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PREFACE

Algebraic geometry has developed a great deal of machinery for
studying higher dimensional nonsingular and singular varieties; for
example, all sorts of cohomology theories, resolution of singularities,
Hodge theory, intersection theory, Riemann-Roch theorems, and
vanishing theorems. There has been real progress recently toward at
least a rough classification of higher dimensional varieties, particularly
by Mori and his school. For all this — and for anyone learning
algebraic geometry — it is important to have a good source of
examples.

In introductory courses this can be done in several ways. One
can study algebraic curves, where much of the story of their linear
systems (line bundles, projective embeddings, etc.) can be worked out
explicitly for low genus.{1) For surfaces one can work out some of
the classification, and work out some of the corresponding facts for the
special surfaces one finds.(2) Another approach is to study varieties
that arise in "classical” projective geometry: Grassmannians, flag
varieties, Veronese embeddings, scrolls, quadrics, cubic surfaces, etc.(3)

Toric varieties provide a quite different yet elementary way to
see many examples and phenomena in algebraic geometry. In the
general classification scheme, these varieties are very special. For
example, they are all rational, and, although they may be singular,
the singularities are also rational. Nevertheless, toric varieties have
provided a remarkably fertile testing ground for general theories.
Toric varieties correspond to objects much like the simplicial complexes
studied in elementary topology, and all the basic conceptss on toric
varieties — maps between them, line bundles, cycles, etc. (at least
those compatible with the torus action) — correspond to simple
"simplicial” notions. This makes everything much more computable
and concrete than usual. For this reason, we believe it provides a good

companion for an introduction to algebraic geometry (but certainly not

The numbers refer to the notes at the back of the book.
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a substitute for the study of curves, surfaces, and projective
geometry!).

In addition, there are applications the other way, and interesting
relations with commutative algebra and lattice points in polyhedra.
The geometry of toric varieties also provides a good model for how
some of the compactifications of symmetric varieties look; indeed, this
was the origin of their study. Although we won't study compac-
tifications in this book, knowing about toric varieties makes them
easier to understand.

The goal of this mini-course is to develop the foundational
material, with many examples, and then to concentrate on the
topology, intersection theory, and Riemann-Roch problem on toric
varieties. These are applied to count lattice points in polytopes, and
study volumes of convex bodies. The notes conclude with Stanley's
application of toric varieties to the geometry of simplicial polytopes.
Relations between algebraic geometry and other subjects are
emphasized, even when proofs without algebraic geometry are possible.

When this course was first planned there was no accessible text
containing foundational results about toric varieties, although there
was the excellent introductory survey by Danilov, as well as articles
by Brylinski, Jurkiewitz, and Teissier, and more technical monographs
by Demazure, Kempf-Knudsen - Mumford - Saint-Donat, Ash -
Mumford - Rapoport-Tai, and Oda, where most of the results about
toric varieties appeared for the first time.(4) Since then the excellent
book of Oda [Odal has appeared. This allows us to choose topics based
on their suitability for an introductory course, and to present them in
less than their maximum generality, since one can find complete
arguments in [Odal. Oda’s book also contains a wealth of references
and attributions, which frees us from attempting to give complete
references or to assign credits. In no sense are we trying to survey the
subject. Almost all of the material, including solutions to many of the
exercises, can be found in the references. We make no claims for
originality, beyond hoping that an occasional proof may be simpler
than the original; and some of the intérsection theory on singular toric

varieties has not appeared before.

These notes were prepared in connection with the 1989 William H.
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references for some of the exercises.
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CHAPTER 1

DEFINITIONS AND EXAMPLES

1.1 Introduction

Toric varieties as a subject came more or less independently from the
work of several people, primarily in connection with the study of
compactification problems.(i) This compactification description gives a
simple way to say what a toric variety is: it is a normal variety X
that contains a torus T as a dense open subset, together with an
action T x X = X of T on X that extends the natural action of T
on itself. The torus T is the torus €*x ... x €* of algebraic groups,
not the torus of topology, although the latter will play a role here as
well. The simplest compact example is projective space P", regarded
as the compactification of C" as usual:

()™ c ¢” c P,

" Similarly, any product of affine and projective spaces can be realized
as a toric variety.

Besides its brevity, this definition has the virtue that it explains
the original name of toric varieties as "torus embeddings." Unfor-
tunately, this name and description may lead one to think that one
would be interested in such varieties only if one has a torus one wants
to compactify; indeed, one may wonder if there wouldn’'t have been
more general interest in this subject, at least in the West, if this name
had been avoided. The action of the torus on a toric variety will be
important, as well as the fact that it contains the torus as a dense
open orbit, but the problem with this description is that it completely
ignores the relation with the simplicial geometry that makes their
study so interesting. At any rate, we far prefer the name "toric
varieties,” which is becoming more common.

. In this introductory section we give a brief definition of toric
varieties as we will study them; in the following sections these notions
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will be made more complete and precise, and the basic facts assumed
here will be proved. A toric variety will be constructed from a lattice
N (which is isomorphic to Z" for some n), and a fan A in N,
which is a collection of "strongly convex rational polyhedral cones” o
in the real vector space N = N®zR, satisfying the conditions
analogous to those for a simplicial complex: every face of a cone in A
is also a cone in A, and the intersection of two cones in A is a face
of each. A strongly convex rational polyhedral cone o in Np is a
cone with apex at the origin, generated by a finite number of vectors;
"rational” means that it is generated by vectors in the lattice, and
"strong” convexity that it contains no line through the origin. We often
abuse notation by calling such a cone simply a "cone in N".

Let M = Hom(N,Z) denote the dual lattice, with dual pairing
denoted (, ). If o is aconein N, the dual cone o is the set of
vectors in MpR that are nonnegative on o. This determines a

commutative semigroup
Seg = o' AM = (ueM: (u,v)20 forall veol.

This semigroup is finitely generated, so its corresponding "group
algebra” €[Sl is a finitely generated commutative L-algebra. Such

an algebra corresponds to an affine variety: set
Ugs = Spec(CISgh .

If T is a face of o, then S, is contained in S;, so C[S;} is a
subalgebra of €C[S.], which gives a map U, — U, In fact, U, is a
principal open subset of U,: if we choose u € S; so that v = onu*,
then U, = {x € Uy : ul{x) # 0). With these identifications, these affine
varieties fit together to form an algebraic variety, which we denote by
X(A). (The "embedding” notation for this is Tyemb(A), but we won't
follow this convention.) Note that smaller cones correspond to smaller
open sets, which explains why the geometry in N is preferred to the
equivalent geometry in the dual space M.

We turn to some simple examples. For these, the lattice N is
taken with a fixed basis e1,...,e,, with Xi,...,X, the elementsin
CIM] corresponding to the dual basis. For n < 3, we usually write X,

Y, and Z for the first three of these. We first consider some affine
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examples, where A consists of a cone o together with all of its faces,
and X(A) is the affine variety Ug.
The origin {0} is a cone, and a face of every other cone. The dual

semigroup is all of M, with generators %ej,...,tey, so the
corresponding group algebra is
= -1 -1 -1
CIM] = CIXq, X174, Xg, X274, ..., Xp, Xpn ™71,

which is the affine ring of the torus: U(g) = T = (C*)®. So every toric
variety contains the torus as an open subset.
If o is the cone generated by e1,...,e,, then S; is generated

by the dual basis, so
CiSsl = C[X4, X2, ..., X1,

which is the affine ring of affine space: U, = C™.
For another example take n = 2, and take o generated by e

and 2eq - eo.

Semigroup generators for S, are e, ej + e, and ej + 2e}, so
€lS,] = €IX, XY, XY?] = CIU,V,WI/(VZ -UW).

Hence, U, is a quadric cone, i.e.,, a cone over a conic:
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Next we look at a few basic examples which are not affine. For
n = 1, the only non-affine example has A consisting of the cones
R,g, Re¢g, and (0}, which correspond to the affine toric varieties C,
C, and C*. These three cones form a fan, and the corresponding toric
variety is constructed from the gluing:

-t

L

|
clx 1} o €Ix, X1 o Cixl
C P cC* o ¢
with the patching isomorphism given by x = x~1 on the overlap.

This is of course the projective line Pl

Consider, for n = 2, the fan pictured:

This time Ug, = Spec(CIX,X"1vD = €2 and Ug, = Spec(ClY,XY 1)) = €2
The resulting toric variety is the blow-up of €2 at the origin. To see
this, realize the blow-up as the subvariety of €2 x P! defined by the
equation XTy = YTg, where Tg and Ty are homogeneous
coordinates on Pl. This has an open cover by the two varieties Ug
and Uy where Tg and T3 are nonzero, each isomorphic to €?; on
Uqg coordinates are X and T4/Tqg = X-1Y, and on Uj coordinates are
Y and Tg/Ty = XY™1, which ceincides with the toric construction.
Next, for n = 2, consider the fan
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The dual cones in M = 22 are

Each Ug, is isomorphic to €2, with coordinates (X,Y) for agq,
(x"1,X-ty) for gy, and (v~ 1,XxY"1) for 03. These glue together to
form the projective plane P2 in the usual way: if (Tq:T1:T2) are the
homogeneous coordinates on P2, X = T1/Tg and Y = To/Tg. (Note
again how the geometry in N is more agreeab'le than that in M)

For a more interesting example, consider a fan as drawn, where
the slanting arrow passes through the point (-1,a), for some positive

integer a.

The four affine varieties are UUl = Spec(C[X,Y]), Uc,2 = Spec(C[X,Y 1D,
Ugy = Spec(CIX~1,X72Y"1]), and Ug, = Spec(€[X~1,X3Y]). We have the
patching

(x~1, x2y) — (x,y) U,
1) I
’x_

ay )y — (x,yDH U,

Us

4 1

Ugs (x~1

3 2
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which projects to the patching x 1 «> x of € with C. The
varieties Ucri and Ucr2 (and Uc,3 and Ua4) patch together to the
variety € xPl, soall together we have a Pl-bundle over PL. These
rational ruled surfaces are sometimes denoted F,, and called

Hirzebruch surfaces.

Exercise. Identify the bundle F, — P! with the bundle P(9(a)®1)
of lines in the vector bundle that is the sum of a trivial line bundle and
the bundle 9(a) on P1.(2)

Each of the four rays T determines a curve D in the surface.
Such a curve will be contained in the union of the two open sets U,
for the two cones o of which T is a face, meeting each of them in a
curve isomorphic to €, glued together as usual to form Pl. The
equation for D, NU,; in U; = €2 is X" =0, where u is the
generator of S; that does not vanish on <. For example, if t is
the ray through e3, the curve D. is defined by the equation Y = 0
on Ug, = Spec(CIX,Y]), and XY =0 on Ug, = Spec(C[XaY,Xx"1]).

Exercise. Verify that Dp = Pl. Show that the normal bundle to D,
in F, is the line bundle 0O(-a), so the self-intersection number (D-D)
is -a. Find the corresponding numbers for the other three rays.(3)

Beginners are encouraged to experiment before going on. See if
you can find fans to construct the following varieties as toric varieties:
P", the blow-up of C® at a point, € x P1, Plxpl, cax PP, and
P2 x P®. What ar= all the one-dimensional toric varieties? Construct

some other two-dimensional toric varieties.

1.2 Convex polyhedral cones

We include here the basic facts about convex polyhedral cones that will
be needed. These results can be found in their natural generality in
any book on convexity,(4) but the proofs in the polyhedral case are so
simple that it is nearly as easy to prove them as to quote texts. We
include proofs also because they show how 'to find generators of the

semigroups, which is what we need for actual computations.
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Let V be the vector space NpR, with dual space V* = M. A

convex polyhedral cone is a set
g = (rqvi+...+rgvg € V:ir;2 0)

generated by any finite set of vectors vy,...,vs in V. Such vectors,
or sometimes the corresponding rays consisting of positive multiples of
some Vj, are called generators for the cone o.

V2

v3

We will soon see a dual description of cones as intersections of half-
spaces. The dimension dim(c) of ¢ is the dimension of the linear
space R+«0 = o + (-0) spanned by o. The dual o of any set o is

the set of equations of supporting hyperplanes, i.e.,
oY = {ueV*: Ku,v>20 forall veo).

Everything is based on the following fundamental fact from the théory

of convex sets.(S)

(%) If o Is a convex polyhedral cone and vg ¢ o, then thereis

some ug € g’ with <ug,vg> < 0.

We list some consequences of (%). A direct translation of (%) is the

duality theorem:
(1) (o7} = o.

A face T of o is the intersection of o with any supporting
hyperplane: T = onNu* ={v € g: <u,v> =0) for some u in ov. A
cone is regarded as a face of itself, while others are called proper faces.
Note that any linear subspace of a cone Is contained in every face of

the cone.

(2) Any face is also a convex polyhedral cone.
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The face oNu* is generated by those vectors v; in a generating set
for o such that <u,v;> = 0. In particular, we see that a cone has
only finitely many faces.

(3) Any intersection of faces is also a face.
This is seen from the equation MN{oNu;*) = ocN(Eup* for u; € ov.
(4) Any face of a face is a face.

In fact, if T = onNu* and Yy = TN{u)* for u€ ¢¥ and u' € tv, then

for large positive p, u'+ pu isin ¢¥ and ¥ = on(u'+pu)*.
A facet is a face of codimension one.
(5) Any proper face is contained in some facet.

To see this, it suffices to show that if T = oNu* has codimension
greater than one, it is contained in a larger face. We may assume that
o spans V (or replace V by the space spanned by o); let W be
the linear span of T. The images v; in V/W of the generators of o
are contained in a half-space determined by u. By moving this half-
space in the sphere of half-spaces in V/W, one can find one that
contains these vectors ¥; but with at least one such nonzero vector in
the boundary hyperplané. In other words, thereisa ug in g’ so
that ug* contains T and at least one of the vectors v; not in W;
this means that oNug* is a larger face. When the codimension of T
in o is two, so V/W s a plane, there are exactly two such support-
ing lines, which proves that any face of codimension two is the

intersection of exactly two facets.
From this we deduce by induction on the codimension:
(6) Any proper face is the intersection of all facets containing it.

Indeed, if T is any face of codimension larger than two, from (5) we
can find a facet Y containing it; by induction T is the intersection of
facets in y, and each of these is'the intersection of two facets in o,

so their intersection T is an intersection of facets.

(7) The topological bounda}"y of a cone that spans V s the union of
its proper faces (or facets).
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Since a face is the intersection with a supporting hyperplane, points in
proper faces of o have points arbitrarily near which are not in o.
Since o has interior points, by looking at the line segment from a
point in a face to a point in the interior, we see likewise that points in
faces have points arbitrarily near which are interior points. Con-
versely, if v is in the boundary of the cone o, let w; —» v, w; ¢ o.
By (%), there are vectors u; € o° with <u;,w;> < 0. By taking the u;
in a sphere, we find a converging subsequence, so we may assume u;

has a limit ug. Then ug € 0¥ and v isin the face onug*.

When o spans V and T is a facet of o, thereisa u € gV,
unique up to multiplication by a positive scalar, with © = onu*. Such
a vector, which we denote by u., is an equation for the hyperplane

spanned by .

(8) If o spans V and o # V, then O s the intersection of
the half-spaces Hy = (v € V: Cu.,v> 2 0}, as T ranges over the

facets of a.

If v were in the intersection of the half-spaces but not in o, take
any v' in the interior of o. Let w be the last point in o on the
line segment from v' to v. Then w is in the boumdary of o, and so
is in some facet T. Then <u.,,v'> >0 and <u.,w> =0, so <u,,v><0,

a contradiction.

The proof gives a practical procedure for finding generators for
the dual cone Y. For each set of n-1 independent vectors among
the generators of o, solve for a vector u annihilating the set; if
neither u or -u is nonnegative on all generators of o it is dis-
carded; otherwise either u or -u is taken as a generator for o”; if
the n-1 vectors are in a facet T, this vector will be the one denoted

u, above. From (8) we deduce the fact known as Farkas' Theorem:

(9) The dual of a convex polyhedral cone is a convex polyhedral

cone.

If o spans V, the vectors u. generate o“; indeed, if u in ov
were not in the cone generated by the u,, applying (%) to this cone,

there is a vector v in V with <u.,v> 2 0 for all facets t and
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<u,v> < 0, and this contradicts (8). If o spans a smaller linear space
W = R:o, then oV is generated by lifts of generators of the dual cone
in W* = V*/W+*, together with vectors u and -u as u ranges over
a basis for W+,

This shows that polyhedral cones can also be given a dual
definition as the intersection of half-spaces: for generators uy, ... ,u;
of oV,

o = (veV:i<u,v>20,...,<u,v>20}).

If we now suppose o is rational, meaning that its generators
can be taken from N, then o is also rational; indeed, the above

procedure shows how to construct generators u; in o NM.

Proposition 1. (Gordon's Lemma) If o is a rational convex
polyhedral cone, then Sy = o“NM is a finitely generated semigroup.

Proof. Take uy,...,us in o“NM that generate o~ as a cone. Let
K={Zt;u;:0 <t; <1). Since K is compact and M is discrete, the
intersection KNM is finite. Then KNM generates the semigroup.
Indeed, if u isin o“NM, write u=2Zrju;, r;z0, so r;y =m;+t;
with m; a nonnegative integer and 0 s t; < 1. Then u = Xm;u; + u’,

with each u; and u'=Xt;u; in KnM.

It is often necessary to find a point in the relative interior of
a cone o, le., in the topoclogical interior of o in the space R-o
spanned by o. This is achieved by taking any positive combination of
dim(o) linearly independent vectors among the generators of o. In

particular, if o is rational, we can find such points in the lattice.

(10) If ~ is a face of o, then o NT* is a face of ¢, with
dim(t) + dim{(o¥NT*) = n = dim(V). This sets up a one-to-one
order-reversing correspondence between the faces of o and the
faces of o>. The smallest face of o is on{(-ag).

To see this, note first that the faces of o7 are exactly the cones
o'Nv* for v € o =(ag”)”. If T is the cone containing v in its
relative interior, then o”Nv* = o”"N{(tNv*) = c¥Nt™*, so every
face of o> has the asserted form. Themap T = T* = o NT* is

clearly order-reversing, and from the obvious inclusion * C (T*)* it
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follows formally that * = ((t*)")*, and hence that the map is
one-to-one and onto. It follows from this that the smallest face of

g is (V) N{c¥)* = (¥)* = on(~a). In particular, we see that
dim(on(-o)) + dim(o™) = n. The corresponding equation for a general
face T can be deduced by putting T in a maximal chain of faces of

o, and comparing with the dual chain of faces in o”.
(11) If u € o¥, and t = onu*, then t° = g~ + Ryg-(-u).

Since both sides of this equation are convex polyhedral cones, it is
enough to show that their duals are equal. The dual of the left side is
1, and the dual of the right is on{(~u)” = cNu*, as required.

Proposition 2. Let o be a rational convex polyhedral cone, and let
u bein Sy =0c"NM. Then T = onu* is a rational convex

polyhedral cone. All faces of o have this form, and
Sc = Sg + Zyg+(-u).

Proof. If T is a face, then T = onu* for any u in the relative
interior of o¥N<*, and u can be taken in M since o n=Tt* is
rational. Given w € S, then w + p-u isin oV for large positive p,

and taking p to be an integer shows that w isin Sj + Z,g:(-u).

Finally, we need the following strengthening of (%), known as a

Separation Lemma, that separates convex sets by a hyperplane:

(12) If o and o' are convex polyhedral cones whose intersection

T is a face of each, then thereis a u in o N{(-cg')’ with

T = oNu* = ao'nNu*.

This is proved by looking at the cone ¥y = o - ¢' = o + (-0'). We know
that for any u in the relative interior of Y7, YNu* is the smallest

face of ¥

YNu* = yNn(-y) = (og-ao')n(c' - o).

