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1 Introduction

In general, algebraic geometry deals with this duality between

{polynomial equations}←→ {varieties (schemes)}

f←→ V(f).

Many times a statement that is hard to prove on one side will be manageable on the other side, and we
try to understand things from the knowledge of both sides.

Let’s consider the ring S = C[x1, . . . , xn], and I an ideal of S, (finitely) generated by f1, . . . , fs. In
what is to come, we use multi-index notation: for α ∈Nn, write xα = xa11 x

α2
2 · · · x

αn
n .

There are three flavors of polynomial theories depending on the types of fi:

• Monomials: each fi has only one term (i.e. fi = cixα).

A monomial ideal is an ideal I ⊂ S (finitely) generated by monomials. If I is monomial, then V(I)

is a union of coordinate subspaces of Cn.

Examples:

1. x1 = 0 in S.

2. x1x2 = 0 in C[x1, x2]. The cross is called “reducible” as a union of two (irreducible) lines.

3. x21 = 0. Then V(x21) is the x2 axis. But this is not “reduced” in the sense that x1 is nilpotent.

• Let’s come back to binomials in a second.

• Trinomials: each fi has at most 3 non-zero monomial terms. E.g. x1 + x2 + x3 is a trinomial, but
x1 + x

2
2 + x

4
3 + x

8
4 isn’t.

Lemma. Any affine variety is a vanishing locus of a trinomial ideal.

More precisely, we are saying S/I as a ring is isomorphic to C[x1. . . . , xN]/a for some (usually
larger) N, where a is generated by trinomials. Although this is a nice result, it is pretty useless, and
nothing is important here.

Proof. (sketch) For any polynomial a1xα1 + · · · + alxαl in I, we introduce l− 3 new variables
{zi}

l−3
i=1. Then we can replace a1xα1 + · · ·+ alxαl = 0 by

a1x
α1 + a2x

α2 + z1 = −z1 + z2 + a3x
α3 = · · · = −zl−3 + al−1x

αl−1 + alx
αl = 0.

Repeat this for every equation and we are done. Note this is a much larger ambient space.

• Binomials: let I be generated by binomials.

Assume here I is prime (then V(I) will be both irreducible and reduced. Call this “integral”).

Proposition. Let C ⊃ X = V(I) for the above I, with dimX = m. Then X contains (a copy of ) (C∗)m

as a Zariski dense open subset. Moreover, the multiplication map (group operation):

(C∗)m × (C∗)m → (C∗)m

extends to a map
X× (C∗)m → X.
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Examples:

1. Cn with I = (0). This obviously contains (C∗)n as a dense open. The map is defined by

Cn × (C∗)n → Cn

(z1, . . . , zn)× (t1, . . . , tn) 7→ (z1t1, . . . , zntn).

2. Take the hyperplane V(x1 − x2) in C3, which is isomorphic to C2 (and is 2-dimensional). It
contains (C∗)2 = {(t, t, t ′) | t, t ′ ∈ C∗}. It extends to the whole V(x1 − x2) as 0 times anything
is 0.

3. Take V(x21 − x2) in C3, which is again 2-dimensional. It contains (C∗)2 = {(t, t2, t ′) | t, t ′ ∈
C∗}.

Key fact: monomial is a homomorphism (C∗)n
u
−→ C∗. So the ideal I encodes (as we require

binomials equal 0) the intersection of translates of the kernels of the homomorphisms u. Thus there
is a hidden algebraic torus structure here.

Definition. An algebraic torus over C of rank 1 is a group variety Gm = C∗. A rank n algebraic torus is
(Gm)n = (C∗)n.

By group variety (aka algebraic group), we are saying:

• There are usual group axioms on Gm.

• It’s a variety: (C∗)n = V(x1x2 · · · xn+1 − 1) (RHS mapping to (x1, . . . , xn) gives the required
identity).

• Both: the multiplication and its inverse are both morphisms of varieties.

lecture 2 If X is an affine variety,
X = V(I)

for some ideal I ⊂ C[x1, . . . , xn]. But by doing so, we are embedding X into the ambient space An
C . S/I

has many presentation of a quotient of an polynomial ring.

Notation: Spec(S/I) = V(I), and Spec(R) = V(I) where R = S/I.

Definition. An (affine) toric variety X is an irreducible (affine) variety over C of dimension l, containing
a copy of (C∗)l as a dense open subset, such that the multiplication map m : (C∗)l × (C∗)l → (C∗)l

extends to a group action X× (C∗)l → X.

Remark.

1. Since X is irreducible, Zariski open & non-empty imply dense.

2. We can drop affine, and by variety, we mean a finite-type C-scheme.

3. The embedding of (C∗)l is part of the data. Any p1 6= p2 on P1 can be moved to 0 and∞ by a
Mobius map, and thus P1 \ {p1,p2} ∼= C∗.

Example.

1. (C∗)l and Cl.

2. (C∗)l1 × (C∗)l2 .
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3. Pl. Pick homogeneous coordinates x0, . . . , xl. Then identify

(C∗)l = {[1 : t1 : · · · : tl] | ti ∈ C∗} ↪→ Pl.

To check density and openness, note:

Pl ⊃ Cl = {[x0 : · · · : xl] | x0 6= 0} ⊃ (C∗)l = {all xi 6= 0}.

4. Pl1 × · · · ×Plk .

Remark. There are infinitely many toric varieties in every dimension l ≥ 2. What is more interesting is
that there exist toric varieties Xwhere

• X is singular.

• X is compact but not projective.

• Pic(X) has torsion.

All such cases can be constructed using combinatorics.

Two lattices we will use frequently:

• N = Homalg grp(C
∗, (C∗)l) ∼= Zl, called the cocharacter lattice, where the isomorphism is given by

(RHS to LHS):
(λ1, . . . , λl) 7→ (

t 7→ (tλ1 , . . . , tλl)
)

.

• M = Homalg grp((C
∗)l, C∗) ∼= Zl, called the character lattice, where the isomorphism is given by :

(u1, . . . ,ul) 7→ (
(t1, . . . , tl) 7→ t

u1
1 · · · t

ul
l

)
.

Let X be a toric variety with torus Glm and latticesN andM. Given λ ∈ N in the cocharacter lattice, i.e. a
morphism

λ(t) : C∗ → (C∗)l ⊂ X,

we can ask: does limt→∞ λ(t) exist? If so, what is it?

Example. P2 with (C∗)2 = {[1 : t1 : t2]}, and N = Z2.

Limit always exists, as X = P2 is proper. But what is the limit? Let λ = (λ1, λ2) ∈ Z2. Let’s consider
the case when t→ 0.

1. λ1, λ2 > 0. Then

λ : C∗ → (C∗)2

t 7→ [1 : tλ1 : tλ2 ]→ [1 : 0 : 0].

2. λ1 = 0 and λ2 > 0.
t 7→ [1 : 1 : tλ2 ]→ [1 : 1 : 0].

3. λ1 > λ2 and λ2 < 0.
[1 : tλ1 : tλ2 ] = [t−λ2 : tλ1−λ2 : 1]→ [0 : 0 : 1].

etc.
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There are a total of 7 cases, making a fan in N⊗R = NR = R2 of the following form (3 areas, 3 axises,
and origin):

More pictures:

P1:

in R

P1 ×P1:

Every toric variety X determines such a fan Σ ⊂ NR.

By fan, we mean a union of cones in NR, where a cone is of the form cone(S) = {v ∈ NR |∑r
i=1 νiλi,νi ≥ 0} for a finite set N ⊃ S = {λ1, . . . , λr}. We will make this precise next time.

2 Fans, cones, and toric varieties over C

Letlecture 3 X be a toric variety of dimension n, i.e.

X ⊃ (C∗)n ∼= Gnm.

The cocharacter lattice N = Homalg grp(C
∗, (C∗)l) ∼= Zl.

Last time: for P2 we saw that, by examining each λ ∈ N and the values of limt→0 λ(t) ∈ X, we
obtained a diagram:

Fact: this construction works for any toric variety X, and will give rise to ΣX a collection of subsets of N.

Example. X = C. Then ΣX = ΣCn is Rn≥0 ⊂ Rn. If n = 2, we get 4 subsets (1 area, 2 axes and origin):

and outside this first quadrant, the limit does not exist.

Natural questions to ask: what property does ΣX have? Does this construction X  ΣX have an
inverse construction?
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2.1 Convex geometry

Let N,M be as before, the cocharacter and character lattices. By definition, there is a pairing 〈·, ·〉 :
N×M→ Z.

Definition. A cone σ in NR is the non-negative span of a finite set S ⊂ N.

Example.

• σ = R2≥0

• Rk≥0 ⊂ Rn

• The cone in R3 generated by (e1, e2, e1 + e3, e2 + e3) (only non-negative span, so we need the
last vector here):

which is the cone over a square (not to scale with the vectors provided...but roughly the same).

The general construction is that, take P ⊂ Rn−1 a polytope (convex hull of a finite set), and define a
cone over P ⊂ Rn−1 ×R≥0 at height 1.

P
1

Definition. Let σ ⊂ NR = N⊗Z R be a cone. Define the dual cone σ∨ as

σ∨ = {m ∈MR | 〈v,m〉 ≥ 0 ∀v ∈ σ}.

The dual monoid (or semigroup) of σ is then Sσ = σ∨ ∩M. (Exercise: show the monoid Sσ is finitely
generated.)

(Note: think of this as a positivity condition. We are asking functions that evaluate to a non-negative
value on all points of σ).
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Now we can take C[Sσ] to be the “group” algebra, and take Uσ = Spec(C[Sσ]).

Lemma. Uσ is an affine toric variety.

Proof. We know Sσ ↪→M, so the group algebras satisfy C[Sσ] ↪→ C[M]. But C[M] is the ring of Laurent
polynomials in n variables (whereM ∼= Zn), and thus Spec C[M] = (C∗)n. So we have the toric structure
(C∗)n ↪→ Uσ, which also extends.

Example. In this example, let’s take σ to be the cone generated by (e2, 2e1 − e2) in R2.

σ :

To calculate σ∨, first see that the R≥0 span is the following area:

σ∨ :

And note that, to write as a Z≥0 span, we actually need three vectors (e∗1, e∗1 + e
∗
2, e∗1 + 2e

∗
2). Then it’s

straightforward to see the only relation is 2 times the second equals 1+3. Put in the definition of functions
onM, this translate to:

C[Sσ] = C[u, v,w]/(u2 − vw).

One thing to note: we needed three vectors to generate σ∨, instead of the expected 2. This has
something to do with the variety not being smooth. We will see this later.

2.2 Gluing affines

In general, we can glue (toric) affines to get general (toric) varieties. We will glue along some “face”.

Definition. A fan in NR is a collection Σ of cones that is closed under taking faces of cones and intersec-
tion, and the intersection of two cones in a face of each (picture is better than words here).

Given two cones σ, τ and inclusion τ ↪→ σ, there is an induced map σ∨ ↪→ τ∨. In particular, if τ is
origin, then τ∨ =MR.

lecture 4 Last time we saw this construction σ  σ∨
∩M
−−−→ Sσ  C[Sσ]

Spec(−)
−−−−−→ Uσ ⊃ (C∗)n. Call this

construction (†).

For a more detailed tour, see Fulton’s Polyhedral geometry, section 1.2.

Definition. Let σ ⊂ NR be a cone. A supporting hyperplane for σ is a hyperplane

Hm = {v ∈ NR | 〈v, m〉 = 0}

for some fixedm ∈M, such that σ is contained in the associated halfspace

H+
m = {v ∈ NR | 〈v, m〉 ≥ 0}.

A face of σ is the intersection σ∩Hm for Hm a supporting hyperplane.
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Example. Consider the cone below:

Not a SH

SH

In particular, there are 4 faces. Two solid lines, origin, and the whole cone (because we could takem = 0).

Let τ ↪→ σ be a face. This determines a morphism of toric varieties Uτ ↪→ Uσ. How do we describe
this?

Letm ∈M be the vector that determines the supporting hyperplane for τ. So τ = σ∩ {〈m , v〉 = 0}.
Look back at the construction †. At the level of C[Sσ] ↪→ C[Sτ], notem is in σ∨ (because σ is contained
in the halfspace by definition of supporting hyperplane) and thus is in Sσ. Thus we have the equality

Sτ = Sσ + Z≤0 · (m).

When we translate this statement to C[Sσ] where addition is multiplication, what we get is that we are
adding in 1/m (corresponding to −m ∈ Sτ) to C[Sτ]. So the inclusion C[Sσ] ↪→ C[Sτ] can be identified
as the localization at 1/m (think of C∗ ↪→ C as in C[x] ↪→ C[x, x−1] = C[x](x)). This identifies Uτ as an
open set of Uσ (wherem 6= 0).

