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Abstract. We consider the one-dimensional Wigner-Poisson system of plasma
physics, linearized around a (spatially homogeneous) Lorentzian distribution

and prove that the solution of the corresponding linearized problem decays to

zero in time. We also give an explicit algebraic decay rate.

Dedicated to the memory of Marcello Anile

1. Introduction.

1.1. Physical motivation. We consider in a semiclassical framework the dynam-
ics of N electrons under the influence of a constant ionic background and their
self-consistently generated electrostatic field accounting for mean field effects in the
study of quantum plasmas models near admissible stationary states. We are moti-
vated by the study of stability properties and decay rates to those stationary states.
In fact, the study of quantum plasmas has been gaining more scientific interest, re-
flected in the recent works [1, 3, 7] and references given therein. To this end we shall
rely on the so-called Wigner-transformed picture of quantum mechanics: Consider
the N -particle density matrix describing the state of N electrons, each of which is
given by a single wave function ψj ∈ L2(Rd), i.e.

Ψ(t, x, y) :=
N∑
j=1

ψj(t, x)ψj(t, y),

and transform it according to

W (t, x, v) :=
1

(2π~)d

∫
Rd

Ψ
(
t, x+

~
2
η , x− ~

2
η

)
eiv·η dy. (1.1)
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Here we included Planck’s constant ~ in order to be able to compare our calcula-
tions to the classical case, which is obtained in the (semi-)classical limit ~ → 0.
For the purpose of our study we set all other physical constants, like the electron
mass, its charge, etc., to be equal to one without loss of generality. By definition,
W (t, ·, ·) ∈ L2(Rd×Rd) is real-valued. Therefore the Wigner function W (t, x, v) can
be considered a quantum mechanical analog to the classical phase-space distribu-
tion. However, in contrast to classical distribution, the Wigner function W (t, x, ξ)
in general takes also negative values. The time-evolution of W (t, x, v) is governed
by the Wigner-Poisson system (WP) [8]:∂tW + v · ∇x W + Θ[V ]W = 0, x, v ∈ Rd, t > 0,

−∆V = ρ(t, x)− n,
(1.2)

which (up to an inverse Wigner transformation) is equivalent to the Schrödinger-
Poisson system and reminiscent of the classical Vlasov-Poisson system (1.4) below.
In (1.2), n > 0 describes the constant background density of the ions. Moreover,
formally it holds [8]:

ρ(t, x) =
∫

Rd

W (t, x, v) dv ≡
N∑
j=1

|ψ(t, x)|2,

which is again reminiscent of the classical definition (1.5). In (1.2), the self-
consistent potential V = V (t, x) enters via the pseudo-differential operator

(Θ[V ]f)(x, ξ) := − i
~(2π)d

∫∫
R2d

δV~(x, η)W (t, x, v′) eiη·(v−v′) dv′ dη, (1.3)

where the symbol δV~ is given by

δV~(x, η) := V

(
x+

~
2
η

)
− V

(
x− ~

2
η

)
.

The aim of the paper is study the behavior of solutions to (1.2) for d = 1, after
linearization around a spatially homogeneous equilibrium state w∞(v). We expect
that as t → +∞ the solution to the linearized equation w(t, x, v) decays in some
sense (to be made precise in the following) to zero.

In classical kinetic theory, the description of collisionless plasmas relies on the
already mentioned Vlasov-Poisson system (VP), governing the dynamics of phase-
space densities fj(t, x, v) ≥ 0, for j = 1, . . . , N , via∂tfj + v · ∇x fj −∇xV (t, x) · ∇vfj = 0, x, v ∈ Rd, t > 0,

−∆V = ρcl(t, x)− n,
(1.4)

where

ρcl(t, x) :=
N∑
j=1

∫
Rd

fj(t, x, v) dv, (1.5)

denotes the classical the charge density. Note that the classical VP system can
be obtained from the WP system in the limit ~ → 0, corresponding to the high-
frequency regime. This VP system is very well studied in the mathematical lit-
erature, cf. [8, 11] for a broad overview. A particularly interesting feature is a
phenomena called Landau damping [6], where one considers the propagation of
small amplitude waves in an spatially uniform plasma. It is assumed that due to
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the influence of the self-consistent potential, these small amplitude perturbations
are damped out during the course of time, cf. [6, 9, 10] where an exponential time-
decay is found for the most simple form of such a perturbation, namely a single
plain-wave.

