
RESEARCH STATEMENT

1. Overview

Broadly speaking, I am interested in the development and application of Floer homology to
geometric questions regarding knots, surfaces, and manifolds in three and four dimensions. Origi-
nating out of advances in Yang-Mills theory and symplectic geometry, Floer homology provides a
powerful set of tools for understanding these objects and studying related problems. A unifying
theme throughout my work is the use of equivariant Floer theory to obtain more refined invariants
or to leverage additional geometric information.

My recent research has focused on utilizing Floer homology in the presence of an external sym-
metry on a 3-manifold or a knot. This represents an emerging program which seeks to combine
techniques from equivariant Floer theory with new geometric insights in order to shed light on a
surprisingly broad array of topological questions:

– In joint work with Kang, Mallick, Park, and Stoffregen [DKM+22], I proved that the (2, 1)-
cable of the figure-eight knot is not slice, resolving a forty-year old question of Kawauchi
[Kaw80]. This represented one of the simplest possible counterexample to the slice-ribbon
conjecture [Miy94]. Our proof proceeds by showing that the branched double cover of (41)2,1
does not bound an equivariant Z/2Z-homology ball.

– In joint work with Hedden and Mallick [DHM23], I introduced a suite of Floer-theoretic in-
variants aimed at detecting corks. These are a fundamental set of objects whose symmetries
are essential for understanding the difference between smooth and continuous topology in di-
mension four. We give flexible methods for finding new and interesting families of corks; some
of our examples have been used in recent constructions of exotic pairs of closed 4-manifolds
by Levine, Lidman, and Piccirillo [LLP23].

I am also interested in the connection between Floer theory and other topological invariants.
Chief among these is lattice homology, a combinatorial invariant for plumbed manifolds due to
Ozsváth and Szabó [OS03] and Némethi [Ném08]. My research utilizes lattice homology to per-
form calculations of powerful homotopy-theoretic or gauge-theoretic invariants such as Manolecu’s
Seiberg-Witten-Floer spectrum [Man16] or Kronheimer and Mrowka’s framed instanton Floer ho-
mology [KM11]. Although intensely studied, these are often extremely difficult to compute.

– In joint work with Sasahira and Stoffregen [DSS23], I used lattice homology to help compute
Manolescu’s Seiberg-Witten-Floer homotopy type [Man16] for all Seifert fibered homology
spheres. This represents the first broad, non-trivial class of homology spheres for which the
Seiberg-Witten-Floer homotopy type has effectively been computed.

– In joint work with Alfieri, Baldwin, and Sivek [ABDS22], I used lattice homology to compute
the framed instanton Floer homology of Kronheimer and Mrowka [KM11] for all Seifert fibered
homology spheres. As a byproduct, we obtained an isomorphism between instanton and Hee-
gaard Floer homology for such manifolds. This is important in light of a general conjecture
that these theories coincide in all cases [KM10].

Finally, Floer homology has proven extremely effective at answering structural questions involv-
ing the homology cobordism group Θ3

Z and knot concordance group C. My coauthors and I have
carried out significant work aimed and understanding and utilizing the output of these invariants:

– In joint work with Hom, Stoffregen, and Truong [DHST23], I showed that Θ3
Z admits a Z∞-

summand by constructing an epimorphism Θ3
Z → Z∞. This was previously an open question

[Man18]. Our proof utilized involutive Heegaard Floer homology [HM17], a refinement of the
Heegaard Floer package of Ozsváth and Szabó [OS04c, OS04b].

– In [DHST21], we carried out a similar construction in the context of the concordance group,
using knot Floer homology [Ras03, OS04a]. This gave a re-proof of the fact that the subgroup
of topologically slice knots admits a Z∞-summand (see also [Hom15, OSS17]).
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2. Corks

Broad Goals. Use Floer homology to study automorphisms of 3-manifolds. Develop invariants to
help detect and construct corks.

A cork is a contractible 4-manifold W equipped with an involution τ on Y = ∂W which does
not extend over W as a diffeomorphism [Akb91]. (By work of Freedman, τ always extends as
a homeomorphism [FQ90].) It is a fundamental result that any two smooth structures on the
same simply-connected 4-manifold are related by cutting out such a W and re-gluing along τ
[Mat96, CFHS96]. The theory of corks thus forms an essential part of smooth 4-manifold topology
and significant research has been devoted to finding and establishing examples of corks [AM97,
AY08, Gom17, LRS23, MS21b].

