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Abstract

An almost Abelian Lie group is a non-Abelian Lie group with a codimension 1 Abelian normal sub-

group. The majority of 3-dimensional real Lie groups are almost Abelian, and they appear in all parts

of physics that deal with anisotropic media - cosmology, crystallography etc. In theoretical physics and

differential geometry, almost Abelian Lie groups and their homogeneous spaces provide some of the sim-

plest solvmanifolds on which a variety of geometric structures such as symplectic, Kähler, spin etc., are

currently studied in explicit terms. Recently, almost Abelian Lie algebras were classified and studied in

details. However, a systematic investigation of almost Abelian Lie groups has not been carried out yet,

and the present paper is devoted to an explicit description of properties of this wide and diverse class of

groups.

The subject of investigation are real almost Abelian Lie groups with their Lie group theoretical aspects,

such as the exponential map, faithful matrix representations, discrete and connected subgroups, quotients

and automorphisms. The emphasis is put on explicit description of all technical details.

1

http://arxiv.org/abs/2004.04369v2


1 Introduction

In the present paper we consider only real Lie groups and Lie algebras. An almost Abelian Lie algebra is

a non-Abelian Lie algebra L that contains a codimension one Abelian ideal, and an almost Abelian group

is a Lie group with an almost Abelian Lie algebra. This is equivalent to demanding that the Lie group

contains a codimension one Abelian normal subgroup. In fact, it can be shown that the existence of a

codimension one Abelian Lie subgroup already guarantees the existence of a codimension one Abelian

normal subgroup.

In low dimensions almost Abelian Lie groups are well-represented. The only 2-dimensional non-

Abelian Lie group is almost Abelian, while 6 out of 9 classes (after Bianchi) of 3-dimensional real Lie

algebras/groups are almost Abelian. At the same time, since most physical systems are n = 1, 2, 3

dimensional, in absence of rotational symmetries a homogeneous (anisotropic) system is described by a

low dimensional Lie group. It is thus only natural that almost Abelian Lie groups are widely used in

cosmology, where they represent the symmetries of the universe at large scale ([ElEl98], [Osi73], [Pet59],

[Rya75], [AvVe13] and many others), or crystallography, where they model the symmetries of an ideal solid

([Par16] and references therein). As far as applications in pure mathematics are concerned, one particular

almost Abelian Lie group is distinguished - the 3-dimensional Heisenberg group (higher dimensional

Heisenberg groups are not almost Abelian). Thorough studies of the Heisenberg group can be found, for

instance, in [Fol89] and [Tha98]. Taking roots in the foundations of quantum mechanics, this group has

become the classical setting for non-commutative analysis. We refer to [FiRu16] for recently developed

theory of quantization and pseudodifferential calculus on the Heisenberg group (among other nilpotent

groups). It is therefore desirable to try and extend these results to general almost Abelian groups, but

that has to wait until a comprehensive study of almost Abelian Lie groups is available.

Higher dimensional almost Abelian Lie groups have gained in popularity in the last two decades,

with at least a dozen papers dealing with the subject written in the last two years only. One context

of interest is compact solvmanifolds. A solvmanifold is a homogeneous space G/N with G a simply

connected solvable Lie group and N ⊂ G a discrete subgroup. Almost Abelian groups G are special in

that, together with nilpotent groups, these are the only solvable Lie groups for which there is a practically

useful necessary and sufficient condition for the solvmanifold G/N to be compact [Boc16]. More generally,

almost Abelian groups are unique in their explicit tractability combined with diversity of properties they

can possess. A plethora of work in differential geometry and theoretical physics has been devoted to

various geometrical constructions on almost Abelian solvmanifolds such as symplectic, Kähler, spin, G2 or

SU(3) structures, various flows etc. [Fre12], [AnOr17], [AGMP11], [CoMa12], [LaWi19],[FSW19], [Par21],

[Sta20], [FiPa20a], [FiPa20], [BDV19], [BaFi18], [FrSw18], [BDV18]. In spite of this wide spectrum of

interest and applications, to the date there is no comprehensive study of almost Abelian Lie groups in

the literature. In the recent papers [Ave16] and [Ave18] almost Abelian Lie algebras were studied and

their structure was explicitly described. The next step is the study of almost Abelian groups from the

Lie group theory perspective, which the present work is mainly devoted to. The far-reaching objective

of studying almost Abelian groups systematically is building a variety of well-understood “lighthouses”

in the sea of solvable Lie groups, as representative as possible, in order to facilitate the development of
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methods and tools applicable to a wide range of groups.

The following results are obtained in this paper. Let G stand for an almost Abelian group. The

exponential map exp on a simply connected G is described explicitly, and two conditions are given which

are equivalent to the injectivity of exp (exponentiality of G). Two faithful matrix representations are

introduced for simply connected G, and the centre Z(G) is described. The full automorphism group

Aut(G) and the inner automorphism group Inn(G) are given explicitly for a connected G. Discrete

normal subgroups of a simply connected G are studied, and conditions are found for two discrete normal

subgroups to be related by an automorphism of G. This provides a necessary and sufficient condition for

two connected G with the same Lie algebra to be isomorphic, and thus a full classification of connected

almost Abelian groups. A necessary and sufficient condition is found for a connected G to admit a faithful

matrix representation, and one such representation is given explicitly whenever such exists. Connected

subgroups H ⊂ G of connected G are described, and a condition is established that is equivalent to the

closedness of H in G.

Matrix representations of simply connected almost Abelian

groups

A real finite-dimensional almost Abelian Lie algebra is a semidirect product Rd⋊R, and is completely de-

termined by the operator ade0 ∈ End(Rd), where e0 = (0, 1) ∈ Rd⋊R. It was shown in [Ave18] that every

such algebra is isomorphic to a representative aAR(ℵ) for which ade0 = J(ℵ), where J(ℵ) is a (real) Jordan

canonical form with its spectral structure encoded in the so-called multiplicity function ℵ : C × N → N0

(here σR ≃ C is the set of monic irreducible polynomials over R as identified with the corresponding roots).

So let us consider the real finite-dimensional almost Abelian Lie algebra aA(ℵ) = aAR(ℵ) corresponding to

a finite dimensional multiplicity function ℵ given in its faithful matrix representation

aA(ℵ) ≃ R
d
⋊ R ∋ (v, t) 7→


0 0

v t J(ℵ)


 ∈ End(Rd+1). (1)

It is straightforward to check that

aA(ℵ) ∋


0 0

v t J(ℵ)


 7→




0 0 0

v t J(ℵ) 0

0 0 t


 (2)

and

aA(ℵ) ∋


0 0

v t J(ℵ)


 7→




0 0 0

v t J(ℵ) 0

t 0 0


 (3)

give further faithful matrix representations of aA(ℵ). In this section we will establish faithful matrix

representations for the simply connected almost Abelian groups corresponding to the Lie algebras aA(ℵ).
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Following [Ave18], we identify σR with C in the following way. Every monic irreducible polynomial

p ∈ σR is identified with its unique real root xp if it is first order, and with one of the conjugate pair of

complex roots xp and x̄p (say, the one in the upper half-plane) if it is second order. Denote

Tℵ
.
=

{
t ∈ R

∣∣ et J(ℵ) = 1
}
⊂ R, (4)

Xℵ
.
=

{
ω ∈ R

∣∣ suppℵ ⊂ ıωZ
}
.

In the next section we will obtain an explicit description of the set Tℵ. At this point we are mainly

interested in matrix representations.

Proposition 1 For a finite multiplicity function ℵ let

G
.
=






1 0

v et J(ℵ)


 (v, t) ∈ R

d ⊕ R



 .

Then G is a connected Lie group with Lie algebra aA(ℵ), and it is simply connected if and only if Tℵ = {0}.

Proof: That G is a connected Lie group is clear from the definition. For ∀(u, s) ∈ Rd ⊕ R let

(−1, 1) ∋ τ 7→


 1 0

v(τ ) et(τ) J(ℵ)


 ∈ G

be a smooth curve with

(v(0), t(0)) = (0, 0), (v′(0), t′(0)) = (u, s).

Then

d

dτ


 1 0

v(τ ) et(τ) J(ℵ)



∣∣∣∣
τ=0

=


0 0

u s J(ℵ)


 ∈ aA(ℵ),

which proves that aA(ℵ) is the Lie algebra of G. Finally, by construction G is diffeomorphic to Rd×(R/Tℵ),

which is simply connected iff Tℵ is trivial. �

If the Lie group in Proposition 1 is simply connected then it is a faithful matrix representation for the

simply connected almost Abelian Lie group with Lie algebra aA(ℵ). But there is a simple modification

that yields a faithful matrix representation for every simply connected almost Abelian Lie group.

Proposition 2 For a finite multiplicity function ℵ let

GI
.
=








1 0 0

v et J(ℵ) 0

0 0 et


 (v, t) ∈ R

d ⊕ R





, GII
.
=








1 0 0

v et J(ℵ) 0

t 0 1


 (v, t) ∈ R

d ⊕ R





.

