easily
seen that any tangent vector in T'J*(M) may be obtained from a family of immersions
1 - N — M, so this map is surjective.

The inclusion U C T'M induces an inclusion J*(&y) C J*(€xr) over JEH(M), which
restricts to give the first map in the short exact sequence of the statement. Moreover,
observe that the composition is zero. Indeed, an element of H* C J*(&7y,) may be
represented as a pair (N, s) where N is an n-dimensional submanifold of M passing
through a point ¢, and s is a section of T'N which vanishes at ¢. The variation i, may
be constructed so that i,(q) is constant, and i;(N) C ig(N) near g. This implies that
the k-jet of i,(/N) at ¢ remains constant, and therefore its derivative is zero.

It remains to prove exactness at J¥(Erar). We proceed by induction. When k = 0,
the sequence is simply

0—=0—=TM—=TM =0 (18)

which is obviously exact. The inductive step follows from looking at the following
commutative diagram of bundles over J*1(M):
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The columns are exact and the rows are exact except possibly at J*(&7p/). From
this and some diagram chasing, we get that it must also be exact at J*(&ra), as we
wanted. O

COROLLARY 2.6.2. Let M be a differentiable manifold and n < dim M. Let k > 0.
There is an exact sequence of bundles over J*(M)

0—U® = TJNM) = J¥Eg) — 0 (20)

Proof. Prolongation preserves exact sequences, so we have the following exact sequence
of bundles over J5+1(M)

0= Ju(&w) = Jy(€rm) = Ji(Eq) — 0 (21)
Taking the quotient of the first two bundles by H*, we get an exact sequence
0= U — TJHM) — JFHEg) — 0 (22)

We claim that the first map is the canonical embedding of U inside T'J*(M) (i.e., the
k-th prolongation of U). To see this, let y € J*™ (M) be a k-jet, and v € U,. Let w
be an element in the fiber of f((]k ) over y such that its projection to U equals v. Then
the image of w inside J*(¢7a7) may be represented as a pair (N, s) where N is an n-
dimensional submanifold of M passing through 1, and s is a section of T'N such that
s(yo) = v. As before, from this we may construct a variation of N contained inside
io(NN). The basepoint y, has initial speed v, and so 8t\t:0i§k) (yo) is the lift of v to Ugsk),
which proves the claim.

O
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The correct linearization result in the context of fibered manifolds is the following

PROPOSITION 2.6.3. Letn : Ey, — M be a fibered manifold. We denote by &y, , vy and
&1k, the projections of the corresponding bundles. Let k > 0.

1. There is a short ezact sequence of bundles over J*+1(n)
0= H* = Ju(ér,m,) = Tudh(n) =0 (23)
where H* is the kernel of the canonical map JF(Eu,) — U,

2. There is an isomorphism Vn*) = JE (&) of bundles over JE(n).

The exact sequence in the first item is contained inside the sequence that proposition
2.6.1 gives for F¢. To obtain the isomorphism in the second item one first restricts the
sequence from corollary 2.6.2 and then uses the identity T,,J%(n) /U, = Vn®). We leave
the details of the proof to the reader.

3 The Contact Distribution

3.1 Let M be a differentiable manifold and fix n < dim M. The contact distribution
on Ji(M) is the subbundle C¥ = ), (U*~V) C T'J¥(M). This sits in a short exact

sequence
0—=S*U"eQ —ck—urt 590 (24)

The bundle of contact forms I*~1) C T*J*(M) is the annihilator of C*. Using 2.6.2,
we have

[0 = (T3 (M)/Cr)* = (T (M) /U D)" = T3~ ()" (25)

Observe that I(® = @Q*. Moreover, I*=2 C [k~ a5 subbundles of T*J*(M), and
](kfl)/I(k72) — SkflU ® Q*

In coordinates z, u$ on J¥(M), the contact forms are spanned by the 1-forms du¢ —
ug,dx’, for 0 < |I| < k. The quotient I~ /I%*=2) is spanned by the forms du$ — u¢,da’
for |[I| = k — 1, and the isomorphism with S¥~1U @ Q* is given by

07 = du§ — u$,dz’ — 0 @ du® (26)

where 0; = 9y, ... 0r,_,, with 9; the basis of U dual to da'.
The contact distribution allows us to determine which submanifolds of J*(M) arise
as prolongations of submanifolds of M:

PROPOSITION 3.1.1. Prolongation N +— N®) defines a correspondence between n-
dimensional submanifolds of M and n-dimensional integral manifolds of Ck which are
transverse to Vi p—1.
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Proof. Observe that if N is a submanifold of M, then N® is an integral manifold
submanifold of C¥ transverse to V1, and we recover N as (70N )*). The only thing
left to do is to show that if N is an n-dimensional integral manifold of C* transverse to
Ve r_1, then N = (7Tk70N)(k).

We proceed by induction. The case k = 1 is immediate. Now, let & > 2. Applying
the result for 7y, 1 (N), we see that 7y 1N = (m,0N)*~Y. The fact that N is integral
for C¥ implies that N = ((m,,0N)*~D)D) inside of J!(J*1(M)). Restricting to J*(M)
we get the desired equality N = (70N ), O

3.2 From the coordinate description we see that, unless n = dim M, the contact
distribution is not integrable. This means that the map

[ ] A% = TIH(M)/C = T (€o) (27)

induced by the Lie bracket, is typically nonzero. Our next goal is to understand this
morphism.
From (24) we get a filtration

Fy C Fy C F, = N*(CF) (28)
where Fy = AV 1 and Fy = im(Vypy @ CF 2 A2Ck). We have that Fy/F, =
Ve @ U D and Fy/F; = A2(U%~Y), where the first isomorphism is induced by
contraction with U*, and the second is induced by the projection C¥ — U*~1),

The vertical distribution is integrable, and so m passes to the quotient Fy/Fy —
JE=1(&g). Moreover, when working over J51(M), sequence (24) splits, and so we get
a decomposition A?(CF) = Fy & (Fy/Fy) @ (Fy/Fy). Since for each y € J* (M) the

plane U;k) may be extended to an integral submanifold of C¥, we have that [-, -] vanishes

when restricted to Fy/F; = A2U®). As a consequence of this, the image of [-, -] does not
change when we restrict it to F} /Fy. The following proposition describes this restriction:

PROPOSITION 3.2.1. The image of |-, -] is contained in S*1U* @ Q C J*1(&g). More-
over, the induced map

F/Fy=(S"U"2Q)oU — S"'U*®Q (29)
18 the contraction mapping.

Proof. Let y € J¥(M), and X,,,Y, be two tangent vectors at y, with X,, € Vi1 and
Y, € Cffj. We extend X, to a vector field X tangent to Vm,_i. Let Z be a section
of U*=2 over J¥~1(M) such that Z,, , = mgp_2(Y,). Extend Y, to a vector field on
JE(M), tangent to C¥, such that 7y, _2.Y = Z. Observe that the flow of X preserves
the projection 7y _o, and mj z_2.Y is constant along the flowlines of X. These two
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facts combined imply that 7y _2.LxY = 0. This shows that [X,Y] € S¥1U* ® Q, as
we claimed.

To see that the induced map on Fi/Fj is contraction, we work in local coordinates
2t u% on J¥(M). The bundle U* is spanned by dz’, and Q is spanned by (the classes
of) 9/0u®. Let d; be the basis of U dual to dz’. We want to compute [dz! ® 9/du, d;).
To do this, observe that dz! ® 9/du® corresponds to the vertical vector d/0u$, and 0;
may be lifted to the contact vector field 9/9x" + u%,0/0u’. The Lie bracket of these
two fields is 0/0u%, where J is the multi-index such that Ji = I. This is the vector
corresponding to the contraction of dz! ® u® with 9;, which is what we wanted. O

3.3 The above discussion on the Lie bracket of contact vector fields may be dualised
to give us information about the exterior derivative of contact forms. Concretely, we
are interested in the map

6 1D 5 A2Ck (30)
induced by exterior differentiation, which coincides with —m* The dual to sequence
(24) induces a filtration

F°C F' C F? = A°CH (31)

where FO = A2U* and F! = im(U* ® Ck* & A2C**). We have that F'/F° = U* ®
V¥ k-1 and F?/F' = A2V*7rk,k_1. Here F° is the annihilator of F; and F' is the
annihilator of F. Therefore, the image of § is contained in F*!. Proposition 3.2.1
dualises to give

PROPOSITION 3.3.1. The map § factors through I*=1 /1%~ The induced map
§: S U eQ — FYYF'=U*"® (S*U ® Q) (32)
is the map induced by multiplication U ® (S* U ® Q*) — S*U @ Q*.

Of course, we could have seen this directly using local coordinates, without appealing
to proposition 3.2.1. We have

F° = span{da’ A d2’} (33)
F' = span{daz’ A da?, dz’ A duf} (34)

Let 09 = du$—u%,da’, for |I| < k—1. The fact that df¢ = dz*A0%, for |I| < k—2 implies
that & vanishes when restricted to 1*=2). Moreover, the formula d§¢ = da® A du$, shows
that the image of § is contained in F!, and that the induced map 0 is given as in the
above proposition.
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3.4 We now discuss a kind of infinitesimal analogue to the correspondence in propo-
sition 3.1.1. Let y € J¥(M). We want to characterize the subspaces of T,J¥(M) of

the form Uz(k), for z in the fiber of 741 over y. Of course, they are contained in C*

- n7y’
and are transverse to V,m x—1. Moreover, as we observed before, the form [-, -] vanishes
when restricted to these planes, since they may be extended to integral submanifolds

of CF.

This motivates the following definition: an n-dimensional subspace II C T,J*(M)

is called an integral element for the contact distribution if it is contained in Cff’y, the
projection my 1. restricts to give an isomorphism II = U?Sk*l), and the form my

vanishes when restricted to II. Equivalently, II is called an integral element of the
contact distribution if for every 6 € Il(,k_l) we have that both 6| and d6| vanish, and
moreover the induced map U* — II* is an isomorphism.

It turns out that any integral element is of the form U. *® for some z:

PROPOSITION 3.4.1. The image of the canonical embedding J* (M) C JL(J*(M))
consists of the integral elements of the contact distribution on J*(M).

Proof. We have already observed that J*1 (M) is contained inside the bundle of contact
elements, so we only have to prove the other inclusion. Observe that the bundle of
contact elements sits inside the bundle J**1(M) of sesqui-holonomic jets, (see the proof
of proposition 1.5.2 for the definition of this space). Therefore, to show that it equals
JF(M) it suffices to see that the difference between two contact elements elements II, IT
at a point y € JX(M) belongs to S*1U* @ Q.

Let X,Y € Uy, and let Xij, Y1 be their lifts to I1. Then their lifts to IT are Xg+A(X)
and Y + A(Y), where A=l - I € U* @ Vo1 = U* @ (S¥1U* ® Q). Using that
IT and II are integral elements for the contact distribution, we have

0 = (X + ACY), Ya + A(Y)] = [A(X), Y] - [A(Y), Xa] (35)

By 3.2.1, this equals YJA(X) — XJA(Y). The fact that this vanishes for all X,Y
implies that A is symmetric, which finishes the proof. O]

In particular, we recover J™1(M) from the knowledge of the space J*(M), the
contact distribution C¥ and the vertical distribution Vg _;, as the submanifold of
integral elements inside J}(J¥(M)). This embedding also provides us with the bundle
U®) | and therefore we may also recover C+1. Moreover, V11, is simply the restriction
to JETL(M) of the vertical of the projection J!(J*(M)) — J*¥(M). In this way, one
could develop the theory of jet spaces in an inductive way. This is the viewpoint often
taken in the literature on exterior differential systems.
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Chapter 11

Spencer Cohomology

This chapter contains the algebraic background needed throughout the rest of the thesis.

We begin in section 1 by discussing the Koszul homology of graded modules over a
polynomial algebra. The polynomial Poincaré lemma implies that the Koszul homology
may be computed in terms of a certain de Rham like complex, called the Koszul com-
plex. We shall also give another description using a minimal resolution of the module;
the equivalence of both descriptions depends on the commutativity of Tor.

Section 2 deals with the dual construction: the Spencer cohomology of graded co-
modules over a polynomial coalgebra. The concept of a tableau is introduced, which
provides a common way of constructing comodules. We finish this section by computing
the cohomology of some basic first order tableaux.

Section 3 is an introduction to the algebraic theory of involution. We begin by
recalling the relationship between the existence of regular sequences and the vanishing
of the Koszul homology (and dually, of the Spencer cohomology). Cartan’s test is
proven, which gives a practical way of determining if a tableau is involutive. We then
give a normal form for first order tableaux in coordinates, and discuss the consequences
of involutivity on this normal form.

This theory will be applied in chapter III: to any (sufficiently regular) differential
equation there is an associated bundle of graded comodules over a certain polynomial
coalgebra, constructed from the symbol of the equation. It turns out that the obstruc-
tions to the integrability of the equation live inside the second Spencer cohomology
group of these comodules. Moreover, the involutivity of the equation is equivalent to
the involutivity of the associated comodule.

The fact that for any finitely generated comodule the Spencer cohomology van-
ishes in sufficiently high degrees (which is a simple consequence of the Hilbert basis
theorem) implies that certain prolongation processes terminate. This will be used in
chapter III to prove a weak version of the Cartan-Kuranishi prolongation theorem, and
again in chapter IV to prove that Cartan’s method for solving the equivalence problem
terminates.

29
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1 Koszul Homology

1.1 Throughout this section, V is an n-dimensional vector space over a field F' of char-
acteristic zero. We denote by SV its symmetric algebra, and set STV = @, _, S*V. We
say that a graded SV module M = ®yczM" is quasi-finitely generated (QFG for short)
if the graded pieces M* are finite dimensional vector spaces. Let QFGModgy be the
(abelian) category of QFG non-negatively graded SV modules and degree-preserving
morphisms.

Let M € QFGModSZ\e. We say that a free resolution

o BB RS RS M0 (1)

of M in QFGModgy is minimal if imy, € S*VF, ; for all ¢ > 0 (where STV F, ;
denotes the submodule of F,_; spanned by the elements of the form Pz with P € STV
and z € F,_1). Equivalently, the resolution is minimal if ker ¢, C STV F, for all ¢ > 0.

PrOPOSITION 1.1.1. Let M be a QFG non-negatively graded SV module. There exists
a unique minimal resolution of M up to (non unique) isomorphism.

Proof. We may construct a minimal resolution of M as follows. Let Q be a complement
for STV M C M as graded vector spaces. Set Fy = SV ®g Q. Multiplication induces
an epimorphism € : Fy — M. Let Ky be its kernel and let Qy be a complement for
STy C Ky as graded vector spaces. Set F; = SV ®r Qy. Multiplication induces an
epimorphism ¢, : F; — Ky. Continuing in this way, one gets a resolution

o BB RS RSM=0 (2)

of M by free QFG SV modules, which is easily seen to be minimal

Let F. be another minimal resolution. We will prove that there exists an isomor-
phism Fy ~ FJ which commutes with the augmentation morphisms, where F, is a
fixed resolution constructed as above (which depends choices of complements Q for
STVM and Q, for STVK,). By induction it follows that F, and F, are isomorphic,
and therefore any two minimal resolutions are isomorphic.

The fact that € : F) :— M is an epimorphism implies that there exists a graded
vector subspace Q" C F{ such that ¢ restricts to give an isomorphism Q' — Q. This
induces a morphism o : Fy = SV ®@p Q — F| which commutes with the augmentation
morphisms. We claim that it is an isomorphism.

Observe that Q" does not intersect STV F). Now, let = € F|. Write €'(z) =y + z
fory € Q and z € STV M. Let 3 be the element of Q' such that €(y') = y, and choose
2’ € STV F, such that € (2') = z. Then €'(x —y' — 2’) = 0, and therefore, by minimality
of F., we have that x — ¢/ — 2’ belongs to STV F|. This shows that Q" complements

*7

STV F,
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Note that the multiplication map SV ®p Q" — F{ is an epimorphism. Moreover,
the fact that @' complements STV F] implies that the graded pieces of Q" have the
same dimension as any set of generators of F{. Therefore, checking the dimension of
each graded piece we see that SV ®p Q" — F{ has to be an isomorphism. From this,
it follows that the map o : Fop = SV @ Q — F| is an isomorphism, as we wanted to
show. O]

1.2 Consider the field F' as a module concentrated in degree 0 (so that the action of
V is trivial). The polynomial Poincaré lemma states that there is a minimal resolution

2
oSV ep \V o SVRrV = SV F =0 (3)

where we consider \?V as a graded vector space concentrated in degree q. The maps

q+1 q
SVer NV —=SvVer \V (4)
are induced by the vector space maps
q+1 q

/\V—>V®F/\V (5)

which are given by the inclusion /\qul V CV@p A"V inside V&),
Concretely, if vq, ..., v, is a basis for V', the map (5) is given by

q+1
iy A Ay = Y (=10 @ (0 AT A (6)
j=1

Tensoring (3) with a finite dimensional vector space W gives a minimal resolution
of W considered as a SV module concentrated in degree 0.

1.3 For M, N modules in QFGModSZ\(;, the tensor product M ®gy N has the structure
of a non-negatively graded QFG SV module. To see this, consider the vector space
M ®p N. Tt has a natural grading, defined by (M ®p N)F = D, M @F NE=I
where we identify M ®@p N with P, ; M’ ®p N7. The canonical vector space map
M N = M ®gsy N is an epimorphism. Its kernel is the homogeneous subspace
of M @ N spanned by the elements of the form vz ® y — 2 ® vy, where v € V, and
x € M,y € N are homogeneous. Therefore, there is an induced grading on M ®@gy N,
and it is easily seen that it is compatible with the SV module structure. This defines

a bifunctor
®sv : QFGModgy x QFGModgy — QFGModgy (7)
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which satisfies the usual properties.

Fix N' € QFGModgy. We define Tor?(-, N) as the g-th left derived functor of
- ®gy N. If we forget about the grading, this coincides with the usual Tor of modules
over SV. We have Tor,(M,N) = Tor,(N, M) with the usual proof.