In joint work with Hedden and Mallick, I used techniques inspired by involutive Heegaard Floer
homology to study the set of strong corks. Introduced by Lin, Ruberman, and Saveliev [LRS23],
these are a generalization of the usual notion of a cork in which the boundary involution τ does
not extend as a diffeomorphism over any homology ball which Y bounds, rather than a specific
contractible manifold. Building on naturality results of Juhász, Thurston, and Zemke [JTZ21], we
defined the following invariants aimed at detecting (strong) corks:

Theorem 2.1. [DHM23, Theorem 1.1] Let Y be a homology sphere with an involution τ . Then
there are two Floer-theoretic invariants hτ (Y ) and hιτ (Y ) associated to (Y, τ). If either of these
are non-zero, then τ does not extend to a self-diffeomorphism of any homology ball bounded by Y .

Our approach in [DHM23] is quite different from previous strategies for studying corks in the
literature. There, W (rather than its boundary) is naturally the focal point of analysis. In contrast,
in our formalism the role of W is almost entirely absent: the non-extendability of τ is inherent to
the boundary Y , rather than a property of W . This allows for a great deal of flexibility in terms
of finding and constructing new examples.

For instance, we produced many novel families of (strong) corks via
1/n-surgeries on classes of symmetric slice knots. (See the adjacent
figure.) Each of these generates multiple new corks, as different slice
disks for a knotK give different contractible manifolds with boundary
S3
1/n(K). Recently, some of our examples and computations were used

by Levine, Lidman, and Piccirillo to give new pairs of exotic closed
4-manifolds [LLP23].

In order to quantify the profusion of (strong) corks provided by our invariants, we defined an
involutive homology bordism group Θτ

Z. This is a refinement of the usual homology cobordism group
which takes into account an involution on each end. We showed:

Theorem 2.2. [DHM23, Theorem 1.2, Theorem 1.3] There exists an infinite linearly independent
set of strong corks, generating a Z∞-subgroup of Θτ

Z.

In joint work with Alfieri, Mallick, and Taniguchi, I utilized instanton Floer homology and the
Chern-Simons filtration to investigate further questions involving corks and equivariant bounding
[ADMT23]. Unlike in Heegaard Floer or monopole Floer homology, it has long been understood that
the set of critical values of the Chern-Simons functional contains interesting topological information.
This gives the instanton Floer groups additional structure that has been leveraged to obtain new
results concerning bordism and bounding [Dae20, NST19].

In [ADMT23], we combine the techniques of [NST19] and [DHM23] to derive new results involving
corks and equivariant bounding that were previously out of reach using other Floer-theoretic tools.
While Yang-Mills theory has been heavily utilized in smooth 4-manifold topology, this is the first
time that the critical values of the Chern-Simons functional have had any bearing on corks or exotic
phenomena. A sample result is:
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Theorem 2.3. [ADMT23, Corollary 1.4] There exists a strong cork (Y, τ) such that τ does not
extend as a diffeomorphism over either of W#nCP2 or W#nCP2 for any n ∈ Z and homology ball
W that Y bounds.

Theorem 2.3 is somewhat similar in spirit to recent stabilization results regarding corks [Kan22],
except that we work in the setting of strong corks and deal with stabilization by nCP2 and nCP2

(rather than spin manifolds such as S2 × S2). There are many remaining structural questions
involving equivariant bounding that I am studying: for instance, one can ask whether there is a
strong cork such that τ does not extend over any definite manifold. Together with my coauthors,
I am developing further Floer-theoretic tools to attack such problems.

The application of Floer homology to the study of corks has
proven to be very robust, and the techniques of [DHM23] can be
used to shed light on many interesting geometric constructions. In
joint work with Mallick and Zemke [DMZ23], I study a particu-
larly prominent class of (infinite-order) corks constructed by Gompf
[Gom17]. These are built using the swallow-follow operation. Given
a knot K#J , the swallow-follow operation consists of a longitudinal
Dehn twist on a torus that engulfs K, as displayed in the figure on
the right.