(Try yourself: {0} ↪→ R≥0 defines the map C∗ ↪→ C described above.)

Example. A trivial example. If we take τ = {0} and σ = R2≥0, and any supporting hyperplane that goes
through the origin (e.g. m = (1, 1)), then Sτ =M, and Sσ = Z≥0. We are inverting x and y here.

Sometimes we would use the notation χm to emphasize the function nature ofm ∈M.

Recall a fan Σ in NR is a collection of cones such that

• every face of a cone is in Σ,

• if σ1,σ2 ∈ Σ, then σ1 ∩ σ2 is a face of each, and is an element of Σ.

Now we can construct a toric variety for a given fan (Σ XΣ): given σ ∈ Σ, associate the affine toric
variety Uσ. If σ1 and σ2 intersect in a cone τ, then we glue Uσ1 and Uσ2 along the open subset Uτ.

Notation: if X is a variety, denote by Xan the associated complex analytic topological space.

Example. A1 with two origins. We see X is not separated scheme is equivalent to Xan being not
Hausdorff.

Lemma. For any fan Σ, the toric variety XΣ is a separated scheme, or equivalently Xan
Σ over C is Hausdorff.

Proof. We will prove the Hausdorff statement, which is equivalent to the diagonal

Xan
Σ → Xan

Σ × Xan
Σ

is closed.
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lecture 5 Before we continue the proof from last time, let’s revisit this general idea of gluing. Let Σ be a
fan. Each σ ∈ Σ (a face) determines an affine toric variety Uσ = Spec(C[Sσ]). Face inclusion τ ↪→ σ

determines open immersion:
Uτ ↪→ Uσ.

The toric variety XΣ is determined by identifying Uτ inside both Uσ1 and Uσ2 when τ is a face of both.

Last time we also mentioned the analytic space Xan. If U is affine, say U = SpecA for some C-algebra
C[x1, . . . , xn]/I. So U ↪→ Cn as V(I).

But Cn has at least two valid topologies.

• Zariski. This is too coarse. Open sets are way too large.

• Euclidean topology where Cn ∼= R2n and give U the subspace topology. Then

– This topology is independent of choices of ambient space (say make n a little larger).

– Work with gluing, so we can get a space Xan this way.

We continue the proof from last time, where we need to show the diagonal is closed.

Proof. We have an open cover of XΣ × XΣ by open sets of the form Uσ1 ×Uσ2 for σ1 and σ2 in Σ. It
suffices to show that if τ = σ1 ∩ σ2, then Uτ ↪→ Uσ1 ×Uσ2 is closed. (i.e. being closed can be checked
affine-locally)

By standard argument in algebraic geometry, the (fiber) product of affines corresponds to the tensor
product of their coordinate rings. So it suffices to check the map

C[Sσ1 ]⊗C C[Sσ2 ]→ C[Sτ]

is surjective. This is because we can then identify C[Sτ] as the quotient of C[Sσ1 ]⊗C C[Sσ2 ] by some
ideal I, but then function in I determines Uτ locally inside Uσ1 ×Uσ2 , thus locally closed.

To see why this map is surjective, notice that (check this! This is called separation lemma):

Sτ = Sσ1 + Sσ2 .

So surjectivity follows.

As another simple example, think of the fan of P2:

σ1

σ2

τ

A little calculation shows:

σ∨1

σ∨2

τ∨
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Hope it’s then clear that any point in Sτ can be written as a sum of points from Sσ1 and Sσ2 . A proof is
not hard, but needs the identity Sτ = Sσ + Z≤0 ·m.

3 Properties of XΣ

3.1 Smoothness

In fact, we can only consider Uσ, as smoothness at a point is a local condition.

Let A be a C-algebra. Then a maximal ideal m ⊂ A determines a point in U = Spec(A). Say
dimU = n. Then U is smooth at the point if

dimC(m/m2) = n.

How can we extend this idea to toric varieties? A point, by Nullstellensatz, is a map

C[x1, . . . , xn]� A→ A/m = C.

If Sσ is a monoid, and A = C[Sσ]. Then similarly, a monoid homomorphism Sσ → C (where C is a
multiplicative monoid) determines a map C[Sσ]→ C, and thus a point of Uσ.

Example. If Sσ = N2, to produce a homomorphism C[Sσ] = C[x,y] → C, we need to decide where x
and y are sent to. This is exactly the same as the information in a monoid homomorphism N2 → C.

In particular, there are way ways to identity a point on an affine toric variety:

1. A maximal ideal of C[Sσ].

2. A surjective map of C-algebras: C[Sσ]� C.

3. A monoid map: Sσ → C, where C is a multiplicative monoid.

We will use these three interchangeably.

Proposition. The affine toric variety Uσ is smooth iff the minimal generators of σ form a subset of a Z-basis for
N union 0.

Example.

• If σ = (e1) in R, then Uσ = A1. C[Sσ] = C[x].

• If σ = (e1, e2) in R2, then Uσ = A2.

• If σ = 0 in R2, then Uσ = G2m.

• If σ = (e1) in R2, then Uσ = A1 ×Gm. In general, situations like this will give Uσ = Ak ×Gn−km .

Proof. We prove the statement under a mild assumption that σ⊥ = {0}, i.e. σ is of full dimension n.
(Exercise: remove this assumption)

There exists a distinguished “point” Xσ, by the map

Sσ → C

u 7→
1 u = 0,

0 u 6= 0.
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lecture 6 Now Uσ is smooth, then it must be smooth at this particular point Xσ. In particular, let m be the
associated maximal ideal of the point, then dimm/m2 = n the dimension of Uσ.

Let’s inspect m/m2. For m, it at least contains Sσ \ {0}, because any u ∈ Sσ \ {0} is mapped to 0, and
thus is in the ker of the C-algebra map. For m2, it contains all sums of two elements from Sσ. So in
particular, m/m2 contains elements in Sσ \ {0} that cannot be written as a sum of two other elements.

Therefore, any first non-zero element of Sσ along a ray is an element of m/m2. But σ∨ has at most n
rays. So dimσ∨ = n and σ is as required.

Corollary. If Σ is a fan, then XΣ smooth iff Xσ is smooth for each cone σ ∈ Σ (unimodular).

3.2 Normality

Definition. An affine scheme X = Spec(A) for A an integral domain, is normal iff A is integrally closed
in its fraction field.

Remark. I wrote something about normality a while ago at HERE (click). It contains some more intuitions
about how to think of all these.

• For curves, normal is the same thing as smooth (regular).

• If X is normal, then X is regular in codim 1, i.e. singular locus has codim at least 2.

• Serre’s criterion for normality states: X is normal iff R1 + S2 (this is deep).

• Zariski’s main theorem: if X is normal, then any finite and birational map Y f
−→ X is an isomorphism.

Anyway, we won’t really be using all of above.

Lemma. Let Σ be a fan. Then XΣ is normal.

Proof. Let σ = 〈v1, . . . , vh〉 for some vi ∈ N. If τ = 〈vi〉, then Spec(C[Sτ]) ∼= C × (C∗)n−1 (the C

component on vi direction, and C[Sτ] = C[x1, x2, x−12 , . . . , xn, x−1n ]).

But C[Sτ] is obviously integrally closed. So Uτ is normal.

Fact from commutative algebra: intersection of some integrally closed rings is again integrally closed.

Thus, also using the fact that normality is affine local, we have the result.

Remark.

• In fact, S2 is too weak. Toric varieties satisfy Sn for all n, and are therefore Cohen-Macaulay.

• Some authors will therefore add “normality” into the most basic definition of toric varieties
(contains a copy of (C∗)n and action extends).

3.3 Properness

Definition. The support of a fan Σ is the set |Σ| = {v ∈ NR | ∃σ ∈ Σ such that v ∈ σ}.

Proposition. A toric variety XΣ is proper (equivalently Xan is compact) iff |Σ| = NR.

Example.

11
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|Σ| = R2≥0
|Σ| = R2

|Σ| = 0

Digression on distinguished points on toric varieties

Lastlecture 7 time when we proved smoothness, we used “the” special point on our toric variety.

Example. If XΣ = (C∗)n. There is obviously an identity element as a distinguished point.

Or if XΣ = A1, which contains a C∗, we now have two distinguished points 0 and 1.

C2 = Spec(C[N2]). Both coordinate axes are a copy of C, having their own distinguished points as
toric varieties.

Observation: XΣ has the action of Gnm. Each orbit of the action is isomorphic to Gn−km for some k.
Say in the following picture of P2:

1

where each curvy line is a piece V(x), V(y), V(z), each having their own identity, and together with three
more intersections. Notice there is a specialization relation: an orbit O1 can contain O2 in its closure.

Recall for P2 we have the fan:

There is an orbit-cone correspondence: each orbit of Gnm corresponds to a cone of Σ, but is order reversing
with respect to inclusion. We also had an order preserving correspondence that if τ ↪→ σ, then Uτ ↪→ Uσ.

How do we pick the distinguished point? Let σ be a cone, and Uσ = Spec(C[Sσ]). We wish to define
a point on Uσ, and we do it as follows:

A point xσ ∈ Uσ is the same thing as a ring homomorphism C[Sσ]� C, which is again the same as a

12



monoid homomorphism Sσ → C. We define xσ by:

Sσ → {0, 1} ⊂ C

u 7→
1 u ∈ σ⊥,

0 o/w,

where the orthogonal complement σ⊥ = {m ∈MR | 〈m,n〉 = 0 ∀n ∈ σ}.

Sanity check: if σ = 0, then Uσ = Gnm. In this case, σ⊥ = M, and so xσ = id. Check this agrees in
other examples.

If τ ⊂ σ is a face, then Uτ ⊂ Uσ open embedding, and thus xτ ∈ Uσ.

Back to properness

Example.

• (PnC)
m is proper.

• If X is (connected) proper, Z ⊂ X is closed, then X \Z is not proper.

• An is not proper if n ≥ 1.

In topology, (at least for metric spaces) we can test the compactness by checking sequential compact-
ness. In algebraic geometry, we have a similar result, which we quote here:

Theorem. (Valuative criterion of properness) If X is noetherian, finite type over C, then X is proper iff for every
morphism f : Spec C((t))→ X extends uniquely to a commutative diagram:

Spec C[[t]] X

Spec C((t))

∃!

where C[[t]] is the formal power series ring, and C((t)) is the formal Laurent series ring (finitely many negative
terms), and the Spec map is induced from the inclusion C[[t]] ↪→ C((t)).

Remark. Let’s unwind this a little bit. C[t] is the ring of functions on the affine line A1. So when we invert
t (corresponding to localization at the maximal ideal (t− 0)), C[t, t−1] corresponds to the functions on
A1 \ {0}.

Similarly, C[[t]] (only two prime ideals: 0 and the maximal ideal (t)), either considered as germs
of functions near origin, or the completion of the localized ring above, is the ring of functions on an
infinitesimal neighborhood of 0 ∈ A1. Thus C((t)) (this is a field, so the only prime ideal is 0) is the ring
of functions on a formal punctured disk.

Corollary. If there exists a morphism C∗
f
−→ X such that the limit limt→0 f(t) does not exist (ie. f does not

extends to a map from A1), then f is not proper.

Proof. C∗ has ring of functions C[t, t−1] ↪→ C((t)).

Lemma. Let Σ be a fan in NR and v ∈ N. By definition v defines a function φv(t) : C∗ → (C∗)n ↪→ XΣ. Then
limt→0φv(t) in XΣ:

• does not exist if v 6∈ |Σ|.

13



• if σ is the smallest (wrt. inclusion) cone containing v, then limt→0φv(t) = xσ.

Proof. You should really do this yourself. I will put up one later.

Proof.lecture 8 (to properness proposition)

Suppose |Σ| 6= NR (also called not complete), choose v ∈ N such that v 6∈ σ for all σ ∈ Σ. Then such a
v gives a map φv(t) : C∗ → XΣ. By lemma above, the limit limt→0φv(t) does not exist, which would
contradict the properness.

Conversely, we use the valuative criterion (abbrev. VC) to show XΣ is proper. Notation: K = C((t))

and R = C[[t]].

Fact: if X is irreducible and U ⊂ X is open, then it suffices to check VC in the case where the image of
f is inside U.

In our case, we take U = Gnm the dense open torus. As in the setup of VC, let f : SpecK→ Gnm be a
map. This would be the same as a ring map C[M]→ K, which again is the same in monomials as a map
M→ K∗.

Now K∗ has a natural valuation structure:

K∗ → Z∞∑
i=k

ait
i 7→ k (ak 6= 0).

These two maps together give a map
M→ K∗ → Z

which is the same as a point v ∈ N = Hom(M, Z). But by assumption Σ is complete, i.e. v ∈ σ for some
cone σ. We will show the map f has a limit inside Uσ, thus satisfying VC.