The claim is that this u works. Since o is contained in ¥, u is in
o¥, and since T is contained in yN(-Y), T is contained in onNnu®*.
Conversely, if v € oNnu*, then v isin ¢' ~ o, so thereis an equation

v=w'-w, w' € g, weée o Then v+ w isin the intersection T of
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o and o', and the sum of two elements of a cone can be in a face
only if the summands are in the face, so v isin <T. This shows that
ofNu* = 7, and the same argument for -u shows that o'Nu* = T.

Proposition 3. If ¢ and o' are rational convex polyhedral cones

whose intersection T is a face of each, then

Se = Sg+ Sy .

Proof. One inclusion S; D S; + Sy is obvious. For the other inclu-
sion, by the proof of (12) we can take u in o n(-c')’NM so that
T = gnu* = g'Nu*. By Proposition 2 and the fact that -u isin Sg,

we have S; C S; + Z,¢+*(-u) C S; + S41, as required.

(13) For a convex polyhedral cone o, the following conditions are

equivalent:

(i) an(-o) = (0};
(ii) o contains no nonzero linear subspace;
(ili) thereisa u in o> with onu* = {0);

(iv) o spans V™

The first two are equivalent since onN(-o) is the largest subspace in

o! the second two are equivalent since on(-o) is the smallest face of

»

o. The first and last are equivalent since dim(on(-o)) + dim(oc>) = n.

A cone is called strongly convex if it satisfies the conditions of
(13). Any cone is generated by some minimal set of generators. If the
cone is strongly convex, then the rays generated by a minimal set of
generators are exactly the one-dimensional faces of o (as seen by
applying (»x) to any generator that is not in the cone generated by the
others); in particular, these minimal generators are unique up to

multiplication by positive scalars.

Exercise. If v is a face of o, with W = R-t, show that & =
(o + W)/W is a convex polyhedral cone in V/W (rational if o is
rational), and the faces of G are exactly the cones of the form

Y=y +W)/W as y ranges over the cones of o that contain -.

Exercise. For a cone o and v € o, show that the following are
equivalent: (i) v is in the relative interior of o; (ii) <u,v>> 0
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for all u in oY~ o*; (ii) o”Nv* = o (iv) o + Ryg-(-v) = R-o;
(v) for all x € o there is a positive number p anda y in o

with pv = x + y. (6)

Exercise. If v is a face of a cone o, show that the sum of two
vectors in o can be in T only if both of the summands are in .
Show conversely that any convex subset of a cone o satisfying this

condition is a face.

Since we are mainly concerned with these cones, we will often
say "o is a cone in N" to mean that o is a strongly convex rational
polyhedral cone in Np. We will sometimes write "t < " or "o > 1"
to mean that T is a face of o. A cone is called simplicial, or a

simplex, if it is generated by linearly independent generators.

Exercise. If o spans NR, must o and o~ have the same minimal

number of generators? @)

1.3 Affine toric varieties

When o is a strongly convex rational polyhedral cone, we have seen
that Sg; = o"NM is a finitely generated semigroup. Any additive
semigroup S determines a “group ring” €[S], which is a commutative
C-algebra. As a complex vector space it has a basis XY, as u varies

over S, with multiplication determined by the addition in S:
YA T A

The unit 1 is X% Generators (u;) for the semigroup S determine
generators {Y "1} for the C-algebra C[Sl

Any finitely generated commutative C-algebra A determines a
complex affine variety, which we denote by Spec(A). We review this
construction and its related notation.(®) If generators of A are
chosen, this presents A as C[Xqy, ... ,Xml/I, where I is an ideal;
then Spec(A) can be identified with the subvariety V(I) of affine
space €™ of common zeros of the polynomials in I, but as usual for

modern mathematicians, it is convenient to use descriptions that are
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independent of coordinates. In our applications, A will be a domain,
so Spec(A) will be an irreducible variety. Although Spec(A) officially
includes all prime ideals of A (corresponding to subvarieties of V(I)),
when we speak of a point of Spec(A) we will mean an ordinary closed
point, corresponding to a maximal ideal, unless we specify otherwise.
These closed points are denoted Specm(A). Any homomorphism

A - B of C-algebras determines a morphism Spec{B) — Spec(A) of
varieties. In particular, closed points correspond to C-algebra
homomorphisms from A to €. If X = Spec(A), for each nonzero

element f € A the principal open subset
X¢ = Spec(A;) € X = Spec(A)

corresponds to the localization homomorphism A = Ag.

For A = C[S] constructed from a semigroup, the points are easy
to describe: they correspond to homomorphisms of semigroups from §
to €, where € = €*U (0} is regarded as an abelian semigroup via

multiplication:
Specm (CIS]) = Homgg(5,C) .
For a semigroup homomorphism x from S to € and u in S, the
value of the corresponding function X" at the corresponding point of
Specm(C[S]) is the image of u by the map x: X"(x) = x(u).
When S = S; arises from a strongly convex rational polyhedral

cone, we set A, = C[S4], and
Uy = Spec(ClS4l) = Spec(Ay),

the corresponding affine toric variety. All of these semigroups will be

sub-semigroups of the group M = S(g). If ey, ...,e, is a basis for N,
and eI, . ,e; is the dual basis of M, write
X; = xe: € CiM] .
As a semigroup, M has generators ie:, C e, ie;, so
CIM] = CiX1,X375,X2,X27Y, o, X0, X0 7Y
= Xy, ... ,Xn]xl.”_.xn )

which is the ring of Laurent polynomials in n variables. So
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Ufp} = Spec(CIM]} = €* x ... xC* = (C*)"

is an affine algebraic torus. All of our semigroups S will be sub-
sermigroups of a lattice M, so C[S] will be a subalgebra of C[M]; in
particular, CIS] will be a domain. When a basis for M is chosen as
above, we usually write elements of C[S] as Laurent polynomials in
the corresponding variables X;. Note that all of these algebras are
generated by monomials in the variables X;.

The torus T = Ty corresponding to M or N can be written

intrinsically:

TN = Spec(C[M]) = Hom(M,C*) = N®,C*.

For a basic example, let o be the cone with generators

e{, ..., e for some k, 1 <k <n. Then
So = Zyprey + Zygrey + ...+ Lygrey + Zeep 4 + ...+ Leen
Hence A4 = C[X4,Xop, ... ,Xk,Xk+1,Xk+1—1, . ,Xn,Xn—i], and
Ug = € x...xCxC*x... xC* = €k x (e*)nk

It follows from this example that if o is generated by k
elements that can be completed to a basis for N, then Ug; is a
product of affine k-space and an (n-k)-dimensional torus. In
particular, such affine toric varieties are nonsingular.

Next we look at a singular example. Let N be a lattice of rank
3, and let o be the cone generated by four vectors vi, vy, vz, and
v4q that generate N and satisfy vq{ + vz = vy + v4. The variety Uy,
is a "cone over a quadric surface”, a variety met frequently when
singularities are studied. If we take N = Z° and vi=e for i=1,2,

3, So V4=el+e3-92,

v3

V4
v2

Vi
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then S, is generated by ej, ez, e} +e5, and e; + eX, so
Ay = €IXq, X3,X1Xp,X2X3] = €CIW,X,Y,Z1/(WZ-XY).

Therefore Ug is the hypersurface defined by WZ = XY in €%

A homomorphism of semigroups S — S' determines a
homomorphism C[S] — €CIS'] of algebras, hence a morphism
Spec(C[S'l) — Spec(€[S]) of affine varieties. In particular, if Tt is
contained in o, then S; is a sub-semigroup of S,, corresponding to
a morphism U, — U,. For example, the torus Ty = U{g} maps to all

of the affine toric varieties U; that come from cones o in N.

Lemma. If T is a face of o, then the map U, — U, embeds

U, as a principal open subset of Ug.

Proof. By Proposition 2 in §1.2, thereisa u € S; with T = ocnu*

and
St = Sg + Z,g(~u).

This implies immediately that each basis element for €{S.] can be

written in the form YW " PY = xW /(x")P for w € S, Hence
AT = (AG)XU s
which is the algebraic version of the required assertion.

Exercise. Show that if T € ¢ and the mapping U, — U, is an open
9}

embedding, then T must be a face of o.

More generally, if ¢: N' - N is a homomorphism of lattices such
that @ maps a (rational strongly convex polyhedral) cone o' in N'
into a cone o in N, then the dual ¢“: M — M' maps S; to Sg,
determining a homomorphism Ag; — Ag, and hence a morphism
Uy — Ug.

Exercise. Show that if S € S' € M are sub-semigroups, the
corresponding map Spec(C[S']) = Spec(C[SD isbirational if and only if
S and S' generate the same subgroup of M. (10)

The semigroups Sy arising from cones are special in several
respects. First, it follows from the definition that S; is saturated,

i,e, if p-u isin Sg for some positive integer p, then u isin S; In
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addition, the fact that o is strongly convex implies that Al spans

Mg, so Sy generates M as a group, i.e,

M =5, + (-5;5) .

Exercise. Show conversely that any finitely generated sub-semigroup
of M that generates M as a group and is saturated has the form

o“NM for a unique strongly convex rational polyhedral cone o in N.

The following exercise shows that affine toric varieties are defined

by monomial equations.
Exercise. If S, is generated by uj, ..., U, so
As = CIx"t, ..., X" = CIYy, ..., Yd/1,

show that | is generated by polynomials of the form

b
Y121.Y,%2. Ly Bt - v Py Ly
where aq,..., ag, by, ..., by are nonnegative integers satisfying the
equation
atuq + ... +aguy = biug +...+ byruy (1)

If o is a conein N, the torus Ty acts on Uy,
TNy x Ug — Ug,

as follows. A point t € TNy can be identified with a map M — C* of
groups, and a point x € Uy, with a map Sy — € of semigroups; the

product t-x is the map of semigroups S; — C given by
u = tlu)x(u) .

The dual map on algebras, €[S;] — CIS,I®CIM], is given by mapping
XY to XY®XY for u € Sg. When o = {0}, this is the usual product
in the algebraic group Tp. These maps are compatible with inclusions
of open subsets corresponding to faces of o. In particular, they extend

the action of TN on itself.

Exercise. If o isa conein N and o' is a cone in N', show that

oxg' is a cone in N@®N', and construct a canonical isomorphism
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Ugxe' = Ug x Uy .

Except for the following exercises, we will not be concerned with
varieties arising from more general semigroups, although these are of

considerable interest to algebraists.(12)

Exercise. (a) Let S € Z be the sub-semigroup generated by 2 and
3. Then :

clsl = €[x%,x31 = ¢ly,zl/z% - Y3,

so Spec(C[S]) is a rational curve with a cusp.

(b) Find C[S}] when S is the sub-semigroup of Z,q generated by a
pair of relatively prime positive integers.

(c) Find corresponding generators and relations for S generated by
3, 5, and 7.(13)

Exercise. If o C R? is the cone generated by ez and X-eq - e,
with A an irrational positive number, show that o¥N(Z2) is not

finitely generated, and that Clo”n(Z?)] is not noetherian.

1.4 Fans and toric varieties

By a fan A in N is meant a set of rational strongly convex

polyhedral cones o in Ng such that

(1) FEach face of a cone in A is also a cone in A;

(2) The intersection of two cones in /A is a face of each.

For simplicity here we assume unless otherwise stated that fans are
finite, i.e., that they consist of a finite number of cones. This will
assure that our toric varieties are of finite type, not just locally of
finite type. From now on a cone in N, or a cone, will be assumed to
be a rational strongly convex polyhedral cone, unless otherwise stated.
From a fan A the toric variety X(A) is constructed by taking
the disjoint union of the affine toric varieties Ug,, one for each o in
A, and gluing as follows: for cones o and =, the intersection oN=<

is a face of each, so Ugn, Iis identified as a principal open subvariety of
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Ugs and of Uy glue Uy to U, by this identification on these open
subvarieties. The fact that these identifications are compatible comes
immediately from the order—-preserving nature of the correspondence
from cones to affine varieties. The fact that the resulting complex
variety is Hausdorff (or the algebraic variety is separated — or the
resulting "prescheme” is a "scheme") comes from the following

lemma.(14)

Lemma. If o and T are cones that intersect in a common face,
then the diagonal map Ugn = Ug x U is a closed embedding.

Proof. This is equivalent to the assertion that the natural mapping
Ag®AL = Agnr is surjective. And this follows from the fact that
Sent = Sg + S¢, as we saw in Proposition 3 of §1.2, which was

(appropriately!) a consequence of the Separation Lernma for cones.

In particular, for any two cones o and Tt of A, we have the
identity UgNUy = Ugne. If o is a conein N, and A consists of o
together with all of its faces, then A is a fan and X{A} is the affine
toric variety Ug. We will see later that these are the only toric
varieties that are affine.

Let us work out a few simple examples. In dimension one, with
N = Z, the only possible cones are the right or left half-lines and the
origin. We have seen all possible fans, which give €, €*, and Pl

For some simple two-dimensional examples, we draw some fans
in N = 22 For the fan

d N
Y AN
s s 7N AR
take two copies of €2, corresponding to the algebras C[X,Y] and
CIX~1,YL gluing gives P! x €. Similarly, for the fan




22 SECTION 1.4

take four copies of €2, and glue to get Pl x P, The preceding two

examples are special cases of a general fact:

Exercise. If A isafanin N, and A' isa fan in N', show that the
set of products oxg', g € A, o' € A', forms a fan AxA' in N®N',

and show that

X{(AxA") = X(A) x X(A").

The generalization of the construction of P2 is:

Exercise. Suppose vectors vg, vq,...,v, generate a lattice N of
rank n, with vg+vy+...+v, =0. Let A be the fan whose cones
are generated by any proper subsets of the vectors vgp,...,v,.

Construct an isomorphism of X(A) with projective n-space P".

The vectors vi,...,v, in the preceding exercise can be taken to
be the standard basis eq,...,e, for N = Z"”, with vg =-ey1- ... -e,.
This corresponds to constructing P" as the closure of C€". A more
symmetric description of P? can be given by taking N to be the
lattice Z"*1/7-(1,1,...,1), with vi the image of the ith pasic vector,
0 <i £ n. With this description, TN = (C*)"**1/C* is embedded
naturally in €?*1+(0)/C* = P".

Exercise. Find the toric varieties corresponding to the following three

fans in Z2%:

Suppose ¢: N' - N is a homomorphism of lattices, and A is a

fan in N, A' a fan in N', satisfying the following condition:

for each cone o' in A', there is some

cone o in A such that y(o') C o.

As we saw in the preceding section, this determines a morphism
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Ugt = Ug € X(A). The morphism from Uy, to X(A) is easily seen to
be independent of choice of o, and these morphisms Ug — X(A)

patch together to give a morphism
@i X(A) - X(A).

At the end of §1.1 we constructed the Hirzebruch surface F, as a
toric variety. The projection F, — P! is determined by the
projection z2 - 2 taking (x,y) to x. (Note that the second

projection does not satisfy the required condition, if a = 0.)

Exercise. Show that for any integer m, the map Z — Z2 given by

z — (z,mz) determines a section P! — F, of this projection.

The actions of the torus TN on the varieties U, described in the
preceding section are compatible with the patching isomorphisms,

giving an action of Ty on X(A). This extends the product in Ty:

Tn x X(A) = X(A)
/- J

InxThn — Tn

The converse is also true: any (separated, normal) variety X
containing a torus Ty as a dense open subvariety, with compatible
action as above, can be realized as a toric variety X(A) for a unique
fan A in N. We will have no use for this, so we don't discuss the
proof.(ls)

Although we will deal with complex toric varieties in these
lectures, the interested reader should have no difficulty carrying out

the same constructions over any other base field (or ground ring).

1.5 Toric varieties from polytopes

A convex polytope K in a finite dimensional vector space E is the
convex hull of a finite set of points. A (proper) face F of K is the

intersection with a supporting affine hyperplane, i.e.,

F = (veK:<u,v>=r},
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where u € E* is a function with <u,v> 2r forall v in K; K is
usually included as an improper face. We assume for simplicity that
K is n-dimensional, and that K contains the origin in its interior. A
facet of K is a face of dimension n-1. The results of §1.2 can be
used to deduce the corresponding basic facts about faces of convex
polytopes. For this, let o be the cone over K x1 in the vector space
ExR. The faces of o are easily seen to be exactly the cones over the
faces of K (with the cone (0} corresponding to the empty face of K);
from this it follows that the faces satisfy the analogues of properties
(2)-(7) of §1.2.

As for the duality theory of polytopes, the polar set (or polar) of
K is defined to be the set

K® = {u€ E*:<u,v>2-1 forall v €K]}.

(Often {u € E*:<u,v> <1 V v € K} = ~K? is taken to be the polar
set, but this does not change the results.) For example, the polar of the
octahedron in R3 with vertices at the points (£1,0,0), (0,£1,0), and
(0,0,£1) is the cube with vertices (£1,+1,£1).

KO

Proposition. The polar set K° is a convex polytope, and K is the
polar of K° If F is a face of K, then

F* = (ueK®:<u,v>=-1 ¥VvePF]}

is a face of K°, and the correspondence F » F" jis a one-to-one,
order-reversing correspondence between the faces of K and the
faces of K°, with dim(F) + dim(F*) = dim(E) - 1. If K is rational,
1.e., its vertices lie in a lattice in E, then K° is also rational, with

its vertices in the dual lattice.

Proof. With o the cone over Kx 1, the dual cone oY consists of
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those uxr in E¥ xR such that <u,v>+r 20 forall v in K. It
follows that oY is the cone over K°x1 in E* xR. The assertions of
the proposition are now easy consequences of the results in §1.2 for
cones. For example, the duality (K°)° = K follows from the duality
(og¥)¥ = o. For a face F of K, if T is the cone over Fx 1, then the
dual o¥NT* is the cone over F* x 1, from which the duality between

faces of K and K° follows.
Exercise. Let K be a convex polyhedron in E, ie,
K = (veE: Cuq,vd>2-ag,...,<u,vd2 -a)

for some uy,...,u, in E* and real numbers ay,...,ar. Show that

K is bounded if and only if K is the convex hull of a finite set.(16)

A rational convex polytope K in Np determines a fan A whose
cones are the cones over the proper faces of K. Since we assume that
K contains the o-igin in its interior, the union of the cones in A will
be all of NR. All of the fans we have seen so far whose cones cover Np
have this form.

More generally, if K' is a subdivision of the boundary of K, i.e,
K' is a collection of convex polytopes whose union is the boundary of
K, and the intersection of any two polytopes in K' is a polytope in K',

then the cones over the polytopes in K' form a fan. Here are some

A Aﬁ

Note that the second can be "pushed out”, so that the cone over it is

examples of such K"

the cone over a convex polytope, but the third cannot.

There are many fans, however, that do not come from any
convex polytope, however subdivided. To see one, start with the fan
over the faces of the cube with vertices at (+1,21,+*1) in Z3. Let A

be the fan with cones spanned by the same sets of generators except
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that the vertex (1,1,1) is replaced by (1,2,3). It is impossible to find
eight points, one on each of the eight positive rays through the
vertices, such that for each of the six cones generated by four of these

vertices, the corresponding four points lie on the same affine plane:

Exercise. Suppose for each of the eight vertices v there is a real
number r,, and for each of the six large cones o thereis a vector
ugs in Mp = R3, such that ug,v> = ry whenever v is one of the
four vertices in o. Show that there is then one vector u in Mp
with <u,v> =r, for all v. In particular, the points py = (1/r,)-v
cannot have each quadruple corresponding to a cone lying in a plane

unless all eight points are coplanar.(”)

A particularly important construction of toric varieties starts
with a rational polytope P in the dual space Mp. We assume that P
is n-dimensional, but it is not necessary that it contain the origin.
From P a fan denoted Ap is constructed as follows. There is a cone

oq of Ap for each face Q of P, defined by
oq = (veNg: <u,v><<u',v> forall ue€ Q and u' € P).

In other words, oq is dual to the "angle” at Q consisting of all vectors
pointing from points of Q to points of P; this dual cone oqQ” is
generated by vectors u' - u, where u and u' vary‘among vertices
of Q and P respectively. It is not hard to verify directly that these
cones form a fan. It is more instructive, however, to realize the fan as

a fan over a "dual polytope” in Np.