Then both GI and GII are simply connected Lie groups with Lie algebras isomorphic to aA(ℵ).
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Proof: That GI and GII are Lie groups is clear from the definitions. The map

R
d ⊕ R ∋ (v, t) 7→




1 0 0

v et J(ℵ) 0

t 0 1


 ∈ GII

is a diffeomorphism, which proves that GII is simply connected. For ∀(u, s) ∈ Rd ⊕ R let

(−1, 1) ∋ τ 7→




1 0 0

v(τ ) et(τ) J(ℵ) 0

t(τ ) 0 1


 ∈ GII

be a smooth curve with

(v(0), t(0)) = (0, 0), (v′(0), t′(0)) = (u, s).

Then

d

dτ




1 0 0

v(τ ) et(τ) J(ℵ) 0

t(τ ) 0 1




∣∣∣∣
τ=0

=




0 0 0

u s J(ℵ) 0

s 0 0


 ,

which through faithful representation (3) shows the isomorphism between aA(ℵ) and the Lie algebra of

GII. Finally, the map

GI ∋




1 0 0

v et J(ℵ) 0

0 0 et


 7→




1 0 0

v et J(ℵ) 0

t 0 1


 ∈ GII

is easily checked to be a Lie group isomorphism, which shows that the above statements hold for the Lie

group GI as well. �

Thus, a simply connected almost Abelian Lie group is a semidirect product G = Rd⋊R, which is consistent

with the Lie algebra being a semidirect product aA(ℵ) = Rd ⋊ R. In order to notationally distinguish

between a Lie algebra element in Rd ⋊ R and a Lie group element in Rd ⋊ R we will use (v, t) ∈ Rd ⋊ R

for the former and [v, t] ∈ Rd ⋊ R for the latter, respectively.

Properties of the exponential map

We continue working with a real finite-dimensional almost Abelian Lie algebra aA(ℵ) and the associated

simply connected almost Abelian Lie group G. Below we will establish technical facts that will together

yield the necessary and sufficient condition for the exponential map on G to be a diffeomorphism. It

is well known that a solvable real simply connected Lie group fails to be exponential if and only if it

contains a copy of Ẽ+(2) - the universal cover of the identity component of the Euclidean motion group

in R2. Here we will reestablish this fact in a much more explicit way for the particular case of an almost
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Abelian simply connected Lie group, and find an equivalent condition in terms of the spectrum of the

adjoint representation ade0 = J(ℵ).

In order to describe the exponential map of the simply connected almost Abelian group G in terms of

matrix exponentials we need to carefully choose faithful matrix representations for the group G and the

Lie algebra aA(ℵ). Namely, we will choose the algebra representation (2) for the group representation GI,

and the algebra representation (3) for the group representation GII, respectively (in terms of Proposition

2).

Lemma 1 The exponential map of the simply connected almost Abelian group G corresponding to the

almost Abelian Lie algebra aA(ℵ) can be given by

exp




0 0 0

v t J(ℵ) 0

0 0 t


 =




1 0 0

et J(ℵ)−1

t J(ℵ)
v et J(ℵ) 0

0 0 et


 ∈ GI

or

exp




0 0 0

v t J(ℵ) 0

t 0 0


 =




1 0 0

et J(ℵ)−1

t J(ℵ)
v et J(ℵ) 0

t 0 1


 ∈ GII.

Proof: It is sufficient to perform matrix exponentiation, which we will do only for GII, since for GI it is

very similar. We first observe that




0 0 0

v t J(ℵ) 0

t 0 0




n

=




0 0 0

[t J(ℵ)]n−1v [t J(ℵ)]n 0

0 0 0


 , ∀n > 1, (5)

by mathematical induction on n. Then by series expansion of the exponential, we see that

exp




0 0 0

v t J(ℵ) 0

t 0 0


 =

∞∑

n=0

1

n!




0 0 0

v t J(ℵ) 0

t 0 0




n

= 1+




0 0 0

v t J(ℵ) 0

t 0 0


+

∞∑

n=2

1

n!




0 0 0

[t J(ℵ)]n−1v [t J(ℵ)]n 0

0 0 0


 =




1 0 0

et J(ℵ)−1

t J(ℵ)
v et J(ℵ) 0

t 0 1


 (6)

gives us the desired result. �

Note that Lemma 1 can now be written as

exp(v, t) =

[
et J(ℵ) − 1

t J(ℵ)
v, t

]
, ∀(v, t) ∈ aA(ℵ).

Remark 1 It follows that on the Abelian Lie subalgebra ker J(ℵ)⊕ R the exponential map is

exp(v, t) = [v, t], ∀(v, t) ∈ ker J(ℵ)⊕ R.
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For the next fact note that the Lie algebra of E+(2) is aA(1× ı1).

Lemma 2 If the almost Abelian Lie algebra aA(ℵ) contains a subalgebra L ⊆ aA(ℵ) isomorphic to aA(1×ı1)

then the corresponding simply connected almost Abelian Lie group G is not exponential.

Proof: Let ϕ : aA(1×ı1) → L be a Lie algebra isomorphism, and letH ⊂ G be the connected Lie subgroup

with associated Lie algebra L as given by Theorem 5.20 in [Hal15]. Let exp1 : aA(1 × ı1) → Ẽ+(2) be

the exponential map on Ẽ+(2), and exp2 : L → H be the exponential map on H . Assume towards

a contradiction that exp2 is injective. Since exp2 is injective, H is simply connected. Thus since H

and Ẽ+(2) are both simply connected, by Theorem 5.6 in [Hal15], there is a Lie group isomorphism

Φ : Ẽ+(2) → H such that Φ(exp1(X)) = exp2(ϕ(X)) for all X ∈ aA(1 × ı1). Since we know that exp1 :

aA(1× ı1) → Ẽ+(2) is not injective, let X,Y ∈ aA(1× ı1) such that X 6= Y and exp1(X) = exp1(Y ). Then

Φ(exp1(X)) = Φ(exp1(Y )) and therefore exp2(ϕ(X)) = exp2(ϕ(Y )). Since exp2 is injective, this implies

that ϕ(X) = ϕ(Y ) in spite of X 6= Y , thus contradicting the assumption of ϕ being an isomorphism.

This contradiction proves that exp1 and therefore also exp : aA(ℵ) → G cannot be injective, and G is not

exponential. �

Lemma 3 The simply connected Lie group G with almost Abelian Lie algebra aA(ℵ) fails to be exponential

if and only if suppℵ contains a polynomial p with non-zero imaginary root xp.

Proof: Let us perform some preliminary computations first. From [Ave18]

J(ℵ) =
⊕

p∈suppℵ

∞⊕

n=1

⊕

ℵ(p,n)

J(p, n). (7)

Thus, the exponential of the Jordan canonical form above can similarly be decomposed as

et J(ℵ) =
⊕

p∈suppℵ

∞⊕

n=1

⊕

ℵ(p,n)

et J(p,n). (8)

Now G is not exponential iff

∃(v1, t1), (v2, t2) ∈ aA(ℵ) s.t. (v1, t1) 6= (v2, t2), exp(v1, t1) = exp(v2, t2). (9)

From Lemma 1 we see that exp(v1, t1) = exp(v2, t2) if and only if t1 = t2
.
= t and

et J(ℵ) − 1

t J(ℵ)
(v1 − v2) = 0. (10)

Therefore (9) is equivalent to

∃ t ∈ R s.t. det

[
et J(ℵ) − 1

t J(ℵ)

]
= 0.

From (7) we find that

det

[
et J(ℵ) − 1

t J(ℵ)

]
=

∏

p∈suppℵ

∞∏

n=1

det

[
et J(p,n) − 1

t J(p, n)

]ℵ(p,n)

.
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Thus, (9) is equivalent to

∃ t ∈ R, ∃p ∈ suppℵ, ∃n ∈ N s.t. ℵ(p, n) > 0 ∧ det

[
et J(p,n) − 1

t J(p, n)

]
= 0.

If xp ∈ R then

det

[
et J(p,n) − 1

t J(p, n)

]
=

(
etxp − 1

txp

)n

> 0,

whereas if xp = a+ ıb 6∈ R then

det

[
et J(p,n) − 1

t J(p, n)

]
=

(
(eta cos(tb)− 1)2 + (eta sin(tb))2

t2(a2 + b2)

)n

.

Therefore

det

[
et J(ℵ) − 1

t J(ℵ)

]
= 0 ⇔ ∃ p ∈ suppℵ s.t.

txp

2π
∈ ıZ.

Thus (9) is equivalent to

∃ p ∈ suppℵ s.t. 0 6= xp ∈ ıR,

exactly as in the statement of the lemma. �

Lemma 4 If suppℵ contains a polynomial p with non-zero imaginary root xp then there exists a Lie

subalgebra L ⊂ aA(ℵ) which is isomorphic to aA(1× ı1).

Proof: Suppose that ∃ p ∈ suppℵ such that xp = ıb with 0 6= b ∈ R and ℵ(p, n) > 0 for some n ∈ N.

Fix an α ∈ ℵ(p, n) and let {ξiα(p, n)}
n
i=1 be the standard basis in the Jordan block (p, n, α) as in [Ave18].