In [Gom17], Gompf showed that for K in a restricted class of double-twist knots, the swallow-
follow operation induces a self-diffeomorphism of S3

1/n(K#−K) which makes it into a cork bound-
ary. Gompf asked for which further families of knots this holds. While various negative results
have appeared [RR17], so far there have been no other positive examples. In [DMZ23], we derive
a Floer-theoretic condition on K that provides an affirmative answer to Gompf’s question:

Theorem 2.4. [DMZ23, Theorem 1.2] Let K be a knot such that the action of the Sarkar map is
homotopically nontrivial on the connected complex CFK conn(K). Then the swallow-follow operation
makes S3

1/n(K#−K) into a strong cork for any n odd.

The condition of Theorem 2.4 is quite general: for instance, Gompf’s original paper answers his
question affirmatively for four knots up to eight crossings, while Theorem 2.4 applies to seventeen
such knots. Gompf’s construction is especially interesting since every power of the boundary
automorphism is non-extendable. We expect that our Floer-theoretic methods can similarly be
used to establish the infinite-order nature of these corks.

3. Applications to Sliceness and Exotic Surfaces

Broad Goals. Apply equivariant Floer homology to obstruct sliceness of knots via their branched
double covers. Use symmetries of knots to produce exotic slice disks and slice surfaces.

Studying automorphisms of knots and manifolds has resulted in several surprising applications
to (seemingly) non-equivariant questions in low-dimensional topology. Chief among these is:

Theorem 3.1. [DKM+22, Theorem 1.1] The (2, 1)-cable of the figure-eight knot is not slice.

The non-sliceness of (41)2,1 was conjectured by Kawauchi [Kaw80] over forty years ago and has
attracted considerable attention due to its connection to the slice-ribbon conjecture. Explicitly,
Miyazaki showed that if K is a fibered, negative amphichiral knot with irreducible Alexander
polynomial, then the (2n, 1)-cable of K is not (homotopy) ribbon for any n ̸= 0 [Miy94]. On
the other hand, these knots are known to be (strongly) rationally slice (and thus algebraically
slice). While such cables are generally believed not to be slice, the fact that no prior argument has
appeared in the literature has left open the possibility that these generate counterexamples to the
slice-ribbon conjecture.
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The strategy of [DKM+22] is based on understanding the branched double cover of K. If K is
slice with slice disk D, then the branched double cover Σ2(K) bounds a Z/2Z-homology ball given
by Σ2(D), which gives a well-known obstruction to the sliceness of K. The new ingredient used
in [DKM+22] is to remember the data of the branching involution on Σ2(K). Since this evidently
extends over Σ2(D), we obtain a more refined obstruction to the sliceness of K by asking for the
existence of an equivariant homology ball. This is precisely the kind of phenomenon detected by
the cork-theoretic tools of [DHM23]. In the setting of Heegaard Floer homology, similar ideas were
first employed in [AKS20] by Alfieri, Kang, and Stipsicz, who studied branched covers over torus
knots and Montesinos knots.

This is especially effective for studying (2, 1)-cables. For
any knot K, the branched double cover Σ2(K2,1) is homeo-
morphic to S3

+1(K#Kr). Moreover, the branching action on

Σ2(K2,1) is given by the involution on S3
+1(K#Kr) induced by

the inversion interchanging K and Kr. This explicit identifica-
tion allows for a Floer-theoretic understanding of the branch-
ing action [Mal22, DMS23] to which the methods of [DHM23]
can be applied. Note that S3

+1(K#Kr) does in fact bound a
(non-equivariant) contractible manifold for K = 41; hence the
additional analysis of the branching involution is essential.

The approach of [DKM+22] can be used in any situation in which the branching symmetry is
sufficiently understood. I am interested in several further questions regarding the application of
this method, including the higher cables (41)2n,1 for n > 1.

In joint work with Mallick and Stoffregen, I extended the approach in [DHM23] to study au-
tomorphisms of knots. We defined a suite of Floer-theoretic invariants aimed at bounding the
equivariant slice genus g̃4(K) from below. Given a strongly invertible or 2-periodic knot (K, τ),
this is the minimum genus of a smoothly embedded slice surface Σ ⊆ B4 which is invariant under
the standard symmetry τB4 on B4 extending τ . In [BI22], Boyle and Issa exhibited families of
2-periodic knots for which g̃4(K)− g4(K) grows arbitrarily large, and conjectured the same should
be true for strongly invertible knots. As an initial application, we used our invariants to provide
an affirmative answer to their question:

Theorem 3.2. [DMS23, Theorem 1.4] There exist families of strongly invertible slice knots whose
equivariant slice genus grows arbitrarily large.

