
Design of General Purpose Minimal-Auxiliary Ising Machines

Isaac K. Martin†

Department of Mathematics
University of Texas at Austin

Austin, Texas
Email: ikmartin@utexas.edu

Andrew G. Moore†

Department of Mathematics
University of Texas at Austin

Austin, Texas
Email: agmoore@utexas.edu

John T. Daly
Advanced Computing Systems

Laboratory for Physical Sciences
Catonsville, Maryland

Email: jtdaly3@lps.umd.edu

Jess J. Meyer
Advanced Computing Systems

Laboratory for Physical Sciences
Catonsville, Maryland

Email: jess@lps.umd.edu

Teresa M. Ranadive
Advanced Computing Systems

Laboratory for Physical Sciences
Catonsville, Maryland

Email: tranadive@lps.umd.edu

Abstract—Ising machines are a form of quantum-inspired
processing-in-memory computer which has shown great
promise for overcoming the limitations of traditional comput-
ing paradigms while operating at a fraction of the energy
use. The process of designing Ising machines is known as the
reverse Ising problem. Unfortunately, this problem is in general
computationally intractable: it is a nonconvex mixed-integer
linear programming problem which cannot be naively brute-
forced except in the simplest cases due to exponential scaling
of runtime with number of spins. We prove new theoretical
results which allow us to reduce the search space to one with
quadratic scaling. We utilize this theory to develop general
purpose algorithmic solutions to the reverse Ising problem.
In particular, we demonstrate Ising formulations of 3-bit and
4-bit integer multiplication which use fewer total spins than
previously known methods by a factor of more than three. Our
results increase the practicality of implementing such circuits
on modern Ising hardware, where spins are at a premium.

1. Introduction

The limitations of the von Neumann model of com-
puting become clearer with each passing year. Therefore,
it is important to explore both potential unconventional
theoretical models of future computing and the hardware
techniques which could enable their implementation. This
paper will focus on the theoretical design of general-purpose
Ising machines by attempting to specify quadratic Hamilto-
nians with arbitrary prescribed ground states and minimal
auxiliary spins. This model is closely related to reversible
Boltzmann machines, adiabatic quantum computing, and
classical Hopfield artificial neural networks [9]; in fact, Ising
Hamiltonians can be used to create algorithms for quantum
computers [1].

†. These authors contributed equally.

Most work in the field of Ising algorithms has been fo-
cused on reformulating NP-complete and NP-hard optimiza-
tion problems as the minimization of Ising Hamiltonians,
including the travelling salesman, max-cut, and knapsack
problems [17]. Indeed, the max-cut problem has become
a standard benchmark for physical Ising-type hardware.
We are instead interested in creating Ising circuits which
implement arbitrary logical functionality, especially integer
multiplication. Previously, it has been demonstrated that
arbitrary logic gates and ripple-carry addition circuits can
be encoded as quadratic Ising Hamiltonians with minimal
auxiliary spins [29] and hence that Ising-type systems are
capable of universal computation [13]. However, the prac-
tical design of multiplication circuits turns out to be much
more difficult than addition.

The minimization of Ising Hamiltonians can be achieved
with a wide variety of hardware, including optical coherent
Ising Machines [18], simulation on D-Wave quantum an-
nealers [1, 5], digital FPGA implementations [22], trapped
ions [19], and analog oscillators with sub-harmonic injection
locking [10, 28]. Each implementation technology has its
own set of advantages and restrictions, but as all are still in
the early stages of research, we are not concerned with work-
ing to specific architectural requirements, but rather with
establishing general theory. As such, we will not attempt
to minimize interaction strength dynamic range, ground
state energy gap, or graph connectivity. The Ising systems
discussed in this paper are zero-temperature infinite range
classical spin glasses with real number interaction strengths.

The contributions of this paper are two-fold. The first is a
new mathematical theory of Ising circuits which adds clarity
to the problem, reveals connections to Boolean analysis and
machine learning, and yields powerful theoretical results
that dramatically reduce the complexity of designing Ising
circuits. The second is a pair of nondeterministic algorithms
which exploit our mathematical theory; combined with a
number of notable optimizations, they can be applied to

ar
X

iv
:2

31
0.

16
24

6v
1

 [
m

at
h.

O
C

]
 2

4
O

ct
 2

02
3

solve arbitrary reverse Ising problems. Section 2 details the
development of our theory and the proofs of our core results.
As a showcase of its utility, we include a new constructive
algorithmic proof of the universality of Ising systems which
follows immediately from results in pseudo-Boolean opti-
mization. Section 3 deals with the implementation of our
algorithms, the design of an optimized Mehrotra predictor-
corrector method, and a number of optimizations derived
from the structure and symmetry of the reverse Ising prob-
lem. In Section 4 we apply our theory and algorithms to the
3-bit and 4-bit integer multiplication circuits. Our solutions
reduce the total number of spins required to implement these
circuits by a factor of more than 3 compared to previous
work.

2. Theory

Here we establish a theoretical framework of Ising cir-
cuits and the reverse Ising problem. Ising spins are objects
with a binary state space Σ, variously referred to as ‘up and
down’ or ‘1 and −1’ or ‘1 and 0’. Different formulations are
convenient for different situations, and when it is relevant
we will explicitly state whether we are using Σ = {−1, 1}
or Σ = {0, 1} convention. Note that though all qualitative
results are interchangeable under a change of variables.

2.1. The Reverse Ising Problem

Throughout this paper we replace the lattice Λ in the
traditional Ising model with an arbitrary finite set X ⊂ N
and define ΣX to be the set of all functions X −→ Σ. Such
a function σ assigns an Ising spin state to each element
of X , and hence ΣX the set of all possible Ising states or
configurations of X . For this reason we call ΣX the spin
space of X . See [8] for historical conventions. When A ⊆ X
is a subset, for every spin state σ ∈ ΣX the restriction σ|A
is an element of ΣA and thus represents the state of the
subset A.

Since we are primarily interested in the spin space ΣX ,
it might seem more natural to instead take X to be some
positive integer and ΣX to be the collection of vectors in
R|X| valued in Σ = {0, 1} or {±1}. This convention better
reflects the implementation of our algorithms but introduces
the need to carefully track coordinates. We default to the
coordinate-free approach as it streamlines notation and is
far more convenient for mathematical formalism. The two
conventions are nonetheless entirely equivalent and one can
freely move between them by replacing X with its cardi-
nality |X|, choosing coordinates on R|X|, and identifying
each spin state σ ∈ ΣX with a corresponding vertex of the
hypercube.

2.1.1. Circuits. A circuit is a triple (N,M, f) where
N,M ⊆ X are disjoint subsets of X called the collections
of input and output spins respectively, and f is the logic
function f : ΣN −→ ΣM mapping spin states of N to spin
states of M . The collection A = X \ (N ∪ M) of spins

which are neither input nor output spins is called the set of
auxiliary spins. The spinspace ΣX can now be canonically
identified with ΣN × ΣM × ΣA by identifying each spin
state σ ∈ ΣX with (σ|N , σ|M , σ|A).

For a fixed σ ∈ ΣX it is sometimes useful to consider
the collection Lσ = {σ′ ∈ ΣX | σ′|N = σ|N} of all spin
states matching σ in the input component. We call Lσ the
σ-input level of the circuit (N,M, f), or when the choice
of circuit (N,M, f) is clear, simply the input level of σ.

2.1.2. Ising Systems. An Ising system is a pair (X,H)
where X is a finite set whose elements are called spins and
H : ΣX −→ R is a quadratic pseudo-Boolean polynomial
(see Section 2.2.1) called the Hamiltonian of X . Classically,
the linear coefficients of the Hamiltonian are called local
biases while the quadratic coefficients are called coupling
coefficients. The likelihood of observing an Ising system
in a state σ ∈ ΣX at a temperature T is given by the
configuration probability or Boltzmann probability

Pβ(σ) =
e−βH(σ)

Zβ

(1)

where β = (kBT)
−1 is the inverse temperature, kB is the

Boltzmann constant, and the normalization constant Zβ is
the partition function Zβ =

∑
σ∈Σ

X e−βH(σ). In the low-
temperature limit, the probability that the system will be in
its ground state is 1.

There are many ways to write the Hamiltonian H of an
Ising system (X,H). We make quick note of the two most
useful conventions here.

1) For distinct i, j ∈ X denote by hi the local bias of i
and by Jij the coupling strength of i and j. For a spin
state σ ∈ ΣX we can then write

H(σ) =
∑
i∈X

hiσ(i) +
∑
i<j

Jijσ(i)σ(j). (2)

2) Interpreting σ ∈ ΣX as a vector with entries in ±1
and denoting by σ ⊗ σ the outer product, define the
virtual spin of σ to be σ concatenated with its σ ⊗ σ:
v(σ) = (σ, σ ⊗ σ). We can then write H(σ) as the
inner product

H(σ) = ⟨u, v(σ)⟩, (3)

where u is the coefficient vector of H 1.