1.4 Let M € QFGModSZ\(}. The Koszul homology of M in degree ¢ is defined as
H,(M) = Tor,(F, M), where F is seen as a trivial SV module as before. In particular,
observe that we have Hy(M) = M /STV M. We may compute the spaces H,(M) using
the above resolution of F'. That is, the Koszul homology of M is the homology of the

Koszul complex

n 2
0—>M®F/\V—>...—>M®F/\V—>M®FV—>M—>O (8)

From this we have that H, (M) vanishes for ¢ > n.
Alternatively, as H,(M) is also Tor,(M, F'), we may compute these spaces using
a minimal resolution F, of M. That is, the Koszul homology is the homology of the
complex
o= P Qsy F— Fi1Qsy F— Fy®sy F1— 0 9)

Observe that F, ®sy F' = F,/STVF,. The fact that F, is minimal implies that the
differentials on (9) are all zero, and so H,(M) = F,/STV F, for any minimal resolution
F.. In particular, we have that 7, = 0 for ¢ > n, for any minimal resolution F,.
Moreover, if H,(M) = 0 for some ¢, then the resolution F, has length less than ¢, and
so Hy(M) =0 for all ¢ > gq.

The action of V on F,/STV F, is trivial, and so H,(M) is simply a graded vector
space. We denote by H}(M) the degree k part of Hy(M). It is common in the literature
to denote this space by H, f_q(./\/l), however we shall stick to our grading, which is the

natural one once one agrees to work within QFGModsz\?. Using a minimal resolution of
M, it is easily seen that H, 5 (M) =0 for k < q. Moreover, we have the following

PROPOSITION 1.4.1. Let M be a finitely generated non-negatively graded SV module,
and q > 0. There exists ko such that Hy (M) =0 for k > ko.

Proof. Since M is finitely generated and SV is a Noetherian ring, we have that the
homology of (8) is finitely generated as a SV module. Since we know that the action of
V on the homology is trivial, we have that H, (M) is a finite dimensional vector space,
and so it vanishes above a certain degree. O

In fact, if M is the quotient of a free module SV @ W*, where W is a finite dimen-
sional vector space concentrated in degree 0, then the integer k¢ in the above proposition
may be taken to only depend on dim W and the Hilbert function Py (k) = dim MP* of
M. See [1] for a proof.
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2 Spencer Cohomology

2.1 Let V be an n-dimensional vector space over a field F' of characteristic zero. Con-
sider the dual coalgebra SV* to the symmetric algebra SV. We say that a graded
SV* comodule A is quasi-finitely generated if the graded pieces A* are finite dimen-
sional vector spaces. Let QFGCOMOdSZ\e be the category of QFG non-negatively graded
SV* comodules and degree preserving morphisms. Observe that QFGCoModSZ\(,) and
QFGModSZ\O, are dual categories, the anti-equivalence being given by taking dual as
graded vector spaces. That is, given A € QFGCoModSZ\(}, its associated graded module
is M = @, hom(A¥, F), and in the same way, if M € QFGModsz\(}, its associated graded
comodule is A = @, hom(M?*, F). Therefore, the abelian category QFGCoModge has
enough injectives. In fact, every object has a canonical isomorphism class of resolutions,
which may be called minimal.

Observe that if A is a QFG graded vector space, graded SV* comodule structures
A — A®p SV* are in correspondence with SV module structures A @ SV — A such
that the action of V' is homogeneous of degree —1. This is dual to the action of V on M
by multiplication. We say that V acts on A by contraction. In the case that A = SV*,
this is the usual contraction V @ SV* — SV*.

2.2 Let A A € QFGCoModSZ\(}, and let 9, &' be their respective comultiplications. The
cotensor product AKX A’ is defined as the kernel of the map

Ap A= A@p SV @p A’ (10)

sending z®y to A(z) @y—x®A(y). This is a graded SV* comodule, dual to the tensor
product M ®gy M’ of the associated graded modules. Observe that AX ' = ker A,
where F'is consider as a graded comodule concentrated in degree zero.

Fix A" € QFGCoModsz\?. The functor - X A’ : QFGCoModg\g — QFGCoModSZ\(} is
left exact. The Cotor functors are the right derived functors of - X A’, and are denoted
Cotor?(-, A’). Of course, Cotor?(A, A’) is just the dual comodule to Tor?(M, M").

2.3 Let A € QFGCoModg\?. The Spencer cohomology of A in degree ¢ is defined as
Hi(A) = Cotor?(A, F). This is dual to the Koszul homology of the associated graded
module. In particular, the comultiplication H(A) — H(A) @ SV* is trivial, and one
has H(A) = 0 for ¢ > n. We denote by H%*(A) the k-th graded piece of H7(A). As
before, we have that H4*(A) = 0 for k < ¢, and there exists ko such that H**(A) =0
for k > k.

We may compute these spaces using the dual of the Koszul complex. This gives a
complex

02 A= ARpr V" 2 AQr A*V* = ... 5 AQp A"V* =0 (11)
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where A?V* is consider as a graded comodule concentrated in degree gq. The first map
A — A®p V* is the comultiplication. In general, the map A ®@p AV* - AQ@p ATTV*
is given by the composition

ARp AV 5 A@p V@p ANV - A@p ATV (12)

where the first map is induced by comultiplication, and the second map is induced by
the wedge product. Observe that the complex (11) is a right AV* module, and the
differential is AV* linear.

Concretely, if vy, ..., v, is a basis for V and v!, ..., v" is its dual basis, the differen-
tials are given by

x@(@il/\...AUiq)'—)ZUj_I.T@(Uj/\Uil/\---/\viq> (13)
=1

where v;_x denotes contraction by v;.

2.4 Let V,W be finite dimensional vector spaces over F. Let A C SS*V* @p W be
a graded subcomodule. That is, A is a graded subspace of the space of polynomials
of order at most k, closed under contraction. We may extend A to higher degrees, by
setting

AR = (S'V* @ WF) N (SHTV @ W) (14)

for { > 0. That is, A**' consists of those polynomials of order k + [ such that all
their derivatives of order I belong to A*¥. The space A is now a graded subcomodule
of SV* @pr W. Its associated graded module M is a quotient of SV ®r W*. Let B be
the kernel of the quotient map. The way that A was constructed implies that B is the
span of B=k,

From the long exact sequence induced by

0=B=>SVRpW*"=-M—=0 (15)

we get Hy(B) = H,1(M) for ¢ > 0. In particular, we have that H'(A) vanishes in
degrees greater than k.

A particular case of interest is when A is obtained from a comodule of the form
(S<kFV* @p W) @ A with A C S*V* @ W a subspace. Here we use the notation
Hi(A) = HI(A). The space A is called a k-th order tableau. The (k + [)-th order
tableau AW = A**! is called the I-th prolongation of A.

ExaMPLE 2.4.1. Let V be an n-dimensional vector space over F' and set W = V*.
Consider the subspace A C V* ® V* of symmetric bilinear forms. Then A = SMy*
where [d] denotes a shift in degree, so that (SMV*)7 = S7+1V* (and we drop the
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space S°V*). By the polynomial Poincaré lemma (i.e., the vanishing of the Spencer
cohomology for SV*), we have H4/(A) =0 for j > g > 0.
Now, for j = q we have

H?(A) = A’ @p ATV* /im§?™! = V* @p ATV* /im §7! (16)

where 5971 1 S2V* @p ATIV* — V* @p AYV* is the Spencer coboundary. Using the
polynomial Poincaré lemma again, we get H%9(A) = A7™1V* for ¢ > 0.

ExAaMPLE 2.4.2. Let V be an n-dimensional vector space over F' and set W = V*.
Consider the subspace A C V* ® V* of anti-symmetric bilinear forms. The space A?
is the space of trilinear forms on V' which are symmetric in the first two entries and
anti-symmetric in the last two entries. It is easily seen that these forms necessarily
vanish, so we have A? = 0. Therefore, H47(A) =0 for j > q + 2.

When j = ¢ we have

HY(A) = V*@p AV*/im §97! (17)

where 677! : A ®p ATIV* — V* @p AYV* is the Spencer coboundary. From this, we
get HY(A) = S?V*. Now, let z,y,2 € V*. We have

TQYNz=0 2 AyRz—yAz@x+2ATRY)/2 (18)

and therefore 6' : A ®p V* — V* ®@p A2V* is surjective. The fact that § is right
AV*-linear implies that §9~! is surjective for ¢ > 2. Therefore, H%%(A) = 0 for q > 2.

The only spaces left are those of the form H%%"'(A). This is the kernel of 67 :
A@pANIV* — V*@pAT1V* . Since A is obtained from the comodule V*@®A C S'V*@W,
we have H'?(A) = 0. When ¢ > 2, we shall only mention that the space H%9"!(A) may
be non-zero. One may try to decompose this space into irreducible GL(V') modules,
however we shall not discuss this here.

ExXAMPLE 2.4.3. Let V,W be two finite dimensional vector spaces over the real num-
bers, equipped with complex structures. Consider the subspace A C V* @z W of
complex linear transformations. Then A = ScVVY ®c W, where V'V denotes the dual
as a complex vector space, and S¢ denotes the symmetric algebra as a complex vector
space. Of course, the complex polynomial Poincaré lemma tells us that the cohomology
of A as a ScVY comodule vanishes, however we are interested in its cohomology as a
SV* comodule. This is the cohomology of the complex

0> A= ARV = A@p A°V* ... — ARg A"V* = 0 (19)

Observe that A @g AV* = A @c AL(V* ®r C), where A denotes the exterior powers
as a complex vector space. Therefore, (19) becomes

0+ A—>ARc(V*@C) = ARc A2(V* @ C)... = A®c AZ(V* @ C) — 0 (20)
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Denote by V" the space of complex anti-liner functionals V' — C. The decomposi-
tion of V*@r C as VV @ V" induces a bigrading on its exterior algebra. We denote by
AZ*(V* @g C) the space generated by wedges of r linear and s anti-linear functionals.
This induces a bigrading on (20). Consider the spectral sequence corresponding to the
filtration induced by F*(Ac(V*®@rC)) = @, -, AL’ (V*®r C). The zeroth page consists
of the spaces -

(A®c A" (V* @r C))/(AR¢ AESH(V* ®r C)) = A®c ALV ®c AfCVv (21)
These spaces form complexes of the form
05 ARc ALV =5 AR VY @c AV = .. 5 AR ALVY @c ALV =0 (22)

This is the tensor product with ALV of the Spencer complex of A as a ScV" comodule.
By the complex polynomial Poincaré lemma, the first page has E]” = 0 for r > 0,
and E?’S =W ®c Af’cvv, which is a complex vector space concentrated in degree s.
This implies that the differential E"® — EY*™ vanishes, and so the sequence already
converges in the first page. Since this sequence computes the cohomology of (20), we
have that H%(A) = 0if j > ¢ > 0, and H¥(A) = W ¢ ALV for ¢ > 0.

3 Involution

3.1 Let F' be a field of characteristic zero, and V' be an n-dimensional vector space
over I'. Let M be a QFG non-negatively graded SV module. An element v € V
is said to be regular for M if multiplication by v is a monomorphism. A sequence
Ul,...,Unt1—q Of elements in V' is said to be a regular sequence for M if v; is regular
for M/(vy,...,vj_ )M forall1<j<n+1-gq.

The existence of regular sequence is related to the vanishing of the Koszul homology
of M, as follows

PROPOSITION 3.1.1. Let M be a QFG non-negatively graded SV module, and 0 < q <
n. If there exists a reqular sequence of length n +1 — q for M, then H,(M) vanishes.
Conversely, if M is finitely generated and H, (M) vanishes, then a generic sequence
U1, ..., Unt1—q @S Tegular for M.

Proof. Consider first the case ¢ = n. Suppose that there is a v which is regular for M,
and complete it to a basis for V. From the expression of the Koszul boundary in this
basis it is easily seen that 6§, : M ®@p A"V — M ®@r A" 'V is a monomorphism, and
so H,(M) = 0.

Conversely, suppose that H,(M) vanishes. Let m € M — {0}, and vy,...,v, be a
basis for V. The fact that §,,(m ® v A ... Av,) # 0 implies that there is a index i such
that v;m # 0. Therefore, SV is not an associated prime for M. Since we assume that
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M is finitely generated, there are only a finite number of associated primes Py, ..., P.
for M. The non-regular elements for M are then the elements of Uﬂ’il C V., which is
a finite union of proper subspaces of V.

Now, suppose that v € M is a regular element, and consider the short exact sequence

0— MET 2 M M/oM =0 (23)

where p, is multiplication by v, and [—1] denotes a shift in the grading so that pu,
preserves degree. The action of V' on the Koszul homology is always trivial, so the
maps induced by p, on the homology are zero. Therefore, from (23) we get short exact
sequences

0— H;(M) = H(M/vM) = Hi_ (M) =0 (24)

from which the proposition follows, by induction. m

We say that a module M in QFGModg\(; is [-involutive if Hg (M) =0forallg >0
and j > ¢+ [. By proposition 1.4.1, any finitely generated module is [-involutive for
some [. An element v € V is said to be [-regular for M if multiplication by v is a
monomorphism in degrees greater or equal to [. A sequence vy, ..., V41—, Of elements
in V' is said to be a l-reqular sequence for M if v; is l-regular for M/(vy, ... ,vj_1)M
forall 1 < 5 < n+1—¢q. The following proposition follows from the same kind of
arguments as proposition 3.1.1

PROPOSITION 3.1.2. Let M be a QFG non-negatively graded SV -module, and 0 < gy <
n. If there exists a l-reqular sequence of length n+ 1 — qy for M, then Hg(/\/l) =0 for
all g > qo and 7 > g+ 1. Conversely, if M is finitely generated and Hg(./\/l) =0 for all
q>qo and j > q+1, a generic sequence vy, ..., Uny1—q @S reqular for M.

In particular, it follows that [-involutivity is equivalent to the existence of [-regular
sequences of length n.

3.2 Let A be a QFG non-negatively graded SV* comodule. A sequence of elements
Ul,...,Unt1—q in V is said to be [-regular for A if it is [-regular for its associated graded
module M. Denote by ¢, : A — A the contraction by v € V| and let

Aj =keri,, N...Nkeru,, (25)

Then v1,...,Vnt1-¢ is l-regular if and only if ¢, ,, : Ajzl+1 — Ajzl is surjective for all
0 <j<n-—gq. Wesay that A is l-involutive if H?(A) =0 for all ¢ > 0 and j > g+ .
Of course, the existence of [-regular sequences is related to [-involutivity, via the dual
to proposition 3.1.2.
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3.3 Let V,W be two finite dimensional vector spaces over F, with dimV = n. Let
A C S*V* @ W be a k-th order tableau, and A C SV* @ W be the associated SV*
comodule. We say that A is involutive if A is k-involutive. By proposition 1.4.1, we
have that A® is involutive for [ large enough.

A quasi-reqular sequence for A is a k-regular sequence for A. By proposition 3.1.2,
the involutivity of A is equivalent to the existence of a quasi-regular sequence of length
n. If vy,..., v, is a sequence of elements in V', let A; be the subspace of A consisting of
those polynomials P such that v;.P = 0 for all 7 < j. Observe that A; may be thought
of as a k-th order tableau in two different ways, corresponding to the coalgebras SV*
and S(V/(v;))*. Both notions of prolongation coincide, and we have (A4;)® = (AD),.

PRrROPOSITION 3.3.1. A sequence vy,...,v, is quasi-reqular for A if and only if the
contraction t,,., Ag-l) — A, 1s surjective for all 0 < j <n —1.

Proof. Of course, quasi-regularity implies that all those contractions are surjective, so
we only need to show the converse. Assume that it holds when dimV =n — 1, so we
only need to prove that ¢,, : A — A is surjective. By induction on k, we only need to
show that ¢,, : A® — AW is surjective.

Let Q € AM and consider the 1-form §°(Q) € A ® V*, where §° denotes the zeroth
Spencer coboundary. By hypothesis, there exists 7" € A" @ V* such that ¢,, T = §°(Q).
We have that t,,0'T = §'6°Q = 0, and so §'T belongs to A; @ A2V*. We claim that
we could have chosen T so that 67 = 0.

To see that, let Vi* = (V/(v1))*, and consider the following commutative diagram
with exact rows

0—— AV — s AP e v —— 5 AV ® (Ro ) ——— 0

| | |

0—— ANV — 5 A AV — 5 A, @ Ry @V —— 0 (26)

| | |

00— WAV — s WAV —— W (R ) @ A2V —— 0

The left column computes the cohomology H*#*2(A;) as a SV;* comodule, which
vanishes since A; is involutive by induction. The right column computes H*"1(A;) ®
(Rv;)* = 0. From this, we see that the middle column is exact. Since §'T € A; ® A*V*
is 02 closed, it follows that we may change 7" so that §'T vanishes, as we claimed.

By the polynomial Poincaré lemma, there exists P € A® such that T = ¢°P. From
this, we have

6%y, P = 145,0°P = 1, T = 6°Q (27)
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and so t,, P = Q. Since @) was arbitrary, it follows that ¢, : A® — A is surjective,

as we wanted. O
COROLLARY 3.3.2 (Cartan’s test). Let A be a k-th order tableau and vy, ..., v, be a
basis for V.. We have

dim AV < dim A +dim A; + ... +dim 4,_, (28)
with equality if and only if vy, ..., v, is a quasi-reqular sequence for A.