From a rigorous mathematical point of view, the investigation of this damping
phenomena turns out to be quite difficult due to the non-linear nature of the prob-
lem. One particular setting, where the stability and time-decay properties have
been successfully analyzed, is given in [4] and [5]. There, the authors linearize
(1.4) around a spatially homogeneous equilibrium state f∞(v) ∈ L1(Rn), such that∫
fdv = n, and consequently study the long-time behavior of the resulting linearized

model in whole space. For that particular setting the authors prove that, for ad-
missible perturbations which are not simply plane-waves, that the corresponding
time-decay of the linearized VP system is no longer exponential, but may vary from
logarithmic to algebraic, depending on the choice of the equilibrium distribution
(which in all cases is assumed to be radial, monotonically decreasing). Most results
are given for d = 1 only, where the obtained rates are also shown to be essentially
sharp [5].

Motivated by the this study in the classical kinetic description of collisionless
plasmas, we aim to show that a similar phenomena is also true in a quantum
mechanical setting. The main difference to the classical kinetic VP system lies in
the non-local action of the potential-operator Θ[V ], which is of strong dispersive
nature. In particular, due to the presence of Θ[V ], we are at the moment not able
to derive certain a-priori estimates of moments, which are, in fact, heavily used in
[4, 5] in order to obtain the time-decay rates.

For a planar flow corresponding to a slab geometry, where the plasma model
reduces to its one-dimensional form in phase space, we succeed in analyzing the
corresponding problem for the Wigner-Poisson system for a specific choice of the
equilibrium function, namely a Lorentzian distribution, see (1.7) below, provided the
initial data is k-times differentiable with compact support. Lorentzian distributions,
which have finite mass and infinite variance (kinetic energy), can be considered
among the most important example of equilibrium distributions in plasma physics
[7]. Moreover, they allow for certain explicit calculations, which we shall need to
circumvent the above mentioned mathematical obstruction. Also the assumption
of the regularity and behavior of the initial data is crucial for the time decay rate
of the perturbation of the stationary Lorentzian distribution. However, we strongly
believe that an analogous result to the one stated below should still hold true for a
much larger class of in equilibrium distributions.

We also mention that in the physics literature the phenomena of Landau damping
for the the WP system of quantum mechanics has already been investigated, cf. [1]
for a non-rigorous study along this lines.

1.2. Linearization and main result. In the rest of the manuscript we take d = 1,
corresponding to a the plasma flow of a one dimensional slab geometry. We first
linearize (1.2) around a spatially homogeneous steady state w∞(v), given by a
Lorentzian distribution centered around a given v0 ∈ R, i.e. we consider

W (t, x, v) = w∞(v) + εw(t, x, v), (1.6)

where ε� 1 is a small (dimensionless) parameter and w∞ is

w∞(v) =
n

π

1
1 + (v − v0)2

. (1.7)
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This equilibrium state is normalized, such that∫
R
w∞(v) dv = n,

models a charge neutral, spatially homogeneous (in other words infinitely extended
and hence classical) steady state, that is radial and monotonically decreasing as a
function of its radius.