1. As stated, these two conventions for the Hamiltonian are exactly
equivalent if we allow a constant term added in Equation 2. However, the
outer product σ⊗σ is a symmetric matrix with nonzero diagonal, and thus
appears to introduce extra terms in the Hamiltonian. These go away once
you expand the inner product, in which case Jij = uij +uji. In practice,
we only consider the upper triangular portion of σ ⊗ σ to reduce dimen-
sionality. We therefore think of v as an embedding Σ

X
↪→ Σ

|X|+
(|X|

2

)
.

This latter spin space is not physical, hence the term “virtual spin”.

2

2.1.3. The Reverse Ising Problem. Given a circuit
(N,M, f) with indexing set X , we wish to design an Ising
system (X,H) whose behavior realizes (N,M, f) with high
probability. We will now make this problem precise.

We assume the input spin states can be fixed while
the rest of the system evolves freely according to Ising
dynamics2. For an input state σ ∈ ΣN we therefore wish
to maximize the probability that the output spins of the
Ising system are found in the correct state f(σ). In the low
temperature limit (β ≫ 1) this is a simple optimization
problem: find a Hamiltonian H : ΣN × ΣM × ΣA −→ R
such that for each input state σ ∈ ΣN , whenever η ∈ Lσ

minimizes the Hamiltonian H on the input level Lσ, η|M is
equal to f(σ):

η ∈ arg min
ω∈L(σ)

H(ω) =⇒ η|M = f(σ). (4)

The circuit data prescribe only a preferred output component
for every input state. If we additionally have an auxiliary
function g : ΣN −→ ΣA prescribing a preferred auxiliary
component, then this becomes a linear programming prob-
lem in the coefficients of H: Given a circuit (N,M, f),
find an Ising system (X,H) such that for every input state
σ ∈ ΣN , the following constraints are satisfied:

H(σ, ω, η) > H(σ, f(σ), g(σ)) (5)

for all η ∈ ΣA and all incorrect output states f(σ) ̸=
ω ∈ ΣM . These constraints can be written as the vector
inequality

Bu > 0 (6)

where u is the coefficient vector of the Hamiltonian H and
B is the constraint matrix whose rows are given by the
differences v(σ, ω, η)− v(σ, f(σ), g(σ)).

We call the problem of finding such an auxiliary function
g along with a suitable Hamiltonian the Reverse Ising
Problem, and if the above constraints are satisfied, we say
(X,H) solves (N,M, f). The data of (N,M, f) and (X,H)
together is called an Ising circuit. It is important to note
that because finding H is simply a linear programming
problem, the determination of g is the source of nearly all
the difficulty. We say that a choice of g is feasible if the
linear problem given in Equation 5 is feasible. Our primary
goal is to find feasible choices of g for a given circuit
(N,M, f)—furthermore, we would like A to be a small as
possible, since spin sites are expensive. In other words, we
are seeking minimal-size auxiliary maps that make feasible
the realization of a given function f as an Ising Hamiltonian.

2.2. General Observations

It is not obvious at a glance whether or not the reverse
Ising problem is solvable for all circuits. In fact, it is always

2. There are multiple ways to accomplish this depending on the specific
hardware implementation. For instance, the input local biases can be made
to dominate the other terms of the Hamiltonian or the inputs can be made
to be ferromagnetic pairs.

solvable. In this section, we cover established results from
Boolean analysis which give us a constructive algorithmic
proof of this result. We also discuss the relationship of Ising
circuits to Hopfield networks and Support Vector Machines
(SVMs), and resolve some apparent difficulties resulting
from the comparison.

2.2.1. Universality of Quadratic Ising Systems. We will
work with Σ = {0, 1}. A pseudo-Boolean function is any
function of the form f : Σn −→ R. It is a basic result in
Boolean analysis that every pseudo-Boolean functions f has
a unique representation as a multilinear polynomial∑

H⊆{1,...,n}

cH
∏
i∈H

xi (7)

where the cH are the Hadamard coefficients of f [6]. We
may therefore regard any pseudo-Boolean function as a
multilinear polynomial. Each degree n monomial refers to
an n-local spin interaction, so a physically realizable Ising
Hamiltonian is a quadratic pseudo-Boolean polynomial. It
is easy to see that every circuit (N,M, f) is solvable with
a higher degree Hamiltonian polynomial H : ΣN+M −→ R
and zero auxiliaries by letting H(σ, η) = d(η, f(σ)) where
d is the Hamming distance (note that H(σ, η) ≥ 0 and
H(σ, η) = 0 ⇐⇒ η = f(σ)). However, while some work
has been done on higher-order spin interactions in Ising cir-
cuit design [3], higher-order spin interactions are generally
regarded as unphysical and/or infeasible to implement. For-
tunately, quadratization techniques exist to convert higher-
order polynomial minimization problems into quadratic un-
constrained binary optimization (QUBO) problems.

A quadratization of a pseudo-Boolean polynomial p(x⃗)
is a quadratic pseudo-Boolean polynomial q(x⃗, a⃗) such that

min
a⃗∈Σ

A
q(x⃗, a⃗) = p(x⃗). (8)

A wide variety of quadratization techniques exist [11], but
the best general purpose algorithm in terms of minimizing
the number of auxiliary values A which are added is the
Rosenberg reduction algorithm, which substitutes a product
xixj with a new auxiliary variable a by adding the penalty
term3 P = C(xy − 2ax − 2ay + 3a) [26, 4]. It is easy
to check that P ≥ 0 and P = 0 ⇐⇒ a = xy, so
substitution is guaranteed at global minima. In particular,
since this process always terminates on finite polynomials,
combining the previous two remarks by applying Rosenberg
quadratization to the Hadamard transform of the Hamilto-
nian H(σ, η) = d(η, f(σ)) leads to the following guarantee:

Proposition 2.1. The reverse Ising problem is solvable for
any circuit.

Example 2.2. It follows from an interesting quadratization
result of Boros, Crama, and Rodríguez-Heck [7] that an
Ising circuit which evaluates the parity of n input bits has an
elegant closed form solution. Let p(x) be the parity check

3. C >
∑

|cH | is sufficient.

3

function on {0, 1}n which returns 1 if
∑

xi is even and
zero otherwise. Note that arg miny∈{0,1} p(x, y) = p(x), so
p(x, y) is a valid higher degree Hamiltonian for the parity
check circuit. Following the paper’s result, this Hamiltonian
can be quadratized with ℓ := ⌈log(n + 1)⌉ − 1 auxiliaries;
explicitly, H(x, y, a) is(

n∑
i=1

xi + y + 2ℓ+1 −
ℓ∑

i=1

2iai − (n mod 2)

)2

(9)

In combination with the main result of this paper, this
implies that parity-checking auxiliary bits can be glued to
a circuit at relatively low cost. This has important applica-
tions for the implementation of LDPC (Low Density Parity
Check) encoding and decoding circuits as Ising circuits [5].

2.2.2. The Storage Capacity Paradox. The reader who is
familiar with storage capacity estimates for Hopfield net-
works may be somewhat suspicious that what we are doing
is possible: because an Ising system as we have defined it is
equivalent to storing 2N patterns in a Hopfield network with
2N+M+A neurons, and common wisdom states that Hop-
field networks have a storage capacity of ∼ 0.139k where k
is the number of neurons, then 2N ≃ 0.139(2N +M +A),
and hence A ≃ 7.19(2N − 0.139(2N + M)) ∼ O(2N).
This is not exactly a ‘minimal number of auxiliaries’. How-
ever, that estimate refers only to the number of ‘linearly
independent’ states which can be stored using the Hebbian
learning rule [14]. In fact, a famous result of Parisi shows
that the expected number of ground states in an Ising system
with i.i.d. Gaussian interaction strength is roughly 20.2k

[24, 27]. In an ideal world, we could make use of all these
ground states. This would mean that 2N ≃ 20.2(2N+M+A),
so N ≃ 0.2(2N +M + A), so A ≃ 1.6N − 0.2M . In the
case of n × n integer multiplication, N = M = 2n, so we
would get A ≃ 2.8n. This back-of-the-envelope calculation
shows that storage capacity bounds do not a priori forbid
the possibility of practically useful Ising circuits with quite
small numbers of auxiliary spins.