To show f extends, we want the ring map C[Sσ]→ K factors through R.

C[Sσ] K

R

This is the same as saying (at monomial level):

Sσ → K∗ → Z

has image in Z≥0. But this is tautology, because we defined Sσ to be functions that evaluate to be
non-negative. So the claim follows.

As we’ve already shown the space is Hausdorff, the limit must be unique. Thus by VC, our space is
proper.

Note. All projective varieties are proper, as closed subset of Pn. Converse is false. There are proper toric
varieties that are not proper.

3.4 Polytope construction

Projective toric varieties form a big class of examples of proper toric varieties. They can be obtained in
the following way:
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Fix a finite set of lattice point A ⊂M. Let PA be the convex hull of A. Let’s assume that PA is of full
dimension. Then we can define a map

Spec C[M] = (C∗)dimMR → (C∗)#PA → P#PA−1

by the obvious maps (see example below), where #PA is the number of points inside PA. Then we define
the toric variety XPA as the closure of the image.

Example. Let’s take P to be the polygon below.

(0, 0) (1, 0)

(0, 1)

This determines the map

(C∗)2 → (C∗)3 → P2

(z1, z2) 7→ (1, z1, z2) 7→ [1 : z1 : z2].

The closure is then P2.

Another example:

(0, 0) (1, 0)

(0, 1) (1, 1)

This determines the map

(C∗)2 → (C∗)4 → P3

(z1, z2) 7→ (1, z1, z2, z1z2) 7→ [1 : z1 : z2 : z1z2].

Then X is given by V(XW − YZ) ⊂ P3 (here by V, we mean the Proj construction), and X ∼= P1 ×P1.
Note that X is embedded in P3 as the Segre embedding. We could get all Segre embeddings by these
polytope construction.

4 Morphisms

Letlecture 9 T ′, T be algebraic tori with co/character lattices N ′,N,M ′,M respectively. Given an algebraic group

homomorphism T ′
φ
−→ T (by polynomials), we get the induced maps:

Pullback (of monomials/functions): φ∗ :M→M ′,

and
Pushforward (of sub-objects/curves): φ∗ : N

′ → N.

Definition. A toric morphism of toric varieties is a morphism φ : XΣ ′ → XΣ such that φ|T ′ is a
homomorphism into T , i.e. φ|T ′ is a homomorphism of tori, where T ′, T are the tori inside the two
varieties. (cf. action is equivariant.)
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In particular, if φ : XΣ ′ → XΣ is toric, then there exists an induced map φ∗ : N ′R → NR. We can ask
which maps on N’s would induce morphisms on varieties.

Proposition. If Σ ′ ⊂ N ′R and Σ ⊂ NR are fans, and f : N ′ → N is a linear map of integral points such that for
all σ ′ ∈ Σ ′, f(σ ′) is contained in some cone σ ∈ Σ, then there exists a well-defined induced map XΣ ′ → XΣ.

Example.

• Consider the map between fans of C (gen. by (1, 0) ∈ NR = R) to that of C2 (gen. by (1, 0), (0, 1) ∈
N ′R = R2) by the diagonal morphism r 7→ (r, r). Then the image of the cone is fully contained in
the cone of C2. This induces a map C→ C2 by z 7→ (z, z).

• Consider a fan in R2 with many rays subdividing the first quadrant, mapping to the fan of C2 by
(x,y) 7→ (x,y). This will also induce a map between the toric varieties.

• (Non-example) The inverse map in the above example. This will map the unique 2-dim cone to
something not in a cone.

Proof. (Sketch) Step 1: affine case. If Σ ′ and Σ both consist of a single cone and its faces, then a map
σ ′ → σ induces Sσ → Sσ ′ , and so C[Sσ]→ C[Sσ ′ ] and Uσ ′ → Uσ.

Step 2: If x ∈ Uσ ′ ∩Uτ ′ , then the prescription in step 1 is independent of choices of cones in which
we do this (check yourself).

Example.

• ΣP1 → ΣP1×P1 as diagonal.

• Change of lattice. Consider the lattice map of multiplication by 2 on Z, [2]a = 2a. This corresponds
to the squaring map C→ C.

Similarly if (l1, . . . , ln) ∈ Zn≥0, then the diagonal matrix


l1

. . .

ln

 : Zn → Zn. For any fan

in Rn, we get an induced endomorphism

XΣ XΣ

T T ,

where the T is the torus inside XΣ, and T → T is the li-th power on the i-th coordinate.

An example of when this is useful is the line bundle pullback map by Frobenius.

4.1 Blowups

Blowup at a point on a plane

We work in dimension 2. Let Σ be the first-quadrant fan (X = C2) and denote Bl(σ) to be:
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(1, 1)

Obviously there is a map Bl(C2)→ C2 between the corresponding toric varieties.

In particular, the construction of Bl(C2) involves two charts corresponding to two cones in the
fan, each of which a copy of C2, glued along the ray in NR, which is C× C∗. In coordinates, Uσ1 =

Spec C[X,X−1Y], Uσ2 = Spec C[Y, Y−1X], glued together Spec C[X, Y,X−1, Y−1]. Explicitly, Bl0(C2) =

V(XT1 − YT2) ⊂ C2 ×P1. We will say more about this in the next lecture.

Remark. The blowup we constructedlecture 10 is a quasi-projective variety. It is neither affine (contains P1) nor
projective (not proper). In fact, there is a (birational) morphism

π : Bl0(C2)→ C2

that restricts to an isomorphism between

Bl0(C2) \ π−1(0)→ C2 \ 0.

So we could take a sequence diverging to∞ in C2 \ 0 and pullback to the blowup, and therefore the
blowup is not proper.

Blowup morphism π has several properties:

• It is a proper morphism: the associated morphism of topological spaces πan : (Bl0C2)an → (C2)an is
proper.

• It is a projective morphism.

• It’s an example of a non-flat morphism (side remark here: pullback of cohomology classes/cycles for
non-flat morphisms aren’t just the class of the preimage; instead we should take self intersections).

If X→ Y is flat, then the dimension of the fibers p−1(y) should be independent of the choices of
y ∈ Y, which fails here if we take origin and any other point.

• It is birational, and an isomorphism away from π−1(0).

Higher dimension story

Let’s first consider blowup of Cn at origin. The fan of Cn consist of a single n-dimensional cone σ = Rn≥0.

Define Bl(σ) as follows: let ei be the standard unit vectors, and e0 =
∑n
i=1 ei. Then cones of Bl(σ)

are precisely those generated by a subset of {e0, . . . , en} not containing {e1, . . . , en}.

Exercise: construct Bl0(Cn) = XBl(σ), and the morphism

Bl0(Cn)→ Cn.

4.2 Resolution of singularities

Recall we have this valuative criterion for properness: a map π : X→ Y is proper iff for every diagram
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Spec(C((t))) X

Spec(C[[t]]) Y,

π

there exists a unique arrow Spec(C[[t]])→ X such that the diagram commutes.

Lemma. A toric morphism π : XΣ ′ → XΣ induced by a map Σ ′ → Σ is proper iff π−1(|Σ|) = |Σ ′|.

Proof. Apply VC locally on XΣ ′ .

Remark. Blowups of cones Rn≥0 satisfy this support condition, and are therefore proper.

Let Σ be a fan, then every proper birational toric morphism XΣ ′ → XΣ is determined by a refinement
of cones Σ ′ → Σ (and an isomorphism of lattices N ′ → N). If in addition, Σ ′ is smooth, then such a
morphism is referred to a resolution of singularities.

Remark. Resolutions exist in characteristic zero by works of Hironaka. For char p, it’s an open question
in general.

Example. Toric surfaces singularities. Let σ be the following region in NR = R2:

(1, 1)

(1, 2)

One way to see Uσ isn’t smooth is that

∣∣∣∣∣1 1

0 2

∣∣∣∣∣ = 2 6= 1.
Let σ̃ be the variety corresponding to

Then Xσ̃ is smooth (both pieces are smooth). This is an example of resolution of singularities.

Similarly, σ = 〈(1, 0), (1, 3)〉 is not smooth.

Theorem. Every toric variety XΣ has a toric resolution of singularities.

lecture 11 There is an important class of examples we forgot to mention.

Example.

• Projective space. Let Σ be the fans with rays generated by e1, . . . , en, and e0 = −
∑n
i=1 ei. The

k-dimensional cones are the positive spans of size k subsets of {e0, . . . , en} for 1 ≤ k ≤ n. If we
intersect Σ in R3 with a sphere centered at 0, we get the following picture:
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where each face corresponds to a 3-dim cone, i.e. a copy of C3. These affines are then glued together
to give Pn.

• Weighted projective space. Recall that we could define Pn as the quotient of Cn+1 by a C∗ action:
λ · (z0, . . . , zn) = (λz0, . . . , λzn). Similarly, for fixed integers (d0, . . . ,dn), we define another action

λ · (z0, . . . , zn) = (λd0z0, . . . , λdnzn),

and define the weighted projective space as:

P(d0, . . . ,dn) := (Cn+1 \ 0)/ ∼ .

Proposition. P(d0, . . . ,dn) is a toric varieties.

Proof. (C∗)n+1 ⊂ Cn+1 projects to a dense torus and acts on P(d0, . . . ,dn).

This is also an example of the Proj(−) construction. As a toric variety, it can also be constructed by
the following fans:

Let Σ ⊂ NR be the fan of Pn. We may consider this as a fan in a (refined) lattice generated by

(
1

d0
e0, . . . ,

1

dn
en), denoted by N ′. This fan is simplicial, but not smooth in general (in particular, every

toric surface is simplicial). See example sheet for details.

A cone is simplicial if its generators are linear independent over R. It is smooth/regular if its
generators are part of a Z-basis of N. A fan is simplicial (resp. smooth) if each cone is simplicial
(resp. smooth).

Terminology: Singularities appearing in simplicial toric varieties are called quotient singularities, and
the variety is an orbifold.

Example. The cone over a square in NR = R3 certainly needs more than three (and thus not linear
independent) basis vectors.

It is not simplicial, and not smooth.

To compute this, note that for a polyhedral cone σ = H+
m1
∩ · · · ∩H+

mn , σ∨ = 〈m1, . . . ,mn〉. This
gives the same semigroup for the affine V(xy− zw), which relates back to the polytope construction
in section 3.4.

Back to resolution for toric surfaces. Since being smooth is a local property, we only need to worry
about affine toric surfaces.

The ultimate goal: for a cone σ in R2, there exists a refinement σ̃ → σ of the cone, such that X̃σ is
smooth (see example from last time).
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Proof. We want to put a cone σ in a “standard form”. To do this, we need to do a basis change. For any
A ∈ SLn(Z), and σ a cone in Rn, the image Aσ under A gives an isomorphic toric variety as the original
σ (we will only deal with n = 2 here).

Let σ be a cone generated by primitive vectors v1, v2 (first integral points on the corresponding rays).

• Since v1 is primitve, we could take this as an element of the new basis; i.e. after a changing of basis,
v1 7→ (0, 1), and wlog v2 7→ (m, x) for somem > 0.

• Then apply the map

[
1 0

c 0

]
, we can move (m, x) to any (m, x+ cm). In particular, there is one

such that −m < x+ cm ≤ 0.

• Since v1, v2 are primitive,m and x+ cmmust be coprime.

Thus we obtained the normal form of a cone: 〈(0, 1), (m,−k)〉 form > 0, 0 ≤ k < m and (m,k) = 1.

Now for any cone we started with, turn it into the standard form 〈(0, 1), (m,−k)〉. We can subdivide
this cone by inserting a new ray generated by (1, 0):

σ σ1

σ2

Now σ1 is obviously smooth (with generators e1, e2), and we can turn σ2 = 〈(1, 0), (m,−k) into a normal
form 〈(0, 1), (m ′,−k ′). But we are rotating 90 degrees here, and thusm ′ = k < m. By a simple induction,
we would eventually get σi = 〈(1, 0), (0, 1), which is smooth.

5 Orbit-cone correspondence

5.1 Orbit corresponding to a cone

Tolecture 12 start off, recall we have the fan for P2:

and we draw it as something like this:

(C∗)2

V(x0)

V(x1)
V(x2)
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There are 7 orbits for the (C∗)2 actions (recall (λ,µ) · [x0 : x1 : x2] = [x0 : λx1 : µx2]):

• There is one corresponding to the copy of (C∗)2 = {xi 6= 0 ∀i}.

• There are three corresponding to the “interiors” of each coordinate line, identified as {xi = 0, xj 6=
0, xk 6= 0}.

• There are three corresponding to the coordinate points {xi = xj = 0, xk 6= 0}.