Proof. Consider for each 0 < 7 < n — 1 the following exact sequence

(1) (1) vyt

0= A, = A —— A (29)

Counting dimensions, we have
dim A% < dim AV, + dim 4, (30)
for all 0 < 7 < n — 1, which proves the inequality in the statement. By proposition
3.3.1, vq,...,v, is quasi-regular for A if and only if all the sequences (29) are exact.
This happens if and only we have equality in (30) for all 7, which is equivalent to the
equality in the statement. O

3.4 Let X C V be a j-dimensional subspace. Consider the subspace Ax of A consisting
of those polynomials P € A such that vaP = 0 for all v € X. The dimension of Ay is
upper semicontinuous with respect to X. Moreover, the minimum dimension is attained
for X in an open dense subset of the Grassmanian G;(V). We say that X is generic
(with respect to A) if the dimension of Ax is minimal. An ordered basis vy, ..., v, for
V' is said to be generic if the subspaces (vy, ..., v;) are generic for all 1 < j < n. By
Cartan’s test, when A is involutive, a basis is generic if and only if it is a quasi-regular
sequence.
The Cartan characters of A are the integers sq,...,s, such that for all 0 < j <n
we have
dimAx =sj41+ ...+ 5, (31)

for a generic X € G,;(V). Alternatively, they may be defined as s; = dim A;_; —dim A,
for any generic basis vy, ..., v,. Cartan’s test may be reformulated as follows

PROPOSITION 3.4.1. Let A be a k-th order tableau. We have
dim AD < sy + 289 + ... +ns, (32)
with equality if and only if A is involutive.

Moreover by proposition 3.1.1 we have that H?(A) vanishes in all degrees if and
only if s = ... = 5,41 = dim W.
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3.5 The following result will let us put first order tableaux in a normalized form in
coordinates.

PROPOSITION 3.5.1. Let A be a first order tableau, and vy, . ..,v, be a generic basis for
A. For each 1 < j < n, let W; be the image of the contraction v,, : A;_y — W. Then
Wis1 CWj foralll <j<n-—1.

Proof. Take Py, ... Ps, linearly independent elements of A such that v;1F; form a basis
for W;. Suppose that W5 is not contained inside Wi, so that there is ) € A; such that
ve1Q ¢ Wi. Let 01 = vy + evsq, for some ¢ € R. If ¢ is sufficiently small, we have that

U14Py, 014Ps, ..., U14P,,, 01 0Q are s + 1 linearly independent elements of ¢, (A). This
contradicts the fact that vy is generic, and so we must have Wy C W;. The case j > 1
follows by applying this result for the first order tableau A;_;. O

COROLLARY 3.5.2. The Cartan characters of any k-th order tableau satisfy

§1 >8> ...> 5, (33)
Proof. The case k = 1 is a direct consequence of the above proposition, since dim W; =
sj. In general, any k-th order tableau A C S*V*®W may be interpreted as a first order
tableau contained in V* ® (S*1V* ® W), so the corollary also holds in this case. [J

Let A C V*® W be a first order tableau. Let vy,...,v, be a generic basis, and
wy, ..., ws be a basis for W such that W; is spanned by wy, ..., w,;. Let v’ and w®
be the dual basis. Then, for each 1 < j < n, the quotient A;_1/A; C (Ru;)* ® W is
spanned by the vectors v/ ® w, with a < s;. Therefore, A has a basis of the form

v @ w, + A0t @ wy (34)

where we have 1 < j < n, a < s;, and Aff; = 0 unless ¢ > 75 and b > s;. Dually, the
annihilator B C V @ W* of A has a basis of the form

v; ® w* + Bjv; ® w® (35)

where we have 1 < j <n, a > s;, and B% =0 unless 7 < 7 and b < s;.

The tableau A is sometimes represented as a matrix, and this says that the matrix
may be taken to have a specific block form. In the case that A is involutive there
are extra relations that the coefficients A7° must satisfy. This leads to the Guillemin
Normal form for involutive tableaux (see [1]). As a first step in that direction, we offer
the following

PROPOSITION 3.5.3. If A is involutive, we have that Afls =0 when b > s;.
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Proof. By induction, we may assume that it holds when 7 >, so we must prove that
Al =0 when b > s;. Let 1 < a < s, and choose P € AW such that

V1P = v @ w" + A% @ w, (36)

For each i > 1, we have that v;1(v12P) € W;. Therefore A}wab € Wi, so we must have

)

Al =0 for b > s;, as we claimed. O

It may be seen that if A is a tableau such that those coefficients vanish, involutivity
is equivalent to a quadratic condition on the remaining coefficients.
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Chapter 111

Differential Equations

In this chapter we present the basic theory of differential operators and equations using
the jet formalism developed in chapter I.

Section 1 deals with differential operators. We begin by discussing the general case
of k-th order differential operators sending n-dimensional submanifolds of a manifold
M to n-dimensional submanifolds of a manifold M’. These may be prolonged to form
higher order differential operators. It turns out that the prolongations respect the
affine structure on the jet spaces. The associated vector bundle maps depend on the
principal symbol of the operator, which is an object which describes its highest order
behavior. Finally, these concepts are adapted to the case of differential operators acting
on sections of a fibered manifold.

In section 2 we study k-th order differential equations on n-dimensional submanifolds
of a manifold M, that is, subsets R C J¥(M). Assuming smoothness, these may
be prolonged to form higher order differential equations having the same solutions
as the original one. We discuss how one may present a differential equation using a
differential operator, and the relationship between the prolongations of the equation and
the operator. We introduce the principal and sub-principal symbols of the equation.
From these (under mild conditions) one may construct a bundle Agr of graded SU*
comodules over R. This comodule governs the behavior of the prolongations of the
equation. Lastly, we observe how this theory adapts to the case of differential equations
on sections of a fibered manifold.

In section 3 we introduce the concept of formal integrability of a differential equation.
If R is nonempty, this guarantees the existence of formal solutions (in coordinates, for-
mal series solving the equation and all its derivatives). In the analytic category, it may
be seen that formal integrability implies the existence of local solutions, however this is
false in the C'*° case without extra assumptions. We construct the first obstruction to
integrability, which is a section of the bundle H?>**!(Ag). Proceeding inductively, we
will prove the theorem of Goldschmidt which asserts that if H>***+1(Ag) vanishes for
all { > 0, then R is formally integrable. To finish this section, we give an alternative
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construction of the curvature in the case where R is a differential equation on sections
of a fibered manifold given by a differential operator. This depends on the description
of the Spencer cohomology of Ag via minimal resolutions.

Section 4 deals with the initial value problem: given a k-th order differential equation
R C J¥(M) and (generic) initial conditions along a n — 1 dimensional submanifold of
M, we want conditions that assure that it is possible to extend this to a solution of
R. Tt is easily seen that the initial conditions have to satisfy a first order equation
(corresponding in coordinates to the commutativity of derivatives). We shall see that
if this equation is formally integrable then the only obstruction to the solvability of
the formal initial value problem lies in the first order (i.e., whether or not any generic
initial conditions along a 1-jet of an (n — 1)-dimensional submanifold satisfying the
equation may be extended to a (k + 1)-jet of a solution to R). This is related to the
Cartan-Kahler existence theorem in the theory of analytic exterior differential systems.

1 Differential Operators

1.1 Let M, M’ be two differentiable manifolds, and fix n < dim M. Let &k > 0. A
k-order differential operator taking n-dimensional submanifolds of M to n-dimensional
submanifolds of M’ is a smooth function ¢ : V' — M’ where V' C J¥(M) is an open
subspace. Given an n-dimensional submanifold i : N — M such that N®) C V and
@|7, no is @ monomorphism for all y € N® the composition A, (i) = o i) is an
immersion from N to M’. We denote by A,(N) the manifold N when seen as an
immersed submanifold of M’. For simplicity of exposition, we assume that ¢ is globally
defined on J¥(M), and that it is a monomorphism when restricted to any integral
element of the contact distribution on J¥(M), so that A,(N) is defined for all N.

Strictly speaking, one should define a differential operator to be an operator A
sending submanifolds of M to submanifolds of M’, for which there exists a function ¢
as above such that A = A,. The order of A is then defined as the least £ for which on
may take ¢ to be defined on J¥(M). Observe that even if ¢ is a function on J*(M),
the operator A, may have order less than k. Having said this, we shall stick to our
original definition most of the time.

Let N be an n-dimensional submanifold of M. Let [ > 0, and consider the subman-
ifold A, (N)® inside J!(M’). For each ¢ € N, the I-jet A, (i) (q) only depends on the
(k +1)-jet of N at x, so we get a well defined map

P T (M) = T, (M) (1)

which is a (k + [)-th order operator with values in J'(M’) called the I-th prolongation

of p. We set Afj) = A . By definition, Ag)(N) = A,(N)D. Observe that we have
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the following commutative diagrams

QU+D)

Jk+l+1(M) Jl+1 (M/)

|

JEH(M) —E2 s (M)

For zeroth order operators (i.e., functions), this notion of prolongation coincides with
the prolongation defined in chapter 1. If ¢ is of order k > 0, there is some ambiguity
when talking about ¢®: it could also be interpreted as being the I-th prolongation of
¢ as a function, in which case it should be a map J!(J*(M)) — J!(M'). The I-th
prolongation of ¢ as a differential operator is the restriction of this map to J*(M)
via the canonical embedding J*+! (M) C J.(J*(M)). From now on, we shall use ¢
for the [-th prolongation of ¢ as a differential operator.

Consider the iterated prolongation ®(™) ; jk+t+m(yry — jm(JL(M')). The image
of this map belongs to Ji+™(M’), and its co-restriction equals ¢*™. One could there-
fore define the prolongations of ¢ in an inductive way using that !+ = OO where
the first prolongation M) of an operator may be obtained as the restriction to .J ’“H(M )
of the map J1(J*¥(M)) — JY(M') induced by . Observe that this construction only
depends on the space J¥(M) and the distributions C¥ and V. ;_1; we do not need to
use that J¥(M) is a space of jets.

Using the concept of prolongation, we may define the composition of two differential
operators o JNM) - M’ and ¢ : J\(M') — M" as the (k + [)-th order operator
Yol o JH(M) — M”. We use the notation Ay o Ay = Ay, w. Observe that
Ay o Aw( ) = Ay(AL(N)). It may happen that 1 o o) is actually defined on a lower
order jet space, in this case the operator Ay o A, would have order less than £k 4 1.

ExaMPLE 1.1.1. Consider the case M’ = JF(M) and ¢ = id jx(ar). This is the k-th order
universal differential operator, and is denoted by idg. Any k-th order operator is then
obtained by composing the universal operator with a function. We have Ay, (V) =
N®) _ The [-th prolongation idg) is given by the canonical embedding J*(M) —
T (TR (M),

1.2 Let U°U’ be the universal bundles on J}(M) and J}(M'). Let Q = TM/U and

Q' = TM'/U’. As usual, we pullback bundles on J!(M’) to J*(M) via V. As in the

case of zeroth order operators, ¢! gives an isomorphism U*+) = U'® over J,’;’*l“(M ).

Unless we are interested in its embedding inside the tangent space to a particular jet
space, we shall identify all the universal bundles and simply speak of U.

From now on, we assume k > 1. The principal symbol of the differential operator ¢
is the map of bundles over J*+1(M)

Op: Vipp1 =SU"@Q — Q' (3)
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induced by ¢,. Again, there is some ambiguity to this: if we forget that  is a differential
operator and treat it as a function, its symbol is a map J*(Q — JL(M)) — Q'. When
we restrict it to SFU* ® @ we get the map (3). We shall always use o, for the symbol
of ¢ as a differential operator.

The [-th prolongation of the symbol is the map

o) = SHUr @ Q = S'U*® Q' (4)

given by the restriction of
Loy ®o0,: SU*® (SF U@ Q) — S'U* 2 Q' (5)
to S¥HU* ® Q. These maps determine the behavior of the prolongations of ¢, as follows

PROPOSITION 1.2.1. The map Vmgyipri-1 — V-1 induced by <p§f) may be identified

with ag) for each 1 > 1. Moreover, if | > 2, the map ¢V is an affine bundle morphism
over U=V with associated vector bundle map afj).

The proof of this goes along the same lines as the proof of proposition 1.1.6.2, and
is left to the reader.

1.3 Let M be a manifold and n < dim M. Let £ : B¢ — M and n : E, — JF(M) be
two fibered manifolds. A k-th order differential operator acting on sections of & over
n-dimensional submanifolds of M with values in 7 is a differential operator ¢ : J*(¢) —
E, such that n o = ¢®. In other words, this is a morphism of fibered manifolds
JE(&) — E, over J¥(M). For each pair (N, s) of an n-dimensional submanifold N of
M and a section s of |y, we may write A (N, s) as (N®)| A (s)) for a certain section
Ay (s) of n|ym. An important particular case of this is when 7 is pullbacked from M:
here the operator may be interpreted as sending sections of £ over N to sections of n
over N.

The I-th prolongation of ¢ is a map ¢ : JF+(€) — JL(n) of fibered manifolds
over JEHL(M). Let 2%, u® be coordinates on M, and extend them to coordinate systems
2t u v’ and 2%, u$,v" on E¢ and F,. The operator ¢ may be written as

Then the [-th prolongation is given by the formula
(p(l)(xivu?7vb) = (xi>u?’DJ’¢c($iau(IL>US)) (7)

where D¢ denotes the iterated derivative of ¢ with respect to 271, ...,z treating
the variables u¢ and v% as functions.

In this case, the definition of the symbol should be adapted to reflect the fibered
nature of the spaces. The map 7z : J¥(€) — J*71(€) should now be considered as a

n
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morphism of fibered manifolds over J*(M). The symbol of ¢ is defined to be the map
of bundles over J¥(¢)
o, SFUT @ VE— Vny (8)

induced by ¢, : Vi x—1 — V1. The [-th prolongation of the symbol is the map
ol SHUT @ VE— S'U*® Vi (9)
given by the restriction of
lgy- ® 0o, : S'U* @ (SFU* @ Q) = S'U*®Q (10)
to S U*® Q. Proposition 1.2.1 is still valid in this context when interpreted correctly.

Moreover, ¢ is a morphism of affine bundles over =1 for I =1 too.

1.4 Consider now the case when & : B — M and n : E, — J¥(M) are vector bundles.
A k-th order linear differential operator acting on sections of £ over n-dimensional
submanifolds with values in 7 is a morphism of vector bundles ¢ : J*(¢) — E,. In this
case, the prolongations ¢ are also linear. The symbol of ¢ may be identified with the
restriction of ¢ to ker(my,x_1) = S¥U* ® Q. More generally, ¥ restricts to a map

ker (Tpp -1t JETH(E) = JEFTHE)) = ker(my1 = Jh(n) = T (n)) (11)

which may be identified with the prolonged symbol ag).
Let M, M’ be two manifolds and ¢ : J¥(M) — M’ be a differential operator. Its
linearization is the morphism

lo 2 J3(Q = Jy(M) = T (M)/U" — @ (12)

of vector bundles over J**1(M), induced by ¢,. This is a k-th order linear differential
operator from @ to Q.

In the case that we have a (nonlinear) differential operator ¢ : J*(¢) — E, between
fibered manifolds, the linearization is defined as the morphism

o JE(VE = E) =VEW = v (13)
of vector bundles over J*(¢) induced by .. This is a k-th order linear differential
operator from V¢ to V.

2 Differential Equations

2.1 Let M be a manifold, and fix n < dim M. Let k& > 0. A k-th order differential
equation on n-dimensional submanifolds of M is a subset R C J*(M). An n-dimensional
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submanifold N C M is said to be a solution of R if N® C R. We say that R is smooth
if it is a smooth submanifold of J*(M).

A k-th order differential equation R is said to be differentially closed if for every
smooth function f : J*~*(M) — R which (when pullbacked to J*¥(M)) vanishes along
R and every section X of U*~V over J¥(M), we have that X (f) also vanishes along R.
In coordinates, this means that if R satisfies f(x%, u¢) = 0 for some function f which
only depends on uf for [I| < k — 1, then R also satisfies D;(z", u$) for all 1 < j < n,
where D; denotes the derivative with respect to 27 treating u§ as functions of z. A
differential equation R is said to be locally differentially closed if V' N R is differentially
closed for every open subspace V' C J*(M). If an equation does not satisfy this, we may
replace it by the largest locally differentially closed equation contained inside it, and
its solutions would not change (although one may lose smoothness when doing this).

We say that a smooth differential equation R is infinitesimally differentially closed
if for every y € R we have U?Sk_l) C 7k k—1+1yR. The motivation for this last definition
comes from the following

PROPOSITION 2.1.1. Any infinitesimally differentially closed equation R C J¥(M) is
also locally differentially closed. The converse is true provided that R is smooth and
Tkke—1|r has constant rank.

Proof. Suppose that R is infinitesimally differentially closed. Let V C J*(M) be an
open subspace, and f : J*"1(M) — R be a smooth function vanishing along RN V.
Let y € RNV. For each X € Uzsk*l), we have that X (f) = df(X). Now, df vanishes
on Ty R, and so it vanishes on Uékil). This implies that X (f) = 0, so we conclude that
R is locally differentially closed.

Now, assume that R is smooth and U;k_l) SZ T o—1+1y IR for some y € R. If mp 1
has constant rank near y, one may find a smooth function f : J*1(M) — R which
vanishes along R in a neighborhood of y, such that df |U§k—1) # 0. This implies that

there exists X € Uzgk_l) such that X (f)(y) # 0, and so R is not locally differentially
closed. u

Let ¢ : J*(M) — M’ be a differential operator, and S C M’ be a subset. Then
0 1(S) is a differential equation. We say that R is given (or presented) by ¢ € S. The
presentation is said to be regular if R is smooth, S is a submanifold of M’, and the
induced map ¢, from the normal bundle of R to the normal bundle of S is injective.

Observe that any equation may be presented in this way. Indeed, if R C J*(M), then
R is given by idy € R, for id; the k-th order universal differential operator. Moreover,
if R is smooth then this presentation is regular.

2.2 Let R be a smooth k-th order differential equation and let [ > 0. The [-th pro-
longation of R is the (k + [)-th order equation R = JL(R) N J*+(M), where the
intersection is taken inside J(J¥(M)). This equation is not necessarily smooth.
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Observe that RY is given by idg) € JL.(R). That is true more generally if the
equation is given regularly by ¢ € S, as we shall now prove. Here we assume as usual
that our operators and their prolongations are globally defined. If not, one only recovers
the intersection of R with the domain of definition of . Before proving this, we
need the following lemma

LEMMA 2.2.1. Let N > n > 0 and r > 0 be natural numbers, and g : RN — R" be
a smooth function such that g='({0}) is a smooth submanifold of RN and for every
y € g1 ({0}) we have that T,g~*({0}) = g, *({0}). Let h : R" — RY be a smooth
function and k > 0. We have that the k-jet of gh at 0 vanishes if and only if the k-jet
of h at 0 factors through g='({0}).