2.2.3. Single-Output Ising Circuits are SVMs. Intuition is
greatly aided by concrete analysis of simple cases. Let Σ =
{±1}. Consider the case that M = 1, i.e. a circuit with a
single output bit. We can express any quadratic Hamiltonian
as H(x⃗, y) = yH̃(x⃗) + R(x⃗) where H̃ is linear and R is
homogeneous and quadratic. If we insist that wrong states
have energy at least 1 higher than correct states (as is usually
done in practice for numerical convenience; see Equation
16), then the constraint set for the reverse Ising problem
with zero auxiliaries is

H(x⃗, f(x)) + 1 ≤ H(x⃗,−f(x)) ∀x⃗ ∈ ΣN (10)

Note then that

H(x⃗, f(x)) + 1 ≤ H(x⃗,−f(x)) (11)
⇐⇒ f(x)H̃(x⃗) + 1 ≤ −f(x)H̃(x⃗) (12)
⇐⇒ f(x)(−2H̃(x⃗)) ≥ 1 (13)

Since −2H̃(x) is linear, it is expressible as ⟨w, x⟩ − b for
w ∈ RN , b ∈ R. This shows that the constraint set for the
reverse Ising problem is precisely the constraints for the
hard-margin SVM problem, where getting the correct out-
put is understood as a binary classification problem. Since
ΣN embeds into RN as the vertices of the N -dimensional
hypercube, it follows that:

Proposition 2.3. A circuit (N, 1, f) is solvable without
auxiliaries if and only if f is a threshold function on the
N -hypercube.

Each boolean function f : Σd −→ Σ can be thought
of as a labeling of the vertices of an d-dimensional hyper-
cube embedded in Rd. The false set of f is f−1(0) and
likewise f−1(1) is the true set of f . We say that f is a
d-dimensional threshold function if f−1(0) and f−1(0) are
linearly separable; that is, when there exists some hyperplane
Lw,b = {x ∈ RN | ⟨w,x⟩ + b = 0} such that f−1(0) is
the set of vertices below the plane and f−1(1) is the set of
vertices above the plane. These are well studied and have
been counted up to d = 9, see [12] for an overview and [2]
for more recent results. We discuss the analog of soft-margin
SVMs and various applications of this result in Section 3.1.

2.3. Augmented Constraints

Solutions to the reverse Ising problem naïvely happen in
two steps:

1) The auxiliary problem: find an appropriate size for A
and an auxiliary function g : ΣN −→ ΣA. This is
a nonlinear nonconvex mixed-integer constrained opti-
mization problem.

2) The linear problem: solve the linear programming prob-
lem (Equation 5).

Early attempts at general algorithmic solutions to the re-
verse Ising problem attempt to make iterative improvements
to an initial choice of auxiliary function g : ΣN −→ ΣA

by measuring the feasibility of g using some heuristic. A
quick analysis reveals this to be unsuitable for all but the
simplest circuits. Finding a feasible auxiliary function g
involves searching through the space of all possible auxiliary
functions (a set of size 2A·2N), and the lack of convexity
in the auxiliary problem means that feasibility heuristics
are of limited use. Worse, feasibility heuristics generally
require a pass through the linear problem (see Section
3 for details). A quick check of Equation 5 reveals the
number of constraints scales exponentially in A—there are
precisely 2N · (2M+A − 2A) constraints, each of length4

M +A+
(
N+M+A

2

)
−
(
N
2

)
∼ O(N +M +A)2. Therefore

the difficulty of the linear problem for assessing a candidate
g with respected to a fixed circuit (N,M, f) grows like
O(2AA2) as A increases. The exponential scaling makes

4. The virtual spin has N +M +A+
(N+M+A

2

)
components, but the

columns corresponding to combinations of spins in N are always zero in
the constraint matrix, and can therefore be removed.

4

finding g for all but the smallest circuits practically impos-
sible. A more sophisticated approach is needed.

There are two obvious avenues for improvement: (1)
cut down on the size of the auxiliary search space and (2)
reduce the cost of the linear problem. Theorem 2.4 provides
sizable improvements on both of these fronts by drastically
reducing the search space of possible auxiliary functions
and eliminating the exponential scaling in A, thus reducing
the complexity of the linear problem to O(A2) with respect
to a fixed circuit. The key insight is to allow the auxiliary
function g to depend on both ΣN and ΣM rather than only
ΣN .

Theorem 2.4. Let (N,M, f) be a circuit. There exists an
Ising system which solves this circuit if and only if there is
a function g : ΣN × ΣM −→ ΣA such that
(a) The circuit (N ∪M,A, g) is solvable by an Ising sys-

tem with Hamiltonian R with the following additional
property:

R(σ, ω, g(σ, ω)) ≥ R(σ, f(σ), g(σ, f(σ))) (14)

for all input states σ and output states ω. Equation 14 is
the weak neutralizability condition. If we instead have
equality then it is the strong neutralizability condition.
If such an Ising system (X,R) exists, we correspondingly
say that g is solvable weakly neutralizable or solvable
strongly neutralizable.

(b) There is an Ising system (X,H) which satisfies g-
augmented constraints:

H(σ, ω, g(σ, ω)) > H(σ, f(σ), g(σ, f(σ))). (15)

We call (X,H) the base system and the circuit (N,M, f)
the base circuit. We call the system (X,R) the auxiliary
system and the circuit (N ∪M,A, g) the auxiliary circuit.

The proof can be found in Section 6.1.

Remark 2.5. Weak neutralizability depends on the logic
of the circuit (N,M, f); an auxiliary functions g may be
weakly neutralizable for some choices of f but not for
others. Strong neutralizability does not depend on f .

Remark 2.6. At first glance it seems we have made the
situation worse – Theorem 2.4 splits the task of finding a
single Ising system which solves (N,M, f) into the task
of finding two Ising systems satisfying distinct constraint
sets. The advantage becomes clear given the following two
observations:

1) Improvements to g can be made iteratively. It is
easy to check that if both (N ∪M,A1, g1) and (N ∪
M,A2, g2) are solvable weakly neutralizable auxiliary
circuits, then they can be "glued" together to form a
new circuit (N ∪M,A1 ⊔A2, g1 × g2) where

(g1 × g2)(σ, ω) := (g1(σ, ω), g2(σ, ω)) ∈ ΣA1∪A2 ,

itself a solvable weakly neutralizable auxiliary circuit.
2) Augmented constraints do not scale exponentially

in A. The traditional constraints (Equation 5) grow

exponentially in A, but the constraint matrices of the
g-augmented constraints 15) have no row-wise depen-
dence on A and only grow quadratically columnwise.

Observation (1) means the function g can be built from
libraries of known solvable weakly neutralizable functions,
which shrinks the space of possible auxiliary functions so
drastically that heuristic-driven brute force searches become
computationally viable. Observation (2) means that the com-
plexity of the linear solve grows only quadratically in A, and
hence feasibility criterion are far cheaper to compute.

We call this the gluing approach to the reverse Ising
problem.

The following two example auxiliary functions are prac-
tical in application.

Example 2.7. Suppose g : ΣN ×ΣM −→ ΣA is constant in
the ΣM component. Then any Ising system (X,R) which
solves the circuit (N ∪M,A, g) is trivially strongly neutral-
izable.

Example 2.8. Let ({a, b}, {c}, AND) be the 1-bit AND
circuit. There exists an Ising system ({a, b, c}, R) which
solves the circuit and is strongly neutralizable. Since the
substitution a for xy is a logical AND gate, Rosenberg
reduction can therefore be viewed as the construction of
solvable strongly neutralizable auxiliary functions through
the successive gluing of AND gates.

3. Algorithms and Optimizations
Having established our approach to the reverse Ising

problem, we now turn to the task of utilizing this theory
to producing concrete solutions to specific circuits. Armed
with Theorem 2.4, we will discuss implementations and
improvements the basic approach described at the start of
Section 2.3:

1) Make an initial guess g : ΣN × ΣM −→ ΣA of
neutralizable auxiliary function.

2) Measure the feasibility of g using a linear programming
solver on the augmented constraints.

3) If g is feasible then we are done. Otherwise update the
choice of g.

In Section 3.1 we discuss a modification of the linear prob-
lem which yields a feasibility heuristic useful for guiding
the reassignment of g. Section 3.2 covers the main search
algorithms used to construct a feasible g. Section 3.3 de-
scribes the design of a bespoke linear solver optimized for
our specific problem. Sections 3.4 and 3.5 detail two further
optimizations which offer significant improvements to the
search algorithms.