Let W = C{ξ1α(p, n)} as an R-vector space. By Corollary 3 in [Ave18], W is an ade0 -invariant subspace,

and the restriction ade0 |W = xp = ıb, which is R-projectively similar to ı on C. Thus the Lie subalgebra

L ⋊ Re0 ⊂ aA(ℵ) is nothing else but aA(1 × ıb1), which by Proposition 11 in [Ave16] is isomorphic to

aA(1× ı1). �

Finally we are ready to formulate the main result of this section.

Proposition 3 A simply connected almost Abelian Lie group with Lie algebra aA(ℵ) fails to be exponential

if and only if suppℵ contains a non-zero purely imaginary number, which is equivalent to the existence

of a Lie subalgebra isomorphic to aA(1× ı1).

Proof: Follows directly by combining Lemma 2, Lemma 3 and Lemma 4. �

In our further studies we will need a precise description of the set Tℵ defined in (4).

Lemma 5 For a given finite real multiplicity function ℵ, we have Tℵ 6= {0} if and only if ℵ(p, n) = 0 for

all p ∈ suppℵ and n > 1 and Xℵ 6= ∅, in which case

Tℵ =
2π

ω0
Z, ω0 ∈ Xℵ, |ω0| = max {|ω| ω ∈ Xℵ} .

Proof: We recall from [Ave18] that J(p, n) = xp1+ Nn understood over the field R(xp) ⊂ End(Rdeg p).

Continuing from (8) we find that

et J(ℵ) =
⊕

p∈suppℵ

∞⊕

n=1

⊕

ℵ(p,n)

etxp

(
1+ tNn +

1

2
t2 N2

n + . . .

)
,
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whence

et J(ℵ) = 1 ⇔
[
t = 0 or ∀p ∈ suppℵ, xp = ıbp ∈ ıR, eıtbp = 1, ℵ(p, n) = 0, ∀n > 1

]
,

which means that

Tℵ 6= {0} ⇔ ∃t 6= 0 s.t. ∀p ∈ suppℵ, xp = ıbp ∈ ıR, eıtbp = 1, ℵ(p, n) = 0, ∀n > 1.

Let us show that provided ℵ(p, n) = 0, ∀p ∈ suppℵ, ∀n > 1, we have

∃t 6= 0 s.t. ∀p ∈ suppℵ, xp = ıbp ∈ ıR, eıtbp = 1 ⇔ Xℵ 6= ∅.

Indeed, if t 6= 0 then the condition eıtbp = 1 can be written as

xp ∈ ı
2π

t
Z, ∀p ∈ suppℵ,

which implies that
2π

t
∈ Xℵ.

Conversely, let 0 6= ω ∈ Xℵ. The possibility ω = 0 is excluded, since in that case suppℵ = {0}, which

together with n = 1 would imply that J(ℵ) = 0, i.e., that the Lie algebra is Abelian. Thus ω 6= 0, and

setting t = 2π/ω we check that et J(ℵ) = 1, i.e., t ∈ Tℵ.

Finally, Tℵ ⊂ R is the kernel of the homomorphism R ∋ t 7→ et J(ℵ) ∈ Aut(Rd), and is therefore a

discrete subgroup of the form

Tℵ = t0Z, |t0| = min
{
|t|

∣∣ 0 6= t ∈ Tℵ

}
.

Since 0 6= ω ∈ Xℵ is equivalent to 2π/ω ∈ Tℵ, we have that

t0 =
2π

ω0
, |ω0| = max {|ω| ω ∈ Xℵ} ,

which completes the proof. �

Discrete normal subgroups and quotients of simply connected

almost Abelian groups

In this section we will describe explicitly the discrete normal subgroups N of a simply connected almost

Abelian Lie group G. Then we will derive a necessary and sufficient condition for two quotient groups

G/N to be isomorphic.

We start by describing the centre of a simply connected almost Abelian Lie group. Recall from [Ave16]
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and [Ave18] that the centre of an almost Abelian Lie algebra aA(ℵ) is

Z(aA(ℵ)) = ker J(ℵ),

and denote

Tℵ
.
=

{
t ∈ R

∣∣ et J(ℵ) = 1
}
⊂ R.

Proposition 4 The centre of the simply connected almost Abelian Lie group G with Lie algebra aA(ℵ) is

given by

Z(G) = exp
[
Z(aA(ℵ))

]
× Tℵ = exp

[
Z(aA(ℵ))× Tℵ

]

=
{
[u, s] ∈ R

d
⋊ R

∣∣ u ∈ ker J(ℵ), es J(ℵ) = 1
}
.

The preimage of the identity component of the centre through the exponential map is

exp−1
[
Z(G)0

]
= Z(aA(ℵ)).

Proof: Let us use the faithful matrix representation

G = R
n
⋊ R ∋ [v, t] =




1 0 0

v et J(ℵ) 0

t 0 1




provided by Proposition 2. Suppose that [u, s] ∈ Z(G). Then the following must be satisfied,

[v, t][u, s] =




1 0 0

v et J(ℵ) 0

t 0 1







1 0 0

u es J(ℵ) 0

s 0 1


 =




1 0 0

v + et J(ℵ)u e(t+s) J(ℵ) 0

t+ s 0 1




=




1 0 0

u+ es J(ℵ)v e(t+s) J(ℵ) 0

t+ s 0 1


 =




1 0 0

u es J(ℵ) 0

s 0 1







1 0 0

v et J(ℵ) 0

t 0 1


 = [u, s][v, t], ∀(v, t) ∈ G.

This is equivalent to v + et J(ℵ)u = u+ es J(ℵ)v or

(
et J(ℵ) − 1

)
u =

(
es J(ℵ) − 1

)
v, ∀[v, t] ∈ G.

Setting v = 0 we have that (et J(ℵ)−1)u = 0 which forces J(ℵ)u = 0 or u ∈ ker J(ℵ), as desired. But if u is

such then (es J(ℵ) −1)v = 0 for all v, which means that es J(ℵ) = 1. The first statement of the proposition

now follows from Remark 1. If exp(v, t) = [u, s] ∈ Z(G)0 then t = s = 0 and v = u, as desired. �

Now let us proceed to the discrete normal subgroups N ⊂ G of a simply connected almost Abelian

Lie group.

Proposition 5 Every discrete normal subgroup N ⊂ G of a simply connected almost Abelian Lie group

G with Lie algebra aA(ℵ) is a free group of rank k ≤ dimker J(ℵ) + 1 generated by R-linearly independent
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elements

[v1, t1], . . . , [vk, tk] ∈ Z(G) ⊂ G = R
d
⋊ R.

Proof: It is well known that every discrete normal subgroup of a connected Lie group is in fact central

(e.g., [Hal15]). Thus it suffices to find discrete subgroups of Z(G). Notice that for every [v, t], [u, s] ∈ Z(G),

[v, t][u, s] = [v + u, t+ s], so that the restriction of the obvious homeomorphism f : G → Rd+1 to Z(G) is

also an injective Lie group homomorphism

f |Z(G) : Z(G) → R
d+1.

Therefore every discrete subgroup N ⊂ Z(G) is mapped to a discrete subgroup f(N) ⊂ Rd+1. As a

discrete subgroup of Rd+1, f(N) is a free Abelian group generated by R-linearly independent elements

ν1, . . . , νk ∈ Rd+1, and their span satisfies

R{νi}
k
i=1 ⊂ R {f(Z(G))} ,

which implies that

k ≤ dimR {f(Z(G))} ≤ dimker J(ℵ) + 1.

Setting [vi, ti]
.
= f−1(νi) for i = 1, . . . , k completes the proof. �

Now that we have a description of discrete normal subgroups N ⊆ G of a simply connected almost

Abelian Lie group, and since every connected almost Abelian Lie group can be written as a quotient

G/N for a corresponding N , we have effectively covered all connected almost Abelian Lie groups. Next

we want to know for which distinct discrete normal subgroups N,M ⊂ G the quotient groups G/N and

G/M are isomorphic. Below is a pretty quantitative answer to this question. Denote by qN : G → G/N

and qM : G → G/M the canonical quotient homomorphisms, and by Hom∗(G/N,G/M) the set of all Lie

group isomorphisms G/N → G/M .

Proposition 6 Let G be a simply connected Lie group and N,M ⊂ G two discrete normal subgroups.

Then

Hom∗(G/N,G/M) =
{
ΦNM = qM ◦Φ ◦ q−1

N

∣∣ Φ ∈ Aut(G), Φ(N) = M
}
.