Proposition. The cones oq, as Q varies over the faces of P,
form a fan Ap. If P contains the origin as an interior point, then

Ap consists of cones over the faces of the polar polytope P°.

Proof. If the origin is an interior point, it is immediate from the
definition that oq is the cone over the dual face Q" of P?, and the
second assertion follows. It follows from the definition that Ap is
unchanged when P is translated by some element u of M, or when
P is multiplied by a positive integer m: A p,y = Ap. Since any P
spanning Mg can be changed to one containing the origin as an
interior point by such translation and expansion, the first assertion

also follows.
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Conversely, by the duality of polytopes, it follows that for a
convex rational polytope K in N (containing the origin in its
interior) the fan of cones over the faces of K is the same as Ap,
where P = K° is its polar polytope. The toric variety X(Ap) will

sometimes be denoted Xp. We look at some examples:

(1) If P is the simplex in R™ with vertices at the origin and
the points e, ...,e,, then Ap is the fan used to construct P® as a
toric variety: X(Ap) = P™

(2) If P is the cube in RS with vertices at teI + eg + eg, then
Ap is the fan over faces of the octahedron with vertices te;, and
X(Ap) = PLx Pl x PL,

(3) Let P be the octahedron in R3 with vertices at the points
(£1,0,0), (0,£1,0), and (0,0,+1), so the fan Ap is the fan over faces
of the cube with vertices (#1,+1,+1). If N is taken to be the lattice
of points (x,y,z) € Z3 such that ' x = y = z (mod 2), then any three
of the four vertices of any face o of the cube generate N, and the
sums of opposite vertices of o are equal. Each of the six corres-
ponding open subvarieties Uy, has a singular point isomorphic to the
cone over a quadric surface described in §1.3. We will come back to

this example later.



CHAPTER 2

SINGULARITIES AND COMPACTNESS

2.1 Local properties of toric varieties

For any cone o in a lattice N, the corresponding affine variety Uy,
has a distinguished point, which we denote by x4. This point in Uy is

given by a map of semigroups
Sq = o'nM — (1,0) ¢ c*u{o) = C,

defined by the rule

1 if ueo*
u -
0 otherwise

Note that this is well defined since o* is a face of ¢, which implies
that the sum of two elements in o~ cannot be in o* unless both are

in o*.

Exercise. If o spans Np, show that x5 is the unique fixed point of
the action of the torus Ty on U, If o does not span Np, show

that there are no fixed points in U,. 1

We first find the singular points of toric varieties. Suppose to
start that o spans Np, so o ={0). Let A =A,;, M the maximal
ideal of A corresponding to the point x4, so M is generated by all
XY for nonzero u in Sy The square m? is generated by all " for
those u that are sums of two elements of 5S4~ {0}, The cotangent
space Mm/m? therefore has a basis of images of elements XY for
those u in Sg~ (0} that are not the sums of two such vectors. For
example, the first elements in M lying along the edges of oY are
vectors of this kind. Suppose Ug is nonsingular at the point x4. One
characterization of nonsingularity is that the cotangent space m/m?
is n-dimensional, since dim(Ug) = dim(Ty) = n. This implies in
particular that oY cannot have more tha'n n edges, and that the

28
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minimal generators along these edges must generate 5;. Since 5S4
generates M as a group, the minimal generators for S; must be a
basis for M. The dual o must therefore be generated by a basis for
N. Hence Uy is isomorphic to affine space CR,

A general o has smaller dimension k. Let
Ng = onN + (-onN)

be the sublattice of N generated (as a subgroup) by onNN. Since o is
saturated, Ny is also saturated, so the quotient group N(o) = N/N, is
also a lattice. We may choose a splitting and write

N = N,®N', o = o & (0},

where o' is a cone in Ny Decomposing M =M' @ M" dually, we
have Sg = ((a)"NM') B M", so

Uo_ = UO" x TN" = Uo-l x (C*)n—k -

More intrinsically, the maps Ny — N — N(o), o' — o — (0},

determine a fiber bundle
Uo" - UG — TN(G)

that splits: Uy = Uy x TN(g),» but not canonically. If U, is
nonsingular, Uy must also be nonsingular, and the preceding
discussion applies: o' must be generated by a basis for Ny This

proves:

Proposition. An affine toric variety Ug Iis nonsingular if and
only if o is generated by part of a basis for the lattice N, in
which case

Uy, = ¢k x(@*™k, k = dim(ag).

We therefore call a cone nonsingular if it is generated by part of
a basis for the lattice, and we call a fan nonsingular if all of its cones
are nonsingular, i.e,, if the corresponding toric variety is nonsingular.
Although a toric variety may be singular, every toric variety is

normal:

Proposition. Each ring A, = CIS,) is integrally closed.
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Proof. If o is generated by vq,...,v,, then o~ = 1;", where
T; is the ray generated by v; € o, so Ag = ﬁATi. We have seen that
each Ag, is isomorphic to C[X3, X2, X271, ..., Xy, Xp 7!, which is
integrally closed, and the proposition follows from the fact that the

intersection of integrally closed domains is integrally closed.

Exercise. (a) If S is any sub-semigroup of M, show that C[S] is
integrally closed if and only if S is saturated.

(b) If S is a sub-semigroup of M, let § be its saturation, i.e.,
S={ue€ M:pu €S for some positive integer p). Show that CIS] is
the integral closure of C[S], i.e., Spec(C[S]) —» Spec(CISD) is the
normalization map. Carry this out for S generated by eI + Qe; and
2ef + ey in M = Zej + ZeJ.

(c) Deduce Gordon's lemmma from the commutative algebra fact
that the integral closure of a finitely generated domain over a field is

finitely generated as a module over the domain.

Another important fact about toric varieties (but one we won't
need here) is that they are all Cohen-Macaulay varieties: each of
their local rings has depth n, i.e., contains a regular sequence of n
elements, where n is the dimension of the local ring. We sketch the
proof (assuming familiarity with .properties of depth), referring to
[Dani] for details. As above, it is enough to consider the case where
dim(o) = n. In addition, we may replace the lattice N by any sub-
lattice N' of finite index; this follows from the fact that, if o' is the
corresponding cone in N', the inclusion Ag — Ay splits as a map of
Ag-modules, the splitting given by projecting o“nNM' onto o“NM.

If dim(o) =n, set A=Ay and I = @GCYX"Y, the sum over all
u in Int{(oc”)NM. Orienting o~ and all its faces, one has an exact

sequence

0 —- A/l »C,.q 2 Ch2—...—>Cy - Cop—0,

where C,_x is the direct sum of rings Clo“NT*NM], for all k-
dimensional faces T of o; the boundary maps are given by
projections of faces in oY onto smaller faces, with signs determined
by the orientation. One knows by induction that C, .y has depth
n-k, and it follows that A/l has depth n-1. If I were a principal



SURFACES; QUOTIENT SINGULARITIES 31

ideal, it would follow that A has depth n. If thereisa ug in
Int(oc”)NM such that u - ugisin o“NM for all u € Int{oc”)nM,
then [ = A-X "0, Although this need not be true, it can be achieved
by replacing N by a sublattice N' of finite index.(2)

The following exercise states a useful fact, although in situations

where it comes up the conclusion can usually be seen by hand.

Exercise. If a torus Ty acts algebraically on a finite-dimensional
vector space W, ie, the map Ty — GL{W) is a morphism of affine
algebraic groups, show that W decomposes into a direct sum of the

spaces

W, = {wew: tew=X"t)w forall te Ty}
as u varies over M.(3)

Exercise. Deduce that for any algebraic action of a torus T on a
finite dimensional vector space V, the ring of invariants Sym(\/)T is

Cohen-Macaulay.(‘”

Exercise. Use the preceding exercise to show that the homogeneous
coordinate ring of the Segre variety:
ClX1Yq, X1Y2, ... ,X1Yq,X2Y1, C e ,Xqu, ey, pr1: . ,Xqu]
?
is Cohen-Macaulay.

More recently, Gubeladze has proved a conjecture of Anderson
that the affine ring A, of a toric variety satisfies the generalization of
a conjecture of Serre: all projective modules are free, or, in geometric

language, all vector bundles on affine toric varieties are trivial.(8)

2.2 Surfaces; quotient singularities

Consider the case where N = Z2 and o is generated by ez and

mey ~ ez, generalizing the case m = 2 that we looked at earlier.
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Then Ag = CISg] = CIX, XY, XY2, ..., XY™]. Setting X = U™ and
Y =V/U, we have

Ay = Clu™ u™ly, ... ,uv™tvm] c clu, V],

so Uy = Spec(Ay) is the cone over the rational normal curve of
degree m. The inclusion of Ay in C[U,V] corresponds to a mapping
€? - u,.

The group G = U, = (mt
by ¢+(u,v) = (tu,tv), and U, is the quotient variety €2/G, ie.,

h roots of unity} = Z/mZ acts on €2

Uy is a cyclic quotient singularity. Algebraically, G acts on the
coordinate ring C{U,V] by F = F(tU,cV), and, via this action,

A, = CluU,V]¢

is the ring of invariants.

The toric structure can be used to see this more naturally. Let
N' C N be the lattice generated by the generators ey and meq - e
of o, and let o' be the same cone as o, but regarded in N' (since
N'‘g = NR). Since o' is generated by two generators for N', Uy = c?,
and the inclusion of N' in N gives a map €2 = Uyt = U, The claim
is that this is the same as the map constructed by hand above. To see
this, note that N' is generated by mey and e3, so M'D M is
generated by TJ;‘—eI and eS, corresponding to monomials U and Y,
with U™ = X. The generators for Sy are %ez and %e; + e;, 50
Ay = ClU,UY] = C[U,V], with V =UY, and we recover the previous
description.

A similar procedure applies to an arbitrary singular two-
dimensional affine toric variety. First note that, with an appropriate

choice of basis for N, we may assume the cone o has the form
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(m,-k)

for some 0 <k <m, with k and m relatively prime integers. To
prove this, note that any minimal generator along an edge of o is
part of a basis for N = 72, so we can take one to be (0,1), and the
other (m,x), for m a positive integer. Applying an automorphism of
the lattice,

(FD-(29) = (e ?
we see that x can be changed arbitrarily modulo m, so we can take
x=-k, 0 <xk<m. Of course, if Xx = 0 (mod m), then o is generated
by a basis for N, and we are in the nonsingular case. That k and m
are relatively prime comes from the fact that (m,-k) is taken to be a
minimal generator along the edge.

With o as above, Ag = QC-XiYJ, the sum over (i,j) with
Jj= %i. Let N' be generated by meq ~kepy and e, i.e. by
meq and e. Then as before, M' is generated by 711;9; and eE,
corresponding to monomials U and Y, and the corresponding cone
o' has Sy generated by %e{ and k-—nereI + e;. Therefore Ayt is
Clu,ukY] = ClU,V], with V = UKY, so Ug = C2.

The group G = [, actson Ug = €2 by ¢-(u,v) = (tu,c¥v), and

Uy = Ugy/G = €C2/G.

Equivalently, A4 = (AGI)G. In fact, G acts on the larger ring
eMl = ciu,u-t,v,v i1 =clu,u Yy, Y, by Um ¢tU, Y » Y,
and the ring of invariants is CIX,X 1, v,Y 11 = CIM]. Therefore

Ay = AxNCIM] = Apn(CIMDE = (Ag)9.

We will describe Ag; more explicitly in §2.6.

More generally still, and more intrinsically, for a lattice N of
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any rank, if N' C N is a sublattice of finite index, let M C M' be the

dual lattices. There is the canonical duality pairing
M'/M x N/N' —» Q/Z <~ C*,

the first map by the pairing <, >, the second by g — exp(2wiq). Now
G = N/N' acts on C[M'] by

vexu o = exp(2ni<u',v))-’)(,”'
for v € N, u' € M'. And, via this natural action,
(%) cM18 = C[Mm).

Hence G = N/N' acts on the torus Tn' and T /G = TN- To prove (=),
it suffices to take a basis ey,...,e, for N so that mje;,...,mpen
are generators for N', for some positive integers mj. Then C[M']l is
the Laurent polynomial ring in generators X;, and C[M] is the
Laurent polynornial ring in generators U;, with (Up)™i = X;. An
element (ay,...,a,) in ®Z/m;Z = N/N' acts on monomials by
multiplying Ugl. ... -U,ln by exp(2mi(Za;8;/m;)), from which (=)
follows at once. In the special case when N has rank 2, with basis
e1 and ey, and N' is generated by me; and ez, N/N' is isomor-
phic to |,,, with the image of e corresponding to ¢ = exp(2mwi/m),
and one checks that the general action of N/N' specializes to the
above action of iy,

Now suppose o is an n-simplex in N, i.e, o is generated by n
independent vectors. Let N' C N be the sublattice generated by the
minimal elements in onNN along its n edges. As before, this gives a
cone ¢' in N', with €" = Uy — Ugs The abelian group G = N/N'

acts on Uy, with

Usg = Up/G = C"/G.

This follows as before from the case of the torus, by intersecting the
ring Ay with €IM'IS = C[M].

If o is any simplex, i.e, generated by independent vectors, then
Ug is a product of a quotient as above and a torus. In particular, if A
is a simplicial fan, — all the cones in A are simplices — then X(A) is

an orbifold or V-manifold, i.e., it has only quotient singularities.(e)
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Exercise. Let o be the cone generated by

eg, €2, ... ,€npn-1, €1 ~“ €2 - ..."Euh_ 1 +Me,,
where ej,...,e, is a basis for N. Show that
(i) Uy = C"/lyy,, where the mth roots of unity M, act by
C'(Xl» .. :xn) = (c'x1, P ,C'Xn);
(ii) Uy is the cone over the m-tuple Veronese embedding of
Pn—l_
Exercise. Show thatif m and aj,...,a, are positive integers, the

quotient of €™ by the cyclic group W, acting by
(21, ...,2Zn) = (caiz1, e ,Canzn)

can be constructed as an affine toric variety Ug, by taking

n

N' = 3 Z-(1/a;)-e; € N = N'+ Z-(1/m)-(e1+...+ey,),
i=1

and the cone o generated by e1,...,e,. When aj =...=a, =1,

show that this agrees with the construction of the preceding exercise.

One can sometimes extend this construction to non-affine toric
varieties by making the group actions compatible on affine open
subvarieties. An interesting example is the twisted or weighted
projective space P(dg, ...,dn), where dgp,...,d, are any positive
integers. To construct this as a toric variety, start with the same fan
used in the construction of projective space, i.e, its conés generated by
proper subsets of {vqg, v{,...,vy), where any n of these vectors are
linearly independent, and their sum is zero; however, the lattice N is
taken to be generated by the vectors (1/dj)-vy, 0 =i = n. The
resulting toric variety is in fact the variety

P(dg, ...,dn) = €1 < (0} /s C*,

dn

where €* acts by ¢-(xg, ... ,Xp) = (cdoxo, o8 Mxp).

Exercise. (a) With o; the cone generated by the complement of e,
use the preceding exercise to identify U"i with a quotient of C", and
use the standard map (x1,...,%xpn) = (x1:...:x_-1:1:%, - .. ixp) to

identify this quotient with the open set U; in P(dg, ... ,d,) consisting
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th

of points whose i coordinate is nonzero.

(b) Write this twisted projective space as a quotient of a nonsingular

toric variety by a finite abelian group.(7)

For any cone in a simplicial fan, one can find a sublattice to write
the corresponding open subvariety of the toric variety as a quotient by
a finite abelian group. Sometimes, as in the example of twisted
projective spaces, one can find one sublattice that works for all these

open sets at once, but this is not always possible:

Exercise. Let A be the fan in N = 22, covering R2, with edges
generated by the vectors -ej, -~ej -eg, -ep, and 2ej; +3e3. Show
that for every sublattice N' of finite index in N, with A' the
corresponding fan in N', the variety X(A') is singular.

2.3 One-parameter subgroups; limit points

In this section, we use one-parameter subgroups of the torus, and their
limit points in toric varieties, to see how to recover the fan from the
torus action.

For each integer k we have a homomorphism of algebraic groups

Gm — Gy, z+— zN.

Here we write G, for the multiplicative algebraic group, i.e., for C*.
Exercise. Show that these are all of them:

Hom (G, Gpy) = 2 .(®)

alg. gp.

Given a lattice N, with dual M, we have the corresponding

torus
Tn = Hom(M,Gp,) .

From the preceding exercise, it follows (by taking a basis for N) that

. Hom(Gy,,Ty) = Hom(Z,N) = N.

This means that every one-parameter subgroup »: Gy, — Ty is given
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by a unique v in N. Let A, denote the one-parameter subgroup
corresponding to v. For z € €%, A (2) isin TN, so is given by a
group homomorphism from M to C*. Explicitly, for u in M,

Ap(Z) () = XU(AL(z) = 28UV

where <, > is the dual pairing M®N — Z.
Dually,

Hom(TN,Gy,) = Hom(N,Z) = M.

Every character X:Ty — G, isgiven by a unique u in M. The
character corresponding to u can be identified with the function
XY in the coordinate ring CIMI] = I'(TN,97).

Exercise. (a) Show that for lattices N and N', the mapping

Hom z(N'N) — Homa]g' gp.(TN"TN) , P P,

is an isomorphism. (A mapping between tori induces a corresponding
mapping on one-parameter subgroups.)
(b) Composition gives a pairing

Hom(Tn,Gp,) * Hom(Gp,,Ty) — Hom(G,,Gpy,) .
‘

Show that, by the above identifications, this is the duality pairing

<, >:MxN —-» Z.

Note in particular that the above prescription shows how to
recover the lattice N from the torus TpN. Given a cone g, we next
want to see how to recover o from the torus embedding TN ¢ Ug.

The key is to look at Iimits hm Av{Z) for various v € N, as
the complex variable =z approaches the origin.  For example,

suppose o is generated by part of a basis ej, ...,ex for N, so Ug

is €k x(C*)""k For v = {myq,...,mp) € Z%, 2y (z) = (2™1, ... ,z™n),
Then A (z) has a limit in Uy if and only if all m; are nonnegative
and m; = 0 for i> k. In other words, the limit exists exactly when v
isin o. In this case, the limit is (81, ...,8,), where 8 =1 if m; =0
and 8; = 0 if m; > 0. Each of these limit points is one of the

distinguished points x. for some face' T of a.
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In general, for each cone T in a fan A, we have defined the
distinguished point x, in U,. If t is a face of o, then U, is
contained in Ug, so we must be able to realize x; as a homomor-
phism of semigroups from S; to €. This homomorphism is

1 if ue-Tt

S¢g = {1,0)cC, u & )
0O otherwise

which is well defined since T*NoY is a face of o”. From this it follows
that the resulting point x. of X(A) is independent of o; that is, if

T < 0 < ¥, then the inclusion of Ug in Uy takes the point defined in
Ug to the point defined in Uy. We note also that these points are all
distinct; this follows from the fact that x; isnotin U, if o isa
proper face of T. As we will see later, there is exactly one such point

in each orbit of Ty on X(A).

Claim 1. If v isin |Al, and T is the cone of A that contains

v in its relative interior, then limO A l2Z) = %o
ZzZ=

For the proof, look in Ug for any o containing Tt as a face, and
identify Ay(z) with the homomorphism from M to €* that takes

u to zSWV? For u in Sg, we have <u,v> 2 0, with equality
exactly when u belongs to Tt*. It follows that the limiting
homomorphism from Sz € M to € is precisely that which defines
X (One should check that this is the topological limit, say by choosing

i
m generators X" for S; to embed Ug in €™M)

Claim 2. If v is not in any cone of /A, then lim0 ry(z) does not
z——)
exist in X(A).

In fact, if v is not in o, the points A (z) have no limit points in Ug
as z approaches 0. To see this, take u in ov with <u,v> <0
(possible since o = (g¥)¥). Then X“(A (z) =z$HV? = = as z — 0.