In fact, we showed that our invariants bound a rather stronger quantity that the equivariant genus.
We say that a slice surface Σ for K is isotopy equivariant if its image τB4(Σ) is (smoothly) isotopic
to Σ rel boundary. The isotopy equivariant slice genus ĩg4(K) of K is then defined to be the
minimal genus over all such Σ.

Although the notion of isotopy equivariance may initially seem rather contrived, a slight shift in
perspective demonstrates its usefulness. Indeed, if Σ is any slice surface for K with g(Σ) < ĩg4(K),
then we may immediately conclude that the two surfaces Σ and τB4(Σ) are not isotopic rel K. The
calculation of ĩg4(K) thus provides an easy method for generating non-isotopic slice surfaces in the
presence of a symmetry on K. For example, if K is an equivariant slice knot with ĩg4(K) > 0, then
we may take any slice disk Σ for K and form its image under any extension of τ ; the resulting
pair of slice disks are automatically non-isotopic rel K. This is in marked contrast to the usual
approach taken in the literature, where in order to deploy various invariants, one has in mind a
specific family of slice disks or surfaces that are conjectured to be non-isotopic.

Theorem 3.3. [DMS23, Theorem 1.5] The knot K displayed below has ĩg4(K) > 0. Thus, if Σ is
any slice disk for K, then Σ and τB4(Σ) are not isotopic rel boundary.
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In [Hay21], Hayden showed that K admits a particular (symmetric)
pair of slice disks which are topologically but not smoothly isotopic rel
boundary. (The fact that the disks are topologically isotopic follows
immediately from work of Conway and Powell [CP21].) Theorem 3.3
thus provides a Floer-theoretic re-proof of Hayden’s result, and in
fact shows that any pair of symmetric disks for K are non-isotopic
rel boundary. Knot Floer homology has previously been used to dis-
tinguish exotic higher-genus surfaces (see the work of Miller, Juhász,
and Zemke [JMZ21]); Theorem 3.3 gives the first example of the use
of knot Floer homology in the genus-zero case.

In [HS21], Hayden and Sundberg used Khovanov homology to obtain an alternative proof of the
fact that K admits a pair of exotic slice disks. This suggests that one should be able to construct
an analogous formalism to the one in [DMS23] on the Khovanov side. Together with Borodzik,
Mallick, and Stoffregen, I am currently pursuing this line of research.

4. Lattice Homology

Broad Goals. Develop effective methods for computing Floer homotopy. Understand the rela-
tionship between different Floer theories and lattice homology.

Beginning with Furuta’s proof of the 10/8-theorem [Fur01], Floer homotopy has assumed an
increasingly prominent role in low-dimensional topology. In [Man16], Manolescu defined the Seiberg-
Witten-Floer stable homotopy type SWF (Y, s) for Y a rational homology sphere, leading to his
disproof of the triangulation conjecture. The construction of a homotopy type for other invariants
from low-dimensional has likewise attracted a great deal of attention and forms part of a general
program of Cohen, Jones, and Segal [CJS95]; see [Flo89, LS14, MS21a, KL22].

Despite this, there are few explicit computations of Seiberg-Witten-Floer spectra in the literature.
Indeed, an (essentially) exhaustive list of all previously known non-trivial Seiberg-Witten-Floer
homotopy types is presented in [Man14]: these consist of Brieskorn spheres of the form Σ(2, 3, k).
Such examples follow from the work of Mrowka, Ozsváth, and Yu [MOY97], who provided an explicit
description of the critical points of the Chern-Simons-Dirac functional for Seifert fibered spaces.
In a handful of particularly simple cases, the critical points are such that the Seiberg-Witten-Floer
spectrum is completely determined, giving the computations in [Man14].