3.1. Linear Problem with Artificial Variables

Recall the statement of our problem: we wish to find g :
ΣN+M −→ ΣA and a quadratic pseudo-Boolean polynomial
H : ΣN+M+A −→ R such that

H(σ, f(σ), g(σ, f(σ))) + 1 ≤ H(σ, ω, η) (16)

5

for ω ̸= f(σ). By the main theorem, this can be reduced to
the set of constraints

H(σ, f(σ), g(σ, f(σ))) + 1 ≤ H(σ, ω, g(σ, ω)) (17)

as long as g is weakly neutralizable. Writing the Hamiltonian
H as the inner product H(σ) = ⟨u, v(σ)⟩ as Equation 3, the
constraints become〈

u, v(σ, f(σ), g(σ, f(σ)))− v(σ, ω, g(σ, ω))
〉
≤ −1 (18)

∀σ ∈ ΣN , ω ∈ ΣM , ω ̸= f(σ) (19)

Therefore, letting B(f, g) be the constraint matrix whose
rows are v(σ, ω, g(σ, ω))− v(σ, f(σ), g(σ, f(σ))), we wish
to find a vector u such that B(f, g)u ≥ 1. Since most choices
of g will yield infeasible problems, we need a choice of
feasibility heuristic to evaluate how close g is to generating
a feasible problem. This can be done by adding new vector
of variables ρ called the artificial variables to obtain the
linear programming problem

ϱ(f, g) := min
ρ,u
∥ρ∥1 s.t. B(f, g)u+ ρ ≥ 1, ρ ≥ 0 (20)

The optimal value of the objective function is zero if and
only if the choice of g is feasible. Otherwise, the optimal
value of the objective function ϱ(f, g) roughly measures how
infeasible g is.

Remark 3.1. In Section 2.2.3, we discussed the fact that
the linear problem for M = 1 is equivalent to fitting a
linear hard-margin SVM. Adding the artificial variables to
the M = 1 Ising circuit is in fact exactly equivalent to the
linear soft-margin SVM.

3.2. Main Search Algorithms

We will use the notation × to denote the concatenation
of tuples. Armed with the artificial variables heuristic, we
can attempt to build a weakly neutralizable auxiliary map g
that makes a given circuit (N,M, f) feasible. The simplest
choice is a greedy algorithm based on threshold functions.

Algorithm 1 Greedy Search
Require: {Tn}n∈N sets of strongly neutralizable threshold

functions on n variables.
Require: (N,M, f) Ising circuit.

g ← ∅
while ϱ(f, g) > 0 do

g ← g × arg mina∈TN+M+|g|
ϱ(f, g × a)

end while

It follows from Section 2.2.1 that if

Tn ⊇ An := {x 7−−→ xi ∧ xj |1 ≤ i < j ≤ n} (21)

then Algorithm 1 always terminates, since ϱ(f, g) ≥ ϱ(f, g×
a), for we can always set the coefficients on the new thresh-
old function a to zero and recover the left hand side. It
should be noted that requiring Tn grow with n is required
for the algorithm to always terminate—fixing Tn = AN+M

results in the algorithm never terminating when attempting
to solve the parity check circuit with 3 input bits.

Remark 3.2. The Tn sets must be computed separately prior
to the execution of Algorithm 1, see 3.2.1 for details. We use
strongly neutralizable threshold functions for convenience;
since the strong neutralizability property has no dependence
on the underlying base circuit (N,M, f), and the Tn don’t
change from problem to problem. Using weakly neutraliz-
able threshold functions should in principle yield a solution
with fewer auxiliaries, since it gives many more options and
thus increases the flexibility of the search. However, this
adds significant overhead as the Tn sets must be computed
for each new problem.

Note also that any auxiliary function g can be written
componentwise as (g1, ..., gA), where each gi : ΣN ×
ΣM −→ Σ represents a single auxiliary bit. Since g is a
solvable weakly/strongly neutralizable auxiliary function if
its component functions are weakly/strongly neutralizable
threshold functions, building g from its components always
produces viable auxiliary circuits.

In practice, the greedy algorithm is clearly non-optimal.
This is because ϱ is not additive with respect to its compo-
nents: threshold functions have unpredictable synergies with
each other and thus cannot be regarded as independent. That
is, for threshold functions a and b, ϱ(f,∅) − ϱ(f, a × b)
differs unpredictably from 2ϱ(f,∅) − ϱ(f, a) − ϱ(f, b),
though the difference is usually not too large. Therefore,
the greedy algorithm may result in earlier choices becoming
non-optimal after later choices are made. This suggests a
‘coordinate descent’ type algorithm, Algorithm 2, which
takes further advantage of the artificial variables heuristic to
continually revise choices towards more optimal solutions.
Additionally, it makes sense to expand the search space to
weakly neutralizable functions, since gluing works in the
exact same way.

This is a much better algorithm in practice, though it
will not always produce solutions with minimum |g| due
to getting stuck in local minima and therefore being forced
to increase |g|. Due to the inclusion of the Aℓ sets, this
algorithm will always terminate in finite time for the same
reason as Algorithm 1. Plenty of tweaks can be made to the
algorithm, most resulting in greater complexity:

• The heuristic values which are optimized over to set
j are designed to select the auxiliary functions which
are contributing the least—a more precise but far more
computationally expensive option would be setting j
by optimizing over the Shapley numbers of the gi.
Fast approximations of Shapley numbers do exist, but
we leave experimentation with their implementation for
future research.

• The symmetries discussed in Section 3.4 can be lever-
aged, in combination with a cache, to reduce the num-
ber of times that the expensive function ϱ is called (see
Remark 3.4).

• The filtering method discussed in Section 3.5 can be
implemented: We start with ϱ = ϱi and increment

6

Algorithm 2 Descent Algorithm
Require: (N,M, f) Ising circuit.
Require: T set of weakly neutralizable threshold functions

with respect to circuit (N,M, f).

R← (g, j, a) 7−−→

(
ĝi =

{
gi if i ̸= j

a if i = j

)
1≤i≤|g|

g ← ∅
S ← {1, . . . , |g|}
while ϱ(f, g) > 0 do

if S = ∅ then
g ← g × arg mina∈T ϱ(f, g × a)
S ← {1, . . . , |g|}

end if
j ← arg mini∈S ϱ(f, g \ {gi})− ϱ(f, g)
ℓ← N +M + j − 1
α← arg mina∈T ∪Aℓ

ϱ(f,R(g, j, a))
if ϱ(f,R(g, j, α)) < ϱ(f, g) then

gj ← α
S ← {1, . . . , |g|}

else
S ← S \ {j}

end if
end while

i every time the condition ϱ(f, g) = 0 is satisfied,
breaking out of the while loop only when i = M . This
also significantly speeds up execution time.

3.2.1. Building Libraries of Threshold Functions. Re-
mark 3.2 suggests that we precompute libraries of strongly
neutralizable threshold functions for use in Algorithms 1
and 2. This is done by first finding all threshold functions
f : Σd −→ Σ of a fixed dimension d and then exhaustively
checking the strongly neutralizability condition.

There are two ways we find threshold functions of a fixed
dimension d. This is certainly suboptimal but has thus far
proven sufficient for our approach.

1) The set Σd can be identified with the set of integers
[0..2d − 1] = {n ∈ Z | 0 ≤ n < 2d}. In this way,
each Boolean function f : Σd −→ Σ can be thought
of as a function f : [0..2d − 1] −→ Σ, and thus
corresponds to a binary string of length 2d given by
[f(0), f(1), ..., f(2d − 1)]. There are 22

d

such binary
strings, so it quickly becomes infeasible to check them
all for linear-separability. A laptop can nonetheless
handle the case of d = 5, 22

5

= 4, 294, 967, 296
without much difficulty, especially once symmetries are
utilized (see Section 3.4).

2) Threshold functions of dimension d are linear separa-
tions of the d-dimensional hypercube, hence any plane
Lw,b : ⟨w,x⟩ + b = 0 in Rd defines a threshold
function. By randomly sampling w and b, caching
functions, and comparing to proven threshold function
counts (see [21] for instance) one can quickly identify
the majority of threshold functions up to dimension 7.

Both of these approaches are sped up by exploiting symme-
try, see Section 3.4.

3.3. Linear Programming Solver

We found that no freely available linear programming
solver was sufficiently fast or memory efficient to tackle
the high volume of large-size linear problems needed to
calculate the feasibility heuristic in our search algorithms.
We wrote a multithreaded C implementation of the Mehrotra
predictor-corrector based on [20] specifically optimized for
our problem. It is 2-3 times faster than GLOP [23] for highly
overdetermined sparse sign matrices like the Ising constraint
sets, and significantly more memory efficient. Details of the
solver design can be found in Section 6.2. It is inspired by
the work in [25], but trades away memory optimization for
greater flexibility in choosing the coefficient matrix, among
several other modifications designed to suit our problem in
particular.

3.4. Symmetries of Ising Circuits

We set Σ = {±1} unless otherwise noted. Fix a
circuit (N,M, f). It is clear that an auxiliary function
g : ΣN × ΣM −→ ΣA is solvable and weakly neutralizable
if and only if −g is solvable and weakly neutralizable; if the
Hamiltonian H solves the circuit with auxiliary function g
then the Hamiltonian H ′ obtained from H by flipping the
signs of every coefficient of an auxiliary local bias, auxil-
iary/input interaction or auxiliary/output interaction solves
the circuit with auxiliary function −g. Hence if g is de-
termined to be infeasible then −g must also be infeasible
without performing any additional computation. It is natural
to ask: are there other such transformations which preserve
Ising solvability?