Proof: We first prove that

[
∃ΦNM ∈ Hom∗(G/N,G/M) s.t. ΦNM ◦ qN = qM ◦Φ

]
⇔ Φ(N) = M, ∀Φ ∈ Aut(G). (11)

Let ΦNM as above be given. Then

qM ◦Φ(n) = ΦNM ◦ qN(n) = 1, ∀n ∈ N,

whence Φ(n) ∈ M , ∀n ∈ N , and thus Φ(N) ⊂ M . But also

qN (Φ−1(m)) = Φ−1
NM ◦ qM ◦Φ

(
Φ−1(m)

)
= Φ−1

NM ◦ qM (m) = 1, ∀m ∈ M,
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so that Φ−1(m) ∈ N , ∀m ∈ M , and thus Φ−1(M) ⊂ N . We conclude that Φ(N) = M . Conversely,

assume that Φ(N) = M . Then

qM ◦Φ(q−1
N (1)) = qM (Φ(N)) = qM (M) = 1,

so that ΦNM
.
= qM ◦Φ ◦ q−1

N : G/N → G/M is well defined. This completes the proof of (11). It remains

to show that every isomorphism Ψ ∈ Hom∗(G/N,G/M) arises as Ψ = ΦNM for a unique Φ ∈ Aut(G). To

see this let dΨ be the corresponding Lie algebra automorphism (say, Theorem 3.28 in [Hal15]). Then since

G is simply connected and has the same Lie algebra as G/N and G/M , there exists a unique Φ ∈ Aut(G)

such that dΦ = dΨ. Consider the following two Lie group homomorphisms,

Ψ ◦ qN : G → G/N, qM ◦Φ : G → G/M.

By Proposition 3.30 in [Hal15],

d (Ψ ◦ qN ) = dΨ ◦ d qN = dΨ = dΦ = d qM ◦dΦ = d (qM ◦Φ) .

But then by uniqueness in Theorem 5.6 of [Hal15] it follows that Ψ ◦ qN = qM ◦Φ, and that Φ is unique

with this property. The assertion is proven. �

In particular, two quotient groups G/N and G/M are isomorphic if and only if Hom∗(G/N,G/M) 6= ∅.

Automorphisms of almost Abelian Lie groups

In this section we will find an explicit description of the automorphism group Aut(G) of a connected almost

Abelian Lie group G, with each automorphism given as a diffeomorphism in global group coordinates.

For this purpose we will first combine Proposition 7, Proposition 8, Proposition 9 and Proposition 10

from [Ave16] into a single convenient description of automorphisms of an almost Abelian Lie algebra.

Proposition 7 The automorphism group Aut(aA(ℵ)) ⊂ End(Rd⋊R) of a real almost Abelian Lie algebra

aA(ℵ) = Rd ⋊ R takes the form

Aut(aA(ℵ)) =








x

y

t

w




7−→




α∆22 − β2γ2 ∆12 γ1 φ01

0 ∆22 γ2 0

0 β2 α 0

0 η ρ φ11







x

y

t

w




α, β2, γ1, γ2,∆12,∆22 ∈ R,

α∆22 − β2γ2 6= 0, η, ρ ∈ Rd−2,

φ01 ∈ Hom(Rd−2,R),

φ11 ∈ Aut(Rd−2)




(12)

if aA(ℵ) = H⊕ Rd−2 is a central extension of the Heisenberg algebra and

Aut(aA(ℵ)) =






∆ γ

0 α


 α ∈ Dil(ℵ), γ ∈ R

d, ∆ ∈ Aut(Rd), ∆J(ℵ) = α J(ℵ)∆



 (13)

otherwise.
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Remark 2 If we apply formula (13) to the Lie algebra H⊕ Rd−2 then we will obtain only the subgroup

consisting of those automorphisms corresponding to β2 = 0 in formula (12).

We begin with the case of a simply connected G, where there is a bijective correspondence between

Lie algebra automorphisms and Lie group automorphisms. On several occasions we will make use of the

following elementary fact.

Remark 3 If A, B and C are square matrices such that AB = BC then for every entire holomorphic

function F ∈ Hol(C) one has F (A)B = BF (C).

This can be easily checked term by term in the Taylor expansion.

Let H = exp(H) stand for the Heisenberg group.

Proposition 8 If G is a simply connected almost Abelian Lie group with Lie algebra aA(ℵ) then

Aut(G) =








x

y

t

w




Φ
7−→




[α∆22 − β2γ2]x+∆12y + γ1t+ β2γ2ty + 1
2
αγ2t

2 + 1
2
∆22β2y

2 + φ01(w)

∆22y + γ2t

β2y + αt

ηy + ρt+ φ11(w)




dΦ
∣∣
(0,0)

=




α∆22 − β2γ2 ∆12 γ1 φ01

0 ∆22 γ2 0

0 β2 α 0

0 η ρ φ11




∈ Aut(aA(ℵ))





(14)

if G = H× Rd−2 is a central extension of the Heisenberg group and

Aut(G) =



[v, t]

Φ
7−→

[
eαt J(ℵ) − 1

α J(ℵ)
γ +∆v, αt

]
dΦ

∣∣
(0,0)

=


∆ γ

0 α


 ∈ Aut(aA(ℵ))



 (15)

otherwise.

Proof: Central extensions of the Heisenberg group are exponential, and we can use the bijectivity of the

exponential map to switch from Lie algebra automorphisms to Lie group automorphisms. Namely, if

dΦ




x

y

t

w




=




[α∆22 − β2γ2]x+∆12y + γ1t+ φ01(w)

∆22y + γ2t

β2y + αt

ηy + ρt+ φ11(w)




then

Φ



exp




0 0 0 0

x 0 t 0

y 0 0 0

w 0 0 0







= Φ




1 0 0 0

x+ yt
2

1 t 0

y 0 1 0

w 0 0 1
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= exp




0 0 0 0

[α∆22 − β2γ2]x+∆12y + γ1t+ φ01(w) 0 β2y + αt 0

∆22y + γ2t 0 0 0

ηy + ρt+ φ11(w) 0 0 0




=




1 0 0 0

[α∆22 − β2γ2]x+∆12y + γ1t+ φ01(w) + [∆22y+γ2t][β2y+αt]
2

1 β2y + αt 0

∆22y + γ2t 0 1 0

ηy + ρt+ φ11(w) 0 0 1




,

which yields the desired assertion. For the generic case let us first show that the map

[v, t]
Φ

7−→

[
eαt J(ℵ) − 1

α J(ℵ)
γ +∆v, αt

]

is bijective by checking that its inverse is given by

[v, t]
Φ−1

7−→

[
−
etJ(ℵ) − 1

J(ℵ)
∆−1γ +∆−1v,

t

α

]
.

Indeed,

Φ−1 ◦ Φ[v, t] =

[
−
etJ(ℵ) − 1

J(ℵ)
∆−1γ +∆−1

[
eαt J(ℵ) − 1

α J(ℵ)
γ +∆v

]
,
αt

α

]
= [v, t],

where we used α J(ℵ)∆ = ∆J(ℵ) and Remark 3. Next we establish that the same map is a Lie group

homomorphism,

Φ[v, t] · Φ[u, s] =

[
eαt J(ℵ) − 1

α J(ℵ)
γ +∆v, αt

]
·

[
eαs J(ℵ) − 1

α J(ℵ)
γ +∆u, αs

]

=

[
eα(t+s) J(ℵ) − 1

α J(ℵ)
γ +∆

[
v + et J(ℵ)u

]
, α(t+ s)

]
= Φ[v + et J(ℵ)u, t+ s] = Φ ([v, t] · [u, s]) .

Finally, for every (u, s) ∈ Rd ⋊ R = aA(ℵ) let (−1, 1) ∋ τ 7→ [v(τ ), t(τ )] ∈ G be a smooth curve such that

[v(0), t(0)] = [0, 0] and (v′(0, t′(0)) = (u, s). Then

dΦ(u, s) =
d

dτ
Φ[v(τ ), t(τ )]|τ=0 =

d

dτ

[
eαt J(ℵ) − 1

α J(ℵ)
γ +∆v(τ ), αt(τ )

]∣∣∣∣
τ=0

= (∆u+ sγ, αs),

which completes the proof. �

Remark 4 Again, if we apply formula (15) to a central extension G = H×Rd−2 of the Heisenberg group

then we will exactly recover those automorphisms with β2 = 0 in formula (14).

The normal subgroup Inn(G) ⊂ Aut(G) of inner automorphisms contains Φg ∈ Aut(G) such that

Φg(h) = ghg−1 for some g ∈ G and all h ∈ G.

Corollary 1 If G is a simply connected almost Abelian Lie group with Lie algebra aA(ℵ) then

Inn(G) =

{
[v, t]

Φ
7−→

[
et J(ℵ) − 1

J(ℵ)
γ +∆v, t

]
γ ∈ J(ℵ)

(
R

d
)
, ∆ = es J(ℵ), s ∈ R

}
.

Proof: That Φg ∈ Inn(G) means that Φg(h) = ghg−1, for g ∈ G, ∀h ∈ G. Let g = [u, s] and h = [v, t],
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so that

Φ[u,s][v, t] = [u, s][v, t][u, s]−1 =
[
es J(ℵ)v −

(
et J(ℵ) − 1

)
u, t

]
=

[
et J(ℵ) − 1

J(ℵ)
γ +∆v, t

]
,

where

∆ = es J(ℵ), γ = − J(ℵ)u,

precisely as asserted. �

We turn now to the case of more general connected almost Abelian Lie group G/N where G is simply

connected and N ⊂ G is a discrete central subgroup. Denote by qN : G → G/N the canonical quotient

homomorphism. By Proposition 6 we know that

Aut(G/N) =
{
ΦN = qN ◦Φ ◦ q−1

N

∣∣ Φ ∈ Aut(G), Φ(N) = N
}
.