In joint work with Sasahira and Stoffregen [DSS23], I computed the Seiberg-Witten-Floer ho-
motopy type for all almost-rational (AR) plumbed homology spheres. These are rational homology
spheres which occur as boundaries of a certain restricted class of plumbings [Ném05]. Given such
a plumbing Γ, we construct a combinatorially-defined lattice spectrum H(Γ, [k]) purely using the
intersection form of Γ. We prove that this computes the Floer homotopy type of the boundary YΓ:

Theorem 4.1. [DSS23, Theorem 1.2] Let YΓ be an AR homology sphere and s be a self-conjugate
spinc-structure on YΓ. Then we have a Pin(2)-equivariant homotopy equivalence

H(Γ, [k]) = SWF (YΓ, s).

The class of AR homology spheres includes (for example) all Seifert fibered homology spheres
over S2. Theorem 4.1 thus provides the first non-trivial computation of the Seiberg-Witten-Floer
spectrum for a general class of rational homology spheres.

The construction of H(Γ, [k]) and proof of Theorem 4.1 relies heavily on work of Némethi re-
garding lattice homology [Ném08]. This is a combinatorial invariant for plumbed manifolds first
introduced by Ozsváth and Szabó [OS03], which is known to be isomorphic to Heegaard Floer
homology by work of Zemke [Zem21]. Lattice homology has also been used by Némethi to study
algebro-geometric invariants of certain surface singularities [Ném08]. In [DSS23], we likewise show
that in favorable circumstances, SWF (YΓ, s) may be expressed in terms of certain sequences of
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sheaf cohomology groups associated to these singularities. Many exciting questions remain, both in
terms of applications and generalizations of our calculations, as well as understanding their relation
to other areas of mathematics.

I have also used lattice homology to help perform computations for a wide variety of other Floer
theories. In joint work with Alfieri, Baldwin, and Sivek, I showed that lattice homology can be
used to compute the framed instanton Floer homology of Kronheimer and Mrowka [KM11]. As a
result, we obtained:

Theorem 4.2. [ABDS22, Corollary 1.3] Let Y be an AR plumbed homology sphere. Then

I#(Y ) ∼= ĤF (Y ;C)
as Z/2Z-graded vector spaces.

Theorem 4.2 is important in light of the conjecture that Heegaard Floer and instanton Floer
homology are isomorphic in all cases; see [KM10, Conjecture 7.24]. The application of lattice
homology to computing different Floer homologies is very robust: I have used lattice homology
to help calculate Pin(2)-equivariant monopole Floer homology [Dai18] and, in joint work with
Manolescu, involutive Heegaard Floer homology [DM19].

5. Cobordism and Concordance Homomorphisms

Broad Goals. Understand the structure of various cobordism and concordance groups. Do these
have (interesting) torsion?

A common construction in low-dimensional topology is to quotient out a set of topological objects
by a restricted form of bordism in order to obtain a group. For example, taking the set of integer
homology 3-spheres and quotienting out by the relation of homology cobordism gives the homology
cobordism group Θ3

Z. Similarly, the knot concordance group C is defined by taking the set of knots
in S3 and declaring two knots to be concordant if they cobound a smoothly embedded annulus in
S3 × I. In each case, the operation of connected sum gives the set in question a group structure,
the study of which forms an active area of research.

In a joint series of papers with Hom, Stoffregen, and Truong, I developed a general program
for constructing families of Z-valued homomorphisms for use in the study of homology cobordism
and knot concordance. Using the involutive Heegaard Floer homology package of Hendricks and
Manolescu [HM17], we proved:

Theorem 5.1. [DHST23, Theorem 1.1, Section 7] There exists an infinite family of surjective,
linearly independent homomorphisms

ϕi : Θ
3
Z → Z.

In particular, Θ3
Z admits a Z∞-summand.

In general, understanding the structure of Θ3
Z is very difficult, and techniques for doing so have

relied on a surprisingly wide array of tools. Using Yang-Mills theory, Furuta [Fur90] and Fintushel
and Stern [FS90] showed that Θ3

Z has a Z∞-subgroup; Frøyshov [Frø02] proved that Θ3
Z admits a

Z-summand. Prior to our work, the existence of a Z∞-summand was an open question [Man18]. It
is still unknown whether or not Θ3

Z contains any torsion. The most general result in this direction
is due to Manolescu [Man16], who used Pin(2)-equivariant Seiberg-Witten-Floer homology to show
that there is no 2-torsion in Θ3

Z with Rokhlin invariant one. My coauthors and I hope to use the
techniques of [DHST23] to further rule out all torsion with Rokhlin invariant one.