And we remarked a while ago, that there is a natural bijection between the orbits of the torus action and
the cones in the fan.

Goal: generalize this to any XΣ for a fan Σ.

Let τ ∈ Σ be a cone. There are some associated lattices:

Nτ = (τ∩N)gp the group generated by τ∩N,

N(τ) = N/Nτ,

M(τ) = τ⊥ ∩M.

Example.

τ

Nτ : M(τ) :

These define tori. Specifically, the torus associated to N(τ) is

TN(τ) = Spec(C[M(τ)]) = N(τ)⊗Z C∗.

Here N(τ) = Zk is just a new lattice, and TN(τ) = (C∗)k. In particular, the projection N� N(τ) induces
an action TN (the torus of XΣ, which is N⊗C∗) on TN(τ) by:

TN × TN(τ) → TN(τ) × TN(τ)
torus multiplication
−−−−−−−−−−−−→ TN(τ).

We will embed TN(τ) into XΣ. To do this, note

Uτ = Spec(C[τ∨ ∩M]) = Hommonoid(τ
∨ ∩M, C)

TN(τ) = Spec(C[M(τ)]) = Homgp(τ
⊥ ∩M, C∗).

In plain English, we are trying to extend functions on integral points of τ⊥ (something evaluates to be 0)
to functions on integral points of τ∨ (something evaluates to be non-negative). And there is a natural
candidate, extension by 0:

We embed TN(τ) into Uσ by:

Homgp(τ
⊥ ∩M, C∗) → Hommonoid(τ

∨ ∩M, C),

(
f : τ⊥ ∩M→ C∗

)
7→ x 7→

f(x) if x ∈ τ⊥ ∩M,

0 o/w.
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This is well defined since τ is fixed. For notation, we alternatively use Oτ the orbit when we think of the
torus TN(τ) inside XΣ.

Alternative perspective

What is happening here is that there is a perfect pairing

〈 , 〉 : τ⊥ ∩M×N(σ)→ Z

induced by the natural pairing onM×N. And this will induce an isomorphism

HomZ(σ⊥ ∩M, C∗) ∼= TN(σ).

For a cone τ, we have a distinguished point xτ ∈ Uτ ⊂ XΣ. This immediately gives us an orbit:

O ′τ = TN · xτ ⊂ Xτ.

And this is precisely TN(τ) = Oτ we just constructed, via the following isomorphism:

O ′τ = {γ : Sτ → C | γ(m) 6= 0 ⇐⇒ m ∈ σ⊥ ∩M} ∼= Hom(σ⊥ ∩M, C∗) = Oτ.

5.2 Orbit closures

Given τ ∈ Σ, we know Oτ ⊂ Uτ ⊂ XΣ. But the closure, while generally larger than Oτ itself, is
guaranteed to always be a toric variety. In particular, we are adding in all the orbits of cones of which τ
is a face. This is a case of a more frequently used name called stratification.

Definition. Given τ ∈ Σ, the star fan Σ(τ) is defined to be (as a set, no fan structure yet):

Σ(τ) = {σ ∈ Σ | τ ⊂ σ as a face}.

For each σ ∈ Σ(τ), let σ be the image cone in N(τ)⊗R under the quotient map NR → N(τ)R:

σ = (σ+N(τ)⊗R)/N(τ)⊗R.

Then σ’s have a fan structure.

For each σ ∈ Σ(τ), there exists an affine toric partial compactification of orbit Oτ:

Uσ(τ) := Spec(C[τ⊥ ∩ σ∨ ∩M]).

These glue over σ ∈ Σ(τ) to give a toric variety XΣ(τ) as a compactification of (both classical and Zariski)
Oτ, and contains it as a dense open.

Theorem. (Orbit-cone correspondence) Let XΣ be a toric varieties of the fan Σ ∈ NR. Then

1. There is a bijective correspondence

{cones σ ∈ Σ}←→ {TN orbits of XΣ}

σ 7−→ Oσ,

minimal cone σ ∈ Σ with O ⊂ Uσ ←− [ O.
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2. If dimNR = n, then dimOσ = n− dimσ.

3. The affines Uσ is the union of orbits
Uσ =

⋃
τ a face of σ

Oτ.

4. The orbit closure is a union of orbits:
Oτ =

⋃
τ is a face of σ

Oσ.

lecture 13 As before, we fix a fan Σ ∈ NR. For every τ ∈ Σ, we have an orbit Oτ ↪→ XΣ.

• This is a locally closed subscheme, meaning that it is a closed subscheme of an open subscheme.

• In particular, the closure V(τ) := XΣ(τ) ↪→ XΣ is a closed embedding.

5.3 Examples

Consider the blowup of P2 at a point. We’ve seen the fan should be

U12

U1

U2

(C∗)2

This has 4 copies of C2 glued together. In particular, U1,U2 are copies of C2, and U12 is C × C∗

(C[SU12 ]
∼= C[x,y,y−1]). Origin corresponds to the big torus (C∗)2.

• Open subschemes: all Uτ for τ ∈ Σ together with the inclusion by inserting a single Laurent
polynomial.

• Closed subschemes: all V(τ) for τ ∈ Σ. In particular, for τ = 〈(1, 1)〉, we know Nτ = 〈(1, 1)〉, and
N(τ) = R2/(1, 1) (imagine this as the line at infinity perpendicular to the ray τ, sort of like a “wall”.
See picture below).

Inside this (1-dimensional) wall lives the star fan. Σ(τ) has three elements. The cone τ itself is
mapped to origin of the wall, and cones of either U1 or U2 is mapped to a ray of either direction of
the wall. In particular, XΣτ is P1.

23



Here each colored line or dot represents a latticeN(σ). And inside the green line, which isN(τ), we have
P1.

Another example: let Σ be the cone over this

ρ0

Consider the ray through ρ0 (a little abuse of notation, we just call this ρ0). Then N(ρ0) = R2. What is
the star fan structure?

• ρ0 itself is mapped to origin.

• 2-dimensional cones that contain ρ0 as a face will map to rays. These give 3 rays, generated by
(−1, 0), (1, 0), (0, 1) respectively.

• 3-dimensional cones will map to 2-dimensional cones inN(ρ0). Namely the 2 images are 〈(−1, 0), (0, 1)〉
and 〈(1, 0), (0, 1)〉.

All in all, the star fan Σ(ρ0) is

which is C×P1, and it is the closure of C×C∗. In particular, we are blowing up C3 along a coordinate
line. You could work out other cases of blowing up coordinate subspaces of Cn analogously.

Compare this example with the blowup of C2 or C3 at a point.

6 Divisors

Suppose X = Spec(A) is smooth and affine, and A is the ring of regular functions on X. A divisor is the
data of the vanishing locus V(f) for f ∈ A along with the order of vanishing at each point of V(f).

E.g. X = C,A = C[t], then t2 has order of vanishing 2 at origin.

More generally, one can consider a formal sum
∑k
i=1 ni[Di] where Di = V(fi) and ni ∈ Z.

Fact. If X is smooth, every codimension 1 subvariety is locally the vanishing locus of a single regular
function. Highbrow version is to say, “Weil divisors are Cartier on a smooth scheme”.

6.1 Definitions

Note:lecture 14 every thing in this section is (once you get used to it) intuitively easy, but generally very hard to
compute. Don’t be fooled by this innocence.

Recall we want to consider codimension 1 subvarieties. But there are too many, and we need a
measure to control them.
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Motivating example: there exists a group Z that naturally encodes the degrees of hypersurfaces (codim
1 subvarieties) of Pn. In particular, degree 1 means linear hyperplanes; degree 2 means quadrics; degree
3 means cubics, etc.

The degree of a divisor (hypersurface in this case) doesn’t see smoothness, normality, or any other
intrinsic geometric properties of a divisor. Degree 3 hypersurfaces can be a union of three lines, elliptic
curves, etc.

Valuation rings and divisors

From now on, X is normal, irreducible variety (or integral scheme). Let D ⊂ X be an irreducible
subvariety of codimension 1. Consider the ring

OX,D = {f ∈ C(X) the function field of X | ∃U ⊂ X,U∩D 6= ∅ st f is regular on D}.

More concretely, take any affine Spec(A) ⊂ X such that Spec(A)∩D 6= ∅. Then D| Spec(A) corresponds
to a prime ideal P of A, and OX,D is the localization of A at P (functions defined over the generic point
of D).

OX,D is a local ring, and since P is of height 1, it is a valuation ring, i.e. there is a valuation map

vD : OX,D → Z

measuring order of vanishing of any f along D.

Example. X = A1, D = p = {pt}. Then C(X) is the rational functions over one variable, elements of
the form f(x)/g(x). In practice, to compute the order of vanishing of f/g at p, we expand f/g at p as a
Laurent series, and take the exponent of the leading term.

E.g., at D = 0, 1/x2 has order −2. x3 has order 3.

In higher dimension, localizing turns the generic point into a closed point. The picture in mind
should roughly be like this:

U

X

D
localization

whereD is turned into a maximal ideal (closed point), and we can also pass any function f to localization
to get a function on the right.

Given a rational function f ∈ C(X), there is an associated object:

div(f) =
∑

D irreducible divisor of X

ordD(f)[D].

Basic fact: this sum is finite.

Definition. A prime divisor in X is an irreducible/reduced codimension 1 subvariety. A Weil divisor is an
element of Div(X) =

⊕
D prime divisor ZD.

Given a rational function f ∈ C(X), div(f) ∈ Div(X). Such divisors are called principal.
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Definition. The class group is defined to be

Cl(X) := Div(X)/ {D | D principal}.

Cartier divisor

If X = Spec(A) is affine. A divisor D ∈ Div(X) is principal if we can write D = (f) for f in the fraction
field of A. A Weil divisor D is Cartier if it’s locally principal, i.e. there exists an open covering X =

⋃
Ui

such that D|Ui is principal.

Generally on a variety X, if every Weil divisor if Cartier, then X is called factorial.

Note:

1. Smooth implies factorial.

2. In the definition of class group, if we quotient out all Cartier divisors by the principal ones, we
would get the Picard group.

There is no reason why we wouldn’t consider the set of all codimension 2 subvarieties, or codimen-
sion k subvarieties. We will come back to these, known as Chow groups, later on in the course.

6.2 Weil divisors on toric varieties

Two things to note:

1. On a toric variety, givenm ∈M, then χm ∈ C[M] ⊂ C(X) is a regular function on the variety.

2. Each ray ρ in the fan Σ of X gives rises to a codimension 1 torus orbit closure

V(ρ) =: Dρ ∈ Div(X),

called a boundary divisor.

Proposition. If X is toric, then Cl(X) has the presentation

Cl(X) =
⊕
ρ rays

ZDρ/{div(χm) | m ∈M}.

This is saying that every divisor class if equivalent to a finite sum of boundary divisors.

Lemma. Givenm ∈M, then
div(χm) =

∑
ρ rays
〈vρ,m〉Dρ,

where vρ is the first lattice point on the ray ρ.

Proof. (lemma) Exercise.

lecture 15 Let W be an irreducible variety. We say W is affine if W can be identified with Spec(Γ(W,OW))

called the affinization. In particular, ifW is proper, then the affinization is Spec(C), which is a point.

But we do have (the function field) C(W), the stalk of OW at the generic point; or equivalently the
function field of OW(U) for any affine U ⊂W. This field is in general very big. In order to organize this,
we take rational functions with prescribed order of poles along a fixed Weil divisor:

OW(D) = {f ∈ C(W) | (f) +D ≥ 0}.
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This is an OW-module.

The transition fromD to OW(D) leads to the isomorphism between the Picard group defined via line
bundles and via Cartier divisors.

Back to toric varieties. We want to prove the previous proposition:

Givenm ∈M, then div(χ)m is a principal divisor supported on the torus-invariant boundary divisor
of XΣ. This gives a map M → DivT (XΣ) to T -invariant Weil divisors of XΣ. Then there is an exact
sequence computing Cl(XΣ) given by:

M→ DivT (XΣ)→ Cl(XΣ)→ 0.

Geometrically, we are pushing any divisor to the boundary to get an T -invariant boundary divisor.
But this requires limit of subvarieties, so we will present a different proof.

Proof. We need two lemmas:

Lemma. Given prime (irreducible divisors) D1, . . . ,DN in X, and U = X \ {D1, . . . ,DN}, there is an exact
sequence: ⊕

j=1,...,N
ZDj → Cl(X)→ Cl(U)→ 0.

This is true for any normal variety.

Lemma. If X = Spec(R) for a UFD R, then Cl(X) = 0. This essentially boils down to the fact that every codim 1
prime ideal is principal.