We will describe the condition Φ(N) = N more explicitly using Proposition 8. The following simple fact

will come in handy.

Lemma 6 If et J(ℵ) = 1 then aA(ℵ) = L0 ⊕W where L0 is indecomposable and W = ker J(ℵ), and

eαt J(ℵ) − 1

α J(ℵ)
= t [0L0 ⊕ 1W] , ∀α ∈ Dil(ℵ).

Proof: Note that
eαt J(ℵ) − 1

α J(ℵ)
= t

eαtJ(ℵ) − 1

αt J(ℵ)
.

If t = 0 then
eαt J(ℵ) − 1

αt J(ℵ)
= 1

and the assertion is clear. If t 6= 0 then t ∈ Tℵ 6= ∅, and by Lemma 5

eαt J(ℵ) − 1

αt J(ℵ)
=

⊕

p∈suppℵ

⊕

ℵ(p,1)

eαtxp − 1

αtxp
=


 ⊕

X 6=p∈suppℵ

⊕

ℵ(p,1)

eαtxp − 1

αtxp


 ⊕


 ⊕

ℵ(X,1)

eαtxp − 1

αtxp




= [0L0 ⊕ 1W] ,

as desired. �

Now fix a central discrete subgroupN ⊂ G and let by Proposition 5N be generated by {[xi, 0, 0, wi]}
k
i=1

if G = H× Rd−2 and {[vi, ti]}
k
i=1 otherwise.

Proposition 9 In terminology of Proposition 8, an automorphism Φ ∈ Aut(G) satisfies Φ(N) = N if

and only if


α∆22 − β2γ2 φ01

0 φ11





x1 . . . xk

w1 . . . wk


 =


x1 . . . xk

w1 . . . wk


 ·A, A ∈ GL(Z, k) (16)

15



for G = H× Rd−2 and


∆ γW

0 α





v1 . . . vk

t1 . . . tk


 =


v1 . . . vk

t1 . . . tk


 ·A, A ∈ GL(Z, k) (17)

otherwise. Here γW = [0L0 ⊕ 1W] γ as per Lemma 6.

Proof: If G = H × Rd−2 then for every Φ ∈ Aut(G) the condition Φ(N) ⊂ N can be expressed as the

statement that for every fixed 1 ≤ i0 ≤ k, the image Φ([xi0 , 0, 0, wi0 ] is an integer linear combination of

{[xi, 0, 0, wi]}
k
i=1. In matrix language of Proposition 8 this can be written as

Φ




xi0

0

0

wi0



=




[α∆22 − β2γ2]xi0 + φ01(wi0)

0

0

φ11(wi0)



=




α∆22 − β2γ2 0 0 φ01

0 0 0 0

0 0 0 0

0 0 0 φ11







xi0

0

0

wi0




=




x1 . . . xk

0 . . . 0

0 . . . 0

w1 . . . wk







A1 i0

. . .

Ak i0


 , Ai i0 ∈ Z, i = 1, . . . , k.

Combining these statements for all i0 = 1, . . . , k we obtain the formula (16) with A being a k× k matrix

with integer entries. Following the same logic for Φ−1(N) ⊂ N we will obtain a similar formula where the

matrix A−1 figures and is supposed to have integer coefficients. But Φ(N) = N is equivalent to Φ(N) ⊂ N

and Φ−1(N) ⊂ N , which holds if and only if both A and A−1 have integer entries, i.e., A ∈ GL(Z, k), as

desired. If G 6= H × Rd−2 then by Proposition 4 we see that eti J(ℵ) = 1 for all i = 1, . . . , k. Thus by

Proposition 8 and Lemma 6 the condition Φ(N) ⊂ N becomes

Φ


vi0
ti0


 =




e
αti0

J(ℵ)

α J
γ +∆vi0

αti0


 =


∆ γW

0 α





vi0
ti0


 =


v1 . . . vk

t1 . . . tk







A1 i0

. . .

Ak i0


 , Ai i0 ∈ Z, i = 1, . . . , k.

Combining these statements for all i0 = 1, . . . , k we obtain the formula (17) with A being a k× k matrix

with integer entries. The rest of the argument follows as before. �

Remark 5 Let N ⊂ G be a discrete central subgroup. Since all Φ ∈ Inn(G) act trivially on N ⊂ Z(G),

it follows that Φ(N) = N is satisfied automatically.

16



Discrete normal subgroups and quotients of simply connected

almost Abelian groups revisited

Pursuant to the aims of Proposition 6, in this section we want to derive necessary and sufficient conditions

for two discrete central subgroups N,M ⊂ G to be related by an automorphism Φ ∈ Aut(G) of the simply

connected almost Abelian Lie group G. We begin with preparatory steps with a discrete central subgroup

N ⊂ G given in terms of a set of generators [v1, t1], . . . , [vk, tk] according to Proposition 5. Every other

set of generators [u1, s1], . . . , [uk, sk] of N is related to the original one by


u1 . . . uk

s1 . . . sk


 =


v1 . . . vk

t1 . . . tk


 · A, A ∈ GL(Z, k).

According to Lemma 5, there exists t0 ∈ Tℵ and n1, . . . , nk ∈ Z such that ti = nit0, i = 1, . . . , k.

Lemma 7 There exists a change of generators A ∈ GL(Z, k) such that


u1 u2 . . . uk

s1 0 . . . 0


 =


v1 v2 . . . vk

t1 t2 . . . tk


 · A.

Proof: This can be achieved easily by column operations justified with Bezout’s identity. See Appendix

1. �

In what follows we will assume that a discrete central subgroup N ⊂ G is given by a set of generators in

the more economic form [v1, t1], [v2, 0], . . . , [vk, 0]. In terminology of formula (16) in [Ave18],

ker J(ℵ) =
∞⊕

n=1

⊕

ℵ(X,n)

Re1α(X,n),

or in other words, the vectors v1, . . . , vk ∈ Rd written in the standard basis emα (p, n) may have non-zero

entries only in the rows corresponding to the topmost elements of the Jordan blocks with eigenvalue zero.

Let ṽ1, . . . , ṽk ∈ Rq, q
.
= dimker J(ℵ), be the vectors obtained by picking only these significant rows. We

have seen in Proposition 8 that operators ∆ ∈ Aut(Rd) with [∆, J(ℵ)] = 0 play a prominent role in the

structure of automorphisms of G. Such an operator ∆ preserves the invariant subspace ker J(ℵ), and we

denote the restriction of ∆ to ker J(ℵ) by ∆̃ ∈ Aut(Rq). Let us now assume that Jordan blocks in J(ℵ) are

ordered by non-decreasing block dimension n. Applying Proposition 7 and Lemma 2 from [Ave18], we see

that ∆ = ∆̃⊕0 (i.e., the matrix ∆ beyond the submatrix ∆̃ is identically zero) and ∆̃ is an arbitrary real

invertible block-upper-triangular matrix with blocks corresponding to constant Jordan block dimension

n. That means,

∆̃ =




∆̃n1n1 ∆̃n1n2 . . . ∆̃n1ns

0 ∆̃n2n2 . . . ∆̃n2ns

. . . . . . . . . . . .

0 0 . . . ∆̃nsns




, ∆̃ninj
∈ Hom(Rqj ,Rqi), ℵ(X,ni) = qi, i, j = 1, . . . , s,
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q1 + . . .+ qs = q, ni > ni+1, i = 1, . . . , s− 1.

The following simple observation will be useful in what follows.

Remark 6 In terminology of [Ave18], Dil(ℵ) ⊂ R∗ is a finite multiplicative subgroup and therefore

Dil(ℵ) ⊂ Z2. If suppℵ ⊂ ıR, which by Lemma 5 is the case when Tℵ 6= {0}, then necessarily Dil(ℵ) = Z2.

Proposition 10 Two discrete central subgroups N and M given in terms of generators [v1, t1], [v2, 0], . . . , [vk, 0]

and [u1, s1], [u2, 0], . . . , [uk, 0], respectively, are related by an automorphism of G if and only if t1 = ±s1

and there exist ∆̃ as above and an A ∈ GL(Z, k) such that

∆̃ · (ṽ1 ṽ2 . . . ṽk) = (ũ1 ũ2 . . . ũk) ·A if t1 = 0

and

∆̃ · (w̃ ṽ2 . . . ṽk) = (ũ1 ũ2 . . . ũk) ·A if t1 6= 0,

where w̃ ∈ Rq can be chosen arbitrarily.

Proof: The subgroup N is mapped to the subgroup M by an automorphism Φ ∈ Aut(G) if and only if

the generators [v1, t1], [v2, 0], . . . , [vk, 0] are mapped to any set of generators of M , which must be related

to the original generators [u1, s1], [u2, 0], . . . , [uk, 0] through a matrix A ∈ GL(Z, k), i.e.,

Φ


v1 v2 . . . vk

t1 0 . . . 0


 =


u1 u2 . . . uk

s1 0 . . . 0


 ·A.

