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Abstract-The long-time asymptotics of solutions of the viscous quantum hydrodynamic model 
in one space dimension is studied. This model consists of continuity equations for the particle 
density and the current density, coupled to the Poisson equation for the electrostatic potential. The 
equations are a dispersive and viscous regularization of the Euler equations. It is shown that the 
solutions converge exponentially fast to the (unique) thermal equilibrium state as the time tends to 
infinity. For the proof, we employ the entropy dissipation method, applied for the first time to a 
third-order differential equation. @ 2003 Elsevier Ltd. All rights reserved. 
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1. INTRODUCTION 

It is well known that quantum models, like the Schriidinger equation or the Wigner equation, 
allow for a fluid dynamical description in terms of macroscopic quantities, like the particle density 
or the current density, satisfying the so-called Madelung or quantum hydrodynamic equations [l]. 
These equations do not include a model of collisions. Collisions of the particles with an oscillator 
bath can be modeled by the Wigner-Fokker-Plank equation [2,3]. From this equation, the macro- 
scopic viscous quantum hydrodynamic model can be derived, using a moment method as in [4]. 
This model consists of the continuity equations for the particle density n(z,t) and the current 
density J(z, t), coupled to the Poisson equation for the electrostatic potential V(z, t). The scaled 

The authors acknowledge partial support from the German-Italian DAAD-Vigoni Program. The first and second 
authors have been supported by the Deutsche Forschungsgemeinschaft, Grants JU 359/3 (Gerhard-Hess Program) 
and JU 359/5 (Priority Program “Multiscale Problems”), the European IHP Project “Hyperbolic and Kinetic 
Equations”, and the AFF Project of the University of Konstanz. 

0893-9659/03/g - see front matter @ 2003 Elsevier Ltd. All rights reserved. 
doi: 10.1016/S0893-9659(03)00189-7 

Typeset by A,@-T@ 



1274 M. P. GUALDANI et al. 

equations in one space dimension read as follows: 

nt + J, = vnxx, (1) 

X2Vz, = n - 1, 5 E R, t > 0, (3) 

where 52 = (0, l), with initial conditions 

n(., 0) = 721, J(.,o) = JI, in R. (4) 

The (scaled) phy sical parameters are the temperature constant T > 0, the Planck constant E > 0, 
the momentum relaxation time constant T > 0, and the Debye length X > 0. The viscosity v > 0 
models the strength of interaction of the particles with the oscillators. Equations (l),(2) can 
be derived exactly as in [4], where the (linear) Fokker-Planck term gives the viscous contribu- 
tions un,, and vJ,, to the right-hand sides of (l),(2). In the Poisson equation, we have prescribed 
a constant concentration of fixed background charges. For the choice of boundary conditions, see 
below. 

For E = 0 and v = 0, system (l)-(3) is the hydrodynamic model for an ensemble of charged par- 
ticles, for instance, electrons moving in a semiconductor crystal [5]. For E > 0, Y = 0 (and T = 0, 
l/r = 0), equations (l)-(3) are the Madelung equations used in the modeling of superfluids [6]. 
With this choice of parameters, (l)-(3) are formally equivalent to the Schrodinger-Poisson sys- 
tem. Finally, equations (l)-(3) with E > 0, v = 0 (and T > 0, l/r > 0) are known as the quantum 
hydrodynamic equations which have been used to model quantum semiconductor devices [4,5]. 
No results are available in the mathematical literature for (l)-(3) with E > 0 and v > 0. 

In this paper, we study the long-time ssymptotics of the solutions of (l)-(3) towards the so- 
called thermal equilibrium state (no current flow). A special thermal equilibrium state is given 
by J = 0, n = 1, and V = 0 in R. We assume that the boundary conditions are in that thermal 
equilibrium state 

n= 1, n, = 0, v = 0, on LK? x (0, oo), (5) 

The boundary condition (6) can be interpreted as a generalized thermal equilibrium condition 
for the current density (see Remark 1). We prove that any strong solution of (l)-(6) converges 
exponentially fast to the (unique) thermal equilibrium state (n, J, V) = (l,O, 0). The rate of con- 
vergence for n(., t) and V(., t) depends on the viscosity constant I/ > 0. If v = 0, no convergence 
rate can be obtained. The proof is based on the entropy dissipation method. This method has 
been used to derive explicit convergence rates of second- and fourth-order equations [7,8]. Here 
we apply the method for the first time to a third-order equation. 

The entropy dissipation method is based on a priori estimates for the entropy (or, more 
precisely, free energy) functional 

E(t) = 
l E2 J[ T (\/;;)a + T(n(logn - 1) + 1) + TV: + $1 (x, f) dz > 0 (7) 

0 

consisting of the quantum energy, thermodynamical entropy, electric energy, and kinetic energy 
of the system. The idea is to derive an inequality of the form t 1 

E(t) + JJ P(x, t) dzds < E(O), 
0 0 
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where the entropy dissipation rate P(x, t) 2 0 depends on the variables and their derivatives. We 
show that 

J 

1 

P(x, t) da: 2 +(t) 
0 

for some y > 0, and thus, Gronwall’s lemma implies 

E(t) 5 E(O)e-+, t > 0. 

More precisely, our main result reads as follows. 

THEOREM 1. Let n E H1(0,T*;L2(52)) n L2(0,T*;H3(R)), J E H1(0,T*;L2(Q)) n ,52(&T*; 
H2(R)), V E L2(0,T*; H2(s2)) b e a solution to (l)-(3) for any T’ > 0 such that n > 0 in 
R x (O,T*) and let n1 E H1(R), JI E L2(R) such that n1 > 0 in 0. Then 

REMARK 1 

(i) The global-in-time existence for (l)-(3) will be studied in [9]. 
(ii) The boundary condition (6) is needed for technical reasons. It is a weaker condition 

than the (physically reasonable, but mathematically overdetermining) boundary condi- 
tions J(0, t) = J(l, t) = 0, t > 0. 