With these claims, NN is characterized as the set of v for
which A (z) has a limit in Uy as z — 0, and the limit is xg if
v is in the relative interior of o. For those v not in the support
IAl of A, i.e., the union of the cones in A, there is no limit (or

converging subsequence).
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Exercise. For v € N, show that A,:C* — Ty extends to a
morphism from € to X(A) if and only if v belongs to |Al,
and A, extends to a morphism from Pl to X(A) if and only
if v and -v belong to |AlL

2.4 Compactness and properness

Recall that a complex variety is compact in its classical topology
exactly when it is complete (proper) as an algebraic variety. For a

toric variety, we can see this in terms of the fan:

‘

A toric variety X(A) is compact if and only if its support |A]
is the whole space Ng.

Because of this we say that a fan A is complete if |A] = Ng.
One implication is easy: if the suiaport were not all of Np, since A is
finite, there would be a lattice point v not in any cone; the fact that
Arv{z) has no limit point as z = 0 contradicts compactness.

Before proving the converse, we state the appropriate
generalization. Let ¢: N' = N be a homommorphism of lattices that
maps a fan A' into a fan A as in §1.4, so defining a morphism
P X(A") = X(A).

Proposition. The map ¢.: X(A"Y — X(A) is proper if and only if
¢~ taah = 1A'

A variety is compact when the map to a point is proper, so the

preceding case is recovered by taking the second lattice to be (0}.

Proof of the proposition. =: If v' isin N' but in no cone of A',
and v = @(v') is in a cone of A, then @2, (2))} = A (2z) has a limit
in X(A), but A,(z) has no converging subsequences as z — 0,

which contradicts properness.

&: We use the valuative criterion of properness: a morphism

f: X - Y of varieties (or a separated morphism of schemes of finite
type) is proper if and only if for any discrete valuation ring R, with
quotient field K, any cox:nmutative diagram
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“1

e 7

can be filled in (uniquely) as shown. When X is irreducible, one may

]

Spec(K) —s X

Spec(R) — Y

assume the image of the map Spec(K) — X is in a given open subset
U of x.(10)

Apply this with X = X(A') D U =Ty, Y = X(A), f = ¢,; assume
Spec(R) maps to Ugz. The map from Spec(K) to U is given by a
homomorphism o: M' — K* of groups. We want to find o' mapping

to o so we can fill in the diagram

K e— C[M'] D Cl5,]

LR

- .

R &e— CI5,]

The fact that Spec{R) maps to Us; says that, if ord is the order
function of the discrete valuation, then ordeoeg™ is nonnegative on

o NM; equivalently,
@lordeax) = ordecep™ € (ag¥)¥ = a.

By the assumption, there is a cone o' so that ¢(c') C o and
ordecx € ¢'. This says that ordeot is nonnegative on ¢'%, which

is precisely the condition needed to fill in the diagram.

A fundamental example of a proper map is blowing up. We
saw the first example of this in the construction of the blow-up of

Ug = €2 at the origin xg = (0,0) in Chapter 1. More generally,

suppose a cone g in A is generated by a basis vi,...,v, for N.
Set vg=vi +...+v,, andreplace g by the cones that are gener-
ated by those subsets of (vq, vi,...,vh} not containing (vg,...,vh)

This gives a fan A', and the resulting proper map X(A')— X(A) is
the blow-up of X(A) at the point xg. To see this, since nothing is

changed except over Ug,, we may assume A consists of o and all
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of its faces, so X(A) = Ug = €7, with x; the origin, and v; = ¢; for
1 <i = n. Then X(A') is covered by the open affine varieties U"i’
where o; is the cone generated by eg, e, . .- ,éi, ...,en, 1 <i x5 n,
and o is generated by e;",e1™ - e;%, ... ,e,” - ;*. The corres-

ponding coordinate ring is

Ag, = CIX;, X9X7h, oo, XX

On the other hand, the blow-up of the origin in C" is the subvariety
of €7 x PP"! defined by the equations X;Tj = X;T;, where Ty, ..., Ty
are homogeneous coordinates on P11 The set U; where T; = O has
XJ = Xi'(TJ/Ti)I SO Ui is Cn, with coordinates Xi and TJ/Ti = Xj/Xi
for j = i. So U= U"s with o; as above, and with the same gluing.

Exercise. For a nonsingular affine toric variety of the form
ck x(€*)P "k, show how to construct the blow-up along (0} = (C*)n~k

as a toric variety.

Exercise. If A is an infinite fan, show that X(A) is never compact,
even if |A] = NR and all A (z) have limits in X(A). Why does the

criterion for properness not apply? Give an example of an infinite fan
A in Z? whose support is all of RZ. Show that, for infinite fans, the
proposition remains true with the added condition that there are only

finitely many cones in A' rmapping to a given cone in A. (11)

Exercise. (Fiber bundles) Suppose 0 = N' - N —» N" - 0 is an
exact sequence of lattices, and suppose A', A, and A" are fansin N',
N, and N" that are compatible with these mappings as in §1.4, giving

rise o maps

X(A") = X(A) - X(A").

Suppose there is a fan A" in N that lifts A", ie., each cone in A"
is the isomorphic image of a unique cone in A", such that the cones
o in A are of the form

g =g +ag" = {(v'+v": vie o', v'e a")

for o' aconein A' and o" a conein A". Show that the above

sequence is a locallil trivial fibration.
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Exercise. Construct the projective bundle

P(S(a)®0(a2)® ... ®G(a;)) — PO

as a toric variety.(lz)

Exercise. Let ¢,: X(A') = X(A) be the map arising from a
homomorphism of lattices ¢@: N' =+ N mapping A' to A asin §1.4.
Show that for a cone o' in A', ¢, maps the point x4 of X(A') to
the point x4 of X(A), where o is the smallest cone of A that
contains o' (13)

Exercise. Find a subdivision of the cone generated by (1,0,0), (0,1,0),
and (0,0,1) in 23, including the ray through (1,1,1), such that:

(i) the resulting toric variety X' is nonsingular; (ii) the resulting
proper map X' — €3 is an isomorphism over €3~ (0); but (ii) this
map does not factor through the blow-up of €3 at the origin. In

particular, this map does not factor into a composite of blow-ups along

smooth centers.(l‘”

2.5 Nonsingular surfaces

Let us see what two-dimensional nonsingular complete toric varieties

look like. They are given by specifying a sequence of lattice points
VO, Vl, PR » Vd_i, Vd = VO

in counterclockwise order, in N = 22, such that successive pairs

generate the lattice.

Vi
v2

Vg = Ve
V4

From the fact that vg and vj; are a basis for the lattice, and v

and vg are also a basis, we know that vp = -vg + ajvy for some
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integer ai. In general, we must have
ajvi = Vi-t +vVvije1, 1s<icxzd,

for some integers a;. We will discuss later the conditions these integers
must satisfy.

The possible configurations are topologically constrained. For
example, two of the cones cannot be arranged with v; in the angle
strictly between vj,1 and -v; and vj,3 in the angle strictly

petween -v; and -vj,.1:

Exercise. Prove this.(ls)

We want to classify all of these surfaces. The cases when the

number d of edges is small are easy to do by hand:

Exercise. Show that for d = 3, the resulting toric variety must be
IP2, and for d = 4, one gets a Hirzebruch surface F,, both as
constructed in §1.1.

Given one of these toric surfaces, we know how to construct
another that is the blow-up of the first at a Ty~-fixed point: simply

insert the sum of two adjacent vectors. In fact:

Proposition. All complete nonsingular toric surfaces are obtained

from P2 or F, by a succession of blow-ups at TN-fixed points.
This follows from the preceding exercise and the following:

Claim. If d = 5, there must be some j, 1 < j < d, such that

Vj~1 and vj,1 generate a strongly convex cone, and

Vj = Vj-1 t+t Vi .
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The proof of this claim is outlined in the following exercise.

Exercise. (a) Show thatif d 2 4 there must be two opposite vectors
in the sequence, i.e.,, vj = -v; for some i, j.

(b) Suppose v;=-vg and iz 3. Show that vj=vj.q + vj,y for
some 0< j<i. (16

Exercise. Show that the integers ajp, ... ,aq must satisfy the
equation
o -1 10 17
(=) (% )(1a2)- (1 ad)_(Ol)‘( )
Exercise. Show that inserting v' = vig + vk,1 between vk and
Vik+1 changes the sequence of integers aj,...,aq by adding 1 to ay

and ag,1 and inserting a 1 between them. Deduce from this and

the preceding discussion that the integers aj, ... ,aq must satisfy the
equation

(2e2¢) ajtap+...+ag = 3d-12.
Exercise. Show conversely that any integers aiq, ...,aq satisfying

(%) and (%) arise from a nonsingular two-dimensional toric variety.
Show that the sequence 0, 2,1, 3,1, 3,1,1 satisfies these conditions,

and describe the corresponding surface.(18)

Exercise. Each v; determines a curve D; = P! in X (asin §1.1).
Show that the normal bundle to this embedding is the line bundle
O(-a;) on Pl. Show that successive curves meet transversally, but

are otherwise disjoint: (19)

Do
D3 Dy
(Di-Dp = -a;

Dy Ds

The classification of smooth projective toric varieties of higher

dimension is an active problem.(zo)
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2.6 Resolution of singularities

In §2.2 we fixed the cones and refined the lattice. Now we fix the
lattice and subdivide the cones. Suppose A' is a refinement of A,
i.e., each cone of A is a union of cones in A'. The morphism
X(A") — X(A) induced by the identity map of N is birational and
proper; indeed, it is an isomorphism on the open torus Ty contained
in each, and it is proper by the proposition in §2.4.

This construction can be used on singular toric varieties to
resolve singularities. Consider the example where o is the cone in
z? generated by 3e;-2e3 and e3, and insert the edges through the

points ey and 2ej1- e3. The indicated subdivision

gives a nonsingular X(A') mapping birationally and properly to Ug.
This can be generalized to any two-dimensional toric singularity.
Given a cone o that is not generated by a basis for N, we have seen
that we can choose generators ey and e for N so that o is
generated by v = e and v'=mej-key, 0 <k <m, with k and m

relatively prime. Insert the line through ej:

e » o o\eo
nete\e ®» @
\05.0\ o e

{m,-k)

The cone generated by ej; and ez corresponds to a nonsingular open

set, while the other cone generated by e; and meg-kep corresponds
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to a variety whose singular point is less singular than the original one.
To see this, rotate the picture by 90°, moving e; to ez, and then
translate the other basic vector vertically (by a matrix (‘1: (1)) as in
§2.2) to put it in the position (mj,-k1), with mq =k, 0 < kg <my,
and kj = atk - m for some integer aj; = 2:

This corresponds to a smooth cone when ki = 0. Otherwise
m/k = a1 - ki/my = a; - 1/(m/kq), and the process can be repeated.
The process continues as in the Euclidean algorithm, or in the

construction of the continued fraction, but with alternating signs:

1

m
— = a4 -
K 1

ag -

with integers aj > 2. This is called the Hirzebruch-Jung continued

fraction of m/k.

Exercise. (a) Show that the edges drawn in the above process are
exactly those through the vertices on the edge of the polygon that is

the convex hull of the nonzero points in oNN:
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(b) Show that there are r added vertices vy, ...,v, between the
given vertices v = vg and v''=v,ri1, and ajvy = vi.1 + Vi,1.
(c) Show that these added rays correspond to exceptional divisors
E; = Pl, forming a chain

Ep E3

E2 R o) Er

with self-intersection numbers (E{-E;j) = -a;j.
(d) Show that {(vg,...,v .1} is a minimal set of generators of the

semigroup onNN.

Exercise. Show that the algebra A, = C[S;] has a minimal set of
generators (Usi\/ti, 1 <i < e}, where the embedding dimension e and
the exponents are determined as follows. Let bp,...,b,.1 be the
integers (each at least 2) arising in the Hirzebruch-Jung continued

fraction of m/{(m-k). Then

m=-k, si,1=Dbjsj~-5s-1 for 2<ixge-1;

i < e-1.(2D)

sy =m, s2

7Y
-

ty = 0, to 1, tivg = bi'ti - tj-1 for 2

In
-

Exercise. Let o be the cone generated by ez and (k+1)e; - kes.
Show that S, is generated by uj = ej, up = key + (k+1)e}, and
uz = e;+ eg, with (k+1)us = ug + uz. Deduce that

Ag = CIYq,Y2, Y31/ (Y51 - v vy,

which is the rational double point of type Ak. Show that the
resolution of singularities given by the above toric construction has k
exceptional divisors in a chain, each isomorphic to P! and with self-

intersection -2. (22)

Exercise., Let o be generated by es and mej - kep as above, and
let ¢' be generated by ez and m'ej - k'ep, with 0 <k'<m'
relatively prime. Show that Uy is isomorphic to Ug if and only if
m'=m, and k' =k or k'“k = 1 (mod m).?3)

Given a fan A in any lattice N, and any lattice point v in N,

one can subdivide A to a fan A' as follows: each cone that contains
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v is replaced by the joins (sums) of its faces with the ray through v;

each cone not containing v is left unchanged.
WL =\
Since A' has the same support as A, the induced mapping from

X(A'") to X(A) is proper and birational. The goal is to choose a

succession of such subdivisions to get to a nonsingular toric variety.

Exercise. Show that one can subdivide any fan, by successively

adding vectors in larger and larger cones, until it becomes simplicial.

Now if o is a k-dimensional simplicial cone, and vi,...,vKg are
the first lattice points along the edges of o, the multiplicity of o is
defined to be the index of the lattice generated by the v; in the lattice
generated by o:

mult(c) = [Ng: Zvy +...+ Zvgl.
L]
Note that U, is nonsingular precisely when the multiplicity of o is

one.

Exercise. Show that if mult(o) > 1 there is a lattice point of the
form v = St;vi, 0 < t; < 1. For such “v, taken minimal along its ray,
show that the multiplicities of the subdivided k-dimensional cones are

ti-mult(o), with one such cone for each nonzero t;. (24)

From the preceding two exercises, one has a procedure for
resolving the singularities of any toric variety — never leaving the

world of toric varieties:

Proposition. For any toric variety X(A), there is a refinement A
of A so that X(A) —» X(A) is a resolution of singularities.

In particular, the resulting resolution is equivariant, i.e., the.map

commutes with the action of the torus.
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Exercise. For surfaces, show that this procedure is the same as that
described at the beginning of this section. Show that the integer aj
found there is the multiplicity of the cone generated by v;_.; and

Visl:

Let N be a lattice of rank 3, with o the cone generated by
vectors vi, vp, vi, and v4 that generate N as a lattice and satisfy -

vy + V3 = V2 + Vg4, as we considered in §1.3:

v2
v3
Vi

There are three obvious ways to resolve the singularity by subdividing:

A1 Draw the plane through vi; and vz (take v = v; or v3);
A> Draw the plane through v, and vg4 (take v = vy or vg);

Az Add a line through v = vy + vz = v + vg4.

vg 4 vyq 4

' Nq ’ ALY

The first two of these replace o by two simplices, the third by four.

Since the third refines each of the first two, the corresponding

resolution maps to each of them:
X(Az)

SN

X(Ay) X(A9)

N <
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This description of two different minimal resolutions is well known for
this cone over a quadric surface: each of X(Aj) - X and X(Aj3) — X
has fiber P! over the singular point, corresponding to the two rulings
of the quadric, while X(Az) = X has fiber P1xP1, the quadric itself.
The transformation from X(Aj) to X(Ajz) is an example of a "flop",
which is a basic transformation in higher-dimensional birational
geometry. In fact, toric varieties have provided useful models for
Mori's program.(zs)

Let us consider a global example. Let A be fan in R3 over the
faces of the cube with vertices at (+1,+1,+1); take N to be the
sublattice of Z3 generated by the vertices of the cube, as in Example
(3) at the end of Chapter 1. The six singularities of X(A) can be
resolved by doing any of the above subdivisions to each of the face of
the cube. The following is a particularly pleasant way to do it:

These added lines determine a tetrahedron; the fan A of cones over
faces of this tetrahedron determines the toric variety X(A) = P3.

Since A is also a refinement of A, we have morphisms
X(A) « X(&) - X(A)=Pp3.

Exercise. Show that the morphism X(ZA) —» X(A) is the blow-up of
P3 along the four fixed points of the torus. In X(ZA) the proper
transforms of the six lines joining these points are disjoint. Show that
the morphism X{(ZA) — X(A) contracts these lines to the six singular
points of X(A).



CHAPTER 3

ORBITS, TOPOLOGY, AND LINE BUNDLES

3.1 Orbits

As with any set on which a group acts, a toric variety X = X(A) is a
disjoint union of its orbits by the action of the torus T = Ty. We will
see that there is one such orbit O, for each cone T in 4; itis the
orbit containing the distinguished point x, that was described in §2.1.

Moreover,

O = (€K if dim(t) =k.

1If T is n-dimensional, then O is the point x,. If T = (0}, then
Or = TN, We will see that Oy is an open subvariety of its closure,
which is denoted V(t). The variety V{t) is a closed subvariety of X
that is again a toric variety. In fact, V(1) will be a disjoint union of
those orbits Oy for which ¥ contains T as a face.

Before working this out, let us look at the simplest example:
T = (C™*)" acting as usual on X = C". The orbits are the sets

((z4,...,zp) € C": z;=0 for i€, z+ 0 for i ¢ 1},

as | ranges over all subsets of {1,...,n}. This is the orbit containing
x¢, where T is generated by the basic vectors e; for i € I. All of the

above assertions are evident in this example. Note also that
Or = Hom(x*nM,C*),

which is a formula that will be true generally as well. The general
case of a nonsingular affine variety is obtained by crossing this
example with a torus (£*)%

For a compact example, consider the projective space P"
corresponding to the fan of cones generated by proper subsets of
(vo, ...,Vvn}l, where the vectors generate the lattice and add to zero.

If t is generated by the subset (v;:i € 1}, then V(t) is the

51
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intersection of the hyperplanes z; = 0 for i € I, and O, consists of
the points of V{t) whose other coordinates are nonzero.

In the general case we will first describe the orbits O, and their
closures V(t) abstractly, and then show how to embed them in X(A),
For each T we defined N. to be the sublattice of N generated (as a
group) by TNN, and

N{t) = N/N,, M(r) = t*nM

the quotient lattice and its dual. Define O, to be the torus

~ corresponding to these lattices:
Or = Tn(r) = Hom(M(1),€*) = Spec(CIM(7)]) = N(t)®zC*.

This is a torus of dimension n-k, where k = dim(t), on which Ty
acts transitively via the projection TNy — TnN(x)-

The star of a cone Tt can be defined abstractly as the set of
cones o in A that contain T as a face. Such cones o are

determined by their images in N(t), i.e. by
T = g+ (NJR /(NJRr € Np/ANJIR = N(T)R .
These cones (G : T < g) form a fan in N(t), and we denote this fan

by Star(t). (We think of Star(t) as the cones containing T, but

realized as a fan in the quotient lattice N{t).)

Star(T)

Set
V(t) = X(Star(1)),

the corresponding (n-k)-dimensional torlic variety. Note that the torus
embedding O, = Ty(y) € V(t) corresponds to the cone (0} = T in
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N(t).
This toric variety V(t) has an affine open covering (Ug{t)}, as

g varies over all cones in A that contain Tt as a face:
Uglt) = Spec(CiTa¥NM(T1)]) = Spec(Clo"nt*nMD .

Note that o NtT* is a face of g~ (the face corresponding to T by
duality). For o =71, Ug{r) = O..