Formally plugging the ansatz (1.6) into (1.2) and neglecting terms of the order
O(ε2) yields the linearized model for the perturbation w(t, x, v):

∂tw + v∂xw + Θ[V ]w∞ = 0, x, v ∈ R, t > 0,

− ∂xxV =
∫

R
w(t, x, v)dv,

(1.8)

subject to an initial data w
∣∣
t=0

= w0(x, v) ∈ L2 ∩ L1(R× R), such that∫∫
R2
w0(x, v) dxdv = 0. (1.9)

Theorem 1. For w0 ∈ Cα0 (R × R), with α ≥ 2, the solution of the linearized
equation (1.8) decays as t→ +∞ in the sense that:

lim
t→+∞

‖ρ(t, ·)‖Lp(R) = O
(

1
t1−1/p

)
, for p ∈ [2,∞]. (1.10)

Remark: Note that the estimate (1.10) is uniform with respect to the (small)
parameter ~. Indeed the obtained time decay rate is exactly the same as in the
classical case, cf. [4, 5]. This indicates that the damping mechanism towards an
equilibrium state is essentially a frequency-independent phenomena. Even if at the
present moment we are able to prove it only for a particular equilibrium function
(Lorentzian distribution), we consequently believe that our result can be extended
to a larger class of equilibrium probability distributions.

2. Proof of Theorem 1. The proof of our theorem will be done in two steps.
First we shall derive an appropriate representation for solutions to (1.8) via the
method of characteristics the use of the Laplace transform. This representation will
allow us, in a second step, to obtain a sufficiently precise control of the time-decay
of the particle density ρ(t, x).

2.1. The Fourier transformed setting. We first integrate (1.8) along character-
istics to obtain

w(t, x, v) =w0(x− vt, v) +
∫ t

0

Θ[V (x− v(t− s))]w∞(v) ds

=w0(x− vt, v) +
1
~

∫ t

0

∫
R
δV (x− v(t− s), y)ŵ∞(η)eivη dη ds.

Since the problem is linear, we make use of the Fourier transform as follows. First
noticing that w∞ is given by the Lorentzian distribution (1.7), its Fourier transform
is given by

ŵ∞(η) =
∫

R
w∞(v)e−iηvdv = n e−(|η|+iv0η).
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Next, using the fact that for the Poisson equation the symbol δV~(x, η) can be
written as in [2]

δV~(x, η) =
1

4π

∫
R
K~(y, η)ρ(x− y)dy, (2.11)

with the dipole-kernel (adapted to the one-dimensional case)

K~(y, η) := |y +
~η
2
| − |y − ~η

2
| , (2.12)

we arrive at the following representation formula for the solutions of the linearized
system (1.8) :

w(t, x, v) = w0(x− vt, v)

+
1
~

∫ t

0

∫∫
R×R

K~(y, η)ŵ∞(η)ρ(x− v(t− s)− y)eivη dy dη ds.

Since ρ along the characteristic is independent of η, the Fourier transform variable
in phase space, the integration with respect to η ∈ R can be performed separately,
and so the particle density ρ(t, x) associated to the solution is given by the following
representation formula

ρ(t, x) = ρ0(t, x) +
1
~

∫ t

0

∫∫
R×R

G~(y, v)ρ(x− v(t− s)− y) dy dv ds, (2.13)

where we denote

G~(y, v) :=
∫

R
K~(y, η)ŵ∞(η)eivη dη. (2.14)

Moreover, the density corresponding to the initial perturbation w0(x, v) integrated
along the characteristics, is given by

ρ0(t, x) :=
∫

R
w0(x− vt, v)dv. (2.15)

Next, following the the approach in [4], we investigate the representation formula
(2.13) in x−Fourier space, where x 7→ ξ ∈ R. Thus, denoting by

ρ̂(t, ξ) =
∫

R
ρ(t, x)e−ixξdx,

the corresponding x−Fourier transformed particle density (and analogously for
ρ0(t, x)), satisfies