Let us make this situation more precise. The transfor-
mations g 7−→ −g and H 7−→ H ′ can be thought of a
single transformation which satisfies the following com-
patibility condition: if (X,H) solves the auxiliary circuit
(N ∪M,A, g) then (X,H ′) solves (N ∪M,A,−g). Gen-
eralizing, we wish to understand objects α which act on
both the logic of circuits and Ising Hamiltonians and which
preserve solvability. Such an object α is called an Ising
circuit symmetry.

There are two types of Ising circuit symmetries we con-
sider: spin actions and input permutations. Relevant proofs
of the details in this section are given in the Appendix.

3.4.1. Spin Actions. Viewing ΣX as the set of functions
X −→ Σ, for each α ∈ ΣX we obtain an action on ΣX via
pointwise multiplication by α:

ασ(x) = α(x) · σ(x). (22)

This is called a spin action, and if spin states are instead
viewed as tuples of ±1 then this is nothing more than the
component-wise multiplication of {±1}n. Decomposing α
into input and output components gives an action on f by

(αf)(σ) := α|M · f(α|Nσ). (23)

7

We get a corresponding action on Ising systems (X,H)
by multiplying v(α) componentwise with u, the coefficient
vector of H:

αu := v(α) · p. (24)

Thus defined, α is an Ising circuit symmetry, see Lemma
6.2 for proof. The group of all spin actions on ΣX is easily
seen to be isomorphic to (Z/2Z)n, where |X| = n.

3.4.2. Coordinate Permutations. Given a permutation α
of N and a permutation β of M , we can define an action
on f : ΣN −→ ΣM by

(βfα)(σ) = f(σ ◦ α) ◦ β. (25)

The corresponding action on the coefficient vector p of H is
easier to write using the h and J convention (see Equation
2). We define the action of α on h and J to be the identity
action, and we define β to act by index permutation

βhi := hβ(i), βJi,j := Jβ(i),β(j) (26)

setting β(i) = i whenever i ∈ N . This makes coordinate
permutations Ising circuit symmetries; see Lemma 6.3. The
group of all coordinate permutations is the product of per-
mutation group of orders N and M : SN × SM .

3.4.3. Symmetry Speedups. Denote by G(N,M) the group
of Ising symmetries obtained by compositions of spin ac-
tions and coordinate permutations for circuits of the form
(N,M, f) and by S(N,M) the group of spin actions. The
following proposition and remark illustrate how symmetries
of Ising circuits can speed up our algorithms.

Proposition 3.3. If α ∈ G(N,M) then g : ΣN −→ Σ is a
weakly/strongly neutralizable threshold function if and only
if αg is as well. Additionally, if α ∈ S(N ∪M,A) is a spin
action on the auxiliary circuit (N ∪M,A, g), then ϱ(f, g) =
ϱ(f, αg).

Remark 3.4. This proposition speeds up the search for
auxiliary functions in two ways.

1) Building libraries of threshold functions. When com-
puting sets T of threshold functions in Algorithms 1
and 2, one need only test one candidate threshold func-
tion g for solvability and neutralizability to determine
the solvability and neutralizability of the entire orbit.
This eliminates

|G(N,M)| = 2N∪M ·N ! ·M ! (27)

linear solves in the best case scenario, but far fewer in
practice since the action of G(N,M) is not free.

2) Computing the feasibility heuristic. Because spin
actions preserve ϱ, two auxiliary functions g and g′

related by a spin action are indistinguishable by the
feasibility heuristic. One can therefore take T to contain
only one weakly/strong neutralizable threshold function
in each S(N,M) orbit without losing any performance.

This eliminates up to |S(N,M)| = 2N+M − 1 compu-
tations of ϱ.

Proof of Proposition 3.3. Combining Proposition 2.3 with
Lemmas 6.2 and 6.3 shows that spin actions and coordinate
permutations preserve threshold functions. Slight modifica-
tions to the proofs of these two lemmas show that weak
neutralizability is also preserved.

If α is a spin action then B(f, αg) is obtained from
B(f, g) by taking the component-wise product of every row
with v(α). It then follows that

B(f, αg)(αu) = B(f, αg)(v(α) · u) = B(f, g)u (28)

since v(α) · v(α) is the vector consisting only of 1’s. Thus
the ρ and u which minimize Equation 20 for g and αg are
equal.

3.4.4. Toward a Classification of Strongly Neutralizable
Threshold Functions. We switch now to Σ = {0, 1}
convention. Spin actions and coordinate permutations have
long been used in the classification of threshold functions
under the names u-complementation and permutation of
variables respectively [15]. Another linear-separability pre-
serving operation known as self-dualization is common in
threshold logic. Given a threshold function f : Σn −→ Σ,
the self-dualization of f is a threshold function fsd of
dimension n + 1. If s0 is used to denote the new variable,
then it is defined

fsd(s0, ..., sn) = s0f(s1, ..., sn) + s0f(s1, ..., sn) (29)

where si is used to denote the negation of the coordinate
si. We say that a threshold function f is self-dual if it is
the self-dualization of a lower dimensional threshold func-
tion. Because self-dualization additionally preserves strong
neutralizability but does not preserve the artificial variable
feasibility heuristic ϱ, it gives us access to non-redundant
strongly neutralizable threshold functions in the context of
Algorithms 1 and 2.

A more trivial way to produce higher dimensional
strongly neutralizable threshold functions from lower di-
mensions is known as extrusion. Given an n-dimensional
threshold function f : ΣN −→ Σ, we may extrude f along
a new dimension by simply ignoring the additional variable
s0:

fe(s0, ..., sn) := f(s1, ..., sn). (30)

This operation does preserve ϱ, and hence the strongly
neutralizable threshold functions it produces are redundant.

If f is self dual, then it is easy to check that
f(s1, ..., sn) = f(s1, ..., sn). This implies the second self-
dualization of a Boolean function is an extrusion, as there
is no dependence on the second added dimension. The only
non-redundant strongly neutralizable threshold functions,
therefore, are those which are either (i) not self dual or
(ii) are the self-dualization of a non self-dual function.
Up to Ising symmetry G(N,M), we have found only two
non-redundant strongly neutralizable threshold functions:

8

the AND gate in dimension 2 and its self-dualization in
dimension 3. All others appear to be in the G(N,M)-orbit of
an extruded lower dimensional threshold function – though
we have only checked up through dimension 7. We con-
jecture the following classification of strongly-neutralizable
threshold functions:

Conjecture 3.5. The only strongly-neutralizable threshold
functions of dimension 2 or greater which are not extru-
sions of lower dimensional functions are AND and its self-
dualization ANDsd up to G(N,M) action.

3.5. Constraint Filtering

The linear problem of checking the feasibility of an
augmented constraint set for circuit (N,M, f) with A aux-
iliaries has difficulty O(2N+M (N +M +A)2). If we need
to search through a large amount of auxiliary functions, this
may still be quite expensive. In practice, however, it turns out
that the artificial variables are not evenly distributed across
the rows of the constraint matrix, and therefore we can cut
down on the factor of 2M quite substantially.

For a fixed circuit (N,M, f) and an infeasible auxiliary
function g : ΣN+M −→ ΣA, the constraint matrix B serves
only to verify the infeasibility of g and compute the criterion
ϱ. This matrix is quite tall: B has 2N · (2M − 1) rows
but only M + A+

(
N+M+A

2

)
−
(
N
2

)
columns. This results

in an exceptionally over-determined system in which we
expect many redundant constraints. Now consider a matrix
B′ consisting of only a subset of the rows in B and the
reduced problem B′u ≥ 1 with feasibility criterion ϱ′.
Evidently ϱ′ is a lower bound on ϱ which is cheaper to
compute than ϱ. Therefore we may reasonably want to know:
(i) How well does ϱ′ approximate ϱ, as a function of the
number of constraints removed from B—and relatedly, (ii)
If ϱ′ = 0, what is the probability that ϱ = 0? If it is in
fact a good approximation, we can use it as an approximate
criterion for the first phase of the algorithm and thus save a
lot of time. This is indeed the case: Figure 1 demonstrates
that smaller constraint sets serve as good approximations of
1 and Figure 2 illustrates that they detect infeasibility with
high probability.

As the size of A is increased (i.e. as threshold functions
are added in Algorithms 1 and 2 and g becomes more
feasible) we expect that the requisite size of the matrices
in this filtration will also grow. It is therefore useful to
consider a series of smaller linear problems of various sizes
obtained by incrementally adding constraints from B; that is,
to consider a filtration {Bi}i∈[0..k] of the constraint matrix
B rather than a single reduced matrix B′.