By Proposition 8 this amounts to


∆ γ

0 α


 ·


v1 v2 . . . vk

t1 0 . . . 0


 =


u1 u2 . . . uk

s1 0 . . . 0


 ·A,

since even for H× Rd−2 the coefficient β2 has no effect in acting on vectors from ker J(ℵ). By Remark 6

we have α = ±1 so that t1 = ±s1. Further,

∆ · (v1, v2, . . . vk) + (t1γ, 0, . . . , 0) = (v1, v2, . . . vk) ·A,

where the choice of γ ∈ Rd is completely arbitrary. The assertion now follows by restricting the above

equation to ker J(ℵ). �

Finding algebraic criteria under which the above conditions are satisfied is a hard problem which we will

not pursue here.

As a simple side result, the structure of a discrete central subgroup N ⊂ G can be simplified further

using automorphisms. In the above economic form of the basis for N the element v1 is arbitrary, and it

need not be possible to kill v1 by any further right GL(Z, k) action. Instead, we can use automorphisms

of G to achieve that simplification.

Proposition 11 For every discrete central subgroup N ⊂ G of a simply connected almost Abelian group

G = Rd ⋊ R with Lie algebra aA(ℵ) there exists an automorphism Φ ∈ Aut(G) such that the discrete
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central subgroup M = Φ(N) satisfies M = (M ∩ ker J(ℵ))× (M ∩ Tℵ).

Proof: Let N be given in terms of the generators [v1, t1], [v2, 0], . . . , [vk, 0]. If t1 = 0 then N ⊂ ker J(ℵ)

and the assertion is trivial. Assume that t1 6= 0, so that by Lemma 5 we have suppℵ ⊂ ıR, and therefore

Dil(ℵ) = Z2 [Ave18]. Choose Φ according to Proposition 8 with α = sgn t1, ∆ = 1 and γ = − 1
t1
v1. Then

M = Φ(N) is given by the set of generators


1 − 1

t1
v1

0 sgn t1


 ·


v1 v2 . . . vk

t1 0 . . . 0


 =


 0 v2 . . . vk

|t1| 0 . . . 0


 ,

whence the statement of the proposition follows. �

Connected almost Abelian groups

The goal of this section is to describe connected (not necessarily simply connected) almost Abelian

groups in terms of faithful matrix representations whenever the latter exist. Recall that a connected

almost Abelian group can be written as G/N where the universal cover G is a simply connected almost

Abelian group and N ⊂ G is a discrete central subgroup. Regardless of whether G/N is a matrix group,

the matrix representation of G can be used to produce a natural (almost global) coordinate chart on G/N

as follows. Consider a modification of the second faithful matrix representation of G from Proposition 2

as a faithful ”quotient-matrix” representation of G/N ,

G/N ∋ [v, t] mod N 7→




1
v
t




mod N

0 0

et J(ℵ) 0

0 1


 ∈ End(Rd+2).

This representation is algebraically convenient since by Proposition 5 we know that N can be seen as an

additive subrgoup of Rd+1, and [v, t] mod N is easy to compute. In a neighbourhood of the identity the

above representation coincides with the true faithful matrix representation of G.

Let us now turn to proper faithful matrix representations. The following provides an explicit faithful

matrix representation for a quotient group G/N under certain assumptions on N . Let

aA(ℵ) = R
d0 ⋊ R⊕ R

d−d0

be a decomposition of aA(ℵ) as in [Ave16] where Rd0 ⋊R is indecomposable. Then the simply connected

group decomposes as G = G0 × Rd−d0 . The first faithful representation of G from Proposition 2, upon

substitution of the decomposition Rd ∋ u 7→ v ⊕ w ∈ Rd0 ⊕ Rd−d0 , gives

G = R
d0 ⋊ R× R

d−d0 ∋ [v, t, w] 7→




1 0 0 0

v et J(ℵ0) 0 0

w 0 1 0

0 0 0 et




∈ End(Rd+1).
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If we denote by diagw the (d − d0)-dimensional diagonal matrix composed of components of w then it

can be easily checked that




1 0 0 0

v et J(ℵ0) 0 0

w 0 1 0

0 0 0 et




7→




1 0 0 0

v et J(ℵ0) 0 0

0 0 ediagw 0

0 0 0 et




(18)

is a matrix Lie group isomorphism, and therefore the right hand side is another faithful matrix represen-

tation of G.

Assume now that the discrete central subgroup satisfies N ⊂ Rd−d0 × Tℵ, i.e., per Proposition 5, is

generated by

[w1, t1], . . . , [wk, tk] ∈ R
d−d0 × Tℵ, 0 ≤ k ≤ d− d0 + 1.

The representation on the right hand side of (18) is convenient in that it allows to reshuffle the last

d − d0 + 1 dimensions in way to separate the generators of N . Namely, complete arbitrarily the above

generators of N to a basis in Rd−d0 ⊕ R,

[w1, t1], . . . , [wd−d0+1, td−d0+1] ∈ R
d−d0 ⊕ R,

and consider the inverse P ∈ End(Rd−d0+1) of the matrix with columns being elements of this basis,

P
.
=


w1 . . . wd−d0+1

t1 . . . td−d0+1




−1

. (19)

Let P‖ ∈ Hom(Rd−d0+1,Rk) represent the first k rows of P, and P⊥ ∈ Hom(Rd−d0+1,Rd−d0+1−k) the

remaining rows.

Proposition 12 If the discrete central subgroup satisfies N ⊂ Rd−d0 × Tℵ then the map

G/N ∋ [v, t, w] mod N 7→




1 0 0 0

v et J(ℵ0) 0 0

0 0 ediag 2πıP‖[w,t]⊤ 0

0 0 0 ediag P⊥[w,t]⊤




∈ End(Rd+2)

is a faithful matrix representation of G/N .

Proof: In view of (18) being a faithful representation of G, it suffices to show that the map




1 0 0 0

v et J(ℵ0) 0 0

0 0 ediagw 0

0 0 0 et




7→




1 0 0 0

v et J(ℵ0) 0 0

0 0 ediag 2πıP‖[w,t]⊤ 0

0 0 0 ediag P⊥[w,t]⊤




is a Lie group homomorphism with kernel N . Checking that this is a Lie group homomorphism is
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straightforward. Now let [v, t, w] ∈ Rd0 ⋊ R× Rd−d0 = G. Then




1 0 0 0

v et J(ℵ0) 0 0

0 0 ediag 2πıP‖[w,t]⊤ 0

0 0 0 ediag P⊥[w,t]⊤




=




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




iff

v = 0, t ∈ Tℵ, P‖[w, t]⊤ ∈ Z
k, P⊥[w, t]⊤ = 0.

The latter two conditions can be combined into P[w, t]⊤ ∈ Zk ⊕ 0, which in view of (19) can be written

as 
w

t


 =


w1 . . . wd−d0+1

t1 . . . td−d0+1





m

0


 , m ∈ Z

k,

which is equivalent to [w, t] being generated by [w1, t1], . . . , [wk, tk] over Z. Thus [v, t, w] is in the kernel

iff [v, t, w] ∈ N , which completes the proof. �

Below we establish a necessary and sufficient condition for G/N to be a matrix group in terms of the

subgroup N . We start with a little lemma.

Lemma 8 Let X,Y, Z ∈ End(Cn) be such that

[X, Y ] = Z, [X,Z] = [Y,Z] = 0, Z + Z∗ = 0.

Then Z = 0.

Proof: Since Z is anti-Hermitean, by the spectral theorem for Hermitean matrices it is unitarily diago-

nalizable with purely imaginary spectrum. Assume without loss of generality that

Z = ı

q⊕

i=1

λi1ni
, λi ∈ R, n1 + . . .+ nq = n.

Then by Proposition 7 in [Ave18] the matrices X and Y are of the form

X =

q⊕

i=1

Xi, Y =

q⊕

i=1

Yi, Xi, Yi ∈ End(Cni).

Thus [Xi, Yi] = λi1ni
and therefore tr[Xi, Yi] = 0 = λi, i = 1, . . . , q, which shows that Z = 0. �

Proposition 13 Let G = Rd ⋊ R be a simply connected almost Abelian group with Lie algebra L =

Rd ⋊ R = aA(ℵ), and let N ⊂ G be a discrete central subgroup with generators [v1, t1], . . . , [vk, tk]. Then

the following two statements are equivalent:

1. R {(v1, t1), . . . , (vk, tk)} ∩ [L,L] = 0

2. G/N has a faithful (real or complex) matrix representation
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Proof: 2.⇒ 1. Assume towards a contradiction that condition 1. is not satisfied,

[(0, 1), (u, 0)] =

k∑

i=1

λi(vi, ti) 6= 0, u ∈ R
d, λi ∈ R, i = 1, . . . , k,

and let σ : G/N → Aut(Cn) be a faithful representation with dσ : L → End(Cn) being its derivative.