ρ̂(t, ξ) = ρ̂0(t, ξ) +
i

~

∫ t

0

∫∫
R×R

G~(y, v)ρ̂(s, ξ)e−iξ(v(t−s)+y)dy dv ds

= ρ̂0(t, ξ) +
i

~

∫ t

0

ρ̂(s, ξ)
(∫

R
Ĝ~(y, ξ(t− s))e−iξydy

)
ds,

where now the new integration kernel is computed as follows: Using the represen-
tation (2.14) in frequency space and the particular structure (2.11) and (2.12) for
the self-consistent potential V , we obtain∫

R
Ĝ~(y, ξ(t− s))e−iξydy =

∫
R
ŵ∞(η)δη=ξ(t−s)

(∫
R
f(y, η)e−iξydy

)
dη

=
ŵ∞(ξ(t− s))

|ξ|2
(
ei~|ξ|

2(t−s)/2 − e−i~|ξ|
2(t−s)/2

)
,



6 IRENE M. GAMBA, MARIA PIA GUALDANI AND CHRISTOF SPARBER

since ∫
R
|y ± ~η

2
| e−i~ξydy =

e±
i~
2 ξη

|ξ|2
.

In particular, we arrive at the integral equation

ρ̂(t, ξ) = ρ̂0(t, ξ)− 2
~|ξ|2

∫ t

0

ŵ∞(ξ(t− s)) sin
(

~|ξ|2(t− s)
2

)
ρ̂(s, ξ) ds. (2.16)

Denoting by

F~(t, ξ) =
2

~|ξ|2
ŵ∞(tξ) sin(~|ξ|2t/2),

equation (2.16) becomes

ρ̂(t, ξ) = ρ̂0(t, ξ)− (F~ ∗ ρ̂)(t, ξ), (2.17)

where “∗” denotes the convolution in time.

Remark 2.1. It is worth noticing that this representation (2.16) formula converges
(at least formally) in the limit ~ → 0 to the corresponding classical one for the
linearized VP system, cf. [4].

The quantity ρ̂(t, ξ) which we need to estimate satisfies an integral equation. A
Laplace transformation w.r.t. time, i.e.

L[f ](s) =
∫ ∞

0

f(t)e−st dt.

consequently transforms (2.17) into the following algebraic equation for L[ρ̂](s, ξ):

L[ρ̂](s, ξ) = L[ρ̂0](s, ξ)− L[ρ̂0](s, ξ)
L[F~](s, ξ)

1 + L[F~](s, ξ)
.

Following the ideas developed in [4], we define a new kernel R(t, ξ), via

L[R~](s, ξ) :=
L[F~](s, ξ)

1 + L[F~](s, ξ)
, (2.18)

and we consequently rewrite (2.16) as

ρ̂(t, ξ) = ρ̂0(t, ξ)− (R~ ∗ ρ̂0)(t, s)

= ρ̂0(t, ξ)−
∫ t

0

R~(s, ξ)ρ̂0(t− s, ξ) ds.
(2.19)

This finally yields a representation equation for ρ̂(t, ξ) in terms of the initial state
ρ̂0(ξ). The estimate for ρ̂(t, ξ) w.r.t. t will be achieved by obtaining sufficient
control of the kernel R~(t, ξ).

Remark 2.2. We note that an equation analogous to (2.19) indeed holds in any
spatial dimension d, since all of the above given calculations can be easily generalized
to the d-dimensional case.
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2.2. Time decay estimates for the particle density. In the particular case
under consideration, where w∞(v) is a Lorentzian distribution, the kernel R~ can
be computed explicitly, since L[F~] allows for an explicit inversion of L(R~). Indeed,
L[F~] is given by

L[F~](s, ξ) =
κ

(s+ iv0ξ + |ξ|)2 + ~2|ξ|4/4
,

where from now on, we write κ = n/π for simplicity. Therefore, we obtain from
(2.18) the Laplace transformed kernel

L[R~](s, ξ) =
κ

(s+ iv0ξ + |ξ|)2 + ~2|ξ|4/4 + κ
,

and an inverse Laplace transform yields the following expression

R~(t, ξ) =
κ√

κ+ ~|ξ|2/4
sin
(
t
√
κ+ ~|ξ|2/4

)
e−t(|ξ|+iv0ξ). (2.20)