Proof. If the k-jet of h at 0 factors through g~1({0}) then the k-jet of gh at 0 vanishes
by the chain rule.

Reciprocally, suppose that the k-jet of gh at 0 vanishes. Changing coordinates if
necessary, we may assume that ¢g='({0}) is an hyperplane on R¥. In this case, the
k-jet of g at 0 factors through ¢=*({0}) if and only if g.D?(g)(0) = 0 for all j < k. By
induction, we may assume that the (k — 1)-jet of h at 0 factors through ¢='({0}). If
we apply the chain rule to D*(gh), the only surviving term is g, D¥(h)(0), which must
therefore vanish. O

PROPOSITION 2.2.2. Let R C J¥(M) be a smooth equation given reqularly by ¢ € S.
Then RY is given by o® € JE(9).

Proof. Let y € J*(M) and choose functions f1,..., f" on M’ defined around ¢(yz)
such that f = (f1,...,f"): M’ — R" is a (locally defined) submersion and S coincides
with the zero locus of f near ¢(yx). Then R is defined near y; by fo = 0.

Let N be an n-dimensional submanifold of M passing through a point ¢ € M,
and such that i**)(q) = y. The fact that ¢ € S is regular implies, by the lemma,
that i**1(q) € RW if and only if fo|yw vanishes at y;, up through order I. This is
equivalent to f| o(N()y vanishing at ©(yx) up through order [, and this happens if and

only if p®(y) € JL(9). O

We say that R is integrable up through order 1 if RY) is smooth for 0 < j < I,
and the projections RUtY — RU) are surjective submersions for j < I. In this case,
proposition 2.2.2 may be strengthened to give

PROPOSITION 2.2.3. Let R C JX(M) be a smooth equation given regularly by ¢ € S,
and suppose that R is integrable up through order . Then R is given regularly by

eV € JH(9).

Proof. We have to check that the map induced by @Sf) between the normal bundles
NorR® and NorJ!(S) is injective. Assume that this is true for [ — 1. Let Nory R =
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VﬂkJrl’kJrl,l/(V?TkJrl,kJrl,l|R) and NOI‘V¢]7Z1(5> = Vﬂl,lfl/(VWl,lflbjl(S)) be the vertical
part of the normal bundles to R® and J!(S), respectively. Consider the following
commutative diagram with exact rows

0 — Nory R® —— NorR®» — 5 NorR(-1D — 0

T

0 —— Nory J! (S) —— NorJ! (S) —— NorJ:"1(S) —— 0

By the inductive hypothesis, the third vertical arrow is injective. Therefore, to prove
that gog) : NorRY — NorJ! (S) is injective we only need to show that the corresponding
map between the vertical normal bundles is injective.

We consider first the case I = 1. Let y € RV and let i = My, Let v € Vympi1p =
SEUX®Q, be a vertical vector at y such that e (v) e Vymiolsics). We want to show

that v € Vw11 k|gro). For each X € U,, we have o,(X_v) = XJUS)(U) € Ty, S/U,.
This implies that ¢.(X ) is tangent to S, and therefore (since the presentation is
regular) X v € V), 7 ;—1|r. The fact that this is true for all X implies that y+tv € RM
for all t € R. Therefore v € Vymyy1.1| g0y, as we wanted.

We now let [ > 1. As before, let y € RY and 3/ = ¢ (y). Let v € Vw0111 be a
vertical vector at y such that ol (v) € Vymii-1] g1 (s)- Now, for any ¢t € R we have that
oW (y +tv) =y +to®(v), which belongs to J.(S) (using the fact that this is an affine
subbundle of J! (M) over J.7*(S)). Therefore v € V11 pri-1]pw, as we wanted. [

COROLLARY 2.2.4. Let R C JX(M) be a differential equation which is integrable up
through order 1. Then RO = RU™) for all m > 0.

Proof. We know that RY is given regularly by idg) € J'(R). Therefore, RV(™ is given
by idP"™ e Jm(JL(R)) C J™(JL(JE(M))). Now, the image of id"™ is contained
inside J.T™(J*(M)), and its co-restriction equals id,(gHm). Therefore RO is given by
id,(ﬁm) e Jim(JE(M))nJ™(JL(R)). This space equals J:*™(R) by induction on /, and
so RO coincides with RH™), O

This corollary implies that one could also define R®) inductively, taking first pro-
longation [ times. To define R one only needs knowledge of R, the restriction of the
contact distribution C* to R, and the vertical distribution V. x_1|zr. Moreover, from
this information one may also recover the solutions of R, as the integral submanifolds of
CF|r transverse to the vertical. Therefore, one could develop the theory of differential
equations inductively, and forget about the fact that R embeds inside a jet space. This
is the point of view usually taken in the literature on exterior differential systems.
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2.3 Let R C J*(M) be a smooth k-th order differential equation. The principal symbol
of R is the (possibly singular) vector bundle

Ay = Vroa|r = ker(myp—1.lrr) € S"U* @ Q (15)

defined over R. The sub-principal symbols of R are the (possibly singular) vector
bundles '
7 = ker(mj i 1ulm, ,Tr) € STUT ®Q (16)

defined for 1 < j < k. We also set A% = pomroT R, where pg : TM — Q is the
projection.

Let [ > 0. The I-th prolongation of the principal symbol of R is the (possibly
singular) vector bundle

where the intersection is taken inside S'U* ® (S U* ® Q). In other words, the fiber of
AkH at a point y € R consists of those polynomials in SkHUg ® @y such that all their
derivatives of order [ belong to A’%’y. If R is given regularly by ¢ € S, then we have
A — (Y-Sl @ (TS/U7)) for 1 > 0.

Let 7 > 0. We say that R is j-regular if the dimension of the fibers of Ag% is
constant. In particular, observe that R is k-regular if and only if 7y ;1| has constant
rank. Moreover, R is j-regular for all 0 < j < k if and only if pomyo|r and 7 ;| g have
constant rank, for all 0 < j < k.

The total prolongation of the symbol of R is the (infinite dimensional) vector bundle

Ap=EP A, CSU ®Q (18)
=0
PROPOSITION 2.3.1. Let jo > 1, and let R C J*(M) be an infinitesimally differentially

closed equation which is j-regqular for all jo < j < k. Then the image of the contraction
map U @ Afy — ST71U* @ Q is contained in Ay " for all 5 > jo.

Proof. This is true in degrees greater than k by definition. Let jo < j < k. Let y € R,
and v € AJ . We have to prove that X v € A} ' for each X € U,,.
Let v be a curve on R such that v(0) = y and 8t(7rkﬂ)(0) = . By regularity, we may

assume that g ;17 is constant. Let X(] Y be the lift of X to U(] V¢ T, Ji~H(M).
When j > 2, X w € Vm_yj_o may be computed as Op( X5y XV~ 1))(0) (in the case j =1

one needs to project this vector to () to obtain X ).

Now, consider the curve o = (v,X,(yj_l)) on the pullback of T'JI=Y(M) to J*(M).
The fact that R is infinitesimally differentially closed implies that « is contained in
k-1« R which, by regularity, is a smooth subbundle of T'.Ji~*(M) over J¥(M). The
derivative of v at 0 belongs to the fiber of 7, ;1. TR at y, and may be identified with

the derivative of Xﬁj Y at 0. This implies that X v € A{;l, as we wanted. O
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As a consequence of this proposition, if R is an infinitesimally differentially closed
equation which is j-regular for 1 < j < k we have that Az C SU* ® @ is a bundle
of SU* subcomodules, and we may form the Spencer cohomology bundles H%/(Apg).
Even if Ap is only k-regular, the dual of the Koszul complex still makes sense in some
degrees, so the bundles H%/*9(Ax) may still be computed for j > k. Moreover, the
bundle H%**4=1(Ag) may be defined as the cohomology of the sequence

Ab @ AL 2 Akl g A1t 2 (820 @ Q) @ ATHLU (19)
The prolonged symbols govern the behavior of the prolongations of R, as follows

PROPOSITION 2.3.2. Let R C JF(M) be a smooth k-th order differential equation and
let 1 > 1. The non-empty fibers of Tyrikvi—1|gw are affine spaces modeled on AIEFZ.

Proof. Consider first the case [ = 1. Let y € R, and let z, Z be two points in the fiber
of Tpp1 over y, with z € RM. Then z € RY if and only if U is tangent to R.
As we already know that Uk s tangent to R, we have that z € R if and only if
X (2 — z) € A% for all X € U, which is the same as saying z — z € A%

Now, let { > 2. The fiber of R over a point y € R~ is the intersection of fibers
of JEH(M) and J!(R) over y. These are two affine subspaces of the fiber of J!(J¥(M))
over y, modeled on S¥U* ® Q and S'U* @ (TR/U®), so their intersection is an affine
space modeled on (S*U* ® Q) N (S'U* @ (TR/UWX)) = A%+ (here we are implicitly
using proposition 1.2.1 in the case of the universal differential operator, to conclude the
compatibility of the affine structure on J**(M) and J! (J*(M)). O

COROLLARY 2.3.3. If R is integrable up through order I, then it is j-reqular for k <
J<k+1, and R — Rm=1) s qn affine bundle modeled on A’?m forall1 <m <|I.
In particular, Agwy = Ag.

2.4 Let £ : B¢ — M be a fibered manifold. A k-th order differential equation on
sections of £ over n-dimensional submanifolds of M is a subset R C J¥(¢). We say that
R is smooth if it is a smooth submanifold of J*(¢) and TRNT,, J*(€) is a smooth vector
bundle over R X jx(yp) JE+L(M). If R is smooth, then its I-th prolongation R belongs
to JF(€) so it is still a differential equation on sections of €.

Let ¢ : J5(¢) — E, be a differential operator taking values in the fibered manifold
n: E, = J¥M). Let s : JS(M) — E, be a section. We may define the k-th order
differential equation R C J*(€) consisting of those y € J¥(€) such that p(y) = s&®)
Observe that R is given by ¢ € S, where S is the image of s.

N ow, assume that R is smooth. We say that R is infinitesimally differentially closed
if Ug (k=1) |r C T k—1.T R. One may define analogues to the definitions of local and global
dlfferentlal closedness, so that proposition 2.1.1 continues to hold The ( local) clausure
of an equation makes sense only as a subset of J*(&) over J2°( L m J#(
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The principal and sub-principal symbols of R are now defined as

for 0 < j < k. This coincides with what get from the previous definition if we interpret
the maps 7, ; and 7, as being morphisms of fibered manifolds over J¥(M). We also
set A% = mp0.(VEW |R).

When j > k, we define A}, = (S7*U* @ A%) N (S7U* @ VE). We say that R is
j-regular if Az% is smooth. The total prolongation is again defined as Ar = @y A% C
SU*® VE. Propositions 2.3.1, 2.3.2 and corollary 2.3.3 continue to hold in this context
when interpreted properly (in particular, the notion of integrability up through order [
reads the same as before, only that R™ — R(~Y has to be considered over J*+™(M)).

In the case when £ is a vector bundle, a k-th order differential equation R C J¥(¢)
is said to be linear if it is a (possibly singular) vector subbundle of J*(&) over J*(M).
If R is smooth, then its I-th prolongation R" is again a linear differential equation
. For [ < 0, the sub-principal symbol A%) may be identified with the vector bundle
ker (Tt oitlm, ppr) S S¥TU* ® B over JE(M). Proposition 2.3.2 implies that for
[ > 1 we have ker(Tixi1|pw) = A% as vector bundles over J5+ (M),

2.5 Let R C J*(M) be a smooth k-th order differential equation, integrable up to first
order. The linearization of R is the subbundle

lr=TR/UM CTJ;(M)/UY = Ji(Q — J,(M)) (21)

where J¥(Q — J(M)) is considered as a vector bundle over RY). One should note
that this is not a differential equation in the above sense, since it is only defined over
RM . However, if one assumes integrability of R, the linearization £z behaves as a linear
differential equation, whose prolongations are only defined over RV, If i : N — M is a
solution of R, then the pullback i**D*¢ is a k-th order differential equation on sections
of the normal bundle of N, called the linearization of R at N.

3 Formal Integrability

3.1 Let M be a differentiable manifold and fix n < dim M. Let £ > 0, and let
R C J¥(M) be a k-th order differential equation. We say that R is formally integrable
if it is integrable up through order [ for all I > 0. In this case, any element of R® lying
over ¢ € M may be extended to an element of R(>) = lim R™ over ¢, which may be
thought of as a formal solution to the equation at ¢q. This is still not an actual solution
of the equation, however in the analytic category there is the following

THEOREM 3.1.1. Let M be an analytic manifold, and R C J*(M) be a formally in-
tegrable analytic differential equation. Then for every l > 0 and y € RY, there is an
analytic solution N of R such that y € N*+0,
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We refer the reader to Goldschmidt[5] for a proof, which depends on the “J-Poincaré
estimate” of Spencer. See Ehrenpreis, Guillemin, Sternberg[2] or Sweeney[13] for a
discussion and proof of the estimate. One may also prove this theorem using the
Cartan-Kahler theorem in the theory of exterior differential systems, which ultimately
depends on the Cauchy-Kowalevski existence theorem for analytic partial differential
equations, see [1].

In the fibered case, we have the following

THEOREM 3.1.2. Let £ : E¢ — M be an analytic fibered manifold, and R C J¥(&) be
an analytic formally integrable differential equation on sections. Let i : N — M be an
n-dimensional submanifold of M passing through a point ¢ € M. Then, for everyl > 0
and y € RO such that E#D(y) = i**0(q), there exists a section s of &|n defined near
q, such that s#0(q) = y.

This follows from the above result, applied to the pullbacked equation i**R C
JE(E]w)-

3.2 Let M be a manifold and fix n < dim M. Let J**'(M) be the bundle of sesqui-
holonomic jets of order k + 1. Recall that this is the bundle over J*(M) whose fiber
over a point y consists of the planes IT C Cﬁyy giving a splitting of

0= Vymppo1 — Cr, = U =0 (22)

This is an affine bundle modeled on U* ® (S*U* ® Q). The form [-,-] defined in 1.3.2
may be restricted to each sesqui-holonomic jet, so we have a map

C: JN M) — (SFU* ® Q) @ AU (23)

Of course, this map also has a dual description in terms of exterior differentiation of
contact forms.

PrROPOSITION 3.2.1. The map C is an affine bundle map modeled on minus the first
Spencer coboundary map

5 (S U Q) U — (SFIUF ® Q) ® AU (24)
Moreover, we have that §*°C' = 0, where
6 (SFUF @ Q) @ AU — (SF72U" @ Q) @ APU* (25)

18 the second Spencer coboundary map.
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Proof. Let y € J*(M), and 11 € J5+1(M),. We want to compute C(I1 4+ A) — C(II) for
each A € (S*U* ® Q), ® Uy
Let X,Y € U,, and denote by Xy, Yy their lifts to II. By definition, we have

C(I)(X,Y) = [Xn, Y. Now,

CII+ A)(X,Y) = [Xn + AX), Y + A(Y)] (26)
= C(I(X,Y) + [A(X), Yu] = [A(Y), Xu] (27)

Now, by proposition 1.3.2.1, [A(X), Y] — [A(Y), Xn] = —0'(A)(X,Y), which proves
the first part of the proposition.

For the second part, let II' be an integral element of the contact system at y. We
know that C(IT") = 0, and therefore C(IT) = §'(IT — IT'), which implies that C(II) is
closed. O

3.3 We are now ready to describe the obstruction for an equation to be integrable to
first order. Proceeding inductively, we will have a series of obstructions for an equation
to be formally integrable.

Let R C J¥(M) be a k-regular infinitesimally differentially closed equation. Let R
be the subspace of J*+'(M) consisting of those planes tangent to R. The projection
R — R is an affine subbundle of J#**'(M) modeled on A% ® U*. Moreover, the map
C' restricts to give a map

C: R — AL o AU (28)

By proposition 3.2.1, this descends to a well defined section
kp: R — H** 1 (AR) (29)
called the curvature of R. This is the obstruction to integrability that we needed:

PROPOSITION 3.3.1. Let R C JX(M) be a k-regular infinitesimally differentially closed
equation. Then R is integrable to first order if and only if it is (k + 1)-reqular and the
curvature Kr vanishes.

Proof. If R is integrable to first order, then AI;{H = Vg1 gy is smooth. Moreover,
for every y € R there exists a plane II € R which is integral for the contact system
on JX(M) (namely, 1 = U® for any z € R over y). This plane satisfies C(IT) = 0,
and so the curvature vanishes.

Conversely, suppose that kg vanishes and that R is (k + 1)-regular. Let s be a
smooth section of R, Then Cs is a smooth section of (S*~1U* @ Q) ® A2U*, which
belongs to §'(A% ® U*) since the curvature vanishes. One may therefore replace s by
a section s’ such that C'(s') = 0. We claim that we may do this smoothly.
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By the polynomial Poincaré lemma, the kernel of §'| 4 o7+ is contained in 6°(S*U* @

Q). However, by definition of A% one has that (6°)7!(A% ® U*) = AL, and so we
have an exact sequence

0— AT 5 Ah @ Ur 25 AR @ AU (30)

Since A% and A, are smooth vector bundles, we see that 6! Ak gy has constant rank.

Therefore, there is a smooth section A of A¥ ® U* such that 6*(A) = C(s). Now,
s’ = s+ A is a smooth section of RV over R. The existence of such a section, together
with the fact that the fibers of R are affine spaces modeled on .A%™ (which is smooth),
implies that RY) — R is a (surjective) smooth submersion. O

COROLLARY 3.3.2. Let R C J¥(M) be a k-regular infinitesimally differentially closed
equation. If H*I(Agr) =0 for j > k + 1, we have that R is formally integrable.