Because exp |Z(L) = 1 we have that exp(vi, ti) = [vi, ti] and thus σ[vi, ti] = edσ(vi,ti) = 1, which implies by

Lemma 5 that dσ(vi, ti) is diagonalizable with spectrum in 2πıZ. Moreover, since [dσ(vi, ti), dσ(vj , tj)] = 0

for all i, j = 1, . . . , k, there is an invertible P ∈ Aut(Cn) such that

P−1dσ(vi, ti)P = ıDi, D∗
i = Di, i = 1, . . . , k.

Denote

X
.
= P−1dσ(0, 1)P, Y

.
= P−1dσ(0, u)P, Z

.
= ı

k∑

i=1

Di.

Then the assumptions of Lemma 8 are satisfied, implying that

Z = dσ([(0, 1), (u, 0)]) = 0, [(0, 1), (u, 0)] 6= 0,

which contradicts the fact that σ is faithful.

1.⇒ 2. Let now condition 1. be satisfied. By Lemma 7 we can assume without loss of generality

that t2 = t3 = . . . = tk = 0. If L = Rd0 ⋊ R ⊕ Rd−d0 is the decomposition as before then condition 1.

implies that v2, . . . , vk ∈ Rd−d0 . If t1 = 0 then condition 1. also requires that v1 ∈ Rd−d0 , which shows

that N ⊂ Rd−d0 , and by Proposition 12 the quotient group G/N has a faithful matrix representation. If

t1 6= 0 then applying the automorphism Φ ∈ Aut(G) from Proposition 11 we obtain the discrete central

subgroup Φ(N) with generators [0, t1], [v2, 0], . . . , [vk, 0], which now satisfies Φ(N) ⊂ Rd−d0 ×Tℵ. Thus by

Proposition 12 the quotient group G/Φ(N) has a faithful matrix representation. But then by Proposition

6 the automorphism Φ induces an isomorphism between G/N and G/Φ(N), proving that G/N has a

faithful matrix representation, too. �

Connected subgroups of a connected almost Abelian Lie

group

The goal of this section is describing all connected Lie subgroups of a connected almost Abelian Lie

group. A connected almost Abelian group can be identified with the quotient group G/N where G is a

simply connected almost Abelian Lie group and N ⊂ G is a discrete normal subgroup (see Proposition

5). The canonical quotient map qN : G → G/N is a Lie group homomorphism, and its derivative d qN is

an isomorphism of Lie algebras. Thus we can assume without loss of generality that the Lie algebras of

both G and G/N are aA(ℵ). By the Lattice Isomorphism Theorem (Theorem 20 in [DuFo04]) subgroups

HN ⊂ G/N are exactly the quotients H/N of subgroups H ⊂ G with N ⊂ H ⊂ G. However, the complete
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preimage qN (HN) ⊂ G may not be a closed subgroup, and we may have to choose a different H with

H/N = HN .

We will start from a simply connected almost Abelian Lie group G with Lie algebra aA(ℵ) = Rd⋊R. By

Theorem 5.20 in [Hal15] to every Lie subalgebra L ⊂ aA(ℵ) there exists a unique connected Lie subgroup

HL ⊂ G for which it is the Lie algebra, and conversely, all connected Lie subgroups of G arise in this way.

Remark 7 By Proposition 4 in [Ave16], either of the following two possibilities occurs:

1. L = W ⊂ Rd is an Abelian Lie subalgebra.

2. L is of the form

L =
{
(w + tv0, t) ∈ R

d
⋊ R

∣∣ w ∈ W, t ∈ R
}
,

where v0 ∈ Rd is a fixed element and W ⊂ Rd is an ad-invariant vector subspace. In this case L is

Abelian if and only if W ⊂ Z(aA(ℵ)).

Accordingly, the corresponding connected Lie subgroups HL fall into two categories.

Proposition 14 The connected Lie subgroup HL ⊂ G of the simply connected almost Abelian Lie group

G with Lie algebra L as in Remark 7 is given by either of the following two forms, accordingly:

1.

HL =
{
[w, 0] ∈ R

d
⋊ R

∣∣ w ∈ W
}
= exp(W)

2.

HL =

{[
w +

et J(ℵ) − 1

J(ℵ)
v0, t

]
∈ R

d
⋊ R

∣∣ w ∈ W, t ∈ R

}
≃ exp(W) · R

In the second case

exp(W) · R =




exp(W)× R if W ⊂ Z(aA(ℵ)),

exp(W)⋊ R else.

Proof: That HL is indeed a Lie subgroup in both cases can be checked directly using, say, the faithful

matrix representation I of Proposition 2. In Case 1 the exponential map from Lemma 1 delivers the

desired result immediately. For Case 2, pick an arbitrary (w0 + t0v0, t0) ∈ L and let (−1, 1) ∋ τ 7→

(w(τ ), t(τ )) ∈ W⊕ R be a smooth curve with

(w(0), t(0)) = (0, 0), (w′(0), t′(0)) = (w0, t0) ∈ W ⊕ R.

Then we have
d

dτ

[
w(τ ) +

et(τ) J(ℵ) − 1

J(ℵ)
v0, t(τ )

]∣∣∣∣
τ=0

= (w0 + t0v0, t0),

showing that the Lie algebra of HL is L. Finally, an automorphism with α = 1, ∆ = 1 and γ = v0 from

Proposition 8 can be used to establish the isomorphism between HL and exp(W) · R. �

Remark 8 Proposition 14 easily implies, in particular, that all connected subgroups of a simply connected

almost Abelian group are simply connected and closed.

Remark 9 By Proposition 11 in [Ave16], two almost Abelian Lie subalgebras L1,L2 ⊂ aA(ℵ) correspond-

ing to ad-invariant vector subspaces W1,W2 ⊂ Rd are isomorphic if and only if J(ℵ)|W1 and J(ℵ)|W1
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are projectively similar. Since both HL1 and HL2 are simply connected, we have that HL1 ≃ HL1 if and

only if L1 ≃ L2.

Remark 10 By Corollary 5.7 in [Hal15], two connected subgroups HL1 ,HL2 ⊂ G of a simply connected

almost Abelian group G, associated with Lie algebras L1,L2 ⊂ aA(ℵ), respectively, are related by an auto-

morphism Φ ∈ Aut(G) if and only if the Lie algebras are related by the automorphism dΠ ∈ Aut(aA(ℵ)).

Let us now consider subgroups HN ⊂ G/N of connected almost Abelian groups G/N .

Lemma 9 Let G be a Lie group and N ⊂ G a normal subgroup. Then every connected subgroup HN ⊂

G/N is the projection HN = H/N of a unique connected Lie subgroup H ⊂ G.

Proof: The quotient map qN : G → G/N is a surjective Lie group homomorphism, and its derivative

d qN : LG :→ LG/N is a surjective Lie algebra homomorphism. The preimage d q−1 LHN
of the Lie algebra

of HN is a Lie subalgebra of LG, and thus is the Lie algebra of a unique connected subgroup H ⊂ G

(Theorem 5.20 in [Hal15] or Proposition 5.6.5 in [RuSc13]). The image qN (H) ⊂ G/N is a connected

subgroup with Lie algebra LHN
, which by uniqueness must be qN(H) = HN . Finally, if H ′ ⊂ G is

another connected subgroup with qN (H ′) = HN then LH′ = LH , so that again by uniqueness H ′ = H .

�

Remark 11 Since the projection H/N of a connected subgroup H ⊂ G is a connected subgroup H/N ⊂ G,

we conclude that connected subgroups of G/N are exactly images H/N of connected subgroups H ⊂ G,

which were already classified above.

It remains to find when a given connected subgroup H/N ⊂ G/N is closed. For this purpose we will

first establish a simple fact regarding the relative structure of H and N .

Lemma 10 Let G be a simply connected almost Abelian group, N ⊂ G a discrete normal subgroup and

H ⊂ G a connected subgroup. Then there exists a subgroup B ⊂ N such that N = (N ∩H)×B.

Proof: We use Proposition 14 to write H in the form H = exp(W) or H = exp(W) ⋊ R (direct or

semidirect), with W ⊂ Rd a vector subspace. All we need to show is that the N ∩ H ⊂ N is a pure

subgroup. Indeed, let [v, t] ∈ N and q ∈ N such that [v, t]q = [qv, qt] ∈ N ∩ H . Then qv ∈ W and thus

also v ∈ W, whence [v, t] ∈ N ∩H . Then by Corollary 28.5 in [Fuc70], N ∩H is a direct factor. �

Since

exp |Z(aA(ℵ))⊕R : Z(aA(ℵ))⊕ R → Z(G)0 × R

is a bijection, we can introduce its inverse

log = [exp |ker J(ℵ)⊕R]
−1 : Z(G)0 × R → Z(G)0 × R.

For every subset X ⊂ Z(G)0 × R we denote by X the connected subgroup

X = exp [R〈log(X)〉] , ∀X ⊂ Z(G)0 × R.