Using knot Floer homology, we constructed a similar family of homomorphisms in the context
of knot concordance:
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Theorem 5.2. [DHST21, Theorem 1.1, Theorem 1.12] There exists an infinite family of surjective,
linearly independent homomorphisms

φi : C → Z.
These can be used to establish the existence of a Z∞-summand of CTS, where CTS is the subgroup
of C generated by topologically slice knots.

The result regarding CTS was previously shown by Ozsváth, Stipsicz, and Szabó using the Υ-
invariant [OSS17], which can similarly be used to construct an infinite family of linearly inde-
pendent homomorphisms. (See also the work of Hom [Hom15], on which [DHST21] is based.)
Previously, Endo showed that CTS contains a Z∞-subgroup [End95]; Manolescu and Owens [MO07]
and Livingston [Liv08] showed that CTS admits a Z3-summand.

6. Introductory Research Problems

Here, I list some introductory research problems suitable for interested graduate students. One
circle of ideas is to generalize the work of [DHM23, DMS23, DKM+22] to different kinds of sym-
metries, such as higher-order symmetries or orientation-reversing involutions on 3-manifolds:

– In [HP20], Hayden and Piccirillo gave the first examples of orientation-reversing corks, while
Boyle and Issa [BI21] and Boyle and Chen [BC22] have recently initiated a systematic study
of strongly negative amphichiral symmetries on knots. How can we adapt the formalism of
[DHM23, DMS23] to these situations?

– In order to rigorously extend the formalism of [DHM23, DMS23] beyond symmetries of order
two, it is necessary to establish naturality results in Heegaard Floer homology for coefficient
fields/rings other than Z/2Z. There has already been some research in this direction; see work
of Gartner [Gar23].

– There are a wealth of examples of higher-order corks on the topological side; see the work
of Tange [Tan17] and Auckly, Kim, Melvin, and Ruberman [AKMR17]. What can Floer
homology say about these? Can we compute the induced actions of these symmetries? Can
we re-prove that the Z-corks of Gompf [Gom17] are infinite-order?

– We can also obstruct sliceness via studying branching actions on arbitrary prime-power branched
covers (rather than just two-fold covers, as in [DKM+22]). What new examples can be ob-
tained in this manner? In [AMM+21], Aceto, Meier, A. Miller, M. Miller, Park, and Stipsicz
provided examples of non-slice knots whose prime-power branched covers all bound rational
homology balls. What can we say about this question in the equivariant category?

Many of these questions serve as an introduction to broad areas of low-dimensional topology (such
Heegaard Floer homology), while still being based on recent research. Other problems involve
finding further examples and applications of existing work:

– Levine, Lidman, and Piccirillo [LLP23] found an effective embedding of the cork S3
+1(61)

established in [DHM23]. Can other examples of interesting exotic 4-manifolds be constructed
using the new corks from [DHM23] or [DMZ23]?

– What other knots from Miyazaki’s list does the argument of [DKM+22] apply to? What about
the higher cables (41)2n,1? Theorem 3.1 holds for several other (2, 1)-cables; the smallest knot
in Miyazaki’s list for which the argument of Theorem 3.1 fails is (1017)2,1. Is this slice?

There are also questions surrounding our computations of the Seiberg-Witten-Floer homotopy type:

– Recent work of Zemke [Zem21] has shown that lattice homology and Heegaard Floer homology
are isomorphic in all cases. Can we likewise prove that the lattice homotopy type H(Γ, [k])
computes SWF (Y, s) in all cases?

– One can define an equivariant Seiberg-Witten-Floer homotopy type in the presence of a geo-
metric symmetry on Y ; see work of Montague [Mon22]. Can we compute this using the
techniques of [DSS23]?
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[OS03] Peter Ozsváth and Zoltán Szabó, On the Floer homology of plumbed three-manifolds, Geom. Topol. 7 (2003),

185–224.
[OS04a] , Holomorphic disks and knot invariants, Adv. Math. 186 (2004), no. 1, 58–116.
[OS04b] , Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. (2) 159

(2004), no. 3, 1159–1245.

[OS04c] , Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159 (2004),
no. 3, 1027–1158.
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