To embed V(T) as a closed subvariety of X(A), we construct a
closed embedding of Ugi{t) in U, for each < > t. Regarding the

points as semigroup homomorphisms, the embedding
Ug(t) = Homgg(o¥Nt*NM,C) & Homg(e¥NM,C) = Ug

is given by extension by zero; again, the fact that g”'nt* is a face of

g~ implies that the extension by zero of a semigroup homomorphism

is a semigroup homomorphism. The corresponding surjection of rings

Cle¥NM] —— CLlo¥nrt*NnMI,

is the obvious projection: it takes X" to " if u isin o NTt*NM,
and it takes XY to 0 otherwise.
These maps are compatible: if v is a face of o, and o a face

of o', the diagram

Uy(t) & Ug(T)
{ {

Us; <& Ug

commutes, since it comes from the commutative diagram

Homgg(avNnt*NM,L) & Homg(o''Nnt*NM,C)
) 1

Homgg(o¥NM, ) < Hom(o''NnM, L)

where the horizontal maps are restrictions and the vertical maps are
extensions by zero. These maps therefore glue together to give a closed

embedding
Vi{t) o X(A).

If v is a face of t', we have closed embeddings
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Vit') & V(r)

given, on the open set Uy for o € Star(t'), by extension by zero from
Homg(a¥nt'*NM, ) to Homgg(a¥Nt*NM,C); alternatively, regard
V(1) as a toric variety and apply the preceding construction. In
summary, we have an order-reversing correspondence from cones T
in A to orbit closures V(t) in X(A).

It follows from this description that the ideal of V(t)nU, in A,
is @C-X", the sum over all u in S; such that <u,v> >0 for v in
the relative interior of T. For a nonsingular surface, this agrees with

the description in §1.1 of the curve defined by an edge of a fan.

Exercise. For a cone o, show that every M-graded prime ideal
in Ag has this formm for some face t of o. Show that every
Tn-invariant closed subscheme of U, is defined by a graded ideal
in Ag. (1)

Exercise. Show similarly that if X(A) is an affine variety, then A

consists of all faces of some cone o, so X{(A) = U,.

Consider the singular example X = U,;, where o is the cone in
z2 generated by vi = 2ej -~ez ‘and vy = e3. We saw in §1.1 that U,
is a cone over a conic, defined in €3 by an equation VZ = UW. Then
V(o) is the vertex of the cone, which is the origin in €3, and, if Ty
and T2 are the edges through vi and v, then V{ti) is the line
U=V =0, and V(t3) is the line V = W = 0. The orbits O.,:i are the
complements of the origin in these lines, and Oyg) = Ty is the

complement of these lines in X.

Proposition. There are the following relations among orbits O,

orbit closures V(t), and the affine open sets Ug:

(a) U = il Or ;
T< O
(b) V(r) = Il Oy ;
y>T

(c) O = V{r)~ U V).

)‘;T
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Proof. For (a), note that a point of Uy is given by a semigroup
homomorphism x: oYM — €. This point is in Ty = O¢g) exactly
when x does not take on the value 0, for then it extends to a

homomorphism from M to C* In general,
xec*) = ovntnM

for some face T of o. This follows from the characterization of faces
given in an exercise in §1.2: the sum of two elements of oY cannot be
in x"1C*) unless both are in x~1(C*). This means precisely that x
corresponds to a point of O, € Ug(T).

For (c), passing to N(t), i.e., working in the toric variety V{t),

we may assume T = {0}, in which case we must show that

Tn = X(A) ~ U V().
v+ (0}
By intersecting with open sets of the form Ug, this follows from (a).

Then (b) follows from (c) by induction on the dimension.

It follows from the proposition that X(A) is a disjoint union of
the 0., which are the orbits of the Ty-action. In addition, an orbit
O is contained in the closure of O; exactly when o is a face of .
In particular, the closed orbits are exactly those O; for o.,a maximal
cone in A. It also follows that if A° is the fan obtained from a fan A
by removing some maximal cones o (while retaining their faces),
then X(A®) is obtained from X(A) by removing the closed orbits Og.

If A = Ap is constructed from a polytope P as in §1.5, there
is a cone og for each face Q of P, so an invariant subvariety
Vaq = V(oqg) for each face. Note that Vq is contained in Vg exactly
when Q is a face of Q', and the (complex) dimension of Vq is equal
to the (real) dimension of Q.

If X(A) is nonsingular, it follows from the definitions that each
orbit closure V(1) is nonsingular. It is a good general exercise now to
compute the orbits and orbit closures in all of the toric varieties we

have seen, including those that are singular.

Exercise. Show that V(t)NU, is the disjoint union of the orbits Oy
as ¥ varies over all cones such that T < ¥ < o. In particular, ,V(t) is

disjoint from U, if t is not a face of o.
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Exercise. Show that the distinguished point x¢ is the origin (identity)
of the torus O;. Show that O; is the unique closed Ty-orbit in U..

Exercise. Let ¢,: X(A')Y - X(A) be the map arising from a
homomorphism of lattices mapping a fan A' in N' toafan A in N,
asin §1.4. If ¢ maps N' onto N, show that ¢, maps the orbit Op
of X(A') onto the orbit 0O, of X(A), where 7T is the smallest cone of
A that contains <t'. If q)'i(IAl): {A'l, deduce that ¢, maps V(t')
onto V(t). (@)

Exercise. Any v in N determines a mapping Ay: C* - Ty, so an
action of €* on X(A). Show that the set of fixed points of this action

is the union of those V(Y) for which v isin Ny

3.2 Fundamental groups and Euler characteristics

First we look at the fundamental group 11(X(A)) of a toric variety.
Base points will be omitted in the notation for fundamental groups;
they may be taken to be the origins of the embedded tori. The main

fact is that complete toric varieties are simply connected. In fact,

Proposition. Let A be a fan that contains an n-dimensional cone.

Then X(A) is simply connected.

Proof. The first observation is that the inclusion Ty < X(A) gives a
sur jection
m1(Ty) —— m(X(A) .

This is a general fact for the inclusion of any open subvariety of a
normal variety; the point is that a normal variety is locally
irreducible as an analytic space, so that its universal covering space
cannot be disconnected by throwing away the inverse image of a closed
subvariety.(3)

Now for any torus Ty, there is a canonical isomorphism

N o my(Tn)
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defined by taking v € N to the loop slce* > TN, where €©* — Ty
is the map Ay defined in §2.3. If v isin oNN for some cone o,

the loop can be contracted in Ug,, since lziin0 A(z) = x4 exists in Ug;
in fact, we have seen that A, extends to a map from C€ to U, The

contraction is given by

A (tz) =z € sl 0<ts«1
>\v,t(2) = 1 .
Xg z € SY, t=20

If o is n-dimensional, then onNN generates N as a group, so the

fact that such loops are trivial in Ug implies that all loops are trivial.

Corollary. If o is a k-dimensional cone, then wy(Ug) = Zn7k,

Proof. This follows from the fact that U, = Ug x (C*)""K  and
w(€*) = wy(SY) = 7.

More intrinsically, if o' is the cone in the lattice N; generated
by o, the fibration Uy — Ug; — Tn(g) induces a canonical
isomorphism

m1(Ug) — m1(TN(s)) = Nlo).

Exercise. Let A be the fan in RZ consisting of three cones: the
origin, and the two rays through 2ej+e; and ej+2e3. Show that
1 (X(A)) = 2/31Z.

In complete generality, if N' is the subgroup of N generated by

all onNN, as o varies over A, then

w1 ((X(A)) = N/N'.

To see this, note that for each o, w1(Ugy) = N/N,. By the general van
Kampen theorem,

m1((X(A)) = m1(UU,) = lim w1(Uy) = lim N/Ng = N/ENg = N/N'.

For affine toric varieties, a similar argument shows more:

Proposition. If o is an n-dimensional cone, then Ug s,

contractible.
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Proof. We want to define a homotopy
H: Ug = [0,1] » Ug

between the retraction r: U; — x5 and the identity map. Choose a
lattice point v in the interior of o. Regarding the points of U, as

semigroup homomorphisms from S; to C, define H by
H(x x )(u) = t$WVY2.x(u) for t>0,

and H(x x 0) = x4. It is easy to see that H{(x xt) is a semigroup
homomorphism whenever x is. For u = 0, H{x x t}{u) = x(0) = 1 for
all t. For u € Sz~ (0}, <u,v>>0, so H(xxt){u) > 0 as t — 0. It
follows that H(y x t) approaches x5 as t — 0, and, since generators
of S; determine an embedding of Uy in some C™, the resulting

mapping is continuous.
Corollary. If dim(o) = k, then O4 C U, is a deformation retract.

Proof. One can use the same proof as in the proposition, or an
isomorphism Ug = Ugr x Og.

Corollary. There is a canonical isomorphism Hi(Ua;Z) = AY(M(o)),
where M(ao) & o*NM.

Proof. Since 04 is the torus Tp(g), its cohomology is the exterior
algebra on the dual M(o) of its first homology group N(o).

Knowing the cohomology of the basic open sets U, can give some
information about the cohomology of X(A). When one has an open
covering X = UjU...UU, of a space, if all intersections of the open
sets are simply connected, the cohomology of X can be computed as
the Cech cohomology of the covering. In general one has a spectral

sequence
EPY = @ HIWUpn...nUp) = wPTIR0 @)
1g<...<1p

Apply this to the covering by open sets U; = U"i’ where the o; are

the maximal cones of A:
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Ef9 = @ AWM n. . .no; ) = BHPYXAY .
ig<...<ip P

In particular, this gives a calculation of the tcpological Euler
characteristic Y (X(A)). For every cone T that has dimension less
than n, the alternating sum Z(-1)¥rank(A9M(+)) vanishes, while if

the dimension is n, this alternating sum is one. Therefore

¥ (X(A)) = Z(—l)p”'rankElp‘q = # n-dimensional cones in A.

Assume all maximal cones in A are n-dimensional, as is the case

if A is complete. Since each U"i is contractible,
Ef‘q = 0 for q=1.

In addition, the complex Ei‘o is

0 - ®ZU~ - ®Zcﬂc- - S Zaiﬂc-nak_’ CEER
i 1 i< LA i<j<k J

which is a Koszul complex (or the cochain complex of a simplex). This

implies that

E;>7 =0 fori:zl.

From the spectral sequence one therefore has

ELY = 3! = Ker(E}' - EZY)

oo

H2(X(A)

Ker(® M(ojno;j) » & M(oijno noy)).

i<j i<j<k

Note that any element u of M(c) = o*NM gives a nowhere
vanishing function X" on U, An element in the above kernel gives

a cocycle defining a line bundle on X(A).

Exercise. Verify that the torus Ty acts on such a line bundle,
compatibly with its action on X(A). Verify that the above
isomorphism with HZ(X) takes the cocycle for a line bundle to the
first Chern class of the line bundile.(5) !
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In particular, every element of H2(X) is the first Chern class of a

line bundle of this type.

3.3 Divisors

On any variety X, a Weil divisor is a finite formal sum X a;V; of
irreducible closed subvarieties V; of codimension one in X. A Cartier
divisor D is given by the data of a covering of X by affine open sets
Uy, and nonzero rational functions f, called local equations, such
that the ratios f,/fg are nowhere zero regular functions on UgNUg.
The ideal sheaf O(-D) of D is the subsheaf of the sheaf of rational
functions generated by f, on Ug; the inverse sheaf O(D) is the
subsheaf of the sheaf of rational functions generated by 1/f, on U,.
Regarded as a line bundle, its transition functions from U, to Ug are

fx/fg. A Cartier divisor D determines a Weil divisor, denoted [D], by

D] = 2 ordy,(D)-V ,
cod(V,X)=1

where ordy(D) is the order of vanishing of an equation for D in the
local ring along the subvariety V. When X is normal these local rings
are discrete valuation rings, so the notion of "order” is the naive one.
For normal varieties, the map D — [D] embeds the group of Cartier
divisors in the group of Weil divisors. A nonzero rational function f
determines a principal divisor div(f) whose local equation in each
open set is f. (&)

We will be primarily concerned with divisors on a toric variety
X = X(A) that are mapped to themselves by the torus T = Ty. The
irreducible subvarieties of codimension one that are T-stable
correspond to edges (or rays) of the fan. Number the edges 1, ...,Ta,s
and let v be the first lattice point met along the edge vj. These

divisors are the orbit closures:

Di = V(Ti) .

The T-Weil divisors are the sums ZXZajD; for integers a;.

We want to describe the Cartier divisors that are equivariant
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by. T, which we call T-Cartier divisors. First, consider the affine case
X = UU, with dim(c) = n. Let D be a divisor that is preserved by T,
corresponding to a fractional ideal 1 = I'(X,8(D)). We claim that I is
generated by a function X" for a unique u € ¢”"AM. This can be
seen algebraically as follows. The fact that the divisor is T-invariant
implies that I is graded by M, i.e, I is a direct sum of spaces C-x4
over some set of u in M. Since 1 is principal at the distinguished
point g, I/MI must be one-dimensional, where m is the sum of all
C-x® for u = 0. It follows that there is a unique u with I = A -xX".
Consequently a general T-Cartier divisor on U, has the form div(x")

for some unique u € M.

Lemma. Let u € M, and let v be the first lattice point along an
edge T. Then ordv(r)(div(xu))= <u,v>, so

[diV('X,u)] = 21<U,Vj>Di .

Proof. The order can be calculated on the open set U, = C x (C*;n-t,
on which V{t) corresponds to (0} x (€*)*~1. This reduces the

calculation to the one-dimensional case, i.e., to the case where N = Z,
T is generated by v=1, and ue€ M =1Z. Then X" is the monomial

XY, whose order of vanishing at the origin is u.

For example, look at the cone o in 72 generated by the vectors
Vi = 2ey-e» and v = e3, so U, is the cone over a conic, with two
T-Weil divisors Dy and D3 (which are straight lines on the cone). If
u=(p,q) € M =122, then div(X"“) = (2p-q)D; + qDy. In particular, we
see that Dy and D; are not Cartier divisors, although 2D; and 2Dj

are.

Exercise. Let o be the cone in 22 generated by vy = 2ej-ey and
vy = -ej +2ep, corresponding to divisors Dy and Ds. Show that
aiDy + asDy is a Cartier divisor on Uy if and only if aj = a3 (mod 3).

Exercise. Let o be the cone in Z3 generated by vi = ey, v3 = e,
v3 =e3, and v4 = ej - e3 + e3. Show that aj1Dji + azDs + azD3 + a4Dy4
is a Cartier divisor on Uy if and only if a; + az = ag + ag.

Exercise. Take o as in the preceding exercise, but replace the lattice
by N = Z.(1/2b)ey + Z-(1/bles + Z-(1/a)es + Z-(1/2b)(eq +ep +e3), where
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a and b are positive integers, with a > 1 and gcd(a,2b) = 1. Find
the first lattice points along the four edges, and find which Za;D; are
Cartier divisors on Ug. In particular, show that no positive multiple of
2D; is a Cartier divisor.

Exercise. Show that for each irreducible Weil divisor D, on an affine
toric variety Ug, there is an effective Cartier divisor that contains D,

(7)

with multiplicity one.

For a cone o of dimension less than n, a T-Cartier divisor on

Ug is of the form div(X") for some u € M, but
divix1) = div(x%¥) & u-u € o*nM = M(a).

To see this write U, = Uy x Tn(o) as usual. Note that o and o
have the "same” edges, so corresponding Weil divisors. Therefore
T-Cartier divisors on U, correspond to elements of M/M(a).

On a general toric variety X(A), it follows that a T-Cartier
divisor is defined by specifying an element u(o) in M/M(o) for each
cone o in A, defining divisors div(X_u(c)) on U, (the minus sign is
taken to conform to the literature). Equivalently, x ule) generates
the fractional ideal of G(D) on Ug:

M(U,,8(D)) = Ag-xu(e) .

These must agree on overlaps; i.e,, when T is a face of o, u(g) must
map to u(t) under the canonical map from M/M(c) to M/M(T). In

short,

{T-Cartier divisors} = lim M/M(a)

Ker (@ M/M(c;) » @ M/M(ojnoy)),
1 i<

with o; the maximal cones, as in the preceding section.

Exercise. Show that a Weil divisor Za;D; is a Cartier divisor if and
only if for each (maximal) cone o thereis a u(o) € M such that for

all v; € o, <ulag),vp = -ai.(s)

Exercise. If A is simplicial, show that any Weil divisor D is a

Q-Cartier divisor, i.e., some positive multiple of D is a Cartier divisor.
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3.4 Line bundles

Let Pic(X) be the group of all line bundles, modulo isomorphism. For
any irreducible variety X, the map D + O(D) gives a homomor-
phism from the group of Cartier divisors on X onto Pic(X), with
kernel the group of principal divisors. Let A,_1(X) denote the group
of all Weil divisors modulo the subgroup of divisors [div(f)] of rational
functions. The map D +— [D] determines a homomorphism from

Pic(X) to A,L-1(X), which is an embedding when X is normal:
Pic(X) < A,_1(X).

For X a toric variety, any u € M determines a principal Cartier
divisor div(X"), giving a homomorphism from M to the group

DivyX of T-Cartier divisors. The following proposition shows that
Pic(X) can be computed by using only T-Cartier divisors and functions,
and similarly for A,_1(X) with T-Weil divisors. In addition, it gives a

recipe for calculating these groups for a complete toric variety X.

Proposition. Let X = X(A), where A is a fan not contained in
any proper subspace of NR. Then there iIs a commutative diagram

with exact rows:
0 - M — DiviX - Pic(X) - 0

Il ) s
d
0 - M - & 7Z-D;—> A1 (X)) - 0
i=1
In particular, rank(Pic(X)) = rank(A,-1(X)) =d - n, where d is

the number of edges in the fan. In addition, Pic(X) is free abelian.

Proof. First note that X ~ U D; = Ty is affine, with coordinate ring
the unique factorization ring C[Xl,Xl'l, . ,Xn,Xn’ll, so all Cartier
divisors and Weil divisors on Ty are principal. This gives an exact
sequence (9)
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An-1(UDy = 'éll-Di - A, 1 (X) - A,_((Tn) = 0.
i=
Next, note that if f is a rational function on X whose divisor is
T-invariant, then f = A-%% for some u € M and complex number
A; this follows by restricting to the torus Ty. The lemma in the
preceding section and the fact that the v; span NpR imply that u is
determined uniquely by f. This shows the exactness of the second row.
If L is an algebraic line bundle, its restriction to Ty must
be trivial, so L = O(D) for some Cartier divisor supported on UDj;
indeed, writing L = O(E) for some Cartier divisor E, take a rational
function whose divisor agrees with E on Ty, and set D = E - div({f).
Hence D is T-invariant as a Weil divisor, and therefore as a Cartier
divisor, The exactness of the upper row follows easily.
Finally, the fact that Pic(X) is torsion free follows from the fact
that it is a sﬁbgroup of ®@M/M(c), and each M/M(c) is a lattice, so

torsion free.

Corollary. If all maximal cones of A are n-dimensional, then
Pic(X(A)) = H2(X(A),Z).

Proof. We must map the group of T-Cartier divisors onto HZ(X(A),Z),

with kernel M. We have seen the isomorphisms:

{T-Cartier divisors) = Ker(&®M/M(o)) » & M/M(cijnay)),
1

i<j

HAX(A)Z) = Ker(® Mloino)) - @& Mlojno;noy)) .
1<y i<j<k
An element @u; in the first kernel is mapped to the sum ®(uj-u;j)
in the second (noting that M(o;) = 0 since o; is n-dimensional). It
is an easy exercise to show that this map is surjective, with kernel

isomorphic to M.

Exercise. Give an example with maximal cones not n-dimensional
where the map from Pic(X(A)) to H2(X(A);Z) is not surjective.(lo)

Exercise. Let A be the complete fan in Z? with edges along

vy =e1, v = —ej+mey, {m > 1), and vz = -e3. Show that the Weil
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divisor aj1Dq + azDs + azDz is a Cartier divisor on X = X(A) if and
only if a1 + az = 0 (mod m). Show that

Pic(X) = Z-mDy < A3 (X) = Z-Ds.