Proof. For each 7 > k + 1, consider the following sequence of bundles over R
j 80 -1 w 0L -2 277 8% 1 Qi=377* 377+
0= A, = Ay QU - AL "N U — (977U @ Q)@ A°U (31)

This is exact at .A{Lf ® A2U* by hypothesis, and at A7~! ® U* as a consequence of the
polynomial Poincaré lemma together with the definition of A@%.

We claim that R is j-regular for all 7 > k. Assume that we know this for i < j.
Observe that the rank of §! A gUe is lower semi-continuous. Since the image of §*

coincides with the kernel of §2, it must also be upper semi-continuous, and so §*| AU
R

must have constant rank. Since its kernel equals A%, it follows that R is also j-regular,
completing the inductive step.

The corollary now follows from proposition 3.3.1 together with the fact that, if R is
integrable up through some order [ > 0, the curvature # za) belongs to H***+1(Ag) O

3.4 As a first application, we shall see how the Frobenius integrability condition arises
from this point of view. Let M be a manifold, and C be a distribution on M. Let
n < rankC, and consider the first order differential equation R C J} (M) consisting
of those n-dimensional planes tangent to C. We have AL = U* ® C/U, and therefore
A% = SiU*®C/U for j > 1. From the polynomial Poincaré lemma we get H>2(Ag) =
ANU*®@TM/C and H*/(Ag) =0 for j > 3.

We want to compute rg(y) € (T'M/C),, ® A*U; for y € R. Let X,Y € U,. Let s
be a smooth section of R such that s(yp) = y. Extend X, Y to vector fields X,Y on
M, tangent to the distribution ¢ — Us,. Let II = s,U,. Observe that 5. X,5.Y may be
extended to contact vector fields on R, so we have

C)(X,Y) = [5.X,5.7], = [X,V] (32)

Yo
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where [X, Y] 4, denotes the projection of [X,Y],, to Q,. Therefore, kr(y)(X,Y) equals
the class of [X,Y],, in (T'M/C),,, for any choice of section s and extensions X,Y.
In particular, when n = rankC the vanishing of the curvature is equivalent to the
Frobenius integrability condition on C.

In the case where we take C to be the contact distribution C¥ on the jet space J*(M),
the elements of R transverse to the vertical such that the curvature vanishes are exactly
the integral elements of the contact system. Hence, when we restrict this equation to
(an open subset of) the vanishing locus of the curvature, we get a formally integrable
equation. This does not hold for a general distribution C. Even though H?7(Ag) = 0
for j > 3, when we restrict R the symbol changes and new integrability conditions may
arise. For instance, this is the case when we take our distribution to be the contact
distribution on a k-th order equation which is not formally integrable.

3.5 Let £: B¢ — M and n : E,, — M be fibered manifolds, and ¢ : J*(§) — E, be a
k-th order differential operator. Let s : M — E, be a section of . Let R C J*(&) be
the equation consisting of those k-jets y such that ¢(y) = s(£(y)). Assume that

O X M1t JHE) = By xar JFHE) (33)

is a surjective submersion, so that R is smooth and R — J*~1(£) is a surjective sub-
mersion. We are going to construct the curvature kg in an alternative way, making use
of the fact that R is given by a differential operator.

Let y € R and q = &myy. For each z in the fiber of J*™(£) over y, consider the
element C(z) = M (2) — sV(q) € T*M @ V. The class of C(z) in T*M ® Vn/ime$’
does not depend on z, and is denoted rg(y). Observe that

0— Ap = ST*M @ V¢ 25 SERT* M @ Vi (34)

is the beginning of a minimal resolution for Ag, where ¢ denotes the sum of the

prolonged symbols of ¢. Therefore &g is a section of T*M ® Vn/imos” = H2F1(Ap).
Since R is given by those z such that ¢V (z) = s(!)(¢), we see that R is integrable to
the first order if and only if kg vanishes. In fact, we have the following

PROPOSITION 3.5.1. The curvature kg of R coincides with Kg.

Proof. Observe that to construct kg we used the description of the Spencer cohomology
via the dual to the Koszul complex, while for £z we used a minimal resolution of Apg.
Therefore, to show that both curvatures coincide, we will have to pass from one descrip-
tion of the cohomology to the other, which ultimately depends on the commutativity
of the Cotor. The relevant diagram is the following
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0 —— A @ A2 T*M —— (SF'T*M @ VE) @ N2T*M

0— s AT M —— (S"T*M @ VE) @ T*M 2225 vy @ T+ M

T .l

0 —— A+ y SHIT* M@ VE—22 s T*M @V

(35)
Let y € R and z be a point in the fiber of J*™1(¢) over y. Let I1 C C¥|z, be an
n-dimensional plane giving a splitting of

0— A% = CHlr - URY 50 (36)
at y. Let II' = U This gives a splitting of
0= S"T*"MoVEeE—Cch— Ukt 50 (37)

at y. Therefore, II' — IT defines an element of (S*T*M ® V&) ® T*M, and we have that
(00 ® Lpep) (I = I0) = 6%(C'(2)).

We now have that 6'(I" — 1) € A% ® A2T*M is closed, and its class in the
cohomology equals Kr(y). By proposition 3.2.1, §'(Il' — 1) = C(II) — C(I"). By
construction, I’ is an integral element of the contact system on J%(¢), so C'(I') vanishes.
Therefore 6 (IT' — IT) = C(IT), whose class is, by definition, kg (y). O

The curvatures of the prolongations of R may be constructed in a similar way.
Assume that R is integrable up through order [ for some [ > 0. Let y € RY. For each
z in the fiber of J***1(£) over y, consider the element C(z) = @*++1)(2) — sk++1) ()
in S"T*M @ V1. Denote by Krw (y) the class of C(z) modulo im gD,

PROPOSITION 3.5.2. We have that krw vanishes under contraction by sections of T M,
s0 K s a section of H** L (AR). Moreover, Kpw coincides with the curvature kg .

The proof of this goes along the same lines as the one given for proposition 3.5.1.
The fact that Kpze is closed under contraction (which in the case [ = 0 was obvious),

now follows from the fact that §°(C(2)) belongs to the image of ag) ® lpeas.

4 Initial Value Problems

4.1 Let M be a manifold and fix n < dim M. Let k& > 0. Denote by J*(M)(10
the bundle over J*(M) whose fiber over a point y consists of the (n — 1)-dimensional
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subspaces II,,_; C Cfiy transverse to Vg1, and such that [-,-]|;, , vanishes. Let
JEM)OY C T (JF(M)) X grary JEFH(M) be the collection of pairs (II,_1,w) such
that IT,_; € U Notice that the image of the projection J¥(M)D — J1_ (JE(M)) is
contained in J*(M)19. Denote by a; : JE(M)ED — JH(M)ED) and By : JE(M)ED —
JEHL(M) the projections. Observe that JF(AM)™MV is smooth and 3, is a surjective
submersion.

Let G,,_1(U) be the Grassmannian of hyperplanes of the universal bundle on J*(M).
Let U, -1 be the universal bundle on G,_1(U). Denote by (SU* ® Q)|y,_, the bundle
SU* ® @ over G,_1(U), considered as a bundle of SU}_, comodules. The dual bundle
is a bundle of free SU,,_; modules, and in particular (SU*® Q)|y, _, is acyclic. Observe
that we have a map J*(M)9 — G, _(U) over J*(M), sending each plane II,_; in
the fiber of J5(M)19 over y to its projection to U,,.

PROPOSITION 4.1.1. The projection J*(M)) — G, _1(U) is a smooth affine bundle
modeled on the kernel of the first Spencer coboundary map

(S*U* @ Q)|y,_, @ U, 5 (S*1U* @ Q)|u,_, ® A2U*_, (38)

Proof. Let Y — G,,_1(U) be the bundle whose fiber over £ € G,,_1(U,) consists of those
(n — 1)-dimensional subspaces of thy transverse to V,m 11, and whose projection to

U, equals E. This is a smooth affine bundle modeled on V' ,—; @ U}:_,. The form [-, -]
induces, by restriction, a map

Co1:Y = (S @ Q) @ AU, (39)

over Y, whose vanishing locus coincides with J*(M)1% . As in propostion 3.2.1, this
is seen to be an affine bundle map modeled on minus the map (38). This implies that
JE(M)A0 — G, (U) is an affine bundle modeled on the kernel of §'. The fact that
(38) has constant rank implies that any smooth section of Y may be transformed into
a smooth section with image inside J*(M )19, This, together with the smoothness of
the kernel of (38), implies that J*(M)10) — G, _;(U) is a smooth affine bundle, as we
wanted. ]

The following proposition gives, in particular, an alternative characterization of the
elements of J*¥(M)10 | as those planes which may be extended to an integral element
of the contact system.

PROPOSITION 4.1.2. The projection oy : JH(M)MY) — JE(M)3O) s o (smooth) affine
bundle modeled on H**+1((SU* @ Q)|v, ,) @ (U/U,—1)*.

Proof. Let II,,_; be an element in the fiber of J*(M)19 over y € J¥(M), and extend it
to an n-dimensional subspace I1 C Cﬁyy complementing V', 1. Let X be the projection
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of II,_1 to Uy, and let Qx = U,/X. Observe that the form C(II) vanishes when
restricted to X, and so it may be considered as an element of (S*1U*®Q), ® X*®Q%.
Consider the following exact sequence

ke « 0N ok—177x 2r7% 0% Qk—277x 377
(SU"®Q)y,@U, = (S"U " ®2Q), ® N°U, — (S"°U"®Q), ® A°U, (40)
If we consider only forms which vanish when restricted to X, we have

(" ©Q),®Q% > (S U ©Q), 0 X 9 Qx 2 (S ©Q), @ A2X" © Q% (41)

This computes the space H'"*((SU* ® Q)|x) ® Q% which vanishes, and so the sequence
(41) is exact. Therefore, there exists A € (S*U* ® Q), ® Q% such that §*(A) = C(II).
The plane IT + A is then an integral element of the contact system contained II,,_;.
Since II,,_; was arbitrary, the surjectivity of a; follows.

If TI, I’ are two planes containing II,_;, we have that IT — IT" belongs to (S*U* ®
Q)y, ® Qx. If IT" is an integral element of the contact system, the same is true for II if
and only if IT —II" is 8! closed. The kernel of 6* is H***1((SU* @ Q)|y,_,) ® (U/U,_1)*,
and so we have the desired affine structure on the fibers of ;. The existence of smooth
sections for ay follows from the fact that 6! has constant rank. O

PROPOSITION 4.1.3. The first order differential equation J*(M)10 C Jl | (J¥(M)) is
formally integrable.

Proof. By homogeneity, J¥(M)1? is j-regular for all j. Let II,_; be a point in the
fiber of J*(M)19 over y € J*(M). By the previous proposition, we may extend II,_;
to an integral element of the contact system at y, which in turn may be extended to
an integral submanifold N®®) of C¥. The plane II,_; may be extended to an (n — 1)-
dimensional submanifold of N. The 2-jet of this submanifold is an element in the fiber
of the first prolongation of Jff(M )(1’0) over II,,_;. Since II,,_; was arbitrary, we see that
JE(M)10) s integrable to first order.

Let L = II/II,_ ;. Let A be the principal symbol of J*(M)*9 at TI,, ;. This is a
first order tableau contained in

I ®Cp /My = (IL,_, ® (S*U* ® Q),) @ (I, _; ® L) (42)
By proposition 4.1.1, we have
A=keré' e (I}, ® L) (43)

where §' : II}_, @ (S*U*®Q), — (S*1U*®Q), @ A’II7_, is the first Spencer cobound-
ary. Therefore, the cohomology H?(A) of the first order tableau A equals H?(ker 6').
Observe that (S*U* @ Q), may be decomposed as

k

DL ©Q,) © S, (44)

J=0
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By the polynomial Poincaré lemma, we have

k
kero' = EP(S* L ®Q,) ® ST, (45)

J=0

and so the STI* _,-comodule associated to ker §' is

k
(S"9L7 © Q,) © SII;, (46)
=0

J

where (S*L* ® Q,) ® SIII;_, is taken to have degree 0. From the following exact
sequence
0— SIMI; | — S=UTE | — S, — 0 (47)

one may see, by induction, that SZ/IT¥ _, is j-involutive for all j > 0 (where S/IT%_; is
taken to have degree j). From this, we have that (46) is a 1-involutive comodule. The
proposition now follows, since one has H*(A) = 0 for j > 2, and so the higher order
obstructions to the integrability vanish. O

4.2 For each | > 1, let J*(M)®9 be the (I — 1)-th prolongation of J*(M)19. We
also set JE(M)(®0 = Jk(M). We denote by ., both the projection J*(M)10 —
JE(M)™0) and JL (M) — J™(M), since it will be clear by context which one we are
considering.

Let JE(M)") be the subset of J._i(JE(M)) X jeary JEH (M) consisting of those
pairs (z,w) with z contained in w (where we interpret w as a [-jet of a submanifold
on JE(M)). Observe that we have JF(M)ED C JE(M)EO X ji iy JET(M). Let ay -
JEM)YED — JE(M)EO and 8, : JF(M)ED — JF(M) be the projections.

PROPOSITION 4.2.1. The space J*(M)"D is a smooth manifold, and oy, By are surjective
submersions.

Proof. The fact that J*(M)® is smooth and f; is a surjective submersion is evident in
coordinates. One may also use coordinates to show that a; is a surjective submersion,
however we shall prove this using an intrinsic argument which contains the basic idea
of our approach to solving the initial value problem.
Assume that «; is a surjective submersion for j < I. Let z € J¥(M)"? and set
y = m 2. Let N,_; be an (n — 1)-dimensional submanifold of J*(M), passing through
y, and whose [-jet at y equals z. Denote by i, 1 : N,_1 — J¥(M) the inclusion. By
proposition 4.1.2; there exists a section s : N,_; — J*T1(M) such that the induced
section
Ny = T (TRO) X ey T3 (M) (48)
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is tangent to J*(M)®Y with order (I — 1) at 2511_)1(3/) Equivalently, the I-jet of s(N,,_1)
at s(y) is integral to the contact distribution CK*1. This implies that the (I — 1)-jet
of s(N,_1) at s(y) belongs to J¥1(M)(=19 . By induction, there exists a (k 4 [)-jet
w € JM(M) such that the (I —1)-jet of s(NN,,_;) at s(y) is contained in w € J¥(M) C
JI=1(JR+1(M)). This implies that z = it | (y) is contained in w. Since z was arbitrary,
we have that «; is surjective. Moreover, by induction one may take w to depend
smoothly on z, and so one has that o; is a submersion. O

4.3 Let M be a manifold and n < dim M. Let R C J¥(M) be a smooth k-th order
equation. A subspace II C CF|g, of the contact distribution restricted to R at a
point y is said to be generic if it is trasverse to Vmy ,_1 and its projection to U, is a
generic subspace for the k-th order tableau A% Ry The Cartan characters si, ..., s, of
R are the functions on R such that s;(y) is the j-th character of Af, . We say that Ris
involutive if it is integrable to first order and A%, is a bundle of 1nvolut1ve tableaux. The
involutivity of A% is equivalent to the k-involutivity of Ag, and therefore, by corollary
3.3.2, involutive equations are formally integrable (provided that the Cartan characters
are constant). The following proposition is a weak version of the Cartan-Kuranishi
prolongation theorem.

PROPOSITION 4.3.1. Let R be a k-th order formally integrable differential equation. We
have that RY is involutive for | large enough.

Proof. Consider the smooth bundle of (k+1)-th order tableaux A%"™. From proposition
I1.1.4.1 (specifically, the observation that the bound may be taken to only depend on the
Hilbert function), we have that .Ak” is involutive for [ large enough, as we needed. [J

4.4 Let R be a smooth k-th order differential equation. Let R be the subset of
JE(M)O) consisting of panes II,,_; tangent to R and generic. This is a first order
equation on (n — 1)-dimensional submanifolds of R.

Let RD C JF(M)MD be the collection of pairs (II,_1,II) € R xp RM such
that II,_; C II. The nonempty fibers of o; : RGYD — RO are affine spaces modeled
on (A%, | where (A%™)y | denotes the subbundle of A% consisting of those
polynomials which vanish under contraction by vectors in the universal bundle U, _;.
In particular, observe the nonempty fibers of oy have dimension s,. On the other hand,
the fibers of 8, : RMY — RO are dense open subsets of the fibers of the Grassmannian
of hyperplanes of U, and so they have dimension n — 1.

The following lemma will be the basis for our inductive approach to solving the
initial value problem.

LEMMA 4.4.1. Let R C J¥(M) be a k-th order differential equation, integrable to first
order. If ay : R — R0 45 surjective then o : ROWY — RMWO) s qlso surjective.
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Proof. Let II,_; be an element in the fiber of RMWI0 at y € RM. Let X be the
projection of II,,_y to U, and let Qx = U,/X. Extend II,_; to an n-dimensional
subspace IT C (CE| ), complementing the vertical Vg 1 x| ).

Since the form [-, -] vanishes when restricted to II,_;, we have that C/(II) belongs to
Al © X* ® Q%. Consider the following sequence

A @ Uy 5 Ab @ MU S (55U © Q) ® AU (49)

which computes the cohomology H***?(Ag,). If we only consider forms which vanish
when restricted to X, we get a sequence

Ao QLA o X eQy D 5 (ST © Q) ® A2XT @ QY (50)

We claim that the cohomology of this sequence vanishes. This implies that one may
find A € .AkJrl ® Q% such that C’(H +A) = 0 The sesqui-holonomic jet IT+ A is then
an element in the fiber of RWOD oyer RML0),

Let K be the kernel of the first Spencer coboundary map

Al @ X* = (SFUF @ Q,) @ AX (51)

We claim that
dim K = dim A3 — s, () (52)

from which the exactness of (50) would follow, since the kernel of the map §' in (50) is
(A7) )x, and the kernel of §? is K ® Q%.