Thus X ⊂ G is a minimal Lie subgroup containing the set X.
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Proposition 15 Let G be a simply connected almost Abelian group, N ⊂ G a discrete normal subgroup

and H ⊂ G a connected subgroup. Then the connected subgroup H/N ⊂ G/N is closed if and only if

H ∩N = H ∩N .

Proof: First let us note that

H ∩N ⊂ H ∩N.

Indeed, H ∩N ⊂ N is obvious, while H ∩N ⊂ H follows from R〈log(H ∩ N)〉 ⊂ LH , where LH is the

Lie algebra of H . Let by Lemma 10 N = (H ∩N)×B for a subgroup B ⊂ N . Since N is a free Abelian

group, we have that R〈log(H ∩ N)〉 ∩ R〈log(B)〉 = 0, and because N is a subgroup of the Abelian Lie

group Z(G)0 × R, it follows that N = H ∩N ×B. Thus

H ∩N = H ∩ (H ∩N ×B) = H ∩N × (H ∩ B),

H ∩N = H ∩N ⇔ H ∩B = {1}.

By definition of quotient topology, H/N ⊂ G/N is closed if and only if the complete preimage HN ⊂ G

is closed. The subgroups H and N are connected, and so is their product HN . Since N ⊂ G is central,

both HN and HN are subgroups. Being a connected subgroup, HN ⊂ G is closed by Proposition 14.

Thus the question is reduced to whether HN ⊂ HN is closed or not.

H ∩B ⊂ B is a closed Lie subgroup, hence B = H ∩B ×C where C ⊂ B is a closed Lie subgroup. It

follows that

HN = HB = BH, HN = HB = HC = CH,

and we want to know whether BH ⊂ CH is closed. Again, by definition of quotient topology, this is

equivalent to BH/H ⊂ CH/H being closed or not. Since B∩H = C∩H = {1}, the homomorphisms B →

BH/H and C → CH/H are isomorphisms, therefore rankBH/H = rankB and dimCH/H = dimC,

which implies that rankBH/H = dimB ≥ dimCH/H , and equality holds if and only if H ∩B = {1}. If

H ∩ B = {1} then the homomorphism B → BH/H is an isomorphism, and BH/H ⊂ CH/H = BH/H

is closed. On the other hand, if H ∩B 6= {1} then dimCH/H < rankBH/H , therefore BH/H ⊂ CH/H

is dense (see Theorem 6.1 in [StTa02]). �
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Birkhäuser, 1 edition, 1998.

Appendix: proof of Lemma 7

Let 1 < k ∈ N and (v1, t1), . . . , (vk, tk) ∈ Rd×R such that ti = nit0, ni ∈ Z for i = 1, . . . , k, where t0 ∈ R.

Lemma 7 There exists a change of generators A ∈ GL(Z, k) such that


u1 u2 . . . uk

s1 0 . . . 0


 =


v1 v2 . . . vk

t1 t2 . . . tk


 · A.

Remark 12 Here s1 = d∗ t0, where d∗ = gcd(n1, . . . , nk).

Proof: The statement amounts to the existence of an A ∈ GL(Z, k) such that

(d∗, 0, . . . , 0) = (n1, n2, . . . , nk) ·A.

Dividing both sides by d∗ we reduce the problem to finding an A ∈ GL(Z, k) such that

(1, 0, . . . , 0) = (ñ1, ñ2, . . . , ñk) · A, (20)

where ñi = ni/d∗ for i = 1, . . . , k and gcd(ñ1, . . . , ñk) = 1. Denote

d1
.
= gcd(ñ2, ñ3, . . . , ñk), d2

.
= gcd(ñ1, ñ3, . . . , ñk), . . . , dk

.
= gcd(ñ1, ñ2, . . . , ñk−1),

m1
.
=

ñ1

d2d3 . . . dk
, m2

.
=

ñ2

d1d3 . . . dk
, . . . , mk

.
=

ñk

d1d2 . . . dk−1
,
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so that ñi = mid1d2 . . . dk/di for i = 1, . . . , k and gcd(mi,mj) = 1 for all i 6= j.

We will define the auxiliary matrix B ∈ GL(Z, k) depending on whether k is even or odd. If k = 2r then

define numbers q1, . . . , qk ∈ Z such that, by Bézout’s identity, m2j−1q2j−1 +m2jq2j = 1 for j = 1, . . . , r.

Then B is the following matrix,

B =




q1 0 . . . 0 −m2 0 . . . 0

q2 0 . . . 0 m1 0 . . . 0

0 q3 . . . 0 0 −m4 . . . 0

0 q4 . . . 0 0 m3 . . . 0

...
...

...
...

...
...

...
...

0 0 . . . qk−1 0 0 . . . −mk

0 0 . . . qk 0 0 . . . mk−1




.

It is easy to see that indeed, |detB| = 1 and

(m1, . . . ,mr |mr+1, . . . ,mk) ·B = (1, . . . , 1 | 0, . . . , 0).

If on the other hand k = 2r+3 then we introduce the numbers q1, . . . , qk−3 ∈ Z as before, m2j−1q2j−1 +

m2jq2j = 1 for j = 1, . . . , r. Then, again powered by Bézout’s identity, we define integers qk−2, qk−1, qk, sk−2, sk ∈

Z such that mk−2qk−2+mk−1qk−1+mkqk = 1 and mk−2sk2 +mksk = 1. Now the matrix B is as follows,

B =




q1 0 . . . 0 0 −m2 0 . . . 0 0 0

q2 0 . . . 0 0 m1 0 . . . 0 0 0

0 q3 . . . 0 0 0 −m4 . . . 0 0 0

0 q4 . . . 0 0 0 m3 . . . 0 0 0

...
...

...
...

...
...

...
...

...
...

...

0 0 . . . qk−4 0 0 0 . . . −mk−4 0 0

0 0 . . . qk−3 0 0 0 . . . mk−3 0 0

0 0 . . . 0 qk−2 0 0 . . . 0 mk −mk−1sk−2

0 0 . . . 0 qk−1 0 0 . . . 0 0 1

0 0 . . . 0 qk 0 0 . . . 0 −mk−2 −mk−1sk




.

Again, it can be observed that |detB| = 1 and

(m1, . . . ,mr+1 |mr+2, . . . ,mk) ·B = (1, . . . , 1 | 0, . . . , 0).

For every l ∈ N denote by Cl ∈ GL(Z, l) the matrix

Cl =




1 −1 0 . . . 0

0 1 −1 . . . 0

...
...

...
...

...

0 0 0 . . . 1




.
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It can be easily seen that

(1, . . . , 1, 0, . . . , 0) · [Cl ⊕ 1k−l] = (1, 0, . . . , 0),

where exactly l non-zero entries are on the left-hand side. Finally, we define the auxiliary matrix D ∈

GL(Z, k) by D = B · [Cr ⊕ 1r] or D = B · [Cr+1 ⊕ 1r+2] depending on whether k = 2r or k = 2r + 3,

respectively. From what we had above it is clear that

(m1,m2, . . . , mk) ·D = (1, 0, . . . , 0). (21)

This property of D (as the more general (20)) is remarkable. It means that the first column D∗1 is a

Bézout tuple for (m1, . . . ,mk), while the k−1 other columns D∗2, . . . , D∗k span the hyperplane orthogonal

to (m1, . . . ,mk). It is clear that any other Bézout tuple for (m1, . . . ,mk) is of the form D ·(1, λ2, . . . , λk)
⊤

with (λ2, . . . , λk) ∈ Zk−1, and replacing the first column D∗1 in D with any other such tuple will not

violate (21).

Remember that gcd(ñ1, . . . , ñk) = 1, so that there exists a Bézout tuple (p1, . . . , pk) ∈ Zk such that

ñ1p1 + . . .+ ñkpk = 1. It follows that

m1
d1 . . . dk

d1
p1 + . . .+mk

d1 . . . dk
dk

pk = 1,

that is, d1 . . . dk · (p1/d1, . . . , pk/dk) is a Bézout tuple for (m1, . . . ,mk), and we can afford setting D∗1 =

d1 . . . dk · (p1/d1, . . . , pk/dk) without changing (21) or detD.

The desired matrix A can be constructed as below,

A =




p1 D1,2d1 . . . D1,kd1
...

...
...

...

pk Dk,2dk . . . Dk,kdk


 .

We check that (20) is true. Indeed, (ñ1, . . . , ñk) · (p1, . . . , pk)
⊤ = 1 by definition, whereas

(ñ1, . . . , ñk) · (D1,jd1, . . . , Dk,jdk)
⊤ = d1 . . . dk · (m1, . . . ,mk) · (D1,j , . . . , Dk,j) = 0, j = 2, . . . , k

follows from (21). Finally,

detA =

∣∣∣∣∣∣∣∣∣
diag(d1, . . . , dk) ·




p1/d1 D1,2 . . . D1,k

...
...

...
...

pk/d1 Dk,2 . . . Dk,k




∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

d1 . . . dkp1/d1 D1,2 . . . D1,k

...
...

...
...

d1 . . . dkpk/d1 Dk,2 . . . Dk,k

∣∣∣∣∣∣∣∣∣
= detD,

which proves that A ∈ GL(Z, k). �
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