Exercise. Let A be the complete fan in Z2 with edges along
vy = 2e1-e3, v2 = ~ei1+2ep, and vz = -e1-ej. Show that

aiDy + asDy + azD3 is a Cartier divisor on X = X(A) if and only if
a; = az = az (mod 3). Show that

Pic(X) = Z-3Dy = Z,

A1(X) = (Z:Dy + Z-D2)/Z-3(Dy-Dy) = ZH2/3Z .

i

In particular, A,_1X can have torsion.

Exercise. Let X = X(A), where A is the fan in 73 over the faces of
the convex hull of the points ey, ez, e3, e; - ex+e3, and -eq-e3.
Show that Pic(X) = Z, Ax(X) = Z2, and Ax(X)/Pic(X) = Z.

Exercise. Let X = X(A), where A is the fan over the faces of the
cube with vertices (£1,%1,%#1), and N the sublattice of z3 generated
by the vertices. Show that Pic(X) = Z, generated by a divisor that is
the sum of the four irreducible divisors corresponding to the vertices of
a face. Show that Ax(X) = Z°%, and A,(X)/Pic(X) = z4.

In §1.5 we constructed a complete fan A that cannot be
constructed as the faces over any subdivided polytope. In fact, the
exercise proving that this fan is not a fan over the faces of a convex
polytope actually showed that every line bundle on X(A) is trivial;
ie, Pic{X(A)) =0,

Exercise. For this fan, show that Ax(X(A)) = Z°®7/22.

Exercise. Let A be a fan such that all of its maximal cones are
n-dimensional. Show that the following are equivalent:
(i) A is simplicial;
(ii) Every Weil divisor on X(A) is a @-Cartier divisor;
(iii) Pic(X(A)®Q — A, 1(X(A)DR®Q is an isomorphism;
(iv) rank(Pic(X(A)) = d - n. (11

The data {u(oc) € M/M(o)} for a Cartier divisor D defines a
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continuous piecewise linear function {p on the support |Al: the
restriction of yp to the cone o is defined to be the linear function

u(c); i.e.,

yplv) = <ulo),v> for v e o,

The compatibility of the data makes this function well defined and

continuous. Conversely, any continuous function on |A} that is linear
and integral (i.e., given by an element of the lattice M) on each cone,
comes from a unique T-Cartier divisor. If D = 3Xa;Dj, the function yp

is determined by the property that yplv;) = ~aj; equivalently
[D] = z"k‘JD(Vi)Di .

These functions behave nicely with respect to operations on divisors.

For example, Yyp, g = ¢p + Yg, SO $yp = Mmyp Note that yg;,(yu) is
the linear function -u. If D and E are linearly equivalent divisors,

it follows that Y and ¢g differ by a linear function u in M.

A T-Cartier divisor D = Za;D; on X(A) also determines a

rational convex polyhedron in Mp defined by

Pp = {u€ Mp: <uvp z -a; forall i}

(ueMg: uzqgp on {A]}.
LLemma. The global sections of the line bundle (D) are

r(X,s(p) = &b c-xu.
u € PDﬂM

Proof. It follows from the lemma of the preceding section that

IUg, 8(D)) = & C-xXY,
uEPD(a)ﬂM
where
Pplo) = (u€ Mp: <u,vp z-a; V v;€al.

These identifications are compatible with restrictions to smaller open
sets. It follows that T'(X,0(D)) = MI'(U,,0(D)) is the corresponding

direct sum over the intersection of the Pp(c)nM, as required.
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Exercise. Show that (i} P p = mPp; (ii) Pp4divixy) = Pp - u;
(lll) PD + PE C PD+E'

When |Al = NR, the variety X(A) is complete, and it is a
general fact that cohomology groups of a coherent sheaf are finite
dimensional on any complete variety. In the toric case this means

that the polyhedron Pp is bounded:

Proposition. If the cones in A span NpR as a cone, then
I'(X,0(D)) is finite dimensional. In particular, PpNM is finite.

Proof. If Pp were unbounded, by using the compactness of a sphere
in Mp there would be a sequence of vectors u; in Pp, and positive
numbers t; converging to zero, such that tj-u; ccnverges to some
nonzero vector u in Mpg. The fact that <u;,v;> 2 -aj for all j
implies that <u,v;> 2 0 for all j. Since the v; span Np, we must

have u = 0, a contradiction.

The next proposition answers the question of when a line bundle
is generated by its sections, i.e.,, when there are global sections of the
bundle such that at every point at least one is nonzero. Recall that a
real-valued function ¢ on a vector space is (upper) convex if

Bltev + (A=Dew) 2 t9(v) + Aotplw)

for all vectors v and w, and all 0 s t < 1. For the simplest example
of the toric variety Pl corresponding to the unique complete fan in
Z, if Dy and D3 are the divisors corresponding to the positive and
negative edges, the divisor D = ajDy + agD2 corresponds to the

function ¢p on R defined by

-agx if x 20

Pplx) =

1A
o

—agx if x

This function is convex exactly when aj + az is nonnegative. Since
9(D) = O(ag +ap) on P, this is exactly the criterion for (D) to be
generated by its sections.

We are concerned with continu.ous functions ¢ on NpR such

that the restriction q;lc, to each cone is given by a linear function
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u(o) € M. In this case convexity means that the graph of y lies
under the graph of u(g) for all n-dimensional cones o, so that the
graph of ¢ is "tent-shaped™:

The convex function ¢ is called strictly convex if the graph of ¢ on
the complement of o lies strictly under the graph of u(g), for all n-
dimensional cones o; equivalently, for any n-dimensional cones «o

and o', the linear functions u(c) and u(c') are different.

Proposition. Assumme all maximal cones in A are n-dimensional.
Let D be a T-Cartier divisor on X(A). Then O(D) is generated

by its sections if and only if yp Is convex.

Proof. On any toric variety X, O(D) is generated by its sections if

and only if, for any cone o, thereisa u{c) € M such that

v

i <ulo),vp -a; forall i, and

(ii)  <ulo),v

fl

-aj for those i for which v; € o.

Indeed, (i) is the condition for u(o) to be in the polyhedron Pp that
determines global sections, and (ii) says that x ule) generates O(D) on
Ug. The function ¢p is determined by its restrictions to the n-
dimensional cones, where its values are given by (ii). The convexity of

$p is then equivalent to (i).

If (D) is generated by its sections, and all maximal cones of the
fan are n~dimensional, we can reconstruct D, or equivalently its

function ¢p, from the polytope Pp:

gplv) = min <u,v> = min <u;,v>,
uePpnM
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where the u; are the vertices of Pp.

Exercise. If O(D) and O(E) are generated by their sections, show

that Pp.g = Pp + Pg.

Exercise. If O(D) is generated by its sections, and S is a subset of
PpnM, show that (X" :u € S} generates O(D) if and only if S

contains the vertices of Pp.

When O(D) is generated by its sections, choosing (and ordering) a
basis (XY :u € PpNM) for the sections gives a mapping

9 = ¢p: X(A) - Pl x e (xMGa: L ixUr)
to projective space IP"—I, r = Card(PpnM).

Lemma. If Al = N, the mapping g is an embedding, ie, D is
very ample, if and only if yp Is strictly convex and for every

n-dimensional cone ¢ the semigroup Sy Iis generated by

{u-ulc): u e PpNM1}.

Proof. ¢: Take corresponding homogeneous coordinates T, on

P*~! indexed by the lattice points u in Pp. Let o be an n-
dimensional cone in the fan, and let u(g) be the corresponding
element of PpNM, so X“(a) generates O(D) on Ug. It follows
easily from the strict convexity of ¢p, that the inverse image by
¢p of the set cr ! ¢ P! where Tu(o) *# O is the open set Ug.
The restriction Ug; — €r-1l is then given by the functions x“"“("),
and the fact that they generate S; means that the corresponding
map of rings is surjective, so the mapping is a closed embedding. The
proof of the implication = is similar.

Exercise. Let X = X(A), with A the fan over the faces of the cube
with vertices (+1,+1,%1), N the lattice generated by the vertices. Let
D be the sum of the divisors corresponding to the four vertices of the
bottom of the cube. Show that Pp is the octahedron with vertices
(0,0,0), (*%,0,2), (0,'2,%%), (0,-%,0%), (-2%,0,%), and (0,0,1). Show

that ¢p ermmbeds X in IP5, with image defined by the equations

ToTg = T1T4 = ToT3. With X(A) = P3 as at the end of Chapter 2, show
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that this identifies X with the image of the rational map from P33 to
P5 defined by the linear system of quadrics through the four Ty~fixed
points: (xg: X1: x2: X3) = (XpX1: X0X2: XgX3! X1X2! X{X3: XpX3). (12)

Proposition. On a complete toric variety, a T-Cartier divisor D is
ample, i.e.,, some positive multiple of D is very ample, if and only if
its function (p is strictly convex.

Proof. Since ¢ _p = muyp, the implication => follows from the
lemma. For the converse, note that replacing D by m-D replaces
the polytope Pp by m-+Pp ={u € Mp :<u,v;> =z -m-+a; for all i}. For
any u € Sy it follows from the fact that <u(o),vi> > ~a; if v; ¢ ©
that v + m-u(og) isin m-Pp for large m. Since S; is a finitely
generated semigroup, it follows that it is generated by elements

u - mru{o) as u runs through m-PpnM, for m sufficiently large.

By the lemma, it follows that mD is very ample.

Note in particular that for complete toric varieties, unlike for
general complete varieties, every ample line bundle is generated by
its sections.

Exercise. When D is ample, show that the polytope Pp is
n-dimensional and the elements u{c), as o varies over the

n-dimensional cones of A, are exactly the vertices of Pyp.

Exercise. For the toric variety X = P™ with its divisors Dg, ...,D,,
verify directly that D = Za;D; is generated by its sections & p is
convex & ag+...+ap 20, and that D is ample & ¢p is strictly

convex & apg+ ...+ ap > 0.

Exercise. For X = [F,, the Hirzebruch surface, with edges generated
by vy =e1, vy =e3, vz =-ej+mep, vq = -e3, show that D = ZajD;
is generated by its sections if and only if a2 + a4 2 0 and ay + a3z 2
maj. Show that Pic(X) is free on generators A =Dy and B = Dy,
and that aA + bB is ample & a and b are positive. Verify that A
is a fiber of the mapping from F,, to Pl, and B is the first Chern

class of the universal quotient bundle of @ O8(m) on [Fp,.

Exercise. Show that any two-dimensional complete toric variety is

projective. Show that any ample divisor on such a variety is very
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ample.(13)

Exercise. (Demazure) If X(A) is complete and nonsingular, show

that a T-divisor is ample if and only if it is very ample.(19)

These ideas can be used to give simple examples of complete
varieties that are not projective. Form the three-dimensional fan A
whose edges in z3 pass through vy = -ej, vo = ~ey, vz = -e3, vq =
e{teg+ ez, Vg = vVz+vy, Vg =v]tvy, and vy = vy+vy, and with

cones through the faces of the triangulated tetrahedron shown:

4

3

It is easy to verify that X = X(A) is complete and nonsingular. The
claim is that X is not projective. Since Pic(X) consists of line
bundles of the form (D) for D a T-Cartier divisor, it suffices to show

that no function ¢p can be strictly convex.
Exercise. If ¢ were such a strictly convex function, show that

Pl{vi) + plvs) > Plvz) + Plve)
Plva) + Plve) > Pplvy) + lvy)
Plvz) + Pp(vy) > Pplva) + Plvs)

which add to a contradiction.

Exercise. (a) Describe the birational map from this variety X to p3
determined by this subdivision of the pyramid. In particular, show
that the blowing up occurs over a plane triangle in P3.

(b) Show that the toric variety obtained by truncating the pyramid
and omitting v4 has a singular point of multiplicity 2.
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Exercise. Prove the toric version of Chow's Lermmma, that any
complete toric variety can be dominated birationally by a projective

toric variety.(ls) Carry this out for the preceding example.

Any complete nonsingular toric variety, such as this example, has
many nontrivial line bundles, since Pic(X) = 79", We have seen an
example of a singular complete toric variety that is even farther from
being projective, having no nontrivial line bundles at al1.(16)

We saw in §1.5 that a convex n-dimensional polytope P with
vertices in M determines a fan Ap and a complete toric variety
Xp = X{(Ap). This variety comes equipped with a Cartier divisor

D = Dp, whose corresponding convex function ¢ = yp is defined by

$v) = min <u,v> = min <u,v> = min <{u;,v>,
uep ue¢PnNM

where the u; are the vertices of P. Equivalently, if o; is the (max-

imal) cone corresponding to u;, then YX"i generates O(D) on U"i‘

Exercise. Show that Pp = P, and verify that D is ample. Show
conversely that if D is an ample T-Cartier divisor on a toric variety

X(A), then the fan constructed from Pp is A.

Exercise. Given P as above, show that Dp is very ample if and only
if for each vertex u of P, the semigroup generated by the vectors

u' ~u, as u' varies over PNM, is saturated.

Exercise. Let P be the polytope with vertices at (0,0,0), (1,0,0),
(0,0,1), (1,1,0), and (0,1,1) in Z3. Find the fan Ap, and show that
D = Dp is very ample, ernbedding Xp in P4 as the cone over a
quadric surface, defined by an equation T1T4 = T2T3.

Exercise. Let M = Z3, P the polytope with vertices (0,0,0), (0,1,1),
(1,0,1), and (1,1,0). Show that D = Dp is ample but not very ample
on X = Xp. Show in fact that ¢p: X — P3 realizes X as the double

cover of P> branched along the four coordinate planes.

Exercise. Let P be an n-dimensional convex polytope with vertices
in M, and assume that Dp is very ample, so we have Xp C pr-i,
r = Card(PNM). Let o be the conein N x Z whose dual ¢~ is the
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cone over P x1 in M xZ. ldentify the affine toric variety Ug with
the cone over Xp in CF. Deduce that Xp C P'"! is arithmetically
normal and Cohen-Macaulay; i.e., the homogeneous coordinate ring of

Xp in P' 1 is normal and Cohen-Macaulay.(17)

Exercise. Let P = {(x1,...,X5) € R":x;2 0 and Zx; < m}). Show
that the corresponding projective toric variety Xp C Pr-1l is the m-
fold Veronese embedding of P" in lPr'l, r = (":nm). Show that the
construction of the preceding exercise gives the cone over this

embedding as the affine toric variety described in §2.2.

More generally, let P be the convex hull of any finite set in M.
We call a complete fan A compatible with P if the function yp
defined by ¢p(v) = min<u,v> is linear on each corie o in A. Since
yp is convex, it deteurf'r“n)ines a T-Cartier divisor D = Dp on X = X(A)
whose line bundle is generated by its sections. As before, these sections

are linear combinations of the functions XY, as u varies over PNM.

Exercise. Show that the image of the corresponding morphism

gp: X — Pr~1, is a variety of dimension k, where k = dim(p). (18)

3.5 Cohomology of line bundles

Let D be a T-Cartier divisor on a toric variety X = X(A), and let
¢ = yp be the corresponding function on |Al. We know that the
sections of O(D) are a graded module: H%(X,3(D)) = ®@H%X,9(D)),,

where
C-x® if ue PyNM
HO(X,8(D)), = { L D

0 otherwise

with Pp the polyhedron (u € Mg:u =2 ¢ on |Al). This can be
described in fancier words by defining a closed conical subset Z(u) of
A} for each u € M:

Z(u) = {v € JAl: <u,v> 2 p(v)}.

v

Then u belongs to Pp exactly when Z(u) = |Al, or equivalently,
when the cohomology group HO(IA] ~ Z()) vanishes, where this HO
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denotes the Oth ordinary or sheaf cohomology of the topological space

with complex coefficients. Equivalently, if
HY (,(1aD = HO(AL 1A~ Z(u))
= Ker(H®(1Al) — HO®IAL ~ Z(u))

is the OB Jocal cohomology group (or relative group of the pair
consisting of |Al and the complement of Z{(u)), we have u € Pp
exactly when Hoz(u YIAD is not zero. Therefore

HO(X,8(D)) = @®HYX,08(D)), , HYX,0(D), = HYlaDh.

This is the statement that generalizes to the higher sheaf cohomology
groups HP(X,8(D)) and to the higher local cohomology groups
H‘Z](u)(lﬁl) = HP(|A|, |IA] ~ Z(U);C)-

Proposition. For all p 2z 0 there are canonical isomorphisms:

HP(X,8(D)) = @HP(X,0(D)), , HPX,H(D),

[

HE ( IAD .

These local cohomology groups are often easy to calculate. For
example, if X is affine, so |A| is a cone and ¢ is linear, then |A]
and [Al~ Z(u) are both convex, so all higher cchomology vanishes —
which is one of the basic facts about general affine varieties. For toric
varieties, a similar argument gives a stronger result than is usually
true: all higher cohomology groups of an ample line bundle on a

complete toric variety vanish. In fact, more is true:

Corollary. If |Al is convex and O(D) is generated by its sections,
then  HP(X,0(D)) = 0 for all p > 0.

Proof. Since ¢ is a convex function, it follows that
AN Z(u) = (v € Al <u,vd> < ¢(v)}

is a convex set, so both |Al and Al Z(u) are convex. This implies

the vanishing of the corresponding cohomology groups.

It follows that for X complete and® O(D) generated by its

sections,
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X(X,9(D) Z{(-1)Pdim HP(X,0(D))

i

]

dim HYX,8(D)) = Card(PpnM) .

Wwith Riemann-Roch formulas available to calculate the Euler
characteristic, this gives an approach to counting lattice points in a
convex polytope. We will come back to this in Chapter 5. Note in
particular the formula for the arithmetic genus:

X(X,0%x) = dimHY(X,0%) = 1.

Proof of the proposition. HP(G(D)) is the pth cohomology of the
Cech complex C°, with

- 0
cP = oD HOUgyn ... NUG ,8(D)
O‘o,...,O‘p
4]
= @ @ HZ(u)ﬂaoﬂ...na (Ooﬂ ...ncfp),
ueM og,...,0p p
the sum over all cones og, ... »Tp in A. The boundary maps in the

complex C° preserve the M-grading, which gives its cohomology the
grading. As before, we have HlZ(u)nlrl(IT') = 0 for all cones v and all
u and all i > 0. The proposition then follows from a standard spéctral

sequence argument:

Lemma. Let Z be a closed subspace of a space Y that is a union
of a finite number of closed subspaces Yj, and F a sheafon Y
such that Hzay«(Y,F) =0 forall i>0 andall Y'=Y;n... ny;, -
Then

HLor,7) = H(CUY, TN,

where C'({Y;),¥) is the complex whose pth term is

cPUYT) = B Tzny. n.. . av. (Yjon - NY; ,F).
Jo,---»Jdp Jo dp P

Proof, Take an injective resolution 3° of ¥, and look at the double
complex C'({Y;},§"). The hypothesis implies that the columns are
resolutions of the complex C'({Y;},¥). We claim that the rows are

resolutions of the complex I'z(Y,$). Then calculating the cohomology
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of the total complex two ways (or appealing to the spectral sequence of
a double complex) gives the assertion of the lemma.

The exactness of the rows will follow from the fact that the 3§49
are injective. To see this, note that if § is injective, the sequence

0 = I'zaw(W,9) — T(W,9) — T(W ~ ZNW,$) — 0

is exact for any W. This reduces the assertion to the absolute case, i.e.

to showing that

0 = I(Y,9) = @L(Y,9) - &I(Y; 0Y;,.9 — ...

Jg»
is exact. Since § is a direct summand of its sheaf § of arbitrary
("discontinuous”) sections, we can replace § by §. But then the
calculation is local at a point y in Y, and the cohomology is that of
the simplex (j:y € Yj}, with coefficients in the stalk 4.

Exercise. Let X = P", a toric variety with its divisors Dg,...,D, as
y 0 n

usual, and let D = mDg, so 9(D) = (m). Compute the cohomology as
follows. Show that { is zero on the cone generated by vi,...,vp,
and Yp is mer on the cone generated by vg, ..., Vi, . .. sV

(a) For m 2 0, verify that (p is convex. Show directly that
u 2 gp exactly when u ={(my,...,m,) with mj20 and Zmj; s m;
the corresponding XY give a basis for HO(P™,0(mD)).