Each row of B is defined by a choice of input σ ∈ ΣN

and a choice of incorrect output ω ∈ ΣM , ω ̸= f(σ). In
practice, rows whose incorrect output ω is closer in Ham-
ming distance to the correct output f(σ) contribute more
to the heuristic ϱ and are collectively more difficult to sat-
isfy. Therefore, a natural choice of filtration is {Bi}1≤i≤M ,
where Bi is the matrix consisting of all rows defined by

choices of incorrect output ω such that d(ω, f(σ)) ≤ i
and d denotes Hamming distance. We call Bi the ‘ith local
constraints’ because it requires that (σ, f(σ)) be the absolute
minimum of the input level Lσ on the Hamming ball of
radius i around σ, for every σ. Note that B1 has M rows
per input level, and Bi adds

(
M
i

)
rows to each input level

relative to Bi−1.
It turns out that the artificial variables are mostly con-

centrated in the local constraints with i small (see Figure
1), which also have far fewer rows. Therefore, testing with
the first or second local constraints provides a reasonably
good lower bound to the total sum of artificial variables for
the whole problem at a fraction of the computational cost.
If we filter possible candidate auxiliary function candidates
with the X1 constraint set, each linear program solve takes
has difficulty O(2NM(N+M+A)2), an improvement over
the whole problem by a factor of 2M/M . In practice, we
first construct a solution which satisfies B1 or B2 which we
then use as a starting point to search for a solution to B,
thus saving a significant amount of effort.

Figure 1. Proportion of artificial variables captured by the ith local
constraints, ϱi/ϱ, plotted against i for the problem of 4 × 4 integer
multiplication with 12 auxiliaries, sampled randomly from a set of weakly
neutralizable threshold functions, averaged over 50 runs. Observe that i = 3
captures almost all of the artificial variables.

4. Results

Our chosen benchmark problem is the implementation
of integer multiplication circuits. We denote the problem
of finding sets of a threshold functions which solve the
problem of n×m integer multiplication as mul[n×m×a].
Our methods were successful in producing many solutions
to mul[3×3×3], mul[3×4×5], and mul[4×4×12]. In each
case, our solution represents the current optimum in total
spin count by a large margin. Previously, Andriyash [1]
constructed solutions to mul[3×3×42] and mul[4×4×88]
on a D-Wave system. Our results represent a significant
reduction in total circuit size, from 54 to 15 total spins for
3×3 multiplication and from 104 to 28 total spins for 4×4.

9

Figure 2. The minimum number of hamming radius 2 constraints required to
confirm the infeasibility of randomly chosen auxiliary functions of specified
sizes, averaged across 500 runs. The minimum number of constraints
needed to detect infeasibility was obtained by performing a binary search on
a random maximal filtration of B2, the 2nd local constraints. We emphasize
that the y-axis measures the number of requisite constraints as a fraction
of all 2nd local constraints; the collection of all 2nd local constraints
themselves only account for 9216

65280
≈ 0.1412 of the total number of

constraints.

Therefore, our results reduce the total circuit layout area by
a factor of around 3.5 compared to previous designs. By
reducing the total number of spins substantially, we have
decreased the cost of implementing such circuit in hardware.

4.1. Runtimes & Example Data

Experiments were run on dual socket compute nodes
with 64 cores per AMD EPYC 7713 socket and two threads
per core for a total of 256 processors per node. Average
runtimes for successful solutions to our benchmark problems
were as follows:

Problem Average Runtime (s)
mul[3×3×3] 902
mul[3×4×5] 23,520
mul[4×4×12] 67,890

Figure 3 graphically shows example solutions to the
three benchmark problems. Each row depicts a single thresh-
old function’s weight vector, showing how much that thresh-
old function depends on each of the original N +M spins.

5. Conclusion

Our main theoretical result has made computationally
tractable the large-scale searches required to solve nontrivial
cases of the Reverse Ising problem. As such, we can algo-
rithmically discover far more compact Ising Hamiltonians
which realize the desired circuity than would be possible
to construct by hand. This has allowed us to significantly
shrink the best known minimal-spin solutions to the Ising
formulations of integer multiplication circuits, improving
on previously known results by more than a factor of 3.
However, we believe that doing better is possible. Relaxing
to more general classes of auxiliary functions beyond tuples

Figure 3. Examples of feasible sets of sparse auxiliary threshold functions
for each of our benchmark problems. Each row is the weight vector w of
a threshold function.

of threshold functions will likely allow for even smaller
circuits, though it is much more mathematically difficult.
Additionally, we wish to find ways to incorporate practical
considerations such as energy gap, dynamic range, and graph
structure into our model.

The practical feasibility of Ising computing, like other
probabilistic, distributed, and quantum-inspired approaches,
depends on the development of a strong theoretical founda-
tion for the analysis of circuit design problems. We believe
that this field is still in its infancy, that the mathematics is
far from settled, and especially that we have only captured
a fraction of the the potential power of auxiliary maps for
compactly realizing general functions. It is our hope that
this paper will help to contribute both to the development
of this theory and to the search for practical methods for
programming the computers of the future.

Acknowledgments

The authors would like to thank Dr. Karin Rabe and Dr.
Gregory Moore (Department of Physics, Rutgers University)
and Luisa Velasco (Department of Mathematics, University
of Texas at Austin) for their feedback and editorial help.

10

6. Appendix

6.1. Additional Mathematical Details

In this section we fill in relevant mathematical details
which distract from the primary results but which are
nonetheless relevant or necessary. The most vital of these is
the proof of Theorem 2.4.

Proof of Theorem 2.4. Throughout this proof let σ, ω and
η denote elements in ΣN , ΣM and ΣA respectively. Suppose
first that the circuit (N,M, f) is solvable by an Ising system
(X,H). Define g : ΣN × ΣM −→ ΣA to be the auxiliary
component of the minimizer with respect to N ∪M :

g(σ, ω) := arg min
η∈Σ

A

H(σ, ω, η). (31)

By definition of g, the circuit (N ∪M,A, g) is solvable by
the Ising system (X,H). This means for some η′ ∈ ΣA we
have that

H(σ, ω, η) > H(σ, f(σ), η′) ≥ H(σ, f(σ), g(σ, f(σ)))
(32)

for all η ̸= η′. Hence H satisfies the weak neutralizability
condition.

Since (X,H) solves the circuit (N,M, f),

H(σ, ω, η) > H(σ, f(σ), g(σ, f(σ))) (33)

for all ω ̸= f(σ) and all η, so in particular,

H(σ, ω, g(σ, ω)) > H(σ, f(σ), g(σ, f(σ))). (34)

Thus (X,H) satisfies the g-augmented constraints.

Now suppose that g is an arbitrary function such that
(N ∪ M,A, g) is an abstract circuit solvable by an Ising
system (X,R) whose Hamiltonian R satisfies (14) and that
(X,S) is an Ising system with Hamiltonian S which satisfies
the g-augmented constraints. Consider the family of Ising
Hamiltonians Hλ = S + λR parameterized by λ ∈ R. We
show that for sufficiently large λ, Hλ, (X,Hλ) together
with auxiliary array g(σ) = g(σ, f(σ)) satisfies the weak
constraints and hence solves the circuit (N,M, f).

Fix σ and ω ̸= f(σ), and consider first the case that
η = g(σ, ω). Then

Hλ(σ, ω, η)−Hλ(σ, f(σ), g(σ)) > 0

⇐⇒ S(σ, ω, η)− S(σ, f(σ), g(σ))

λ(R(σ, ω, η)−R(σ, f(σ), g(σ))) > 0

⇐⇒ S(σ, ω, g(σ, ω))− S(σ, f(σ), g(σ, f(σ)))

+ λR(σ, ω, g(σ, ω))− λR(σ, f(σ), g(σ, f(σ))) > 0

⇐⇒ S(σ, ω, g(σ, ω))− S(σ, f(σ), g(σ, f(σ))) > 0.
(35)

Note that the independence of the final biconditional above
follows from the weak neutralizability of R. Now suppose
that η ̸= g(σ, ω). Set

α = min
ω∈Σ

M

ω ̸=f(σ)

R(σ, ω, η)−R(σ, f(σ), g(σ, f(σ))), (36)

noting that by (14), the assumption that (X,R) solves (N ∪
M,A, g) and because η ̸= g(σ, ω) we have

R(σ, ω, η) > R(σ, ω, g(σ, ω)) ≥ R(σ, f(σ), g(σ)) (37)

which in turn implies that α > 0. Additionally set

β = max
σ∈Σ

X
S(σ, f(σ), g(σ, f(σ)))− S(σ, ω, η). (38)

We then have

Hλ(σ, ω, η)−Hλ(σ, f(σ), g(σ, f(σ))) > 0

⇐⇒

λ >
S(σ, f(σ), g(σ, f(σ)))− S(σ, ω, η)

R(σ, ω, η)−R(σ, f(σ), g(σ, f(σ)))
.

Choosing λ > β/α ensures this is satisfied for all σ ∈
ΣX .