Then:

• Take X = XΣ a toric variety, and {Dj} = {Dρ}ρ∈Σ(1) . Since U = X \ {Dρ} is the torus

T = Spec(C[M]),

and the Laurant polynomial ring is a UFD, we see Cl(T) = 0. Therefore by lemma 1, we have

⊕
ZDρ � Cl(XΣ).

• CompositionM→ DivT (XΣ)→ Cl(XΣ) giving 0 is trivial.

• Consider the kernel of the map DivT (XΣ) → Cl(XΣ). Given D ∈ DivT (XΣ). By definition, D is
supported on boundary divisors, and D|T = ∅. If D = div(f) is principal for some f ∈ C(XΣ)

∗,
then consider f as as element in C(T)∗. Since div(f) gives 0, f is in fact, in C[T ]∗ = C[M]∗. So
f = c · χm for some c ∈ C∗. But div(c · χm) = div(χm). So M surjects into the kernel of
DivT (XΣ)→ Cl(XΣ).

Remark. If the rays of Σ span NR, thenM→ DivT (XΣ) is injective as well (a condition called having no
torus factors).

Example.

• Let Σ be the fan of P2.
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D1

D2

D3

Then the three rays correspond to the three boundary divisors D1,D2,D3. Since P2 is smooth, we
have:

Cl(P2) = Pic(P2) = ZD1 ⊕ZD2 ⊕ZD3/(D1 −D3 = 0,D2 −D3 = 0) = Z[H].

We usually write [H] for (the divisor class of) a hyperplane (codim 1) in Pn.

Notice that to get the relations, it suffices to check div(χ(0,1)) and div(χ(1,0)) (as these form a basis
ofM). Using the lemmas from last time, we see

div(χ(0,1)) = 〈(1, 0), (0, 1)〉D1 + 〈(0, 1), (0, 1)〉D2 + 〈(−1,−1), (0, 1)〉D3 = D2 −D3,

and similarly div(χ(1,0)) = D1 −D3.

• Let Σ be the fan of P1 ×P1, consisting of four rays generated by (1, 0), (0, 1), (−1, 0), (0,−1) respec-
tively. Then:

Cl = Z4/(D1 −D3,D2 −D4) ∼= Z2.

• More generally, Cl(Pn) = Z, and Cl(XΣ1 × XΣ2) = Cl(XΣ1)⊕Cl(XΣ2).

6.3 Cartier divisors on toric varieties

Example. Takelecture 16 X = V(xy− zw) ⊂ A4 the (toric variety corresponding to) cone over a square. (Note:
we also have V(X0X1 −X2X3) ∼= P1 ×P1 ⊂ P3 the cone over the Segre embedding of P1 ×P1. This V

is a Proj construction. Alternatively, the first one has class group Z where the second one has class group
Z2)

It is singular, and there is a Weil divisor on X that is not Cartier (locally principal), namely {x = z = 0}

(this is obviously dimension 2, or codim 1). Near origin, we cannot write this using just one equation.

Proposition. If σ is a cone, and Uσ the affine toric, then any T -invariant Cartier divisor D is given by D =

div(χm) for somem ∈M, and consequently Pic(Uσ) = 0.

Remark. Recall we calculated that the cone over a square has non-trivial class group.

Proof. Let R = C[Sσ]. Any T -invariant Cartier divisor is, in particular, a T Weil divisor, and so we write
D =

∑
ρ∈Σ(1) aρDρ. Consider:

(
H0(Uσ,OUσ(D)) :=

)
{f ∈ FF(R) | div(f) +D ≥ 0}∪ {0} ⊂ FF(R).

Namely the meromorphic functions that has poles at worst prescribed by D. This is a fractional ideal ID
in FF(R).
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In general, if D is a Weil divisor on a normal variety X, then OX(D) is a well-defined coherent sheaf
of OX-modules. In particular, if X = Spec(R) (R noetherian), then the global sections Γ(X,OX(D)) is
a finitely generated R-module.

To prove the last assertion, write D =
∑
aiDi. We can find g ∈ R \ 0 that vanishes on each Di.

Then vDi(g) > 0 for all i, and we can findmwithmvDi(g) > ai. Thusmdiv(g) −D ≥ 0. Now for
any global section f, div(f) +D ≥ 0, so that

div(gmf) = mdiv(g) + div(f) = mdiv(g) −D+ div(f) +D ≥ 0.

So gmΓ(X,OX(D)) ⊂ R is finitely generated. This also show ID is a fractional ideal.
Note that OX(D) is a line bundle (locally free of rank 1) iff D is Cartier.

Now D is T -invariant, so ID is T -invariant, and we can decompose ID as

ID =
⊕

χm∈ID
C · χm.

We want to show ID is principal.

D is Cartier, so we can investigate what ID looks like near the distinguished point xσ ∈ Uσ. Let m be
the maximal ideal of xσ. D Cartier means that around this point D is principal. In other words,

ID/mID must be 1 dimensional vector space over R/m.

Assume it is generated by the image of χm0 ∈ ID. Now graded Nakayama says we can lift this back to
ID to get a generator for ID. Thus ID is principal.

Global T -invariant Cartier divisor

Warning: notations are not consistent with those in lectures.

Given a Cartier divisor D, we’ve shown D|Uσ is principal, i.e. of the form div(χmσ) for each σ ∈ Σ,
subject to the compatibility condition that χmσ1 and χmσ2 should agree when restricting to the open set
corresponding to σ12.

Let’s be a little more precise here. For two choices ofmσ, saymσ andm ′σ, when do they determine
the same principal divisor locally?

We have div(χmσ) = div(χm
′
σ) ⇔ 〈vρ,mσ〉 = 〈vρm ′σ〉 ⇔ 〈vρ,mσ −m ′σ〉 = 0 ∀ρ ∈ σ(1) ⇔

〈u,mσ −m ′σ〉 = 0 ∀u ∈ σ ⇔ mσ −m ′σ ∈ σ⊥ ∩M. So m is unique in M/M(σ) where M(σ) :=

σ⊥ ∩M, and this quotient identifies all T -Cartier divisors.
For each σ ∈ Σ, we pick amσ ∈M/M(σ) such that 〈mσ, vρ〉 = aρ (there could be a minus sign

in other references) Then a T -Cartier divisor is the same as the data

{(Uσ,χmσ)}σ∈Σ.

They are compatible in the sense that if τ is a face of σ, thenmσ ≡ mτ mod M(τ). It’s rather heavy
description though.

The data of eachmσ have a nice combinatorial description.

Definition. A piecewise linear function (abbrev. PL) on Σ is a continuous function:

φ : |Σ|→ R
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such that φ|σ is linear for each σ, and φ(|Σ|∩N) ⊂ Z.

To see how D =
∑
aρDρ gives a PL function, let mσ be as above, with 〈vρ,mσ〉 = aρ, then on

each cone σ, we define the linear function to be u 7→ 〈mσ,u〉. Compatibility guarantees this function is
well-defined on the overlaps. The converse is also true:

Theorem. The map from T -Cartiers to PL functions described above is an isomorphism (with addition of functions
as group law).

For the inverse map, suppose we have constructed a φD from a CartierD. Then we can recoverD by:

D =
∑
ρ

φD(vρ)Dρ.

For a quick recap:

• WEIL: given by integers attached to each boundary divisor.

• CARTIER: given by PL functions linear in each cone.

Proposition. If XΣ is smooth, then every T -Weil divisor is T -Cartier.

Proof. Although this statement is true in general, we have a nice combinatorial proof here. Using the
notation as above, we can set φ(vρ) = aρ. Since XΣ is smooth, we are setting values on generators here.
So we are done.

Remark. In singular cases, e.g.

σ :

D2

D1

Say we are given a Weil divisor D = aD1 + bD2. We can, of course, set φ(2, 1) = a, and φ(0, 1) = b. But
then, φ is not defined on (1, 0). Of course we could try to work out the value of φ(1, 0) = (a− b)/2 and
hope it is integral, but it’s not guaranteed, i.e. not all Weil are Cartier.

Remark. In fact, for a toric variety XΣ coming from a fan, that XΣ is smooth, that Pic(XΣ) = Cl(XΣ), and
that every Weil divisor is Cartier, are three equivalent conditions. Furthermore, that XΣ is simplicial, that
Pic(XΣ) has finite index in Cl(XΣ), and that every Weil divisor has an (integer) multiple which is Cartier,
are three equivalent conditions.

Example.

• The fan for C1 is a single ray generated by (1, 0). For any divisor D = nDρ, define the PL function
by φ(x) = nx for x ≥ 0.

• If Σ is the fan for P1, i.e. generated by two rays (1, 0) (with boundary divisorD1) and (−1, 0) (with
boundary divisor D2). Then any divisor D = aD1 + bD2 defines a function:

φD(x) =

ax if x ≥ 0,

bx if x ≤ 0.
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6.4 Introduction to intersection theory

Basic idea:lecture 17 if X is an n-dimensional variety, we want to build some groups Ak(X) called Chow groups con-
sisting of all Z-linear combinations of k-dimensional subvarieties ofX, up to a notion of rational equivalence,
such that Cl(X) = Ak−1(X).

In good situation (usually when X is smooth), we expect an intersection product:

Ak(X)×Al(X)→ Al+k−n(X)

such that if Z1 ∈ Ak(X),Z2 ∈ Al(X) are two subvarieties, and Z1 ∩ Z2 = Z1 ×Z Z2 is reduced and is in
Al+k−n, then [Z1 ∩ Z2] = [Z1] · [Z2]. (The funny dimension should actually happen in codim, where
Ak ×Al → Ak+l)

In particular, for variety X, if C is a complete curve (meaning proper 1-dim subvariety), and D is a
Cartier divisor ((n− 1)-dim), then we expect an intersection pair C ·D ∈ A0(X). If we assume A0(X) is
trivial (all points are “equivalent”), then this will just give an integer (alternatively, we are counting the
number of points in C∩Dwith some multiplicity), satisfying:

• if E is another Cartier divisor, then C · (D+ E) = C ·D+C · E.

• if D ∼ E, then C ·D = C · E.

Remark. Such a theory exists. ForD Cartier, C smooth curve, C ·D is constructed as follows: take OX(D)

to be the invertible sheaf of meromorphic functions with poles bounded by D (where D ↔ OX(D)

determines each other up to divisor equivalence), and take ι : C ↪→ E, then

C ·D := deg(ι∗OX(D)).

To define degree, pick a Cartier divisor E =
∑
nipi (codim 1 on a curve are just points) such that

ι∗OX(D) = OC(E), then deg(ι∗OX(D)) :=
∑
ni.

On P1, all line bundles are of the form OP1(d) for some d ∈ Z. If d ≥ 0, we can think of O(d) (or
global sections) as degree d homogeneous polynomials on P1. Also deg(O(d)) = d.

Example. In P2, if C is a degree c curve, and D is a degree d curve (in particular a divisor), then
C ·D = cd, also known as Bezout’s theorem.

Back to toric varieties. For C a T -invariant boundary curve, D a T -Cartier, we want to compute C ·D
in terms of combinatorics.

Fix Σ ⊂ NR a fan, and τ an (n− 1)-dim cone (so C = V(τ) is of dimension 1, i.e. a curve; moreover
P1). Note completeness of C implies τ = σ∩ σ ′ for two top dimensional cones.

Let D be a T -Cartier divisor, and suppose D|Uσ = div(χmσ), D|U ′σ = div(χmσ ′ ). Choose u ∈ σ ′ ∩N
such that the image of u in N(τ)R generates the lattice N(τ). Then we have:

Proposition. The intersection product is given by:

C ·D = 〈mσ −mσ ′ ,u〉 ∈ Z.

Remark. Given a T -Cartier divisor on P1, we obtain a PL function f : R→ R that looks like:
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The associated line bundle OP1(f) has degree the sum of outwards slopes at origin.

Proof. We reduce to the case XΣ = Uσ ∪Uσ ′ and our curve C = V(τ). We may adjust the T -Cartier
divisor by a principal divisor to assume that D|Uσ is empty and D|Uσ ′ = div(χmσ−mσ ′ ).

Now observe that mσ and mσ ′ must agree on τ, i.e. mσ −mσ ′ ∈ τ⊥ ∩M. Thus mσ −mσ ′ is a
rational function on V(τ). Now restricting D to V(τ) ∼= P1:

1. On the open set Uσ ∩ V(τ), D restricts to empty.

2. On Uσ ′ ∩ V(τ), D restricts to div(χmσ−mσ ′ ).

A direct computation gives the number is deg(D|C) = 〈mσ −mσ ′ ,u〉.

7 Line bundles

7.1 Polytopes and global sections of divisors

Letlecture 18 XΣ be a toric variety and D a T -Cartier divisor. Associated to D is the space

OXΣ(D) H0(XΣ,OXΣ(D)).