(b) For m <0, show that ¢p is concave, so that the sets Z(u)
are convex and unequal to Ng, and Hiz(u)(NR) =0 unless Z(u) = (0}.
Use this to verify that HXP",0(mD)) = 0 for all i # n, and that
HYP®,0(mD)) = @C-%Y, the sum over those u = (my,...,m,) with
m; <0 and Em;> m.

Using the same techniques, we have the following important
result, which is also special to toric varieties:

Proposition. Let A' be a refinement of A, giving a birational
proper map f: X' = X{(A"')Y - X = X(A). Then

f(0x) = Ox and R, (Oyx) = 0 forall i>0.

In particular, taking X' to be a resolution of singularities, this says

that every toric variety X has rational singularities.
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Proof. The aSSertion is local, so we can take A to be a cone o
together with all of its faces, so X = Ug. The claims are that

(i) (X', 0y = IN(X,0x) = Ag;

(ii) HYX'.Gyx) = 0 for all i>0.
The first is a general fact, since X is normal and f is birational; here
it is obvious since both spaces of sections are @C-XY, the sum over
u € o"NM. The second follows from the fact that Oy' is generated by

its sections, since the support [A'l = lol is convex.



CHAPTER 4

MOMENT MAPS AND THE TANGENT BUNDLE

4.1 The manifold with singular corners

Although we are working mainly with complex toric varieties, it is
worth noticing that they are all defined naturally over the integers,
simply by replacing € by Z in the algebras: U, = Spec{Zlo¥nMI).
For a field K, the K-valued points of Ug; can be described as the

semigroup homomorphisms
Hom ;g (6¥NM,K) ,

where K is the multiplicative semigroup K* U (Q}. For example, for
K =R Cc €, we have the real points of the toric variety.

In fact, the same holds when K is just a sub-semigroup of C.
The important case is the semigroup of nonnegative real numbers
R, = R*U{0)}, which is a multiplicative sub-semigroup of €. In this

case there is a retraction given by the absolute value, z +~ |zl
R, ¢ €T — R,.
For any cone o, this determines a closed topological subspace

(Ug)y = Homg(o¥NM,Ry) C Ug = Homg(o¥NM,C)

together with a retraction Ug — (Ug)y. For any fan A, these fit
together to form a closed subspace X(A), of X(A) together with a

retraction

X(A), © X(A) —» X(A), .

For example, if o is generated by vectors ej, ... ,ex that
form part of a basis for N, then (Ug), is isomorphic to a product of
k copies of R, and n-k copies of R. Thus if X is nonsingular,

X, is a manifold with corners. When X is singular, the singularities

of X, can be a little worse. For the toric variety X = P?, with its
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usual covering by affine open sets U; = U“i’ (U;)> consists of points

(tg: --. :1: ... :ty) with t; 2 0. Hence

R,"*1 (0} /R*

((tg, .. . ,tp) € R™*1: ¢, >0 and tg+...+t, = 1),

P",

[

which is a standard n-simplex. The retraction from P" to P?, is

1
(xg:...: Xn) S (xgl, - - ., IxuD) .

The fiber over a point (tg, ... ,t,) is a compact torus of dimension
equal to Card{i:t; = 0}~ 1.

Nz =/

N

The algebraic torus Ty contains the compact torus Sy:
SN = Hom(M,sl) ¢ Hom(M,C*) = Ty,

where S! = U(1) is the unit circle in C* Sec SN is a product of n
circles. From the isomorphism of €* with S!xR* = Sl xR (via the

isomorphism of R* with R given by the logarithm), we have
TN = SN x Hom(M,R*) = Sy x Hom(M,R) = Sy x Ng,
a product of a compact torus and a vector space.

Proposition. The retraction X(A) — X(A), identifies X(A), with
the quotient space of X(A) by the action of the compact torus Sy

Proof. Loock at the action on the orbits O.:

(0); = X(A),NnO,p = Hom(x*NM,R*)
= Hom(t*NM,R) = N(T)R .

From what we just saw, Spy(¢) acts faithfully on O = Tn(;) with
quotient space (Og), = N(T)p. Since Sy acts on O, by way of its
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projection to SN(t)» the conclusion follows.

Note that the fiber of X — X, over (O.)> can be identified with
SN(r), which is a compact torus of dimension n -dim(t). The spaces
(Oy)» fit together in X, in the same combinatorial way as the
corresponding orbits O, in X. If one can get a good picture of the
manifold with singular corners X, this can help in understanding
how X is put together topologically.(l)

The manifold with corners X, can be described abstractly as a
sort of "dual polyhedron” to A, at least if X is complete: X, has a
vertex for each n-dimensional cone in A; two vertices are joined by
an edge if the corresponding cones have a common (n-1)-face, and so
on for smaller cones. If A = Ap arises from a convex polytope in My,
then X, is homeomorphic te P. In the next section we will see an
explicit realization of this homeomorphism. We list some other simple

properties of this construction, leaving the verifications as exercises:

(1) If r is any positive number, the mapping t + t¥
determines an automorphism of R,. This determines an
automorphism of the spaces (Ug)y = Homgg(oVNM,R;), which fit
together to determine a homeomorphism from X, toitself. If r is a
positive integer, z + z¥ is an endomorphism of €, which induces
similarly an endomorphism of any toric variety X, compatible with
the maps X, € X - X,.

(2) The quotient TpN/Sy = Ng acts on X/Sy = X, compatibly
with the action of Ty on X. The inclusion X, € X is equivariant
with respect to the inclusion Ng = Hom(M,R*) € Hom(M,L*) = Ty.

(3) There is a canonical mapping SN x X, — X, which realizes

X as a quotient space.

(4) For any cone =, the inclusion (Oy); C (Uy), is a

deformation retract.

Exercise. Use the Leray spectral sequence for the mapping X — X,
to reprove the result that the Euler characteristic of X is the number

of n-dimensional cones.
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4.2 Moment map

Moment maps occur frequently when Lie groups act on varieties.(2)
Toric varieties provide a large class of concrete examples. In this
section we construct these maps explicitly, and then sketch the
relation to general moment maps.

Let P be a convex polytope in Mg with vertices in M, giving
rise to a toric variety X = X(Ap) and a morphismm ¢: X —» P'"1 via
the sections X" for u € PNM (see §3.4). Define a moment map

p: X — Mg
by
Wx) = —2— ¥ IxUlu .
SIIVEIS -
Note that p is Sy-invariant, since, for t in Sy and x in X,
IxH(tx)| = IO Ix Y= = IXx"x). It follows that p induces a map
on the quotient space X/Sy = X,:

L Xy — Mp.
Proposition. The moment map defines a homeomorphism from

X> onto the polytope P.

In fact, one gets such a homeomorphism using any subset of the
sections XY as long as P is the convex hull of the points, i.e., the

subset contains the vertices of P.

Proof. Let Q be a face of P, and let o be the corresponding cone of
the fan. We claim that in fact I maps the subset (Og4); bijectively

onto the relative interior of Q:
=
(Og—)z —_— Int(Q) )

as a real analytic isomorphism.

Let pu(x) = Ixu(x)l/ZlX”'(x)l, where the sum in the
denominator is over all u' in PNM (or in a subset containing the
vertices of P). Therefore 0 < py(x) s 1 and p(x) = Zpy{xlu. Note

that a point x of (Og)y is in
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Hom(o*NM,R*) < Homg(o”"NM,R;),

the inclusion by extending by zero outside o*. It follows that for x in
(Og)s,

pulx)>0 if ueQ; puylx)=0 if ugQ.
Writing this out, one is reduced to proving the following assertion:

Lemma. Let V be a finite-dimensional real vector space, and let K
be the convex hull of a finite set of vectors uj,...,u, in the dual

space V*. Assume that K is not contained in a hyperplane. Let

€1, ...,&- be any positive numbers, and define pi:V — R by the
formula

pilx) = aie”i(")/(aleul(x) v+ epetr®)y
Then the mapping WV - V*, w(x) = pi(x)ug + ... +p(x)u,, defines

a real analytic isomorphism of V onto the interior of K.
This is proved in the appendix to this section.

Exercise. Show that the vertices of the image of the moment map

are the images of the points of X fixed by the action of the torus TN.

The map from Xp to Pr-! is compatible with the actions of the
torus Ty on Xp and the torus T =(C*) on P" !, with the map

Ty = Hom(M,C*) - Hom(Z",C*) = T

determined by the map Z'" — M taking the basic vectors to the points
of PNM. The action of the Lie group S = (S1)¥ on Pr~1 determines

a moment map
Mm: Pr-1 - Lie(S)* = (RV)* = RV .

If x € Pr 1 is represented by v =(X1,...,%xy) € CF, then, up to a

scalar factor, this moment map has the formula

1 r 2 =
= — 3 Ixil%e;

T (x)
Tixl? i=1

The following exercise shows that this agrees with a general

construction of moment maps.
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Exercise. Define r,:T/S = R by r (t) = %It-v}I°. The derivative of

ry at the origin e of the torus is a linear map
dolry) : RY = TJ(T/S) — R
ie, delry) isin (RT)*. Show that TM(x) = hvll=2.do(ry).

The composite
¢ m
Xp — Pl — (RN)* - Mg
is then a map from Xp to Mp.

Exercise. Show that this composite takes x to u(xz), where

x +— x2 is the map defined in (1) of the preceding section.

Appendix on convexity

The object is to prove the following elementary fact.

Proposition. Let ug,..., u, be points in R®, not contained in
any affine hyperplane, and let K be their convex hull. Let €1,...,&,
be any positive real numbers, and define H: R®™ —» R" by

e(uk’X)uk

»

1 r
HGo = iy 2 ek

(ug,x) (uy,x)

where f(x) =1¢gqe ...t g e , and (,) is the usual inner
product on R"™. Then H defines a real analytic isomorphism of R"

onto the interior of K.
We will deduce this from the following two related statements:

(A,) Let uy,...,u, be vectorsin R" that span R™, and let C
be the cone (with vertex at the origin) that they span. Let €1, ... ,&,
be any positive real numbers. Then the map F: R"™ — R" defined by

ul (uy,x)
F(x) = X gee &%y
. k=1

determines a real analytic isomorphism of R"™ onto the interior of C.
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(Bp,m) With CC R" and F: R™ - R" asin (Ap), let
w: R™ > R™ be a linear surjection. Then weF maps R™ onto
the interior of w(C), and all of the fibers are connected manifolds

isomorphic to R"™™,

The statement (Ay) is easy, since F is a mapping with positive
derivative, and it is easy to compute the limit of F(x) as x — too.
More generally, for arbitrary n, and for m < n, the matrix

oF,
(5% )
aXJ 1<i,j<m
is a positive definite symmetric matrix. Indeed, the value of this

guadratic form on a vector t = (ty, ... ,tm) is
r
T e ey, 02,
k=1

where wy is the projection of uy on the first m coordinates. In
particular, the Jacobian determinant of F is nowhere zero, so F is
a local isomorphism.

With this we can verify the implication (Ap) = (B, m). After
changing coordinates, we may assume that mw: R? — R™ is the
projection to the first m coordinates. Let p: R® —» R™®™™ be the
projection to the last n-m coordinates. Let G = weF, and for each
y € R""™, let Gy p (y) = R™ - R™ be the map induced by G.
Since Gy(z) = Zeg'e Wk’z)wk, with the €i' positive, and the
projections wy span R™, the assertion (Ap) implies that each Gy
is a one-to-one map onto the interior of w(C). It follows that for each
q € Int(w(C)), the projection from G 1(g) to R™™ induced by p is
one-to-one and onto. By the above Jacobian calculation, it is an
isomorphism of manifolds. This verifies (By )

We next verify that F is one-to-one. It suffices to show that its
restriction to a given line is one-to-one. After change of coordinates,
this line may be taken to be the line with x; fixed for 2 i < n. If
g(x1) denotes the first component of F(x), then {as in the case m =1
above) the assumptions of case (Ay) are valid for gt R —» R. Since g

is one-to-one, the restriction of F to the line is ocne-to-one.
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‘ We show next that the image of F contains points arbitrarily
close to any point on an edge of C. If several u; lie on the same ray
through the origin, they can be grouped in the formula for F, so one
may assume no two u; are on the same ray. Suppose the edge passes
through ujy. Since the ray through uj; is an edge, one may find a
vector v so that (uj,v) = 0 but (ujv) <0 for j> 1. For any vector
w, the limit of F(Av + w) as A — +oco is e(ul'w)Elul. For appro-
priate choice of w, this limit can be placed arbitrarily along the edge.

It follows that once the image of F or mweF is known to be
convex, it must contain the whole interior of the cone.

Now we show the implication (B, n-1) = (A,). By what we have
already proved, it suffices to show that the image of F is convex.
Equivalently, we must show that the intersection of the image of F
with any line is connected or empty. Any line is of the form n q)

for some projection m from R to R™ 1 and some q € R But
F(R?) N l(q) = F(msF)"Yq),

and (1t°F)'1(q) is connected or empty by (B, n-1).

This, with an evident induction, completes the proofs of (A,) and
(Bn.m)-

Finally, we show how the proposition follows from (Ap,1), by

forming a cone over K in R"*1l, Let
Gk = ug x1 € R x R = RP*L

and define F: R"*1 —» R"*1 by F(x,t) = SegeUk®et G, By (Ap,1)
F maps R™*! isornorphically onto the interior of the cone ¢
generated by the k. The part mapping to Int(K) x 1 consists of those
(x,t) with Zeke(‘-‘k"‘)et = ~1, i.e., with t = -logf(x). Seo

H(x) = F(x,-log f(x)) maps R"™ isomorphically onto the interior of K.

4.3 Differentials and the tangent bundle

Proposition. If X is a nonsingular toric variety, and Dj,...,Dq
are the irreducible T-divisors on X, then -ZDj is a canonical

divisor; ie.,
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d
Qr)]( = Gx("'ngi) .

*
Proof. If eq,...,e, are a basis for N, let X;= x€ be the

coordinates corresponding to a dual basis for M, and set

d¥X dX,
w = ~ ~

X, X

>

a rational section of Q;‘(. Another choice of basis for N gives the
same differential form, up to multiplication by *1. We must show

that the divisor of w is -ZD;. On an open set Ug;, we may assume

o is generated by part of a basis, say ej, ...,ex, so we have
U, = Spec(C[X4, ... ,Xk,xk+1,xk+1‘1, . ,Xn,xn—ll)
and
+1
W = ———dX1 ~ ... ~dX,.
Xyo..o Xy

This shows that div(w) and -XZD; have the same restriction to Ug.

For example, let X be a nonsingular complete surface, with
notation as in §2.5, so (Dy{:D;) = -a;. The canonical divisor K = -ZD;

has self-intersection number
(K:K) = Z(Dy*D;) +2d = -Taj+2d = -(3d-12)+2d = 12 -d.

Since there are d two-dimensional cones, we also know that
X(X) = d. Hence

(K-K) + x (30 (12-4d)+d

12 = 12 =1 = x(X,0x),

which is Noether's formula for the surface X. We will use the
Riemann-Roch formula in the next chapter to generalize this to higher
dimensions.

We also need to know the whole sheaf Q%< of differential forms
(the cotangent bundle) not just its top exterior power — at least up to

exact sequences — so we can compute its Chern classes. For this we
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use the locally free sheaf Q;"((log D) of differentials with iogarithmic
poles along D = ZD;. At a point x in Dyn...NDg, with x not in
the other divisors, if X3, ...,X, are local parameters such that
Xi = 0 is a local equation for D;, 1 <i < k, then

d¥X, dX, dXyg

, vy o, dX P
X1 X5 Xk k+1 dX,

give a basis for Qi(logD) at x.(3

Proposition. (1) There is an exact sequence of sheaves
1 1 d
0o — QX - Qx(logD) hd j?lODi - 0 ,

where Op, is the sheaf of functions on D; extended by zero to X.

(2) The sheaf Qy(logD) is trivial.

Proof. For (2), consider the canonical map of sheaves
M®z0x — Qy(logD)

that takes u € M to d(x“)/X"Y. To see that this map is an isomor-

phisrm, it suffices to look locally on affine open sets Ug,, where the

" assertion follows readily from the above description of Q;(log D).
The second mapping in (1} is the residue mapping, which takes

w = Zf;dX;/X; to GBfiIDl. The residue is zero precisely when each

f; is divisible by X;, iLe., when w is a section of Q. (¥

4.4 Serre duality

For a vector bundle E on a nonsingular complete variety X, Serre

duality gives isomorphisms
H" (X, E"®@Q%) = HY(X,E)*.
If X is a toric variety and E = O(D) for a T-divisor D, this

isomorphism respects the grading by M; with Q;‘( = O(-ZDj), it

consists of isomorphisms
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H?Y(X,8(-D- ZDy))_, = (HY(X,8(DN)*

for each u € M. It is interesting to give a direct proof. Let ¢ = yp be
the piecewise linear function associated to D, and & = ¢—2Di the
function for the canonical divisor -ZD;, so k(vj) = 1 for the lattice

point v; corresponding to each divisor D;. By the description in §3.5,
H(X,0(D)), = HL(Ng), HI(X,0(-D-ID))_, = HI.(Np),

where

N
1

{v € Ng: ¢(v) = ulv)};

N
I

{v € Ng : ~¢(v) + k(v) = ~u(v)}

{v € N :u(v) < p(v) - (=1} .
Serre duality amounts to isomorphisms
(SD) H%L H(NR) = HL(Np)*.
The next three exercises outline a proof. Note that the set
S = {veNr:&v)=1}

is the boundary of a polyhedral ball B, so is a deformation retract of

the complement of (0} in Ng.

Exercise. If C is a nonempty closed cone in Ng, Show that there are

canonical isomorphisms

HL(Ng) = HYNg,Ng~C) = HY(B,S: SNC)
= A"YS~SnC) = Hu-;-1(SN0O),
the last by Alexander duality, where the =~ denotes reduced

cohomology and homology groups.

Exercise. Show that the embedding SNZ < S~ (5NZ') is a

deformation retract. (5)

Exercise. Prove (SD), first in the cases where Z = Ng and Z'= {0},
or Z' = Ng and Z = (0}; otherwise

HL MNg) = AP L(s~snz) = Hpo-1(S s snzh”



SERRE DUALITY 89

= Hp-i-1(SN2)* = HiZ(NR)*- (6)

Exercise. Suppose X = X(A) is a nonsingular toric variety, and |A|
is a strongly convex cone in NR. Show that (i) I"(X,Q?() = @C-x"Y,
the sum over all u in M that are positive on all nonzero vectors in
IAl; and (i) HY(X,Q%) =0 for i>0.7)

Grothendieck extended the Serre duality theorem to singular
varieties. For this, the sheaf Q§ must be replaced by a dualizing
complex ‘*).X in a derived category. When X is Cohen-Macaulay,
however, this dualizing complex can be replaced by a single dualizing
sheaf wy. For a vector bundle E on a complete n-dimensional
Cohen~-Macaulay variety X, Grothendieck duality gives isomorphisms

HP H(X,E"®wy) = HYX,E)*.

For a singular toric variety X, ZD; may not be a Cartier divisor
(or even a Q-Cartier divisor). Névertheless, it defines a coherent sheaf
Oy(-ZD;), whose local sections are rational functions with at least
simple zeros along the divisors Dj. In fact, this is the dualizing sheaf:

Proposition. Let wy = Oy (-ZDj).

(a) If £: X' — X is a resolution of singularities obtained by refining
the fan of X, then f(Qy%) = wy and RY(Qy) =0 for i> 0.

{(b) If X is complete, and L is a line bundle on X, then

HP (X, L"®wy) = HU(X,L)*.
Proof. Part (a) is local, so we may assume X = Uy for some cone o.
In this case, (a) is precisely what was proved in the preceding exercise.
Then (b) follows; in fact, if E is any vector bundle on X, using Serre
duality for *(E) on X', we have
HP (X, EV®wy) = H" '(X,E"®@Rf(QR))
= HPTUXLME)'®Q%) = HI(X',fYE)* = HYX,E)*,

the last isomorphism using the last proposition in Chapter 3.