(iii) As expected, no convergence rate for n and V can be expected if v = 0. However, 
the kinetic energy J2(., t)/n(., t) converges to zero exponentially in the LI(R) norm as 
t -+ 00 with a decay rate l/7. This is physically reasonable since 7- models the momentum 
relaxation time. 

(iv) Exponential decay rates for solutions of the Wigner-Fokker-Planck equation (from which 
system (l)-(3) has b een derived) towards the thermal equilibrium state are obtained 
in [lo]. The decay rates of [lo] are different from ours since in our system, the electrostatic 
potential is given self-consistently, whereas in [lo], the potential is a given function not 
depending on the particle density. 

2. PROOF OF THEOREM 1 

Let T* > 0 and fix t E (0, T*). Multiply (2) by J/ n, integrate over R = (0, l), and integrate 
by parts 

Multiply (2) by the function Tlogn- J2/2n2-V-~2(&i),,/2J5i, integrate over R, and integrate 
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by parts 

1 

J ( 

52 
nt 

0 
Tlogn- 3 -v---E Z&!&Z) dx=-uT~l~dx+u~l(~)~nidx 

1 1 

fU J Vzn, dx - v: 
J 

nzz(J;L),, dx 
0 0 fi 

J 
1 

+T J(logn),dx + 
(9) J ’ J2J, dx - 

0 o 2n2 

J 
1 

-  V,Jdx+; J ’ J (J;;),, da: 

= Bll.. . + Bg. 

0 “y,E- 

Here, we have used that n, = 0 and V = 0 on 6%. 
First, we consider the terms on the’ left-hand side of (8) and (9). Since n, = 0 and V = 0 

on Xl, it holds that 

G-2) dx=L$;dx, 

J 
1 

nt log n da: = at 
0 J ‘(n(log n - 1) + 1) dx, 

0 

J Vnt dx = -X2 J V,,,V dx = X2 J V,,V, dx = $3,. 

-G/d’q (-4) dx= -E2i’:,. (fi)zz d;= fat i’(&)E 

J V,” dx, 

ii, 

Hence, the sum of the left-hand sides of (8) and (9) is equal to &E(t) where E(t) is defined in (7). 
Now, we compute the right-hand sides of (8) and (9). Notice that A2 + B5 = 0, A3 + B7 = 0, 

A4 + Bs = 0. Using n = 1 on X2, we obtain 

Al+&= 
n,J3 
--;$f) dx=-;&$),dx=;J3(0)-$J3(1). 

n3 

A computation gives 

-7) dx=-u~1($+)2dx. 

By integration by parts and n, = 0 on Xl, we obtain 

J 1 2 
n,nxx 

0 
Tdx=; J ’ n4 

Adz, 
0 n3 

and therefore, 

B4 = -z/g J ’ nzz(d%f da: = E2y ’ ’ n;nz, ’ n:Z dx 

+ s( 

= -&% 
I( 

o’ (&i):r+-&$) dx: 

8n2 4n > 

Finally, the boundary condition n = 1 on Xl implies 

J 
1 

B3 = v 
0 

Vz(n - 1)z dx = -G J’cn - 1)2 dz. 
0 

Here we need that n = const on Xl. The above computations show that the sum of (8) and (9), 
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integrated over (0, t), can be written as 

t1 
E(t) - E(0) = - Js[ 0 0 

e2u (&of, +E~u-$ + 4uT (J;E): + $(n - 1)2 

+ $(n.l, - TI,J)~ + ;; ] x d dt + ls,,, [$+J+vJJ,-;J3] dsdt. 

The first integral on the right-hand side is the entropy dissipation rate. Since n, = 0 and n = 1 
on 32, we can write the boundary integral as t 

JJ[ &2 
-n,,J + vJJ, - iJ3 dsdt. 

0 m 4 1 
The boundary condition n(., t) = 1 on dR implies vn,,(., t) - J,(., t) = nt(., t) = 0 on da, and 
thus, using (6), t 

Js[ 2 

0 
-nzzJ+vJJz-aJ3] 

an 4 
dsdt=~~a[~JJz+vJJz-~J3] dsdt=o. 

We apply the Poincark inequality 

to u = (fi)z to obtain 

; 1’ (6): (x,t) dx 5 E(t) < E(0) - (2~~ + 4vT) J’ J’ (6): (x, t) dxdt. 
0 0 

Gronwall’s lemma implies 

E2 11 (&i), (.,t)ll;,(,) 5 2E(0)e-4V(‘+2Twt, t 2 0. 

The Sobolev-Poincare inequality 

lb - %-(n) 5 IMILyn), vu - 1 E It@), 

then gives 
e2 II,h-z(.,t) - ljl& 5 2E(0)e-4”(1+2TIEZ)t, 

Furthermore, we conclude from 

t > 0. 

1 
iTo n J' J" dx 5 s(t) 2 E(0) - + 1’ JG’ f dxdt 

the estimate 

t 2 0. 

Finally, from the elliptic estimate 

JZX211KII~zu2j I lln - lll~2(~~, 

we infer 
x2 1 t 1t 

-2-o 0 JJ V,” dxdt 5 E(t) 5 E(0) - 2vX2 JJ V,” dx dt, 
0 0 

and hence, 
X2((V(.,t)11&,(n, I ~211K(~,t)ll$(a~ I 2E(OF4”t, t 2 0. 

This proves the theorem. 
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