Note that R~(t, ξ) converges, as ~→ 0, to its classical analog, given in [4].
Finally, we can estimate the time evolution for ρ̂(t, ξ) using the representation

formula (2.19) by obtaining control in-time from the kernel R(t, ξ) given in (2.20).
More specifically, with this explicit form of R~(t, ξ) in hand, we can write

ρ̂(t, ξ)

= ρ̂0(t, ξ)−
∫ t

0

R~(s, ξ)ρ̂0(t− s, ξ) ds

= ρ̂0(t, ξ) +
κ

κ+ ~|ξ|2/4

∫ t

0

d
ds

(
cos
(
s
√
κ+ ~|ξ|2/4

))
e−s(|ξ|+iv0ξ)ρ̂0(t− s, ξ) ds.

Integrating by parts and using the fact that

∂tρ0(t, x) + ∂xj0(t, x) = 0,

where

j0(t, x) =
∫

R
vw0(x− vt, v)dv,

we obtain

ρ̂(t, ξ) =
(

1− κ

κ+ ~|ξ|2/4

)
ρ̂0(t, ξ)

+
κ

κ+ ~|ξ|2/4
cos
(
t
√
κ+ ~|ξ|2/4

)
e−t(|ξ|+iv0ξ)ρ̂0(0, ξ)

+
κ(|ξ|+ iv0ξ)
κ+ ~|ξ|2/4

∫ t

0

cos
(
s
√
κ+ ~|ξ|2/4

)
e−s(|ξ|+iv0ξ)ρ̂0(t− s, ξ) ds

− iκξ

κ+ ~|ξ|2/4

∫ t

0

cos
(
s
√
κ+ ~|ξ|2/4

)
e−s(|ξ|+iv0ξ)ĵ0(t− s, ξ) ds.

From (2.15), we obtain

ρ̂0(t, ξ) = (2π)1/2(F2w0)(ξ, tξ),

where F2 denotes the two-dimensional Fourier transform. For any w0 ∈ Cα0 (R×R)
this yields

|ρ̂0(t, ξ)| ≤ C(1 + |ξ|+ |tξ|)−α. (2.21)
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In addition we can estimate ĵ0(t, ξ), using the conservation of mass equation
∂

∂t
ρ̂0(t, ξ) + iξĵ0(t, ξ) = 0.

Now having in mind that the initial state w0 is compactly supported, we also get
vw0 ∈ Cα0 (R× R), and so

ĵ0(t, ξ) = (2π)1/2(F2(vw0))(ξ, tξ) ≤ C(1 + |ξ|+ |tξ|)−α.
In particular, we can then estimate ρ̂(t, ξ) as follows:

|ρ̂(t, ξ)| ≤ 2|ρ̂0(t, ξ)|+ e−t|ξ||ρ̂0(0, ξ)|+ 2κ|ξ|+ |v0ξ|
κ+ ~|ξ|2/4

∫ t

0

e−s|ξ|

(1 + (t− s)|ξ|)α
ds.

Proceeding as in [4], we evaluate the time integral in the subintervals [0, t/2] and
(t/2, t] separately. Using once again (2.21) we obtain, following the same estimate
as in [4, Equation (42)], that

|ρ̂(t, ξ)| ≤ C(1 + |tξ|)−α,
where C = C(~). Thus, for α ≥ 2, it holds∫

R
|ρ̂(t, ξ)|dξ ≤ C

∫
R
(1 + |tξ|)−α dξ ≤ C

t
. (2.22)

Similarly we get the following L2-estimate∫
R
|ρ̂(t, ξ)|2 dξ ≤ C̃

t
, (2.23)

The general estimate (1.10) then follows by interpolation between (2.22) and (2.23)
and a Fourier inversion completes the proof.

�
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