Here OXΣ(D) is a line bundle.

The space of global sectionsH0(XΣ,OXΣ(D)) could be as small as the 0 space (meaning no non-trivial
global sections; an example would beOPn(−1)), or as large as infinite dimensional (e.g. OA1 on A1, then
H0 = C[x], which is an infinite dimensional C vector space). However if X is proper, then H0(X,O(D))

is finite dimensional.

Example. If we considerOPn(d) on Pn, thenH0 = {degree d homogeneous polynomials in n+1 variables}.
Here O(d) = O(d ·H) for any hyperplane (class) H.

Let φ : |Σ| → R be a PL function associated to a divisor D =
∑
aρDρ. These data determine a

polytope (because it is the intersection of finitely many halfspaces):

MR ⊃ PD := {m ∈MR | 〈m, vρ〉 ≤ aρ ∀ρ ∈ Σ(1)}.

Let’s investigate this a little bit more.

Lemma. The (functions associated to the) lattice points in PD∩M form a (C-vector space)-basis forH0(XΣ,OXΣ(D)).

Proof. First note that since D is T -invariant, any f ∈ H0(XΣ,OXΣ(D)) satisfies div(f) +D ≥ 0, and thus
div(f)|T ≥ 0. So f ∈ C[M]. By the decomposition from last time, we can write

H0(XΣ,OXΣ(D)) =
⊕

div(χm)+D≥0
C · χm.

Locally over any Uσ, asking χm has poles bounded byD|Uσ is the same as saying PD|Uσ ∩M form a
basis for global sections (over Uσ) of D|Uσ . Together we have the required result.
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Example. Consider XΣ = P2 with v1 = (1, 0) and D1 = V(〈v1〉).

D1

D2

D3

The PL function corresponding to D1 is:

φD1((x,y)) =


x, if x ≥ 0 and y ≥ 0

x− y, if (x,y) is in the lower right area

0, otherwise.

Some linear algebra calculation gives that PD1 is the region bounded by

x ≤ 1,

y ≤ 0,

−x− y ≤ 0.

So the polytope associated to PD1 is:

BRecall we have the polytope construction, which in this case would give us back the toric variety P2.

Example. On P1 ×P1:

H1

H2

H3

H4

Similarly take D = H1. Then PD is cut out by:

x ≤ 1,

−x ≤ 0,

y ≤ 0,

−y ≤ 0.

Thus PD is the unit length interval. In particular, if we take the cone over a interval, we won’t recover
P1 ×P1.

Remark. The key difference between the two divisors is that the first divisor is ample, but the second
isn’t. We will discuss more in the next section.
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Recall how to construct a toric variety from a polytope: given P ⊂MR a lattice polytope, we take

im {(C∗)dimM → (C∗)#P → P#P−1}.

Fact: if P is of full dimension, then XP is isomorphic to XΣP , where ΣP is the normal fan of P.

Example. Intuitively in a picture, the normal fan is constructed as follows:

normal vectors

ΣP

Given a polytope P, and a facet F, we can associate the outward normal vF. For any face Q ⊂ P, we
may associate σQ = 〈vF | F contains Q}. Together these form the fan ΣP.

Back to P2. For D = D1 + 0 ·D2 + 0 ·D3, the lattice polytope is , and the normal fan is .

Definition. A T -Cartier divisor D is (combinatorially) ample if

D φD  PD  ΣPD = ΣX.

Example. Notice that if φ : |Σ|→ R is a PL for Σ, and Σ ′ → Σ is a refinement, then φ is linear on each of
the cones of Σ ′ as well. However, PD only depends on D. In particular, we have at least two cases where
ampleness could fail:

• PD lowered dimension.

• missed some subdivision.

7.2 Motivation: projective morphisms

Example. Suppose we are givenlecture 19 a lattice polytope inMR = R2 as follows:

This gives a morphism (C∗)2 → (C∗)9 by (z1, z2) 7→ (1, z1, z21, z2, z1z2, z21z2, z22, z1z22, z21z
2
2). In P8, we

have a torus with coordinate (1, t1, . . . , t8). So (C∗)2 → (C∗)9 → P8 and we take the closure. The variety
is XP

∼= P1 → P1 ↪→ P8.

However, a different polytope gives XP
∼= P1 ×P1 ↪→ P3. So different polytopes with the same

normal fan arise as different projective embeddings of a toric variety. (Alternatively, think of a line
bundle L and L⊗2 and their associated polytopes)

Suppose we have an embedding XΣ ↪→ Pn. There is a god-given line bundle OPn(1) := O(H∞) (for
a hyperplane H∞) on the right, whose global sections are homogeneous linear forms. We can restrict
OPn(1) to XΣ to a line bundle OΣ(1) (just think of restricting functions).
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• In the language of line bundles, we are pulling back the line bundle O(1) on Pn to XΣ.

• In the language of divisors, we are restricting the divisor to H∞ ∩ XΣ, and take the line bundle
associated to this.

Note: If D on X arises as a pullback of a hyperplane along a map
X Pn

D H

, then we call D very

ample. A divisor D is ample if n ·D is very ample for some n ∈ Z>0.

Unofficially, if PD is the polytope of D, then n · PD is the polytope of n ·D. Then ample means
that some dilation of PD is a lattice polytope with normal fan the same of X. Check the example at the
beginning of this subsection.

But why do we require an embedding? In particular, everything still makes sense if we simply have a
map XΣ → Pn.

Definition. If L is a line bundle on X such that for all x ∈ X, there exists some global section s ∈ H0(X,L)
with s(x) 6= 0, then L is called basepoint free or globally generated. Alternatively L is globally generated if it
arises by pulling back OPn(1) along a morphism X→ Pn.

Note: tautologically, for any f : X→ Pn and x ∈ X, f(x) ∈ Pn means that some coordinate of f(x) is
not zero, say the i-th. Then zi ∈ H0(Pn,O(1)) satisfies zi(f(x)) 6= 0.

Obviously not all line bundles satisfy this property. Some line bundles have no global sections at all.

Remark. There exist smooth toric varieties that are proper (|Σ| is complete) but no line bundle on them is
ample, i.e. they are non-projective.

7.3 Positivity vs convexity

We assume fans are complete in this section.

Definition. Let φ : |Σ|→ R be a PL function linear on each cone. Then φ is convex (or lower convex) if
for all v,w ∈ Σ and t ∈ [0, 1],

φ(tv+ (1− t)w) ≤ tφ(v) + (1− t)φ(w).

A convex function φ above is called strictly convex if for any two maximal cones σ,σ ′, the linear functions
φ|σ and φ|σ ′ are distinct.

Proposition. Let D be a T -Cartier divisor on XΣ with PL function φD : |Σ|→ R. Then:

• D is globally generated iff φD is convex.

• D is ample iff φD is strictly convex.

Example. Consider the map from Bl0P2 → P2:

π
H1
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and the line bundleO(1) = O(H1) on P2. The PL function φ has values 1, 0, 0 along the three rays. Then:

• π∗φ is a PL function on the fan of Bl0P2.

• It is convex but not strictly convex. Obviously the blowup is not an embedding into P2. But the
existence of π shows the line bundle must be globally generated.

lecture 20 Recall that an invertible sheaf L is call globally generated if L ∼= f∗OPn(1) for a morphism f : X→ Pn.

Example. Tautologically (Pn,OPn(1)) (which is also very ample) and (X,OX) are globally generated.
Also (Pn ×Pm,π∗1OPn(1)) where π1 is the first projection, is globally generated; but it is not ample, as
any maps induced won’t even see the second factor.

Proof. We prove the first assertion. The second one can be found in Fulton’s book.

First note that on XΣ, OX(D) is generated by global sections iff for each (maximal) cone σ ∈ Σ, the
local principal functionsmσ satisfy

mσ ∈ PD.

This is true because this condition guarantees the function to be a local section, but the compatibility of
mσ also shows these local sections glue to give a global section.

Now φD is convex iff φD(u) ≤ 〈mσ,u〉 for all u ∈ |Σ| and any (maximal) cone σ, since φ is the PL
term, and pairing withmσ is the linear term.

Thus φ convex iffmσ ∈ PD.

Example. Here are two examples of convex but not strictly convex PL functions:

1. On any Σ, take φ by dotting withm. This is globally linear.

2. The blowup map of P2, and by pulling back the PL function corresponding to the Cartier divisor
H1. Notice that the subdivided cones have identical linear functions, and therefore not strictly
convex.

In other words, we require the domain of linearity of any local function to NOT include any other
cone.

7.4 Non-projective proper varieties

Note if φ is convex, PD the associated polytope, and {m1, . . . ,mk} ∈ PD ∩M, then these k-sections give
a map XΣ → Pk−1.

Theorem. There exists a complete fan Σ in R3 such that Σ does not admit any strictly convex PL function.

Corollary. There exist non-projective proper algebraic varieties.

The first (quite convoluted) construction of a non-projective proper variety was due to Hironaka. But
here the toric construction is actually quite easy.

We list two more results here that we will not prove. In some sense, they are improvements of the
previous theorem.

Theorem. (Payne-Fujino) There exists a smooth toric 3-fold XΣ that is proper, but any morphism XΣ → Pn for
any n is constant.

Theorem. (Toric Chow lemma) For all toric variety XΣ, there exists a subdivision Σ̃ → Σ such that X
Σ̃

is
quasi-projective. Moreover, if XΣ is proper, then X

Σ̃
is projective.
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We give the construction to the very first theorem here.

Proof. Consider the cone over the following diagram:

v1 v2

v3

e1 e2

e3

v∗12

We build a fan Σ by replacing the first orthant 〈e1, e2, e3〉 in ΣP1×P1×P1 by the cone above (here we take
(P1)3 to make the fan complete).

Consider a PL function φ : |Σ|→ R. Assume it’s strictly convex. While v1, e2 lie in a 2-dimensional
cone, e1, v2 do not. The PL function restricted on the 2-dimensional trapezium e1, v1, v2, e2 looks roughly
like this:

φ

e1

v1 v2

e2

Notice that the convexity condition requires the two sheets to go down and then up again.

As a consequence,
φ(v1) +φ(e2) < φ(e1) +φ(v2).

We may adjust φ by any global linear function, and therefore we can assume φ(ei) = 0 (three values
determine such a global linear function). Then φ(v1) < φ(v2). By symmetry, we get

φ(v1) < φ(v2) < φ(v3) < φ(v1).

So we have a contradiction.

Remark. To see how we can subdivide to give a projective variety (by toric Chow), just connect the
missing three lines.
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8 Further topics

8.1 Semi-stable reduction

Conjecture. (Ode,lecture 21 “Strong factorization”, toric case) Let X, Y be two toric smooth compactifications of a

torus T , then there exists a factorization of the rational map
X Y

T T
id

of the form:

Z

X Y

φ ψ

where φ and ψ are a sequence of blowups of a torus invariant subvariety.

Remark. The result for toric surfaces are known (easy). General case is open.

Theorem. (Abramovich-Karu-Matsuki-Włodarczyk) (Weak factorization) For X, Y as above, there is a weak
factorization:

X1 X2 · · · Xk

X X ′1 X ′2 · · · X ′k = Y,

where each arrow is a sequence of blowups along smooth centers.

Remark. AKMW used this toric weak factorization to prove the weak factorization for arbitrary smooth
varieties X, Y sharing a common dense open U ⊂ X, U ⊂ Y, using a method called toroidalization. We
might talk about this in the last lecture.

Morphisms

Let φ : X→ Y be an equivariant toric morphism. Some of the niceness properties of φ that we can ask for
are:

• Flatness ( =⇒ equidimensionality: dimφ−1(y) should be constant for all y ∈ Y).

• (All fibers are smooth) impractical.

• Reducedness of the fibers.

Definition. A morphism φ : X→ Y is called weakly semistable if it’s flat with reduced fibers.

In general, φ toric doesn’t imply weakly semistable. Nonetheless, if φ : X→ Y is toric and semistable,
and ψ : Z→ Y is toric, then X×Y Z is toric.

Theorem. (Abramovich-Karu, ’00, weakly semistable reduction) If φ : X → Y is toric and surjective with fan
morhpism ΣX → ΣY , then there exist:

1. subdivisions of ΣX and ΣY , and

2. lattice refinement of lattice of Y,
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such that the resulting map Σ̃X → Σ̃Y induces X̃→ Ỹ weakly semistable.

Remark. Toroidalization once again yields a weakly semistable reduction result for arbitrary surjective
maps of varieties.

We discuss flat reduction and reduced reduction separately.

Flatness and fiber dimension

Fact (Chevalley): If F : X→ Y is a proper morphism of varieties, then the function:

Y → Z≥0

y 7→ dim f−1(y)

is upper semicontinuous in Zariski topology.