To see that, let RX be the subset of the fiber of R over y;, = 7414y given by
those planes £, _; such that the projection of E,_; to U, equals X. By proposition
4.1.1, this is an affine space modeled on K. Consider the map Ré? — R;’O) which sends

each element z in the fiber of R over y;, to the lift of X to U™ This is an affine
bundle modeled on the trivial vector bundle with fiber (A%!)x, which has dimension
sn(y) (here we use that R — R0 is surjective). Putting this all together, we have

. 1) 1
dim R{) = dim K + s,(y) (53)
from which (52) follows. O

The following lemma guarantees that R?) will be smooth under the conditions of
4.4.1, provided that s,, is constant.

LEMMA 4.4.2. Let R C J¥(M) be a k-th order differential equation, integrable to first
order and with constant s,. Suppose that oq : R — RO s surjective. Then R10)
is smooth and m o : RO — M is a surjective submersion.
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Proof. Let GY_,(U) be the bundle over R whose fiber over y € R consists of those
hyperplanes of U, generic for .A’f;f’y. The nonempty fibers of the canonical projection

R - @9 (U) (54)

are affine spaces modeled on the fibers of A’HSL .» where U, denotes the universal

bundle on GY_,(U), and A%|83_1 is the first prolongation of the first order tableau
bundle A%|y. , C U | @ (S*'U* ® Q). From (52) in the previous lemma, we see that
A%|§]12_1 is a smooth bundle over GY_,(U). The fact that R is integrable to first order
implies that (54) is surjective, since any plane in G¢_, (U) may be lifted to a hyperplane
of an integral element of the contact system. This may be done smoothly, so (54) is a
smooth affine bundle and the lemma follows. O

4.5 Let R be a smooth k-th order equation. For each [ > 0, set
RO = g (M) g (R) 0 75 (RO (55)

If R is smooth, then R“?) is its (I — 1)-th prolongation. Let R*D = JF(M)ED N
(REO) x RW).

We may now state our main theorem regarding initial value problems

THEOREM 4.5.1. Let R C J*(M) be a smooth k-th order differential equation, j-reqular
for j > k+1 and with constant s,,. Assume that R is integrable to first order and that
ROY — RUO) s surjective. Let 1 > 1. If RO s integrable up through order 1—1, then
R is integrable up through order | and we have that the projection oy : RWD — RO s
a surjective submersion.

Proof. We already know that this holds for [ = 1. Let [ > 2 and assume that the
theorem holds for m < (.

We first prove that R is integrable to second order. Let II € RW and let II,,_; be
a generic hyperplane of II. Set y = 741 xII. We know that II,_; may be extended to
an (n — 1)-dimensional submanifold 7, 1 : N,,_;1 — R such that the 2-jet of N,,_; at y
belongs to R*%. Let s: N,_1 — RW be a section such that the induced section

NY 5 b (R) xzg RY 56
n—1 n—1

is tangent to R(“Y with order 1 at 11(11_)1@) This implies that the 2-jet of s(N,,_1) is
tangent to Ck*1 at s(y) = II with order 2. Therefore, Tirs(N,_;) belongs to the fiber
of RW0) gyer II. Since II was arbitrary, we see that RM10 — R ig surjective, and
by lemma 4.4.1 we have that R is integrable to second order, as we wanted.

We now claim that R(M19 is integrable to order [ — 2. By the inductive hypothesis,

we know that it is integrable to order [ — 3. Let z € RMU=20) et Y = M_202 € RM
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and y, = mp415y. Observe that W,(fl;fiz belongs to RU=20) Tet w e REO he a jet such
that m;_ow = 2. As usual, we represent w by a submanifold N,,_;, and choose a section
s: N, 1 — R® such that the induced section

ND 5 7' (R) xp RY (57)

is tangent to RV with order [ —1 at y. This implies that the I-jet of s(V,,_1) is tangent
to Ck+1 and therefore the (I — 1)-jet belongs to R(WU=10 The section s may be chosen
so that the (I — 2)-jet of s(N,_1) at y equals z. Therefore, the fiber of RWI=10)
RWU=20) gyer z is nonempty. Since z was arbitrary, we see that RMWU-10) — R1(I=2,0)
is surjective. Moreover, this construction may be done so as to depend smoothly over
2, so we have that R(MW(=20) is integrable to first order, as we claimed.

We now have that R( falls into the hypothesis of the theorem for [ — 1, so we have
that R is integrable up through order ! — 1, which implies that R is integrable up
through order . Moreover, starting with an element w € R%“% one may construct an
element w’ € RWE-10) a5 above. By the inductive hypothesis, this may be extended
to a jet u € R¥**D containing w’. This implies that v contains w, and since w was
arbitrary, we get that R4 — R0 is surjective. Since w’ may be taken to depend
smoothly on w, it is also a submersion, which is what we had to prove. O

4.6 Our next goal is to generalize the theory in this section, to deal with the initial
value problem when the initial conditions are given along a submanifold of arbitrary
codimension.

Let M be a manifold and n < dim M. For each d < n, let J¥(M), be the set of
d-dimensional planes II, tangent to the contact distribution on JF(M), transverse to
the vertical Vmy ,_1, and such that [-,-||;;, = 0. Denote by Uy the universal bundle
on J¥(M),. Let G4(U) be Grassmannian of d-dimensional subspaces of the universal

bundle U over J¥(M). Generalizing proposition 4.1.1, we have

PROPOSITION 4.6.1. The projection J5(M), — G4(U) is a smooth affine bundle mod-
eled on the kernel of the first Spencer coboundary map

(S*U* ® Q) @ Ul — (S*'U* @ Q) @ A2U (58)

Moreover, the arguments in propositions 4.1.2 and 4.1.3 generalize to yield proofs
of the following propositions

PROPOSITION 4.6.2. Every plane in J¥(M), , extends to a plane in JF(M),.

PROPOSITION 4.6.3. The first order equation J*(M), is formally integrable.
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4.7 Let R C J¥(M) be a smooth k-th order differential equation. Let Ry C J5(M),

be the set of generic d-dimensional planes I, tangent to R such that [-,-]|m, = 0. Let
AR q be the kernel of the following Spencer coboundary map

Ao Us 5 (S @ Q) @ AU (59)

Observe that the nonempty fibers of the projection Ry — G4(U) are affine subspaces
of the fibers of JF(M), — G4(U), modeled on the fibers of Ar4. Let GY(U) be the
subbundle of G4(U) over R consisting of the generic d-dimensional subspaces of U. If
R, is smooth and the projection Ry — G%(U) is a surjective submersion, we have an
exact sequence
0— Apg = AR, = (U/Us) @ U; — 0 (60)

LEMMA 4.7.1. Let R C J¥(M) be a smooth k-th order differential equation. Let1 < d <
n. Suppose that Ry is smooth, the projection Rqy — GY(U) is a surjective submersion,
and moreover every plane in Ry extends to a plane in Ry. Then the projection Rfll’l) —
Rél’o) 1S surjective.
Proof. The proof of this will be similar to the one given for lemma 4.4.1. However, it
requires some extra steps, and moreover this lemma is fundamental to the theory, so
we shall give the full argument in detail.

Let II;_; be an element in the fiber of Rél’o) over z € Ry. Let y =m0z € R. Let
Uy be the universal bundle on R;. Let Xy 1 and X, be the projections of 1I;_; and
Ui to Uy, and set Qx = X4/ X4-1. Extend II;_; to a sesqui-holonomic jet II; C T, Ry.
Observe that C(Il;) vanishes when restricted to X,_1, so we have

C(llg) € (T, R/Uaz) © X5, © Qg (61)

By the previous lemma, we know that there exists an integral element of the contact
system II; C T,J¥(M),. Hence, we have

C(Ily) = 6" (Ily —Ig) € (Ci,/Uq:) @ AX; (62)
Putting (61) and (62) together, we get
C(Iy) € (Cplry/Vaz) ® X5 1 ® Q; (63)

Denote by P, this space. Consider the following commutative diagram with exact rows
0—>AR,d®QZ—>A}{d7Z®QZ—> Uy/Xa® X, Q5 —— 0
I | |
0 —— AR, ® X; |, ©Q; P, U/ Xa® X5 1 @Q5 —— 0

(64)
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The right vertical arrow is surjective. Therefore, changing Il; if necessary, one may
assume that C/(II) belongs to A}, ® Xj_; ® Qu.
This space sits inside a sequence

x O * « 62 — * * *
Ara @ Qy = AR, ® Xj_, 0 Q) — (S*'U" 2 Q), ® A’X;_, ® Q; (65)

We claim that C(Ilg) is 0*-closed. To see this, recall that one has the identity (62) for
any II, integral element of the contact system of J¥(M), at z. Choose II C T, JF(M)
an integral element of the contact system, so that the sequence

0= Apana = Apory, = (U/Us) @ Ui = 0 (66)
splits at y. Therefore, one may write
[y — 1y = A + Ay (67)
with Ay € (Ajran.a)y ® X and Ay € U,/ Xq ® X; ® X7. We have
C(IT) = &' (g — Tly) = 6" (A1) + 6" (Ay) (68)

The fact that C(IT) belongs to Af, , ® X;_ ;| ® Q; (and, in particular, to (S*U* ® Q), ®
A?X) implies that 6'(Ay) = 0. Therefore, C(IT) belongs to the image of

(Ananay ® X5 5 (S'U © Q), ® A°X; (69)
Now, observe that
(AJ’Tf(M),d)y S (SSkU* ® Q)y (70)

has a structure of SX comodule, and the map (69) is part of the complex which
computes its Spencer cohomology. The second coboundary of this complex is the usual
Spencer coboundary

(SFU* ® Q) ® A2X; 5 (S0 @ Q), ® A*X]) (71)

Since C'(II) is in the image of (69), we have 6C(IT) = 0, as we claimed.
The only thing that remains it to prove that (65) is exact. This is equivalent to the
equality
dim (Aga-1)y = dim (Ara)y — dim ((Ara)y)x, . (72)

where ((Ag,)y)x,_, denotes the subspace of (Ag,q), consisting of those elements which
vanish under contraction by all vectors in X;_;.

Denote by Rq-1.x, , (resp. Rqx,) the subset of R;—1 (resp. R;) consisting of those
planes whose projection to U equals Xy_1 (resp. Xg). Recall that R;_; x, , is an affine
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space modeled on (Agq4-1), and R x, is an affine space modeled on (Ag4),. Moreover,
we have an affine bundle

Rax, = Ra-1,x, 4 (73)

modeled on the trivial vector bundle with fiber ((Ag4),)x, ,. Therefore, we have
dim Apg =dim Arg_1 + dim((AR,d)y)Xd71 (74)
as we wanted. ]

4.8 Following the same strategy as in the case d = n, one may now prove

THEOREM 4.8.1. Let R C J¥(M) be a smooth k-th order differential equation. Let
d < n and assume that Ry is j-regular for all 7 and that sq is constant. Suppose that
Ry — GY(U) is a surjective submersion and that every plane I,y € R4y extends to a
plane Iy € Ry. Letl > 0. If Ry_1 is integrable to order | then Ry is integrable to order
. Moreover, every jet in Rgll may be extended (smoothly) to a jet in Rg).

This is related to the Cartan-Kahler theorem in the theory of analytic exterior
differential systems (see [1]).

One possible strategy for proving that a differential equation is formally integrable
is to try to apply theorem 4.8.1 inductively for Ry, 1 < d < n. It turns out that the
class of equations for which this is possible are the involutive equations.

THEOREM 4.8.2. Let R C J*(M) be a smooth k-th order differential equation with
constant Cartan characters. The following are equivalent

1. R s involutive.

2. For every plane 1y_1 € Ry 1 (with 1 < d < n) there exists Ill; € Ry with
Iy C 1.

Proof. First, assume that 2 holds. Observe that one may construct points in R, = R
by induction, starting with elements in 7y = R, and so we have that w1 : RY - R
is surjective. Now, let y € R and choose a generic flag Xy C X; C ... X, for U,. Let
(R4)x, be the submanifold of R, consisting of those planes 1I; whose projection to U,
equals X4. Observe that we have a chain of projections

R = Ry — (Rua)x, , = (Rua)x, , = - = (R)x, = {y} (75)

where the map (Ry)x, — (Ra-1)x,_, sends Il  to the lift of X, 1 to II;. Each (Ry)x,
is an affine space and the projection (R;)x, — (Ra-1)x, , is an affine bundle modeled
on the trivial vector bundle with fiber ((Ar4)y)x,_,- Therefore, one has

dim A% = 3" dim((Ara)y)x, (76)

d=1
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Now, the space ((Ar.a)y)x, , may be computed as the kernel of

Ay @ (Xa/ X)) 5 (S0 @ Q)y @ Xy @ (Xa/ Xy 1)* (77)

and so we have ((Agrd)y)x, , = (A'fg,y)xd,l ® (Xg4/Xq-1)*. The equality (76) becomes
dim Agryl = Z diHI(Al;g’y>Xd,1 (78)
d=1

and so Af, , satisfies Cartan’s test for involutivity.

Conversely, if R is involutive, for each y € R and generic flag Xy C X,, for U, we
have that (76) holds. Observe that each map in (75) is a morphism of affine spaces.
From (76) we get that all the maps in (75) are surjective, and the theorem follows. [

As we commented before, the formal integrability of involutive equations actually
follows from 3.3.2, so this inductive approach is not needed in order to find solutions.
Nevertheless, there are some advantages to knowing that a formally integrable equa-
tion is involutive. For instance, one may estimate the size of the space of solutions to
involutive equations, using that such estimates are possible for each initial value prob-
lem. Moreover, the construction of Spencer complexes in the linear theory (essentially,
resolutions of the sheaf of solutions to formally integrable linear differential equations)
becomes specially simple in the involutive case. We refer the reader to [1] for a full
discussion of involutivity and the applications mentioned above.
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Chapter IV

Equivalence Problems

In this chapter we study Cartan’s method for obtaining a complete set of invariants of
a geometric structure. This is also called the equivalence method, since it may be used
to decide when two structures are locally isomorphic (at least in the analytic case).

In section 1 we introduce the concept of a G-structure on a manifold M. This is
a reduction of the structure group of the principal GL,(R) bundle of frames FM to
a subgroup G C GL,(R). Several classic geometric structures may be interpreted in
this way. For example, O,,(R)-structures correspond to Riemannian metrics, and in the
2n-dimensional case G L, (C)-structures correspond to almost complex structures. We
define the essential torsion of a G-structure, which is the obstruction for the structure
to being flat to second order. Equivalently, this is the obstruction to the existence of
torsion free connections for the structure.

In section 2 we begin the study of Cartan’s method. We first show how this works
in the case when G is the trivial group, in which case the method gives a complete
set of invariants for a coframing on a manifold (i.e., a trivialization of the cotangent
bundle). We then present the general case, which consists of three steps: normalizing
the invariants to reduce the structure group, checking if the conditions of our formal
integrability theorem hold, and prolongation.

Section 3 is an introduction to the theory of semi-holonomic jets. In the same way
that k-jets of submanifolds of a manifold M correspond in coordinates to polynomials
of degree k£ in commuting variables, semi-holonomic jets correspond to polynomials of
degree k in non-commuting variables. Most of the definitions and results in this section
have a holonomic analogue found in the earlier chapters of this thesis.

In section 4 we discuss the theory of semi-holonomic higher order G-structures.
These are needed in order to understand the process of prolongation in the equivalence
method. We define the total curvature of a higher order G-structure and prove our main
equivalence result which shows that, if a structure has been normalized, the derivatives
of its total curvature completely characterize it (at a formal level), provided that certain
Spencer cohomology groups vanish. We finish by giving a complete description of the

71
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equivalence method and prove that it terminates in a finite number of steps.

1 G-Structures

1.1 Let M be an n-dimensional manifold. Let JF (M,R") be the open subset of
JE(M x R™) consisting of those k-jets which are transverse to the horizontal and vertical
distributions TM and TR™ on M xR™. In other words, J&_(M,R™) consists of the k-jets
of diffeomorphisms between M and R".

We define the k-th order frame bundle of M as FF(M) = W,;é(M x {0}). In partic-
ular, F(M) = F'(M) is the bundle of frames of M (where a frame at * € M consists
of a basis for the tangent space T,M). Observe that JF (M,R") = F*(M) x R".

We have an isomorphism TM = TR" of bundles over J. (M,R"). Let 6, ... 6"
be the induced basis for 7*M. These are called the tautological (or canonical) forms.
Observe that the forms 6" — dz® give a basis for the contact forms on J. (M,R").
Moreover, the contact distribution on J. (M,R") = F(M) x R™ may be identified
with TF(M). An n-dimensional plane I C T,F (M) induces an integral element of
the contact system at (w,z) € F(M) x R" = JL_(M,R") if and only if it is transverse
to V,m o and dé|; vanishes for all i. Therefore, F?(M) defines a first order equation
on sections of F(M) — M. Solutions to this equation are coframings w’ on M such
that dw® = 0 for all 4. Locally, Poincaré’s lemma implies that these define a coordinate
system z¢ on M such that da’ = 6°.

Using the linearization theorem 1.2.6.3 in the case of the bundle £ : M x R™ — M,
we have that V(¢®) = J*(R — M). When working over JF (M, R"), this may be
identified with J;(R" x R* — R") = @, S'R™ @ R™. Let ¢ be the induced basis
on Vry o, where 1 < a < n and [ is a symmetric multi-index of length 1 < |I| <
k. When working over JZ (M, R"), the universal bundle complements the vertical
distribution V7, and so we have a trivialization of T*JF (M, R") given by the forms
0, dz® ¢, Observe that the forms 6 and ¢ annihilate the distribution TR", and so
they may be thought of as forms on F¥M. These give a trivialization of T* F¥M over
F*1IM | and are called the canonical forms on F¥1 M. From this, we get an embedding
FMIM C FFFM.

