PART III TORIC GEOMETRY (LENT 2022) EXAMPLE SHEET 2

- 1. Consider a toric surface. Is there any a priori relationship between the number of 1dimensional and 0-dimensional orbits? What if we restrict to proper toric surfaces? What about in higher dimensions?
- 2. Consider the fan morphism:

$$\mathbb{R}_{\geq 0} \to \mathbb{R}^2_{\geq 0}$$
$$u \mapsto (u, 0)$$

Describe the corresponding toric morphism $\mathbb{C} \to \mathbb{C}^2$. Is it what you expected? If so: congratulations. If not, have a think and realise why what you were expecting cannot be a toric morphism.

- 3. For any $r \geq 1$ construct a fan Σ and a proper map to $\mathbb{R}_{\geq 0}$ such that the associated toric morphism $X \to \mathbb{A}^1$ has every nonzero fibre isomorphic to \mathbb{P}^1 , and has zero fibre consisting of exactly r irreducible components.
- 4. Draw the fans of:
 - the blow-up of \mathbb{A}^2 at the origin;
 - the blow-up of \mathbb{A}^3 at the origin;
 - the blow-up of \mathbb{A}^3 in the line $V(x_1, x_2)$.
 - Ponder the orbit-cone correspondence in this context.
- 5. (*) Consider the variety X obtained by taking \mathbb{P}^n and blowing up a single closed dimension k coordinate plane. Carefully describe the fan for this variety (the answer will certainly depend on k). Identify all the torus orbit closures of X.
- 6. Consider the Cremona transform:

$$(\mathbb{C}^{\star})^n \to (\mathbb{C}^{\star})^n$$
$$(t_1, \dots, t_n) \mapsto (t_1^{-1}, \dots, t_n^{-1})$$

Describe the self-map on the cocharacter lattice that induces this map. Does this map extend to the compactification \mathbb{P}^n ? What about $(\mathbb{P}^1)^n$?

7. Let X be the blowup of \mathbb{P}^2 at its three torus fixed points and let $\pi : X \to \mathbb{P}^2$ be the blowup morphism. Prove that the coordinatewise reciprocal map defined in the previous question extends to an endomorphism $\phi : X \to X$.

Now let $\ell \subseteq \mathbb{P}^2$ be a line that does not pass through the coordinate points, and therefore lifts to a unique subvariety in X. Give an explicit description of the subvariety of \mathbb{P}^2 obtained as $\pi \circ \phi \circ \pi^{-1}(\ell)$.

- 8. (*) Construct a toric variety X with dense torus $T \cong (\mathbb{C}^*)^n$ with the following two properties: (1) the Cremona transform on T extends to a regular (i.e. well-defined) self-map on X, and (2) admits a toric birational morphism $X \to \mathbb{P}^n$.
- 9. Let σ be the 3-dimensional cone obtained as a cone over a square. Identify¹ the associated toric variety with the affine cone over $\mathbb{P}^1 \times \mathbb{P}^1$. Give a toric resolution of singularities $\pi : X \to U_{\sigma}$ with the additional constraint that the morphism is an isomorphism in codimension 1. Practically, this is requiring that π is a bijection on torus orbits of dimension 2 and 3.
- 10. (*) Prove or give a counterexample: For toric morphisms of toric varieties $X_1 \to Z$ and $X_2 \to Z$ the fibre product of schemes $X_1 \times_Z X_2$ is always a toric variety.
- 11. (Fulton.) Fix a basis e_1, \ldots, e_n for N and let σ be the cone generated by:

$$e_1, e_2, \ldots, e_{n-1}, -e_1 - e_2 - \cdots - e_{n-1} + me_n.$$

Show that $X_{\sigma} = \mathbb{C}^n / \mu_m$ where μ_m is the group of *m*th roots of unity, acting diagonally on \mathbb{C}^n . Show that X_{σ} is the cone over the *m*-uple Veronese embedding $\mathbb{P}^{n-1} \hookrightarrow \mathbb{P}^{N-1}$ where $N = \binom{m+n-1}{n-1}$ is the number of degree-*m* monomials in *n* variables.²

- 12. Give a toric morphism of toric varieties $f : X \to Y$ and a point $y \in Y$ such that the scheme theoretic fiber $X \times_Y \{y\}$ is non-reduced. (*) Can you give a combinatorial condition that guarantees that all scheme theoretic fibers of f are reduced?
- 13. (*) Given an arbitrary fan Σ in $N_{\mathbb{R}}$ prove that there exists a subdivision $\widetilde{\Sigma}$ of Σ such that every cone of $\widetilde{\Sigma}$ is generated by a subset of an \mathbb{R} -basis for $N_{\mathbb{R}}$ (i.e. is simplicial)³. Prove the ultimate statement: there is a further refinement of $\widetilde{\Sigma}$ where every cone is generated by a lattice basis.

¹You may need to look at the Wikipedia pages for Segre embedding and for affine cone.

²If you're struggling, start with n = 2.

³A more pretentious way of saying this is that X_{Σ} has a toric resolution of singularities by a smooth orbifold, or even more pretentiously, a smooth Deligne–Mumford stack.