What this is saying is that this function should be constant, except along a Zariski closed subset where
it should go up, inside which there could be anothe closed subset where the function could go up again.

Example. BlptP
2 → P2.

Lemma. Let φ : X→ Y be a proper (this can be relaxed) map between toric varieties. Then φ is equidimensional
iff, in the induced map φ : ΣX → ΣY , the image of every cone in ΣX is a cone in ΣY ,

Proof. Since this is a local (at cone level) statement, we could reduce to case where:

• ΣY is a single cone τ;

• we focus on the map X→ Y on an open set Uσ ⊂ X;

• σ and τ are full dimensional.

Notice that the generic fiber of φ has dimension rk(Nσ) − rk(Nτ). To see this, just pick the identity in
the torus of Uτ, and then the fiber is the closure of the kernel of the homomorphism

Tσ → Tτ.

Now let xτ be the distinguished point of Uτ. We claim that (exercise: unwind and check this statement):
φ−1(xτ) is a union of orbits of X, namely those orbits V(σ ′) where σ ′ is a face of σ and the image of σ ′

meets the interior of τ.

Now dim(V(σ ′)) = rk(Nσ) − dim(σ ′). For equidimensionality to hold, the image of σ ′ must, there-
fore, have dimension dim(τ). This holds for every face σ ′ mapping to τ. Therefore we conclude φ(σ)
has to be a cone.

A non-example:

Here the image is the shaded area, and the two faces would fail.

Remark.lecture 22 Miracle flatness theorem (over C): for a morphism of schemes f : X → Y where X is Cohen-
Macaulay and Y is smooth, then f is flat iff f is equidimensional.
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Corollary. If ΣY is a smooth fan, then f : X→ Y is flat iff the image of each cone is a cone.

Proposition. (Flat reduction) If Σ1 → Σ2 is any surjective morphism of fans, then there exist subdivisions
Σ̃1 → Σ̃2 of Σ1 and Σ2, such that the induced map Σ̃1 → Σ̃2 is a flat morphism of fans.

Note that subdivisions correspond to proper birational toric morphisms.

We introduce a new technique: let Σ be a fan and φ : |Σ|→ R be a convex PL function with finitely
many domains of linearity, and not necessarily linear in each cone. Then the domains of linearity form a
subdivision of the fan Σ. Subdivisions associated to such PL functions are:

• Regular subdivision (in the sense of convex geometry).

• Correspond to projective toric birational maps X
Σ̃
→ XΣ.

Example. All blowups.

Proof. The proof consists of three steps:

1. Assume Σ2 is a single (maximal) cone τ.

Given any cone σ ∈ Σ1, its image under the map f : Σ1 → Σ2 is a strictly convex subcone of τ. For
example, it could be:

Then there exist lσ,1, . . . , lσ,n linear functions that cut out the image:

f(σ) =
n⋂
k=1

{lσ,k ≥ 0}.

Now consider the PL function on τ given by:

ψτ :=

n∑
k=1

|lσ,k|.

Then the associated subdivision τ̃ → τ satisfies that the image of σ in τ̃ is a union of cones. This
property is also stable under further subdivision of τ̃.

2. Observe that ψτ can be extended to a PL function on the whole of NR. Let τ1, . . . , τr be cones of
Σ2, each with its own ψτ1 . Then define

ψ =

r∑
i=1

ψτi .

Then Σ̃2 → Σ2 defined by ψ satisfies the above property: for each cone σ ∈ Σ1, the image is a
union of cones in Σ̃2.

BΣ1 → Σ̃2 is not a morphism of fans, as the image of a cone is not contained in some cone.

3. Now we modify Σ1, in the sense that we are doing the pushout of
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Σ̃1 Σ̃2

σ1 Σ2.

To do this, we have a composition (strictly speaking, not a morphism of fans; but nonetheless a set

function) φ : Σ1 → Σ̃2
ψ
−→ R. Then domains of linearity of φ subdivide Σ1 to give a morphism of

fans Σ̃1 → Σ̃2 with the required conditions.

Note that the way the proof went suggests:

Corollary. For the subdivisions described above, we could:

• take subdivisions to be projective (regular).

• make Σ2 a smooth fan.

Reducedness criterion

Proposition. Let f : XΣ1 → XΣ2 be an equidimensional toric morphism with associated fan morphism fΣ. Then
the fibers of f are reduced iff for every cone σ ∈ Σ1 with image τ ∈ Σ2, the image of the lattice is the lattice in the
image cone:

fΣ(Nσ) = Nτ.

(Recall that Nτ = (τ∩N)gp)

A non-example: P1 → P1 squaring map has f−1(0) not reduced.

Remark. It’s possible to perform a change of lattice on Σ2 to satisfy this condition. Some words to keep in
mind for this: cyclic covering, ramified base change, or root stack construction.

8.2 Chow groups and ring structure

This is the theory for higher (co)dimensional subvarieties that extends class group and picard group
which are in codim 1.

We define the k-cycles:
Zk(X) :=

⊕
irreducibileW⊂X

dimW=k

Z〈W〉.

Define a rational equivalence: two subvarieties W1,W2 of dimension k are rational equivalent if there
exists a subvarietyW12 of dimension k+ 1 and a rational function on it f ∈ C(W12) such that div(f) =
W1 −W2. Then define the k-th Chow groups as

Ak(X) := Zk(X)/{rational equivalence}.

Quicklecture 23 summary: for an algebraic variety X of dimension n, we assume the existence of the groups
Ak(X). B if X = E an elliptic curve, then A0(E) is uncountable over C, while H0(E) = Z.

Chow groups have some basic functorial properties:

• Proper pushforward: if f : X → Y is a proper morphism, then there exists a pushforward map
f∗ : Ak(X) → Ak(Y). Given an irreducible k-dim subvariety W ⊂ X, f is proper implies f(W) is
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closed, i.e. a subvariety of Y. So we can define f∗([W]) := w[f(W)] for some w ∈ Z to account for
the degree:

w =

0 if f(W) has dim < k.

deg(C(W)/C(f(W)) o/w.

Example. P1 → P1 the squaring map. Then the pushforward map between A1 = Z is the
multiplication by 2 map, corresponding to the field extension by adjoining square roots.

• Flat pullback: (for today) write Ak(X) = An−k(X). If f : X → Y is flat of fiber dimension r, then
there exists a flat pullback map Ak(Y) → Ak(X) defined by f∗([W]) = [f−1(W)]. Notice that
f−1(W) has dimension r+ (n− k) = (n+ r) − k, so is of codimension k in X.

For both proper push and flat pull, commutativity with rational equivalence needs to be checked. The
standard reference is Fulton’s Intersection Theory.

If X is smooth, then A∗(X) :=
⊕
kA

k(X) has a graded ring structure: given subvarietiesW ∈ Ak(X)
andW ′ ∈ Ak ′(X), ifW ∩W ′ ⊂ X is reduced (easy) and of expected codimension k+ k ′ (usually codim
is too low: any self intersection), then [W] · [W ′] := [W ∩W ′].

If dimension of the intersection is not right, one uses excess intersection formula. Notice that we’ve
seen an example of this: if C,D are two curves, we can treat one of them as a divisor and use the linear
equivalence to “perturb” it to get a transverse intersection.

Example. If X = An, then A0(X) = 0 and An(X) = Z. Given any 0-cycle (i.e. point) P on X, pick any
line though P, and a linear function f on this line that vanishes only at P. Then div(f) = P− 0. So P ∼ 0.

As stated, in codimension 1, A1(X) = Cl(X).

Theorem. If X is toric, then Ak(X) is generated by classes [V(σ)] for those cones σ with dim(σ) = k.

Note we’ve already proved this for k = 1. The T -invariant boundary divisors generate the class
group. The general result follows by similar arguments with one extra piece called excision sequence:

Let Z ⊂ X be a closed subvariety, and U = X \Z. Then i : Z ⊂ X is a closed immersion (proper) and
j : U ⊂ Z is an open immersion (flat). Then:

Ak(Z)
i∗−→ Ak(X)

j∗
−→ Ak(U)→ 0

is exact for all k. (There are more on the left here)

Proof. (to theorem, sketch) We filter X into pieces

X = Xn ⊃ Xn−1 ⊃ · · · ⊃ X0 ⊃ X−1 = ∅

where Xi is the union of V(σ) for those σ of dimension at least n− i. Then Xi \Xi−1 is the disjoint union
of algebraic tori. By above excision sequence, it suffices to understand Ak((C∗)l) for all l, but excision
could be applied again here.

Remark. If X is smooth, then every invariant subvariety V(σ) of a dimension k cone σ is the intersection⋂k
i=1 V(ρi) where ρi are the rays of σ. In other words, if X is smooth, then boundary divisors generate

each group multiplicative (and the ring as an algebra).

Theorem. Let XΣ be a smooth and projective toric variety. Then there is an isomorphism of graded rings:

A∗(X) =
Z[Dρ | ρ is a ray of Σ]

(1) Linear equivalence on 〈Dρ〉 (class group relation),
(2) {

∏q
i=1Dρi=0 if ρ1,...,ρq don’t form a cone of Σ}
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(“(Quotient) Stanley-Reisner presentation”)

Example. If XΣ = Pn, then A∗(X) is the quotient of the polynomial ring Z[D1, . . . ,Dn+1] by the
relations:

• Di = Dj for all i, j; for convenience, call this class H.

• Hn+1 = 0, as the only rays that don’t form a cone is everything.

Thus A∗(Pn) = Z[H]/(Hn+1), which is the same as the cohomology ring.

Remark. If XΣ is smooth projective, then A∗(XΣ) = H2∗(XΣ;Z) as rings.

8.3 Logarithmic geometry

This area waslecture 24 founded by the papers of Fontaine-Illusie, and Kato. The motivating examples are toric
varieties.

Let X be a toric variety. Given U ⊂ X an open affine subset, there is a set of functions defined by

MX(U) := {f ∈ C∗ ⊕M | f is regular on U}.

In other words, these are functions that are invertible outside the boundary divisor:

MX(U) = {f ∈ OX(U) | f|U\∂X is invertible}.

We have actually been doing this implicitly: if Uσ ⊂ XΣ is an affine open, then Uσ  Sσ = σ∨ ∩M, and
tensor this with C∗ (think of this as coefficients of the monomials), we getMX(U). Notice thatMX(U)

is a monoid, andMX is a sheaf of (multiplicative) monoids.

Definition. A logarithmic scheme is a pair (X,MX), where X is a scheme, andMX is a sheaf of monoids,
together with a sheaf map:

α :MX → OX,

such that α−1(O∗X)→ O∗X is an isomorphism.

Example.

• All toric varieties are log schemes, where the key fact is that we have the boundary divisor to give
us the monoid sheaf.

• Given a normal variety X and D ⊂ X a Cartier divisor, we can similarly define

MX(U) = {f ∈ OX(U) | f|U\D is invertible}.

In a picture:

f

g
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Here the blue curves form a divisor on X, and suppose the intersection point is locally defined by
fg = 0 (note that the assumption that we can write it of the form is called normal crossings, and we
assume the divisor is a normal crossing here; although generally I’m not entirely sure we can drop
this when defining divisorial log structure).

Then any powers of f and g are (locally) invertible away from the blue crossing, so the powers of
both give

C∗ ⊗N2 ⊂ OX(U).

All log schemes (X,MX) come with a fan, called the tropicalization of X. To build it, noteMX contains
O∗X as a subsheaf. We can build

MX :=MX/O∗X

to keep track of the exponents of monoid functions. In good cases (divisorial log structure for a normal
crossings divisor, described above), the sheafMX is finitely generated (e.g. the local picture above has
stalk N2).

If at any point p, the stalkMX,p is finitely generated, then we can associate to this point a cone σp
whose monoid is exactly this stalk. These glue to form a fan ΣX.

Since toric construction is local, this procedure generalizes to (X,ΣX).

We again have some nice correspondence between the combinatorial side and the geometry side of
things:

Example.

• A PL function φ : Σ→ R gives an associated line bundle OX(φ).

• A subdivision Σ̃→ Σ induces an (affine) proper birational map X̃→ X.

One problem though: for X toric, ΣX ↔ X is a perfect bijection. But this is false for log schemes. What
additional (combinatorial) data on Σ and some restrictions on X are required for a similar reconstruction
result?

If X is a Calabi-Yau variety (or an abelian variety), this is the SYZ mirror symmetry / Gross-Siebert
program.

–End of lecture notes–
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Appendices

The appendix contains some basic introductions to a few more topics. There won’t be any (long) proof
involved.

A Log geometry

We treat log geometry more axiomatically and systematically here. References can be found HERE (Ogus)
or HERE (Gross).