The contact bundle on J*!* (M, R") is spanned by the forms §? —da?, 1)¢. The projec-
tion JEHH (M, R") — F*+'M induces an isomorphism between the contact distribution
and the bundle TF¥*'M. An n-dimensional subspace IT C T,,F**'M complementing
V741, corresponds to an integral element of the contact system on J;?gl(M ,R™) if and
only if the forms df and di)¢ vanish when restricted to II. Therefore, F**2M may be
considered as a first order equation on sections of F*¥*1A — F*M . The contact system
for this equation is spanned by the forms 6%, ¢ (where 1 < |I| < k+1). From this, one
may see, inductively, that F¥T2M is the k-th prolongation of the first order equation

F2M on sections of FM — M.
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1.2 Let G C GL,(R) be a Lie subgroup. A G-structure on M is a reduction Fg of the
structure group of the GL, (R) principal bundle F'(M) to G. In other words, this is a
subfibered manifold Fi; C F(M) such that the right GL,,(R) action on F'(M) restricts
to an action of G on Fg giving Fi; the structure of a principal G-bundle.

The submanifold Fg x R* C F(M) x R* = J (M,R") is a first order equation. Its
symbol is the vertical distribution on Fy, which is a trivial bundle with fiber g the Lie
algebra of G. For each w € Fg, the curvature of the equation at a point (w,z) does
not depend on z, and belongs to the space H*?(g). This gives a section of the trivial
bundle with fiber H*?(g) over Fg called the essential torsion of the G-structure.

The prolongations of Fg x R™ have the form F} x R® C FK(M) x R". The G-
equivariant sections of F3 — Fg are in correspondence with distributions H on Fg
transverse to the vertical, such that the two-forms dé® vanish along H. These are
the torsion free principal connections on Fg. Therefore, the vanishing of the essential
torsion of the G-structure is equivalent to the existence of a torsion-free connection.

Set g = (R™ ® g) N (S?R™ @ R"). If the essential torsion vanishes then FZ — Fg
is an affine bundle modeled on the trivial bundle with fiber g("). Therefore, principal
connections are an affine bundle modeled on the vector space of G-equivariant sections
of Fi x gV, which is the same thing as the space of sections of the bundle associated
to Fg with fiber g(b).

We may interpret a torsion free principal connection as giving a (G-equivariant)
way of extending frames in Fi; to 2-jets of coordinate systems in FZ. In the presence of
such a connection, one has a distinguished class of 2-jets of coordinate systems on M.

Fix a torsion free principal connection V on Fg. Let s : Fg — F2 be the associated
section. Consider the second order differential equation Ry = im(s)xR™ C J2_(M,R").
Solutions of this equation are in correspondence with local (connection preserving) iso-
morphisms between (M, F;) and R™ with the canonical (flat) G-structure and connec-
tion.

Observe that we have A% =R", AL =g and A{zv = 0 for j > 2. The curvature
of Ry is then a G-equivariant function from Ry = Fg x R" to H*?(g) = ker(6? :
g ® A°R™ — R™ @ ASR™). This is invariant under R", and may be identified with the
curvature of the connection V. The fact that §? annihilates the curvature of V is called
the second Bianchi identity.

We may also consider Ry as a first order differential equation on submanifolds of
Fe xR™ Then Ry is induced by a distribution as in I11.3.4. By the Frobenius theorem,
if the curvature vanishes then (F, V) is locally isomorphic to R™.

EXAMPLE 1.2.1. Consider the case when G is the orthogonal group O, (R). An O, (R)-
structure Fp, gy on an n-dimensional manifold M is the same as a Riemannian metric
on M, so that Fp, ) is the bundle of orthonormal frames for the induced metric.

Example 11.2.4.2 shows that o) and H*2(o0,) vanish. This implies that there exists a
unique torsion free connection (indeed, the usual proof of the existence and uniqueness
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of the Levi-Civita connection depends on the same arguments that we used to show
that those two spaces vanish).

The Levi-Civita connection gives us a distinguished class of 2-jets of coordinate
systems around each point ¢ € M. The property that these coordinate systems have
is that the metric is Euclidean to the first order. That is, if we let z',..., 2™ be one
such system, then the metric g at ¢ is the Euclidean metric (dz!)? + ... + (dz")?, and
the directional derivatives ggi vanish at ¢q. This is called a normal coordinate system,
and is usually constructed using the exponential map (which, of course, depends on the
existence of a connection compatible with the metric).

The curvature of the Levi-Civita connection is the obstruction to the existence of
3-jets of coordinate systems where the metric is Euclidean to the second order. This
is a manifestation of the fact that the curvature coefficients arise in the second order
Taylor expansion of the metric in a normal coordinate system.

2 Cartan’s Method

2.1 Let Fg and F{;, be G-structures on two n-dimensional manifolds A and M’. The
equivalence problem asks if there exists a local isomorphism between (M, F) and
(M, F{,). We already have already solved a particular case of this: a O,(R)-structure
is locally isomorphic to R™ if and only if the curvature vanishes.

A basic case of this is when G is the trivial group e. In this case, a e-structure on
M is a coframe w',...w" (i.e., a global trivialization of T*M). Given (M,w), (M’ ,w’)
two e-structures, the equivalence problem asks if there exists a (locally defined) diffeo-
morphism 1) : M — M’ such that ¢*w'" = w® for all i.

Write dw’ = X w? A w*. The numbers A}, are called the structure coefficients of
the coframe w. They define a smooth function X\ : M — R™ ® A2R™. More generally,
for each K > 0 one may consider the derivatives %(/\) of A for |I| < K. This may be
considered as a function DEX : M — SSER™ @ (R" @ A2R™). We say that \ stabilizes
at order K around ¢ € M if DX )\ and DX*! )\ have constant rank near ¢, and both ranks
are the same. It is easily seen that X stabilizes at order n around ¢ for ¢ in an open dense
subset of M. If X stabilizes at order K around ¢, then we may write DX\ = fDX ) for
some (locally defined) section f : SSER™ @ (R"® A?R™) — SSEHR™ @ (R™ @ A2R™).
By the chain rule, the same thing is true for higher order derivatives. Therefore, A also
stabilizes at order L for all L > K.

Let X' be the structure coefficients of w’. Observe that in order for there to exist
an equivalence sending ¢ € M to ¢ € M’, we must have D¥)\(q) = DX N (¢) for all
K. Moreover, if A and )\ stabilize at order K near ¢ and ¢’, then necessarily the ranks
of DXX and DX )X are the same, and the images of D!\ and DX+!) coincide near
DEFI)\(q). Conversely, we have the following
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PRrROPOSITION 2.1.1. Let M, M’ be two n-dimensional manifolds, and let w and w' be
coframes for M and M' respectively. Let ¢ € M and ¢ € M'. Suppose that A\ and
N stabilize at order K near q and ¢'. If DET*\(q) = DETIN(¢') and the images of
DEFIN and DEFLN coincide near DX\ (q), then there exists a unique local equivalence
sending q to ¢'.

Proof. Consider the distribution C on M x M’ defined by the 1-forms w’ — W for
1 < i < n. Local isomorphisms between (M,w) and (M’ ,w’) are in correspondence
with n-dimensional integral submanifolds of C.

Let S C M x M’ be the subset consisting of the pairs (y, %) such that DETI\(y) =
DEFN(y'). The n-dimensional integral submanifolds of C must necessarily be con-
tained inside S. Near (g, ¢'), we have that S is a smooth submanifold of codimension r
and the projections S — M and S — M’ are submersions.

Now, write DETI\ = fDEX and DEFIN = f/DEN near (q,¢'). Since the images
of DE+1X and DX*') coincide, we may take f = f. By the chain rule, we have
DE+2)\ = gDX X\ and DE+2)\ = gD ) for the same function g. Therefore, we conclude
that DET2)\(y) = DET2\(y/) for (y,9') € S near (¢, ).

Observe that the distribution C is spanned by the vector fields X; = §/0w’ — 9 /dw"
for 1 < i < n. The fact that DE+2X and DX*2) coincide implies that X;(DETI\ —
DEFLN) = 0 for all i. Therefore, the distribution C is tangent to S. Since A— )’ vanishes
along S, we have that C is Frobenius integrable, and the proposition follows. n

Observe that from the proof of the proposition one also gets a local description of
the space of equivalences: it may be parameterised as a smooth manifold of dimension
n — r, where r is the rank of D¥)\.

2.2 The general equivalence problem may be solved (in principle) using the method

of Elie Cartan. This algorithm is a systematic way of finding invariants for a given
G-structure. If the invariants for two structures coincide at each step in the algorithm,
then they are shown to be formally equivalent. In the analytic case, this implies the
existence of local isomorphism.

We shall present the method in three steps. The first one is normalization, where
one uses invariants which vary along the fibers of the structure to reduce the structure
group as much as possible. The second one is to check for formal integrability of a
certain differential equation whose solutions are the local equivalences. The third step
is prolongation, where one passes to higher order structures and starts back at step one.

(i) Let (M, Fg) and (M', F,) be two G structures. Let ¢ € M and ¢’ € M’'. We shall
work in sufficiently small neighborhoods of ¢ and ¢/. Assume that G is connected, if not
one restricts to the connected components of of the structures. Let T : Fg — H?*?(g)
and T" : F}, — H*?*(g) be the essential torsions of the two structures.
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The first step will be to normalize the torsion to reduce the structure groups. A
submanifold S C H?*?(g) is called a normalizing submanifold if S N O has at most
one point and is transverse for all the orbits O for the right G action on H*?(g), and
moreover the isotropy of the action is constant along S. Assume that there exists a
normalizing submanifold S with isotropy H such that S intersects the orbit of T'(w)
for every coframe w € F. This happens for example if all those orbits coincide, in
which case one may take S to be a single point. If there exists an equivalence sending
q to ¢, then the same must be true for the orbits of 7"(w’) for w’ € F{,. In this case,
Fy =T Y(S) and F; = T'"'(S) are reductions of the structure groups of Fig and FJ,
to H, and the equivalences between Fi; and FY, coincide with the equivalences between
Fy and F},. If H is a proper subgroup of G, one starts the algorithm again with
the reduced structures. Observe that one has to compute the essential torsions again
with the new structures, so it may happen that further normalization of the torsion is
possible after reducing the group.

Now, assume that H = (. This means that the action of G fixes the torsions
T and 7", which implies that 7" and 7" are constant along the fibers of I and Ff..
Write dI’" = 3%Tw'. This defines a function DT : Fgz — R™ ® H?**(g), which is
equivariant under the action of G. We may now repeat the same thing that we did for
T. Assume that there exists a normalizing submanifold S C R™® H*?(g) with isotropy
H,, intersecting the orbits of the points in the image of DT. The same must be true
for the image of DT” if the structures are to be equivalent. If H; is a proper subgroup
of G, one may reduce the structure group to H;, and start the algorithm again.

If H, = G, the function DT is constant along the fibers of F;, and we may consider
its derivatives, which define a G-equivariant function D*T : Fg — S*R™ @ H>?(g).
This process goes on, considering at each step derivatives of T of increasing order. If
no further reductions are possible, then all the functions DXT and DXT" are constant
along the fibers of the structures, so they may be thought as functions defined on M.

(i) We now assume that T stabilizes at order K mnear g, meaning that D*T and
DEHLT have constant rank near ¢, and both ranks coincide. We may take K = n for ¢
in an open dense subset of M. If the structures are to be equivalent, then 7" must also
stabilize at order K around ¢'. Moreover, we must have that DE+1T(q) = DEHT(¢/)
and the images of DEF'T and DXT" must coincide near DEFT(q).

Let R C J. (M, M’) be the first order differential equation consisting of those
1-jets of diffeomorphisms compatible with the G-structures. Solutions of R are in
correspondence with (local) equivalences between (M, Fg) and (M', F}). Let S C
M x M’ be the submanifold defined by the equation DETT = DE+IT" Observe that

all the solutions of R have to be contained inside S. Let R|s = J1(S) N R.

PROPOSITION 2.2.1. We have that R|s = RNy 4(S) and its curvature vanishes. More-
over, if H*I(g) = 0 for j > 3, the equation R|s is formally integrable.
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Proof. This goes along the same lines as the proof of proposition 2.1.1. Let w and «’
be sections of F; and F¢,. Then there is an induced section ¢ of R over M x M’, whose
value at a point (y,y') is the isomorphism 1, : T,M — T, M’ such that ¢ ' = w.
From this, we get a trivialization R = M x M’ x G, where the point (y, 1/, g) corresponds
to the isomorphism ), g such that (¢, ,g)*(w'g) = w. The contact system is defined
by the vector valued 1-form w — w'g.

Let z = (y,v/,9) € Rﬂwié(S). Then z is an n-dimensional plane at (y,y’), spanned
by the vectors 9/0w! — 0/0(w'g)!. Using that DXFLT" is invariant under the action of
g, we have

8_8 K+1_K+1/_8K+1_0K+1/
(aw 8(w’g)i)(D TP = gD T = gD @

And this vanishes along S by the same arguments as in the proof of 2.1.1. This proves
that R|s = RNy ;(S), which is the first part of the proposition.

Now, let z = (y,v,g9) € R and II be the subspace of T, R defined by the equations
wy —w,,g =0 and dg = 0. We have that d(w —w'g)ln = (dw — (dw’)g)|n € R" @ A*R™.
Since the essential torsions T'(y) and 7"(y’) coincide, we have that d(w —w'g)|n projects
to zero in H*?(g), which means that the curvature of R vanishes at z.

The last part of the proposition follows from the fact that the symbol of R|s may
be identified with g after choosing sections w and w’ of F; and F{,. m

(iii) If H*I(g) does not vanish for some j > 3, one fixes a section a : H>?(g) —
R" ® A’R™. We consider (non necessarily equivariant) connections on Fg with torsion
constant along the fibers, equal to aT : F; — R™ @ A2R™. If we fix a basis for g, the
connection forms complement the tautological forms to give a coframing on Fg. These
coframings define a g{")-structure F,u) on Fg, where g) = (R™ ® g) N (S*R™ @ R") is
considered as a subgroup of GL(R™ & g) via L — L+ id. This is called a prolongation
of F, G-

Analogously, one constructs a prolongation of F{, using the same section . The
following result tells us that both equivalence problems are essentially the same.

PROPOSITION 2.2.2. If1) : M — M’ is an equivalence, then its lift ) : Fn — Fe
is an equivalence of g -structures. Conversely, each equivalence of g\V)-structures 1 :
Fe — FY, is induced by a unique equivalence 1 : M — M.

Proof. The first part of the statement is a consequence of the fact that equivalences
preserve the torsion of connections. For the second part, observe that an equivalence v :
Fo — F(, of gM-structures must be compatible with the canonical forms, that is, 1/*0" =
0. The distributions defined by the canonical forms are the vertical distributions of Fg
and F{,. Since we are assuming that G is connected, we have that ) commutes with the
projections Fg — M and F}, — M’, and therefore we get an induced map ¢ : M — M.
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Let s and s’ be sections of Fiy and F}; such that 1s = s'sp. Then ¢*s*0" = s*¢" for all
i. Since s*0" and s™*0" are coframes belonging to Fg and F}, this means that 1 is an
equivalence, as we wanted. O

Observe that the result as stated holds for global equivalences (or in neighborhoods
of ¢ and ¢'). However, one could also allow local equivalences between Fu) and F é (1)
in which case the same correspondence holds, modulo a suitable equivalence relation.

The algorithm now starts again at the first step with the prolonged structures,
although some modifications are to be made. Suppose that at some point we normalize
the essential torsion of Fja) so that we get an invariant Fi; — H**(g™). If this function
is not constant along the fibers of Fy, it may be used to reduce the structure group G
to a proper subgroup H. In this case one may start the method again, with the reduced
structure Fly.

Further prolongation may be needed. One could simply take, once more, connections
on the bundle Fyu) — Fg, which are simply sections of Jl(Fg<1) — Fg) over Fya).
However, F ) — Fg is not only a g(l)—structure, but there is also an inclusion Fyo) C
J%(FG) as well. Therefore, it is natural to consider sections of the bundle F g = Fyo)
whose fiber over a point y € Fg(l) consists of the lifts of Uél) C T, ylta to Tng(l).
Points in Fg(l) may be thought of as coframes on Fym with values in the vector space
R™ x ¢, where ¢ is a certain extension of g by the abelian Lie algebra g") such that the
vertical distribution of the projection Fyoy — M is the trivial bundle with fiber e.

The process of prolongation may be better understood in terms of semi-holonomic
higher order G-structures. After discussing this, we shall be in a position to give a
complete description of the method and prove that it terminates in a finite number of
steps.

3 Semi-Holonomic Jets

In this section we give a brief introduction to the theory of semi-holonomic jets. This
is what one gets if one drops the requirement that derivatives should commute when
taking jet prolongation. Most results have a holonomic analogue in the theory that we
discussed earlier in this thesis, so we shall skip the proofs.

3.1 Let M be a differentiable manifold and fix n < dim M. Let U be the universal
bundle on J(M) and Q = TM/U. Set J”(M) = M and Ji"(M) = JL(M). The
space J7<L2>(M ) of second order semi-holonomic jets of n-dimensional submanifolds of M
is the bundle over JT(LD(M ) whose fiber over a point y € J,gl)(M ) consists of the lifts of
U, to TyJ,gl)(M). Of course, the space J2(M) of (holonomic) 2-jets sits inside J7§2>(M)
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as the bundle of integral elements of the contact system on J!(M). Let U™ be the
pullback of the universal bundle on J,{(Jé”(M )) to J,§2>(M ).

Inductively, we define the space J,ﬁm(]\/[ ) of k-th order semi-holonomic jets of n-
dimensional submanifolds of M as the bundle over J,g’%l)(M ) whose fiber over a point
y consists of the lifts of Uéki2> to TyJékfw(M), where U%=2) is the pullback of the
universal bundle on J! (J&¥2 (M) to J&FV(M). Let my : & (M) — J9 (M) be the
canonical projection. Observe that the space J¥(M) of holonomic k-th order jets is
contained inside J (M).

Locally, a coordinate system z‘, u® on M extends to coordinates z*,u$ on Jrgk)(M ),
where [ is a multi-index of length at most k. A point defines a holonomic jet if its
coordinates u} are symmetric.

PROPOSITION 3.1.1. Let k > 2. The bundle J,im(M) — Jﬁk_D(M) is an affine bundle
modeled on (U*)®* @ Q.