6.1.1. Ising Symmetry Proofs. Here we prove that spin
actions and coordinate permutations are Ising circuit sym-
metries. We denote by fα and Hα αf and αH respectively.

Lemma 6.1. If (N,M, f) is a circuit, (X,H) an Ising
system, and α ∈ ΣX a spin action, then for σ ∈ ΣN and
ω ∈ ΣM we have (αH)(σ, ω) = H(α|N · σ, α|M · ω).

Proof. If we let p be the coefficient vector of H , then

⟨αu, v(σ, ω))⟩ = ⟨v(α) · u, v(σ, ω))⟩
= ⟨u, v(α) · v(σ, ω))⟩
= ⟨u, v(α|N · σ, α|M · ω))⟩.

(39)

Proposition 6.2. Spin actions are Ising circuit symmetries.

Proof. Fix a spin action α ∈ ΣX , a circuit (N,M, f) and an
Ising system (X,H). We must show that whenever (X,H)
solves (N,M, f), (X,Hα) solves (N,M, fα). By Lemma
6.1,

Hα(σ, ω)−Hα(σ, fα(σ))

= ⟨αu, v(σ, ω)− v(σ, (αf)(σ))⟩
= ⟨v(α) · u, v(σ, ω)− v(σ, α|M · f(αN · σ))⟩
= ⟨u, v(α) · v(σ, ω)− v(α) · v(σ, α|M · f(αN · σ))⟩
= ⟨u, v(α|N · σ, α|M · ω)− v(α|N · σ, f(αN · σ))⟩
= H(α|N · σ, α|M · ω)−H(α|N , f(αN · σ)).

(40)

Hence

Hα(σ, ω)−Hα(σ, fα(σ)) > 0 (41)

11

if and only if

H(α|N · σ, α|M · ω)−H(α|N , f(αN · σ)) > 0. (42)

By noting that ω ̸= fα(σ) if and only if α|M ·ω ̸= f(α|N ·σ),
we are done.

Proposition 6.3. Coordinate permutations are Ising circuit
symmetries.

Proof. Fix a circuit (N,M, f), an Ising circuit (X,H), a
permutation α of N , and a permutation β of M . Addition-
ally let B, Bα, and Bβ be the constraint matrices given
by the circuits (N,M, f), (N,M,αf), and (N,M, βf)
respectively (see Equations 5 and 6 for the definition of
these matrices).

In Section 3.4.2 we defined the action of α on f by
αf := f ◦ α. This results in a row permutation of B; that
is, Bα is obtained by permuting the rows of B. This means
any Ising system (X,H) which solves (N,M, f) also solves
(N,M,αf) without modification.

Recall we defined the action of β on f by βf := β ◦ f .
The matrix Bβ is obtained by permuting the columns of B,
so if (X,H) solves (N,M, f) we can obtain an Ising system
(X,βH) which solves (N,M, βf) by applying the same
permutation to the coefficient vector p of H . Writing the
coefficient vector u using the h and J notation of Equation
2, we see that

βhi := hβ(i), βJij := Jβ(i),β(j) (43)

is the correct permutation. Note that we extend β to a
permutation on all of X here by defining β(i) := i for
all i ∈ X \M .

Remark 6.4. It is worth noting that the group generated by
spin actions and coordinate permutations on X is precisely
the hyperoctahedral group BX , the symmetry group of the
hypercube of dimension |X| [16]. Thought of this way,
G(N,M) = BN ×BM ×BA.

6.2. Linear Programming Solver Details

6.2.1. Problem Formulation. Our goal is to solve the linear
programming problem

min
ϕ,ρ
⟨1, ρ⟩ s.t. Bϕ+ ρ ≥ v, ρ ≥ 0 (44)

Note that this is equivalent to

max
λ,s
⟨b, λ⟩ s.t. ATλ+ s = c, s ≥ 0 (45)

If we make the identification

b =

[
0
−1

]
c =

[
−v
0

]
AT =

[
−B −I
0 −I

]
(46)

Since if λ = (λ1, λ2) and s = (s1, s2), then ATλ + s = c
can be written as the pair of Equations −Bλ1−λ2+s1 = −v
and −λ2 + s2 = 0, which can be re-arranged as s2 = λ2

and s1 = Bλ1 + λ2 − v, so s ≥ 0 actually means λ2 ≥

0 and Bλ1 + λ2 ≥ v. This recovers our original problem
with the identification ϕ := λ1, ρ := λ2. A word on the
dimensions. Suppose that B ∈ Rm×n, with m ≫ n. Then
AT ∈ R2m×n+m, so λ, b ∈ Rn+m and s, c, x ∈ R2m. We
can also go ahead and set rb ← Ax−b and rc ← ATλ+s−c.

6.2.2. Solving Systems Involving a Matrix and its Trans-
pose. We now discuss solutions to systems of the form
(AKAT)p = q. Let A be as defined above and K be
some general diagonal matrix with diagonal vector k split
into k1, k2 ∈ Rm. The only actual systems of Equations
that we need to solve in this algorithm will be of the
form (AKAT)p = q. We will derive a general algorithm
for solving this system in an efficient manner by taking
advantage of the structure of A. Note that p, q ∈ Rn+m.

AKAT =

[
−BT 0
−I −I

] [
K1 0
0 K2

] [
−B −I
0 −I

]
(47)

=

[
BTK1B BTK1

K1B K1 +K2

]
(48)

Now, we can apply block UDL-decomposition. It will be
convenient if the matrix that we have to invert is actually
the bottom right (since it is diagonal), and therefore we need
the formula (with Q := W −XZ−1Y):[

W X
Y Z

]
=

[
I XZ−1

0 I

] [
Q 0
0 Z

] [
I 0

Z−1Y I

]
(49)

Applying this, we obtain (with D := K1 and Z := K1+K2

and Ω := BT (D −D2Z−1)B)[
I BTDZ−1

0 I

] [
Ω 0
0 Z

] [
I 0

DZ−1B I

]
(50)

=

[
I BTDZ−1

0 I

] [
Ω 0
DB Z

]
(51)

Now, consider the Equation[
I BTDZ−1

0 I

] [
y1
y2

]
=

[
q1
q2

]
(52)

We get y2 = q2 and q1 = y1 + BTDZ−1y2 = y1 +
BTDZ−1q2, so y1 = q1 − BTDZ−1q2. Now, we want to
solve [

Ω 0
DB Z

] [
p1
p2

]
=

[
q1 −BTDZ−1q2

q2

]
(53)

Clearly DBp1 +Zp2 = q2 implies p2 = Z−1(q2 −DBp1),
so we have reduced the problem to solving the linear system
Ωp1 = q1 −BTDZ−1q2. Since n is in general fairly small,
this is actually an easy system to solve. This leads us to the
following algorithm:

p1 ← Ω−1(q1 −BTDZ−1q2) (54)
p2 ← Z−1(q2 −DBp1) (55)

12

6.2.3. Solving the Main System. We need to solve systems
of the form 0 AT I

A 0 0
S 0 X

∆x
∆λ
∆s

 =

−rc−rb
L

 (56)

Which, written out as Equations, is

AT∆λ+∆s = −rc (57)
S∆x+X∆s = L (58)

A∆x = −rb (59)

We can re-arrange to determine that ∆s = −rc − AT∆λ
and ∆x = S−1(L−X∆s) = S−1(L−X(−rc −AT∆λ)),
upon which the last Equation becomes

AS−1(L−X(−rc −AT∆λ)) = −rb (60)
AS−1L+AS−1Xrc +AS−1XAT∆λ = −rb (61)
(AS−1XAT)∆λ = −rb −AS−1(L+Xrc) (62)

(AS−1XAT)∆λ = −Ax+ b−AS−1(L+Xrc) (63)
= b−A(x+ S−1(L+Xrc)) (64)

This gives us the following algorithm:

∆λ← (AS−1XAT)−1(b−A(x+ S−1(Xrc + L))) (65)
∆s← −rc −AT∆λ (66)
∆x← S−1(L−X∆s) (67)

6.2.4. Optimizations. The matrix M has around 50% spar-
sity in practice and is a sign matrix (entries are −1, 0 or
1). Therefore, it is natural to store it in CSC (Compressed
Sparse Column) format with low integer precision. Profiling
an implementation of the algorithm in C shows that the most
expensive step by far is the calculation of the coefficient
matrix for the system of Equations. Since it always has the
structure MTDM for some diagonal matrix D, this comes
down to calculating n2 weighted column-column inner prod-
ucts of M , so CSC has a natural advantage over CSR. We
can first observe that since this matrix is symmetric, only
the upper triangle needs to be computed, which cuts the cost
in half. Now, if Ci is the ith column of M , we need a quick
way to calculate ⟨Ci, dCj⟩ for a coefficient d which is not
known ahead of time. Since the two columns are both sparse,
and known ahead of time, we can precompute for each pair
of columns Ci, Cj a list Rij of the indices at which they
are simultaneously nonzero, as well as a vector Sij of their
products such that Sij(k) = (Ci)Rij(k)

(Cj)Rij(k)
. That way,

we can compute only exactly what really needs to be done,
that is

∑
k Sij(k)dRij(k)

. Since all of these operations are
highly parallel, they lend themselves nicely to the use of a
threadpool.