Basic definitions

Definition. A monoid is a set with a binary operation that is associative and commutative, and there
is an identity element in the set. We will usually use the multiplicative notation, and so the identity is
denoted by 1.

The groupification Pgp of a monoid P is P × P/ ∼ where (x,y) ∼ (m,n) iff axn = aym for some
a ∈ P.

Definition. A prelog structure on a scheme X is the data of an étale sheaf of monoids MX on X and a
morphism αX : MX → OX of sheaves of monoids. A prelog structure is a log structure if the induced
morphism α−1X (O∗X)→ O∗X is an isomorphism. A log scheme is a scheme with a log structure.

Every prelog structure has an associated log structure (logification...?), the pushout of O∗X ←−
α−1X (O∗X)→M.

Definition. A log morphism between two log schemes X and Y is a scheme morphism f : X→ Y, equipped
with a lift of the natural map f−1OY → OX as a map of sheaves of monoids f−1MY → MX. A log
morphism induces a map at the level of ghost sheaf MX :=MX/α−1X (O∗X):

f[ : f−1MY →MX.

Example. Let’s consider the toric variety P2 with three boundary divisor given by xi = 0, with the
dense open torus (C∗)2. We can associate to it the divisorial log structure, locally generated by O∗ and
some subset of {x0, x1, x2}. The ghost sheaf has stalks:

• 0 at a generic point in the open dense torus;

• N at the relative interior of each xi = 0;

• N2 at the intersection of any two of the boundary divisors.

To relate to toric varieties, recall for each cone σwe have the monoid Sσ, and Uσ = C[Sσ] is a scheme.
The inclusion Sσ → C[Sσ] induces a sheaf morphism from the constant sheaf of value Sσ to OX. This
gives a prelog structure, and we can take the associated log structure. Call this the standard log structure
on C[P], which can be done whenever P is a fs (fine and saturated) monoid.

Definition. A fs monoid is a monoid P such that:

• Pgp is finitely generated.
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• P → Pgp is injective.

• If nx ∈ P for some n ∈N≥0 and x ∈ Pgp, then x ∈ P.

Up to torsion, a fs monoid is the same thing as a toric monoid.

Definition. A fs log scheme is a log scheme X such that for every point x ∈ X, there exists a neighborhood
Ux, a fs monoid Px, a scheme map fx : Ux → Spec C[Px], such that the log structure on Ux induced by X
is the pullback of the standard log structure on Spec C[Px]

Example. (Divisorial log structure) Let X be a regular scheme, and D a reduced normal crossing divisor.
Then the sheafMX of functions invertible outside D is a fs log structure. For example, take D to be the
toric boundary of an (affine or glued) toric variety, then this divisorial log structure coincides with the
standard log structure described previously. In this case, the ghost sheaf is Nr at the intersection of r
components of D.

One thing we can do is to redo algebraic geometry putting log everywhere: log smooth, log étale, log
differential, log stacks... See references for precise definitions. In particular, log smooth does not imply
flat, contrary to the usual case.

Remark. Up to torsion, a log smooth morphism is étale locally the pullback of a dominant morphism of
toric varieties.

Log moduli

This (very short) section might assume some familiarity ofMg,n.

Since the boundary ∆ = Mg,n \Mg,n forms a normal crossing divisor, Mg,n carries a natural log
structureMMg,n

of this NC divisor.

It’s probably surprising to see that log smoothness includes some degenerate objects, including nodal
singularities, which coincide with objects in the boundary of Mg,n. In fact there is an isomorphism
between the two.

Let’s have a few more definitions here, for the sake of stating the result:

Definition. A prestable log curve is a flat proper log smooth morphism between fs log schemes π : C→W

whose fibers are reduced and connected curves. It is stable if its underlying curve is stable.

Theorem. The moduli space of stable log curves is Mg,n as a fs log stack for the divisorial log structure given by
boundary divisors.

Remark. There is a notion of basic log structure hidden here. Intuitively, this is a “universal” structure
of which any map X → X can be lifted to X → Xbas. In particular, basic log structure has a universal
property that rules out infinite automorphisms, and turns the (Artin) stack of all stable log maps with
fixed target space B into a Deligne-Mumford stack. More information can be found on Kato’s paper for
references.

Similar results can be said for stable maps. In particular, we have this ultimate theorem:

Theorem. If X→ B is proper and log smooth, then there is a natural perfect obstruction theory onM(X/B,β)
of stable log maps of type β, which is a fs log stack of finite type, defining a virtual fundamental class.

Remark. Note that it’s not true in general that the boundary of Mg,n(X,β) forms a normal crossings
divisor (maybe not a divisor at all, usually too high dimension; it is true for some nice cases, e.g.
M0,n(P

r,d)), it still carries a log structure with respect to which it is log-smooth.
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B Cox ring and “quotients”

We know Pn can be defined easily as (An+1 \ {0})/ ∼, with a graded coordinate ring C[x1, . . . , xn] by
degree. The Cox homogeneous coordinate ring does a similar job for toric varieties.

Let X be the toric variety corresponding to a fan Σ. Recall that each ray of Σ defines a boundary
divisor, and they together generate the class group. We have a commutative diagram:

0 M DivT (X) Pic(X) 0

0 M Zs A1(X) 0
f

where s = |Σ(1)|, the rows are exact and the vertical arrows are inclusions.

For each ray ρ ∈ Σ(1), we introduce a variable xρ, and consider the polynomial ring

S := C[xρ : ρ ∈ Σ(1)].

Note that a monomial
∑
ρ x
aρ
ρ determines a divisor D =

∑
ρ aρDρ. We also write this monomial as xD.

We grade the ring S as follows:

the degree of a monomial is f(D) = [D] ∈ A1(X).

Using the exact sequences above, two monomials
∑
ρ x
aρ
ρ and

∑
ρ x
bρ
ρ have the same degree iff aρ−bρ =

〈m, vi〉, wherem ∈M and vi are the primitive vectors corresponding to the ray ρi. Thus we can define
the degree α vector space

Sα =
⊕

deg(xD)=α

C · xD,

and then S decomposes into
S =

⊕
α∈A1(X)

Sα.

Example. If X = Pn, then A1(X) = Z[H], and the map f sends each hyperplane Hi to the divisor class
[H]. Thus Sn =

⊕∑
ρi=n

C · (xρ00 · · · x
ρn
n ), and S = C[x0, . . . , xn] with usual grading.

Example. For the weighted projective space P(p0, . . . ,pn), S = C[x1, . . . , xn] with deg(xi) = pi.

Recall from algebraic geometry that H0(Pn,O(n)) = Sn. This generalizes.

Proposition. If α = [D] ∈ A1(X), then there is an isomorphism

φD : Sα ∼= H0(X,OX(D)).

Moreover, φD form a group in the sense that there is a commutative diagram:

Sα ⊗ Sβ Sα+β

H0(X,OX(D))⊗H0(X,OX(E)) H0(X,OX(D+ E)).

Now notice that we only used information on the rays of a fan, so the reverse process won’t actually
work here. We need to specify which (maximal) cones are actually in the fan for the reverse process to
work. This is related to an ideal of S.
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For a cone σ ∈ Σ, let σ̂ be the divisor
∑
ρ 6∈σ(1) Dρ, and let the corresponding monomial be xσ̂ =∏

ρ 6∈σ(1) xρ. Then define the irrelevant ideal to be

B := 〈xσ̂ : σ ∈ Σ〉 ⊂ S.

Notice that it suffices to go over the maximal cones σ ∈ Σ. Therefore, if two fans Σ and Σ ′ with the same
ray structure and Cox ring, then Σ = Σ ′ iff B = B ′.

Example. Consider the fans of P2 and P2 \ {pt}. Notice that for P2 the irrelevant ideal is the usual
B = 〈x0, x1, x2〉 ⊂ S.

In particular, if we define
Z := V(B) ⊂ Cs

(which can be shown to have codim at least 2) then, just as in Pn, we could take quotient of Cs −Z to
reconstruct our toric variety X.

Homogeneous coordinate and quotients

Let’s start by applying the functor HomZ(−, C∗) to the exact sequence at the beginning of the section:

0→ G := HomZ(A1(X), C∗)→ (C∗)s → Tn.

Since (C∗)s acts on Cs, and G is a subgroup, G also acts on Cs naturally by:

g · t := (g([Dρ])tρ)

where g ∈ HomZ(A1(X), C∗), t = (tρ) ∈ Cs, and Dρ is the divisor corresponding to the ray xρ. Then:

Theorem. Let notations be as above, then:

1. The set Cs \Z is G-invariant.

2. X is (naturally) isomorphic to the categorical quotient (Cs \Z)/G.

3. X is the geometric quotient iff X is simplicial.

In particular, for any cone σ ∈ Σ, the action of G on {(xi) ∈ Cs : xi = 0 for vi ∈ σ} with Z removed,
then this is the closed orbit V(σ) corresponding to σ. From here, we could have toric Nullstellensatz,
graded modules, etc. See Cox’s very readable original paper “The Homogeneous Coordinate Ring of a
Toric Variety”.
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C Tropical geometry

Although there is a solid background of what tropical geometry is, involving tropical semi ring and etc,
here (personally) tropical data is just a collection of discrete data in a very organized way.

Background

We work over what is called a tropical semiring Rtrop := R ∪ {+∞} with addition and multiplication
given by:

a⊕ b = min(a,b)

a� b = a+ b.

Note there is no additive inverse. Also note that a monomial in Rtrop[x1, . . . , xn] of the form aIx
I actually

means aI +
∑
ikxk, and thus a polynomial is a global minimum of all of these linear functions. If we

use the same notation of lattices M,N as in torics, then alternatively, a polynomial is a map f :MR → R

where, for S ⊂ N = Zn a finite set,

f(x) =
∑
I∈S

aIx
I := min {aI + I · x}.

We define the locus V(f) to be the points inMR where f is not linear.

Example. Consider f = 1⊕ (0� x1)⊕ (0� x2) = min {1, x1, x2}. Note 0 is the multiplicative identity
here. Then V(f) looks like:

with origin being (1, 1).

Tropicalization of subvarieties of tori

The tropical semiring serves as a target space for a valuation. In addition to the common valuations, e.g.
Q or C with v(a) = 0 for all but 0, or the p-adic, one more important valuation is the following.

We define the field K{t} of Puiseux series with real powers locally converging at zero by:

K{t} = {φ : U→ R : φ(t) =
∑
j∈I

ajt
j,aj ∈ C∗, t ∈ U}

where 0 ∈ U ⊂ R is some open neighborhood, and I ⊂ R a totally ordered set. This is an algebraically
closed field with a non-Archimedean valuation defined by

val(
∑
j∈I

ajt
j) = min(I).

Nevertheless, for every polynomial f ∈ K[x1, . . . , xn], we can define its tropicalization by replacing
the Puiseux series coefficients from K with their valuations in Rtrop. In fact, this works for any f ∈
K[x±11 , . . . , x±1n ].
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Example. Consider f = 0 ∈ K[x±11 , . . . , x±1n ], and we want to consider trop(Tn) for T = K∗. Then trop(f)
is smooth everywhere, and we get the V(trop(f)) = Rn. So we say trop(Tn) = Rn.

Tropicalization of toric varieties

Intuitively, we only need to glue the pieces together in the correct way.

Example. A1 consists of a T1 and a point, thus tropicalizing it gives an R1 and a point, i.e. Rtrop. P1

consists of a T1 with two extra points: the T1 with each point should be a copy of Rtrop, thus trop(P1)
is the quotient of two copies of Rtrop over the common open set R. It’s homeomorphic to [0, 1] with
standard topology.

Definition. Let Σ be the fan of a toric variety X. Recall we defined N(σ) = NR/span(σ). Then as a set,
Xtrop is the disjoint union:

Xtrop =
∐
σ∈Σ

N(σ).

We associate to each cone σ the space Utrop
σ := Hom(σ∨ ∩M, Rtrop), and thus

U
trop
σ =

∐
τ�σ

N(τ).

Each patch has the pointwise-convergence topology induced from (Rtrop)k, and they are glued together
along common faces to give Xtrop.

Example. Let Σ be the fan defining P2. Then trop(P2) has three copies of (Rtrop)2 glued together along
their faces. In pictures, notice (Rtrop)2 looks something like this:

where the solid stuff are at infinity. So three copies of them are glued together along the boundaries
(identifying one edge and the area inside for each), giving us something like a triangle-shaped stuff...

People generally deal with tropical curves, and they are much easier to describe and draw. See
EXAMPLES HERE (taken from LSGNT Topics in Geometry materials).

To relate back to log geometry, log curves have a well-defined tropicalization process, and, as a result
of which, the moduli space will have some nice (...well up to how you define nice) properties, e.g. see
HERE.
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