A k-th order semi-holonomic differential operator is a smooth map ¢ : Jém(M) —
M', where M’ is another smooth manifold. As usual, we may form the [-th prolongation
o which is a (partially defined) map from Ji (M) to Ji (M"). The symbol of ¢ is
the map o, : (U*)®*®@Q obtained by restriction of ¢, to Vg x_1. If [ > 2, we have that
o is a affine bundle map over ¢!~1) modeled on ag) = l(y+yet ® 0,. Prolongation of

the universal differential operator id : J{ (M) — J{" (M) gives the canonical inclusion
FM) = B0 (P ().
All the theory may be extended to the fibered case in the usual way. The following
linearization result may be proven inductively

ProOPOSITION 3.1.2. 1. There is a short exact sequence of bundles over JékH)(M)
0— H" = JNTM — M) = TJ® (M) =0 (2)

where H* is the kernel of the canonical map
JENU = Ty (M) = U (3)

2. There is a short exact sequence of bundles over JT(LHD(M)

0—U® 1R (M) — JP(Q — JH(M)) =0 (4)

3.2 We define the contact distribution on Jﬁ(M) as CF = W,;,lﬁ_l*(U%_l)). As usual,
the Lie bracket induces a form

[ ] A%C, =TI (M)/C = T 1(Q — T, (M) ()
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The induced map
(U@ Q)®@U = V1 @ U — JF1(Q — Jr(M)) (6)

has its image contained in (U*)®**~! @ @, and coincides with contraction.
There is a map

C: JE(M) = NU* @ JF2(Q — JH(M)) (7)

given by C(y) = [, ]| ;&-1. This commutes with the projections, and the zero locus of
Yy
C consists of the holonomic k-th order jets.

3.3 Let k > 0. A k-th order semi-holonomic differential equation on n-dimensional
submanifolds of M is a subset R C J,Ek)(M ). We say that R is smooth if it is a smooth
submanifold of Jﬁm(M ). We say that R is (globally, locally, infinitesimally) differentially
closed if it is so considered as a first order equation on submanifolds of J,ﬁk_D(M ) via
the inclusion Jém(M) - J%(J,ik_U(M)). For 1 < j <k, the j-th symbol of a smooth
equation R is defined as

/IJ ker(ﬂ-]] 1*|7rk J*TR) (U*)@)J ® Q <8)

We also set A% = pTko« 'R, where pg : TM — @ is the projection to the quotient.
When j > k, we set A}, = (U*)®~% @ Ak The total symbol is then defined as
AR - @po AJ

A smooth equation R is said to be j-regular if flﬁ is a smooth vector bundle over
R. If R is infinitesimally differentially closed and j-regular for all 1 < j < k, then /Nl’f%
is closed under contraction.

When R is infinitesimally differentially closed, we may form the first semi-holonomic
prolongation of R as R = JS*™ (M) JY(R). If R is regular in degrees k and k + 1,
this is an mﬁmte&mally differentially closed (k + 1)-th order semi-holonomic equation,
and we have A = Apuy. Moreover, R" — R is an affine bundle modeled on A’f_{rl

More generally, the l th semi-holonomic prolongation of R is defined as RY =

() N J,g”(R), where the intersection is taken inside J,@( ,gk>(M)) When R is
j-regular for all k < j < k +1 — 1, this coincides with the first prolongation of R¢~1

When R is infinitesimally differentially closed and k-regular, the map (7) restricted
to R induces a well defined map

Kr:R— (AU ® (TR/C}|r)) /6" (AF™) (9)
called the total curvature of R, where
U U (U e Q) = AU (U)o Q) C A2U*® (TR/CFR) (10)

is the map induced by wedge product U* ® U* — A2U*. The zero locus of Ky consists
of those holonomic elements of R which extend to a holonomic (k + 1)-jet.
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3.4 Let M be an n-dimensional manifold. Let J<k>(M, R™) = W;i((]l (M,R"™)), where

Tk Jém(M x R") — J,gl)(M x R™) is the projection. This is the space of semi-
holonomic k-jets of diffeomorphisms between M and R™. We may write J;S’?(M, R™) =
F*M x R™. The space F*M is called the k-th order semi-holonomic frame bundle over
M. Observe that the holonomic frame bundle F*M sits inside F*M. It is easily seen
that F*M is the space of semi-holonomic k-jets of sections of FM — M. In particular,
we have that F2M = JY(FM — M).

Consider the space (R™)®<k @ R™ of polynomials (in non-commutative variables)

—~—k
of order at most k. Let GL,(R) be set of polynomials with zero constant term such
that the term of order 1 belongs to GL,(R) C R* ® R". This forms a Lie group under
composition. Observe that the additive group (R™)®* @ R" embeds as a closed normal

subgroup of éj)i(R) (where the embedding sends P to P + id). We have an exact
sequence

0= (R™)® — GL(R) - GL. (R) — 1 (11)

There is another, more convenient description of this group. Consider the frame
bundle FR" = R" x GL,(R"). The group structure in the fibers prolongs to give
a group structure in the fibers of F*R" — R™. It turns out that the fibers may be

identified with @:(R) Moreover, we have the following

PROPOSITION 3.4.1. Let k > 0. The bundle F*XM — M is a principal bundle with

—k -
structure group GL, (R). Moreover, for k > 2 we have that F*M /((R™)®* @ R") =
FF=1M.

~ The holonomic frame bundle F ¥M is then a reduction of the structure group of
F*M to the group GLF(R) of k-jets of automorphisms of R" at 0.

4 Higher Order G-Structures

4.1 Let kK > 0 and G C &:(R) be a Lie subgroup. A (semi-holonomic) k-th order
G-structure on an n-dimensional manifold M is a reduction Fg of the structure group of
F*M to G. If F is contained inside F*M then the structure is said to be holonomic. Tt
is common in the literature to define higher order structures to be holonomic, however
we need the more general concept in order to deal with possibly non-vanishing torsion in
the last step of the equivalence method. Indeed, after the first prolongation, Fju) may
be thought of as a second order structure on M, which is holonomic if and only if the
torsion vanishes. From now on we shall assume all our structures to be semi-holonomic.
Let g be the Lie algebra of G. For each 1 < j <k, set

= (gn (R oY) / (g0 (R € R oRT (12
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In the case j = 0, we let A7 = R". When j > k, let AJ = (R"™)®~* @ Ak Set
A, =D >0 Ag-
Observe that Fg x R" is a k-th order equation on sections of M x R™ — M, and its
total symbol is a trivial bundle with fiber flg.
For each 0 < j <k, let G be the image of G under the projection F*M — FiM.
We have exact sequences
0= Al -G =Gy =0 (13)

Let Fg, = mpjFe. This is a j-th order Gj-structure on M. Observe that the vertical
distribution of the projection Fg, — Fg,_, is a trivial bundle with fiber flg.

We say that a k-th order structure Fg is differentially closed if the corresponding
k-th order equation Fg; x R™ is differentially closed (in this case, the notions of globally,
locally and infinitesimally differentially closed coincide). When this happens, flg is
closed under contraction by vectors in R". Observe that first order structures are
always differentially closed.

When Fy; is differentially closed, we may form its first (semi-holonomic) prolongation
Fg) which is the bundle over F; whose fiber over a point y consists of the lifts of
U to T,Fc. Alternatively, we have Fé” = F*M N JY(Fg). This is a (k + 1)-th

~— k1
order differentially closed structure for the group G C GL, " (R) consisting of those
polynomials whose terms of order at most & belong to G, and with the term of order k+1
belonging to A’g“. Inductively, one may define the [-th semi-holonomic prolongation
Fé;l> as Fg_lm).

In general, if F; is not differentially closed, one may form its clausure as follows.
First, replace Fg with Fékl_w N Fg. Then, replace the new F with ng_2> N Fg. In
general, in the step ¢ we replace F; with ngfi> N Fg. At the end of this process, one is
left with the largest differentially closed k-th order structure contained in the original
one.

4.2 Let Fg be a differentially closed k-th order G-structure on the n-dimensional
manifold M. The total curvature g of the semi-holonomic equation Fg x R" C
J<k>(M, R™) restricts to a map

Kry : Fo = (N°R™ ® (gr—1 & R™)) /8" (AFF) (14)
where gi_; is the Lie algebra of G;_; and
51 . Rn* ® Rn* ® ((Rn*)®k—1 ® Rn) N A2Rn* ® ((Rn*>®k_1 ® Rn) (15)

is the map induced by wedge product. The map K, is called the total curvature of
Fe.
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EXAMPLE 4.2.1. Let F be a first order G-structure and V : Fg — Fu) be a section
(i.e., a connection). The image of V is a differentially closed second order G-structure
(where G embeds into GL2(R") as a subgroup of the homogeneous polynomials of order
1). In this case, fl’g“ = 0, and the total curvature is a map from Fg to A’R™*® (gR").
The components of this map are the curvature and the torsion of V.

Observe that if g, is constant in the fibers of 7 |p,, we may write dCp, =
%ICFGHi, where 0 are the canonical forms on Fg. The derivatives %ICFG are defined
on Fg,. In the same way, if the first [ derivatives of Kp, are defined on M, we may
form the (I + 1)-th total derivative D"**Kr,, which a function on Fg,.

We say that F; has been normalized if Kp, and all its derivatives are defined on
M. If Fg has been normalized, we say that Kp, stabilizes at order K if DXKp, and
DEFKC . have (locally) constant rank and both ranks coincide. We may set K = n if
we restrict to an open dense subspace of M.

The following proposition restricts the possible values that the lie algebra g may

take when the structure has been normalized.

~ k
PROPOSITION 4.2.2. Let G C GL,(R) be a closed subgroup, and let Fg be a normalized
differentially closed G-structure on M. Then A} € STR™ @ R" for all 0 < j < n.

Proof. Let 1 < j < k and let z,w be two points in Fg, ., such that 7 ;2 = 711 jw.
Then by the semi-holonomic analogue of proposition I11.3.2.1, we have

0=C(w)—C(z) zél(z—w) (16)
where z — w is considered as an element of
n* Nk n* i—1 A7+1
(R™ @ R™ ® (R )®J )N Aé* (17)

and C is the map on J Jr1>(]\4 ,R™) given by (7). It follows that elements of flﬁ“ are

180
symmetric in the first two entries. By induction, we have the desired result. ]

When this happens, we let A7 = flg for j <k, and
j j—kpn* k j D Lk n
Al = (ST"R™ @ A;) N (S“R™ @ R™) (18)

for j > k. Then A; = P >0 Af;' is a SR™ comodule, so it makes sense to compute its
Spencer cohomology, which shall be denoted by H(g).

4.3 We now state our main equivalence result for higher order structures. As usual,
we shall only conclude the existence of formal equivalences, i.e., jets of infinite order of
equivalences. The precise meaning of this will be clear from the proof. In the analytic
category, this implies the existence of local equivalences.
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THEOREM 4.3.1. Let M, M’ be two n-dimensional manifolds. Let F¢, F{, be two nor-
malized differentially closed k-th order G-structures on M and M' such that the total
curvatures K, and Kgy, stabilize at order K. Let q,q" be two points in M, M’ such
that DX+ Cr,(q) = D" K. (¢') and the images of DX K, and DX+ Cpy, coincide
near DX (q). If H*I(g) = 0 for j > k + 2, there is a formal equivalence between
Fe and FY, sending q to q'.

Proof. The proof will generalize the proofs of propositions 2.1.1 and 2.2.1. We shall first
define a semi-holonomic k-th order differential equation on submanifolds of M x M’,
whose solutions are in correspondence with (local) equivalences between the structures.
Then we restrict to a submanifold of M x M’ so that the equation becomes holonomic,
and use the vanishing of the cohomology to conclude that it is formally integrable.

Let ' : FM x FM' — J. (M, M’) be the map which sends each pair of coframes
(w,w') over a pair (y,y') € M x M’ to o' 'w : T,M — T,,M’. From this, one gets an
inclusion

F2M x F*M' C JYFM x FM' — M x M') (19)
The restriction of ()" defines a map

W2 FPM x F2M' — J2(M, M) (20)

180

Proceeding inductively, for all j one may construct a Gj-invariant map

W FIM x FIM — J9(M, M) (21)

180

which gives F/M x FJM’ the structure of a principal G; bundle over Jigg(M M.
Let R be the image of wk| FgxFl- This is a differentially closed k-th order semi-

holonomic equation, regular in all degrees, whose solutions are in correspondence with

local equivalences between F and F(f,.. The pullback of the symbol Ag over ¢F is a

trivial bundle and sits in an exact sequence of SR™* comodules
0— Ay — Agx Ay — Agp = 0 (22)

where the first map is the diagonal. From this we have that 151;% C SIT*M @ TM' for
j < k. Therefore, we may define A}, = A}, for j < k and

A = (ST M @ TM' @ A) N (ST*M @ TM') (23)

for j > k. The sum Ar = @, A%, is a bundle of ST*M comodules over R. The

pullback of Ag via ¥* is a trivial bundle with fiber isomorphic to A,. Therefore, we
have that H*7(Ag) = 0 for all j > k + 2.
Now, let S be the subset of M x M” where the equality D**'Kp, = D* g holds.

We work near (q,q’), so that S is smooth. Let R|g = RN J,gﬁ(S). The same argument
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as in proposition 2.2.1 shows that 7y ;(S) N1 (R) = JA(S) N maR. Now, if z €
T50(S) N2 R, we have that U is tangent to J1(S) and therefore z € Ji2 (S) N7 R.
Proceeding inductively, we get R|s = m, ¢(S) N R.

From (22) we see that the total curvature of R|s vanishes. This means that R|s C
JF(M x M) is a holonomic equation integrable to first order. Since H*(R|g) = 0 for
j > k+ 2, we conclude that R|s is formally integrable, and the result follows. O]

It is also common to formulate this result requiring that H'(g) vanishes for [ > 0
and j > k+2. In this case, R is involutive and one may estimate the size of the solution
space.

In the case when Ag = 0 for some j > 0, the equation R may be prolonged until it
becomes a Frobenius system. In this case, one does not need analiticity to guarantee the
existence of solutions. This happens, for example, in the case of Riemannian manifolds.

4.4 We now give an full description of Cartan’s method for obtaining a complete set
of invariants for a first order structure. Let M be an n-dimensional manifold and Fig
be a first order G-structure on M.

(i) Suppose that Fg is not normalized, so that for some K, the derivative DXK does
not descend to M. Choose a normalizing manifold for DX and use this to reduce
the structure group to a proper subgroup H. This reduced structure may not be
differentially closed. Let j be the least index such that H; C G;. Start again with the
J-th order structure Fly;.

(ii) If Fg is normalized, and H*I(g) = 0 for j > k + 2 then the derivatives of the
curvatures of Fg constitute the desired invariants and the algorithm terminates.

(iii) If Fg is normalized but H*7(g) # 0 for some j > k + 2, start the algorithm again
with the first semi-holonomic prolongation Fé;1>.

Observe that we are assuming, at each step, that normalizing submanifolds exist.
This may not be the case, and the method may be generalized to take into account these
situations, however we shall not be concerned with this case. Moreover, the algorithm
and the invariants obtained depend on the choice of normalizing submanifolds at each
step.

In principle, one could need an arbitrary number of prolongations to reach a com-
plete set of invariants, however in practice most problems do not require more than
two. In any case, the algorithm is guaranteed to finish in finite time:

THEOREM 4.4.1. Cartan’s algorithm terminates after a finite number of steps.
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Proof. Suppose that we may choose normalizations so that the algorithm does not
terminate. Observe that we have to perform step (iii) an infinite number of times.
Indeed, each normalization either diminishes the order of the structure or the dimension
of the group, so after a finite number of normalization one is forced to go to step (ii) and
then to step (iii). Let F'(0), F(1),... be the normalized differentially closed structures
that we have each time that we go to step (iii) (before prolongation), where F'(i) is a
k(i)-th order structure for the group G(i). Let g(i) be the Lie algebra of G(3).

Since G(i + 1); € G(i); for all ¢, there exists m; such that G(i + 1); = G(i); for
all 7 > my. Take m; to be the minimum of those integers. Observe that we must have
k(my) =1 and k(i) > 1 for all i > m;. In the same way, there exists my > my such that
G(i+ 1)y = G(i)2 for all i > my. Taking msy to be minimum, we have that k(msy) = 2
and k(i) > 2 for ¢ > my. Inductively, one constructs an increasing sequence my, such
that G(i + 1), = G(i)x, for all i > my, and furthermore k(my) = k and k(z) > k for all
1> M.

Now, Ag(m,) is a decreasing sequence of SR™ subcomodules of SR™ @ R™. Since
SR™ is a Noetherian ring, there exists ko such that Ay, ,,) = Agam,) for all k > k. Let
jo > my, be a natural number such that H*/(Ag(m, )) = 0 for all j > jo + 2. It follows
that the algorithm terminates after reaching F(jo), which is a contradiction. O

This algorithm may be used to solve the formal equivalence problem for first order G-
structures, in the following way. Suppose that we are given two first order G-structures.
We run the algorithm on both of them, trying to use the same normalizations for both
at each step. If this is not possible, then the two structures cannot be equivalent. If
one is able to do this, in the end one arrives a two k-th order structures for which
the equivalence problem has the same solutions as the original one. Then (away from
singularities) the original problem has a formal solution if and only if the derivatives of
the curvatures coincide in the sense given by theorem 4.3.1.

The observation that makes this work is that after each step in the algorithm, the
equivalences between F, and F{; coincide with the equivalences between F and Fy,,
and moreover they are the same as the equivalences in the initial problem. This does
not hold if we start the algorithm with k-th order structures: one may be forced to
reduce them to structures of order less than £, which may cause new equivalences to
appear. Therefore, this method may not be directly applied for higher order structures.
However, if one is given a k-th order G-structure Fy, its first semi-holonomic prolon-
gation Fg) may be interpreted as a first order structure on Fy for the abelian group
A’;H. It may be seen that the solutions to an equivalence problem for G-structures
are in correspondence with the solutions to the corresponding equivalence problem for
A’g*l—structures (see 2.2.2 for the case k = 1), and so one may always assume that the
starting structure is of first order.
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