References

[1] E. Andriyash, Z. Bian, F. A. Chudak, A. D. King, and
W. G. Macready. Boosting integer factoring perfor-
mance via quantum annealing o sets technical report.

2016. URL https://api.semanticscholar.org/CorpusID:
44099134.

[2] P. Baldi and R. Vershynin. Polynomial threshold func-
tions, hyperplane arrangements, and random tensors.
SIAM Journal on Mathematics of Data Science, 1(4):
699–729, 2019. doi: 10.1137/19M1257792. URL
https://doi.org/10.1137/19M1257792.

[3] M. K. Bashar and N. Shukla. Designing Ising
machines with higher order spin interactions and
their application in solving combinatorial optimiza-
tion. Scientific Reports, 13(9558), 2023. doi: 10.1038/
s41598-023-36531-4.

[4] J. D. Biamonte. Nonperturbative k -body to two-body
commuting conversion hamiltonians and embedding
problem instances into Ising spins. Phys. Rev. A,
77:052331, May 2008. doi: 10.1103/PhysRevA.77.
052331.

[5] Z. Bian, F. Chudak, R. Israel, B. Lackey, W. G.
Macready, and A. Roy. Discrete optimization using
quantum annealing on sparse Ising models. Frontiers in
Physics, 2, 2014. ISSN 2296-424X. doi: 10.3389/fphy.
2014.00056. URL https://www.frontiersin.org/articles/
10.3389/fphy.2014.00056.

[6] E. Boros and P. L. Hammer. Pseudo-boolean op-
timization. Discrete Applied Mathematics, 123(1):
155–225, 2002. ISSN 0166-218X. doi: 10.1016/
S0166-218X(01)00341-9.

[7] E. Boros, Y. Crama, and E. Rodríguez-Heck. Compact
quadratizations for pseudo-boolean functions. Journal
of Combinatorial Optimization, 39(3):687–707, 2020.
doi: 10.1007/s10878-019-00511-0. URL https://doi.
org/10.1007/s10878-019-00511-0.

[8] S. G. Brush. History of the lenz-Ising model. Rev.
Mod. Phys., 39:883–893, Oct 1967. doi: 10.1103/
RevModPhys.39.883. URL https://link.aps.org/doi/10.
1103/RevModPhys.39.883.

[9] B. Cai, Y. He, and Y. X. et. al. Unconventional
computing based on magnetic tunnel junction. Ap-
plied Physics A, 129(236), mar 2023. doi: 10.1007/
s00339-022-06365-4.

[10] J. Chou, S. Bramhavar, S. Ghosh, and W. Herzog. Ana-
log coupled oscillator based weighted Ising machine,
2019.

[11] N. Dattani. Quadratization in discrete optimization and
quantum mechanics, 2019.

[12] N. Gruzling. Linear separability of the vertices of an
n-dimensional hypercube, 2007.

[13] M. Gu and Á . Perales. Encoding universal compu-
tation in the ground states of Ising lattices. Physical
Review E, 86(1), jul 2012. doi: 10.1103/physreve.86.
011116.

[14] J. Hertz, A. Krogh, and R. Palmer. Introduction To
The Theory Of Neural Computation. Addison-Wesley
Computation and Neural Systems Series. Avalon Pub-
lishing, 1991. ISBN 9780201515602. URL https:
//books.google.com/books?id=dI2rDnN_eZEC.

[15] S.-T. Hu. Threshold logic. University of California
Press, Berkeley and Los Angeles, 1965.

13

https://api.semanticscholar.org/CorpusID:44099134
https://api.semanticscholar.org/CorpusID:44099134
https://doi.org/10.1137/19M1257792
https://www.frontiersin.org/articles/10.3389/fphy.2014.00056
https://www.frontiersin.org/articles/10.3389/fphy.2014.00056
https://doi.org/10.1007/s10878-019-00511-0
https://doi.org/10.1007/s10878-019-00511-0
https://link.aps.org/doi/10.1103/RevModPhys.39.883
https://link.aps.org/doi/10.1103/RevModPhys.39.883
https://books.google.com/books?id=dI2rDnN_eZEC
https://books.google.com/books?id=dI2rDnN_eZEC

[16] A. Kerber. Representations of permutation groups.
II, volume Vol. 495 of Lecture Notes in Mathemat-
ics, pages 59–113. Springer-Verlag, Berlin-New York,
1975.

[17] A. Lucas. Ising formulations of many np problems.
Frontiers in Physics, 2, 2014. ISSN 2296-424X. doi:
10.3389/fphy.2014.00005.

[18] P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly,
C. Langrock, S. Tamate, T. Inagaki, H. Takesue,
S. Utsunomiya, K. Aihara, R. L. Byer, M. M. Fejer,
H. Mabuchi, and Y. Yamamoto. A fully programmable
100-spin coherent Ising machine with all-to-all con-
nections. Science, 354(6312):614–617, 2016. doi:
10.1126/science.aah5178.

[19] C. Monroe, W. Campbell, L.-M. Duan, Z.-X. Gong,
A. Gorshkov, P. Hess, R. Islam, K. Kim, N. Linke,
G. Pagano, P. Richerme, C. Senko, and N. Yao. Pro-
grammable quantum simulations of spin systems with
trapped ions. Reviews of Modern Physics, 93(2),
apr 2021. doi: 10.1103/revmodphys.93.025001. URL
https://doi.org/10.1103%2Frevmodphys.93.025001.

[20] J. Nocedal and S. J. Wright. Linear Programming:
Interior-Point Methods, pages 392–420. Springer New
York, New York, NY, 2006. ISBN 978-0-387-40065-5.
doi: 10.1007/978-0-387-40065-5_14.

[21] OEIS Foundation Inc. Number of threshold functions
of n or fewer variables, Entry A000609 in The On-
Line Encyclopedia of Integer Sequences, 2023. URL
https://oeis.org/A000609.

[22] S. Patel, L. Chen, P. Canoza, and S. Salahuddin. Ising
model optimization problems on a fpga accelerated
restricted boltzmann machine, 2020.

[23] L. Perron and V. Furnon. Or-tools, 08 2023. URL
https://developers.google.com/optimization/.

[24] E. C. Posner and R. J. McEliece. The number of
stable points of an infinite-range spin glass mem-
ory. The Telecommunications and Data Acquisition
Report, November 1985. URL https://ipnpr.jpl.nasa.
gov/progress_report/42-83/83S.PDF.

[25] T. M. Ranadive, J. T. Daly, J. J. Meyer, A. G. Moore,
and I. K. Martin. Enabling Ising machine arithmetic
with high performance computing. unpublished, 2023.

[26] I. G. Rosenberg. Reduction of bivalent maximization
to the quadratic case. Cahiers du Centre d’Etudes de
Recherche Operationnelle, 17(71-74), 1975.

[27] M. Talagrand. The parisi formula. Annals of Mathe-
matics, 163(1):221–263, 2006.

[28] T. Wang and J. Roychowdhury. Oim: Oscillator-based
Ising machines for solving combinatorial optimisation
problems, 2019.

[29] J. D. Whitfield, M. Faccin, and J. D. Biamonte.
Ground-state spin logic. Europhysics Letters, 99(5),
sep 2012. doi: 10.1209/0295-5075/99/57004.

14

https://doi.org/10.1103%2Frevmodphys.93.025001
https://oeis.org/A000609
https://developers.google.com/optimization/
https://ipnpr.jpl.nasa.gov/progress_report/42-83/83S.PDF
https://ipnpr.jpl.nasa.gov/progress_report/42-83/83S.PDF

	Introduction
	Theory
	The Reverse Ising Problem
	Circuits
	Ising Systems
	The Reverse Ising Problem

	General Observations
	Universality of Quadratic Ising Systems
	The Storage Capacity Paradox
	Single-Output Ising Circuits are SVMs

	Augmented Constraints

	Algorithms and Optimizations
	Linear Problem with Artificial Variables
	Main Search Algorithms
	Building Libraries of Threshold Functions

	Linear Programming Solver
	Symmetries of Ising Circuits
	Spin Actions
	Coordinate Permutations
	Symmetry Speedups
	Toward a Classification of Strongly Neutralizable Threshold Functions

	Constraint Filtering

	Results
	Runtimes & Example Data

	Conclusion
	Appendix
	Additional Mathematical Details
	Ising Symmetry Proofs

	Linear Programming Solver Details
	Problem Formulation
	Solving Systems Involving a Matrix and its Transpose
	Solving the Main System
	Optimizations