Exercise. Let j: U — X be the inclusion of the nonsingular locus U
in X. Show that j.(QJ}) = Ox(-ZD;).(®
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There is a pretty application of duality to lattice points in
polytopes. If P is an n-dimensional polytope in Mg with vertices in
M, we have seen that there is a complete toric variety X and an
ample T-Cartier divisor D on X whose line bundle G(D) is generated
by its sections, and these sections are linear combinations of X" for u
in PNM. By refining the fan, one may take X to be nonsingular, if
desired. Consider the exact sequence

0 — B(D-ZD) — O(D) - ODgp — 0.

Exercise. (a) Show that D - ZD; is generated by its sections, and
these sections are

&b C-x“.
uelnt(P)NM
(b) Deduce that

x(X,6Mlgp) = h%X,6(Dlgp,) = Card(d3PNM),

where 9P is the boundary of P.
Now by Serre-Grothendieck duality,
x(X,8(D~-ZD;) = (-1)"x(X,6(-D)) .
Since the higher cohomology vanishes,
(-1)"x(X,6(-D)) = Card(Int(P)NM).

It is a standard fact in algebraic geometry that for any Cartier
divisor D on a complete variety X, the function 1 Z — Z,

flv) = x(X,6(D)),

is a polynomial in v of degree at most n = dim(X), and this degree
is n if D is ample.(g) In this case, for v 2 0, f(v) = Card(v-PNM).
Putting this all together, we have the

Corollary. If P is a convex n-dimensional polytope in Mg with

vertices in M, there is a polynomial fp of degree n such that
Card(v-PNM) = fplv) .

for all integers v 2 0, and
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Card(Int(v-P)NM) = (-1)"fp(-v)
for all v > 0.

This formula, called the inversion formula, was conjectured by
Ehrhart, and first proved by Macdonald in 1971. The above proof is

from [Danil.

Exercise. Compute fp(v) for the polytope in M = Z2 with vertices
at (0,0), (1,0), and (1,b), for b a positive integer, and verify the

inversion formula directly in this case.

This can be interpreted by means of the adjunction formula,
which is an isomorphism Q;@O(D)ID = wp, given by the residue.

From the exact sequence
0 - QF - QY®6D) - wp — O
and the long exact cohomology sequence, we see that

r'D,wp) = &b C-x",
uelnt(P)nM

HY(D,wp) = 0 for 0 <i<n-1, and dim H“'l(D,wD) = 1. Therefore

x(D,0p) = (-1)""1x(D,wp) = 1 - Card(Int(P)NM) .

This means that the arithmetic genus of D is Card(Int(P)nM).
For example, if P is the polytope in Z? with vertices at (0,0),

91

(d,0), and (0,d), then X = P2, D is a curve of degree d, so its genus

is 1+ 2+...+(d-2) = (d-1)(d-1)/2. 1f P is a rectangle in Z? with
vertices at (0,0), (d,0), (0,e}, and (d,e), then X = PlxPl, D isa
curve of bidegree (d,e), and the genus of D is (d-1)(e-1). (10)

4.5 Betti numbers

For a smooth compact variety X, let p; = rank(HJ¥(X)) be its
i*" betti number. When X = X(A) is a toric variety, let dy be the
number of k-dimensional cones in A. In fact, these numbers
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determine each other:

Proposition. If X = X(A) is a nonsingular projective toric variety,
then pj =10 if j is odd, and

n
Bok = _Zk(—l)i_k(;()dn_i .
i=
Set hi = pak. If Py(t) = Zgjtj is the Poincaré polynomial, then
n N n
Py(t) = Thyt?® = 5 d,t2-1)F = ZO di(t2-1)n"k
i=0 K=

For example, for the topological Euler characteristic,
x(X) = Z(-1)¥pj = Py(-1) = d,,
as we have seen.

Exercise. Invert the above forrnulas to express the di in terms of

the betti numbers:
k o
dk = .ZO (:-L)hn—i i
i=

In fact, one can assign to any complex algebraic variety X (not
necessarily smooth, compact, or irreducible) a polyriomial Py(t),

called its virtual Poincare polynomial, with the properties:

(1) Px(t) = X rank(H(X)t' if X is nonsingular and

projective (or complete);

(2) Px(t) = Py(t)+Pylt) if Y Is a closed algebraic subset of
X and U=X+Y.

For example, if U is the complement of r points in P1, then
Pu(t) = t2 + 1 - r. (Note in particular that the coefficients can be
negative.) It is an easy exercise, using resolution of singularities and
induction on the dimension, to see that the polynomnials are uniquely
determined by properties (1) and (2). Other properties follow easily
from (1) and (2):

(3) If X is a disjoint union of a finite number of locally closed
subvarieties O(i), then Px(t) = ZPg)(t);

(4) If X = Y x2Z, then Pyx(t) = Py(1)-Pz(1).
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Exercise. If X — Z is a fiber bundle with fiber Y that is locally
trivial in the Zariski topology, show that Py(t) = Py(t)-Pz(t).

If X is nonsingular and complete, (1) says that Pyx(-1) is the
Euler characteristic X(X). With X, Y, and U as in (2), thereis a

long exact sequence
i i i i+1 i+1
- HU —->HX - HY —-H U ->H X - ...,

where H: denotes cohomology with compact supports, and rational
coefficients. It follows from this that Py(-1) must always be the

Euler characteristic with compact support, i.e.,
Px(-1) = xo(X) = Z(-Didim(HLX).

The existence of such polynomials follows from the existence of a
mixed Hodge structure on these cohomology gr‘oups.(ll) This gives a
weight filtration on these vector spaces, compatible with the maps in
the long exact sequence, such that the induced sequence of the mth

graded pieces remains exact for all m:
- grip (HLU) » griP (HLX) — grB(HLY) — grimmitty) - ...
This means that the corresponding Euler characteristic
X T(X) = S (-1) dim (gryy (HL X))

is also additive in the sense of (2). If X is nonsingular and projective,
then gryy (HX) = HTX = H™(X), so X THX) = (-1)™dim(H™(X)).
Hence we (must) set

Px(t) = Z(-1MxT0t™ = Z 1M dim(griy (HLx)t™ .
m i,m

One need not know anything about the mixed Hodge structures or
the weight filtration to use these virtual polynomials to calculate betti
numbers; one has only to use the basic properties that determine
thern. For example, for a torus T = (C*)*, we have Pr(t) = (12 - 1)k,
Hence if X = X(A) is an arbitrary toric variety, since it is a disjoint
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union of its orbits O = Tn(¢), by property (4) we have
(%) Pya)t) = TP (1) = Tdpi(t2- 1k

n n R )
= 2 (X DR(R)d a0t
i=0 k=i

where dj denotes the number of cones of dimension p in A. This is
true for any toric variety. In case X(A) is nonsingular and complete,
however, this is the ordinary Poincare polynomial by property (1), and
this proves the proposition.

In fact, the proposition is also true when A is only simplicial and
complete. For this one needs to know that grrvv (HTX) = H™(X) also in
this case. This follows from the combination of two facts: (i) the
intersection (co)hormnology groups IH™(X) of an arbitrary compact
variety have a mixed Hodge structure of pure weight m; (i) if X is
a V-manifold, then H™(X) = IH™(X).(12)

A toric variety X is defined over the integers, so can be reduced
modulo all primes. Since X is a disjoint union of orbits 0., and the
number of Fg-valued points of the torus Tyn() = (G)¥ is (q-1)K, it
follows that

=1

n

Card(X(Fq)) = X dp(q-DF = T (Z DX H(*)dp-)a'.
k=0 i=0 k=i

When X is nonsingular and projective, Deligne's solution of the Weil
conjectures implies that

2n Bj

Card (X(Fyr)) = 20 (-3 3 af,
P i=o 7 {Zo Y

where the Aji are uniquely determined complex numbers with
i/2

b\Jl' = p" .

Exercise. Use the preceding two formulas to give another proof of the

proposition.

We will give a third proof of the proposition in Chapter 5.
Formula (%) implies that for an arbitrary toric variety X = X(A),
the Euler characteristic with compact support X (X) = Px(-1) is equal

to the number of n-dimensional cones in A. We have seen earlier
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that the ordinary Euler characteristic % (X) is also equal to the
number of these cones. This raises the question of whether this is

special to toric varieties, or is true for all varieties.

Exercise. Show that X(X) = % .X) for every complex algebraic
variety. Equivalently, show that % (X) = x(Y) + X(U) whenever Y
a closed algebraic subset in a variety X with complement U. If N
a classical neighborhood of Y in X such that ¥(Y) = x(N), show
that X(N~Y)= 0. (13

95
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CHAPTER 5

INTERSECTION THEORY

5.1 Chow groups

In this chapter we will work out some of the basic facts about
intersections on a toric variety. On any variety X, the Chow group
Ax(X) is defined to be the free abelian group on the k-dimensional
irreducible closed subvarieties of X, modulo the subgroup generated
by the cycles of the form [div(f)], where f is a nonzero rational
function on a (k+1)-dimensional subvariety of X. We have seen that
on an arbitrary toric variety X the toric divisors generate the group
An-1(X) of Weil divisors modulo rational equivalence. The obvious

generalization is valid as well: (1)

Proposition. The Chow group Ay(X) of an arbitrary toric variety
X = X(A) is generated by the classes of the orbit closures V(o) of
the cones o of dimension n-k of A.

Proof. Let X; € X be the union of ali V(o) for all o of dimension
at least n-i. This gives a filtration X =X, D X,-1 D2 ... X1 =&
by closed subschemes (say with reduced structure). The complement
of Xj.4 in X; is the disjoint union of orbits O4;, as o varies over
the cones of dimension n-i. From the exact sequence relating a closed
subscheme and its complement, we have

AXi-1) = AXy) - 7] Ar(0g) = 0.

dim o = n-i
Since a torus Og is an open subset of affine space Al, we see by
the same principle that A(Q) = Z:[04] and Ay(G,) = 0 for k = i.
Since the restriction from Ap(X;) to Ar(O4) maps [(V(g)l to [O4],
a simple induction shows that the classes [V(o)], dim(o) = n-k,
generate A (¥X;).

For a Cartier divisor D on a variety X, the support of D is

96
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the union of the codimension one subvarieties W such that ordw(D)
is not zero. We say that D meets an irreducible subvariety V
properly if V is not contained in the support of D. In this case one
can define an intersection cycle DV by restricting D to V (ie., by
restricting local defining equations), determining a Cartier divisor Diy
on V, and taking the Weil divisor of this Cartier divisor: D-V = [D}y].
Let us work this out when X is a toric variety, D = Xa;D; isa T-
Cartier divisor, and V = V(o). In this case, Dly(s) will be a T-Cartier

divisor on the toric variety V(g), so we will have
D-V(g) = 2 byV(Y),

the sum over all cones y containing o with dim(y) = dim(o) + 1,
and the by are certain integers. To compute the multiplicity by,
suppose Y is spanned by o and a finite set of minimal edge vectors

vi, i € Iy. Here is an example where Iy has three vectors:

Let e be the generator of the one-dimensional lattice Ny/N, such
that the image of each v; in Ny/N, is a positive multiple of e, and
let s; be the integers such that v; maps to sj-e in Ny/Ng. Then by
is given by the formula

by = —- forall i in I

¥ 5 Y -

To see this, for any cone Yy containing o let u(¥) € M/M(y) be the
linear function on Y corresponding to the divisor D. The assumption
that V(o) is not contained in the support of D translates to the
condition that u(y) vanishes on o, which means that u(y) isin
M(o)/M(¥). As Y varies over cones in the star of o, these u(y)
determine the divisor Bly(,). In particular, when o is a facet of v,

the muiltiplicity by is -<u(y),e>. Therefore
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a; = -<uly),vi> = -<uly),sied = si(-<u(y),ed) = spby ,

as asserted.

When X is nonsingular, there is only one i = i(¥) in Iy, and
s; =1, so by = aj(y) is the coefficient of Dj(y) in D. In this case, each
Dy is a Cartier divisor, and

V({¢) if o and vi span a cone ¥
Dk~V(0') =

0 if o and vy do not span a conein A

In fact, if X(A) is nonsingular, Dy and V(o) meet transversally in

V{¥) in the first case, and they are disjoint in the second case.
Exercise. If Y is simplicial, so there is one i = i(¥) in Iy, show that

mult(o) 2)

by = 20" ot

In general, if a subvariety V is contai;xed in the support of a
Cartier divisor D, the intersection D-V is defined only up to rational
equivalence on V; ie, DV isin A,-1(V), where m = dim(V). This
intersection class can be defined by finding a Cartier divisor E on V
whose line bundle Oy (E) is isomorphic to the restriction of Ox(DB) to
V, and setting D-V to be the rational equivalence class of [El If f is
a rational function on X such that V is not contained in the support
of D' =D + div(f), then D-V is represented by the cycle D'V defined
as above in the case of proper intersection.t3) For toric varieties, with
D and V(o) as before, but with V(o) contained in the support of D,
we can take some u in M sothat D'=D + div(-x“) meets V(o)
properly. In fact, if u(o) is the linear function in M/M(o) defining
D on o, any u in M that maps to u(o) in M/M(o) wiil do. Then
D:V(o) is rationally equivalent to D'V(o), which is calculated as
above. In the simplicial case, we get

mult{o)

D-V(og) ~ D'V(g) = Z(ai(‘,)m

+ <u, vy VY,

where the sum is over all ¥ spanned by o and one of the vectors

Vi(y):
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If V is a complete curve, the cycle or cycle class D-V has a well
defined degree, which is denoted (D-V). The following exercise is the
generalization to arbitrary dimension of the facts about intersecting

divisors on a nonsingular surface that were seen in Chapters 1 and 2.

Exercise. Suppose an (n-1)-dimensional cone o is the common face
of two nonsingular n-dimensional cones ¥' and ¥". Let vi,...,v,_1
be the minimal lattice points on the edges of o, ardlet v' and v"
be the minimal lattice points on the other edges of ¥' and y¥"
respectively.

(a) Show that there are (unique) integers aj, ...,ap-1 such that

v + v = ajvytapvo+...+a . 1"vh-1.
(b) Show that, for 1 s k < n-1,
Dr-Vio) ~ o' V¥) + " vi¥"),

where c¢i' and ci" are some integers whose sum is - ajy.

(c) Deduce that the intersection number is
(Dx-V{(c)) = (Dy-Dz+ ...:Dx2: ... Dp-1) = -ag.

(- ay).

]

n

(d) Show that, in fact, V(o) = P!, and (D)l (a)

Exercise. If X is nonsingular and complete, show that a T-divisor

D is ample if and only if (D-V(o)) > 0 for all cones o of dimension
n-1. (4

On a nonsingular n-dimensional variety X, one sets AP(X) =
An-p(X). There is an intersection product AP(X)®AYX) - AP*(X),
making A*(X) = @AP(X) into a commutative, graded ring. For
subvarieties V and W that meet properly, i.e.,, each component of
their intersection has codimension equal to the sum of the codimen-
sions of V and W, one can define an intersection cycle VW by
putting appropriate multiplicities in front of each component of the
intersection; these multiplicities are one when the intersections are
transversal. In general, one has only a rational equivalence class.(S)

For a general toric variety X(A), if o and ~ are cones in A, then

'
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V{y) if o and Tt span the cone ¥
Vig)nVvit) =

z if o and T do not span a cone in A '

This follows, even scheme-theoretically, from the description of these
varieties in §3.1. This intersection is proper exactly when the
dimension of ¥ is the sum of the dimensions of o and ~. If A is
nonsingular and the intersection is proper (or empty), then V(o) and
V(1) meet transversally in V(¥) (or &), so V(ag)V(t) = V(y) (or 0).
Alternatively, if o has (minimal) generators Vigs o5 Vi then V(o)

is the transversal intersection of Di1’ ...,D and these formulas

ik’
follow from the case of divisors considered above.
If A is only simplicial, one has intersections of cycles or cycle

classes only with rational coefficients. The Chow group
A¥(X)q = BAP(X)gq = @An_p(X)®Q

has the structure of a graded Q-algebra. This is a general fact for any
variety that is locally a quotient of a manifold by a finite group.(s) In

case o and T span ¥, with dim(Y) = dim(g) + dim(t), then

mult(o)-mult(~)
V(g)Vit) = V()
mult(y)

If o and T are contained in no cone of A, then V(u)-V(t) = 0. As
in the nonsingular case, this follows from the description of the
intersection of the divisors, using the fact that some positive multiple
of each Dy is a Cartier divisor.

One can often make calculations on singular varieties by resolving
singularities. Any proper morphism f: X' - X determines a push-
forward map f.: A(X') —» Ax(X), that takes the class of a variety
V' to the class of deg(V/{(V))-f(V) if f(V) has the sarmme dimension
as V, and to 0 otherwise. In the toric case, if A' is a refinement
of A, we have a proper birational map f: X(A') — X(A). We have
seen that if o' is a cone in A' that is contained in a cone o of A
of the same dimension, then f maps V(g') birationally onto V{(o),
so on cycles we have f,[V(dg")] =[V(o)l. If o' is not contained in any
cone of A of the same dimension, then dim (f{V(g'))) < dim(V(a")),
and f.[V(c) = 0.
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5.2 Cohomology of nonsingular varieties

Let X = X(A) be a nonsingular (or at least simplicial) complete toric
variety. We have seen three proofs that

X(X) = m,

where m = d, is the number of n-dimensional cones of X; in fact,
we know formulas for the betti numbers of X in terms of the
numbers of cones of various dimensions. On the other hand, we have
potential generators for the homology groups, but with lots of relations,
by using the orbit closures corresponding to cones of all dimensions.
What we need is a way to associate to each n-dimensional cone o

a subcone T, 50 that the resulting m varieties V(t) give a basis for
H,(X). (7) We will start with the assumption that X is nonsingular,
and then point out the modifications needed when A is only
simplicial.

For any ordering o4, ...,0,, of the top-dimensional cones,
define a sequence of subcones T; C gj, 1 <i = m, by letting T; be
the intersection of o; with all those aj thfit come after o; (i.e,
with j > i) and that meet o; in a cone of dimension n-1. In other
words, T; is the intersection of those walls of o; that are inter-
sections with n-cones larger in the ordering. In particular, t1 = (0],

and T, = 0,,. The key assumption that will make this work is:
(%) If 7y Is contained in a; then i< j

For the following two-dimensional fan, the first two orderings satisfy
(%), while the third does not:

2 2 3

Lemmma. If X is projective and A simplicial,.then the n-

dimensional cones of A can be ordered so that (x) holds.
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Proof. Take a very ample divisor, corresponding to a strictly convex
function ¢, and for each n-dimensional cone o let u(o) € M be the
element defining the restriction of ¢ to o. These u(o) are the
vertices of a polytope P in Mp that describes the sections of the
corresponding line bundie, and the idea is to choose a height function
on M so that these vertices have different heights, and to order the
o by the value of the height function. That is, choose some v € N so

that the m values <u(o),v> are distinct, and order the o's so that
<u(oy),v> < <ulog),v> < ... < <ulopy),v>.

Let u; = u(o;). Consider a fixed ;. Using the correspondence between
cones in A and faces of P, T; is the cone corresponding to the
smallest face of P that contains u; and all edges ¢f P that connect
u;j to vertices u; with j>i. The claim (%) follows from the fact that

this face contains no uj; with j<i.

Exercise. For the non-projective complete toric varieties considered
in §3.4, find an ordering of the top-dimensional cones that verifies
assumption (x»), Is there an example where (») is impossible to
achieve? (8)

Theorem. If ('*) holds and X is nonsingular, then the classes
[V(t;)] form a basis for A.{X) = H,(X;Z).

The proof depends on a simple consequence of (x):

Lemma. (a) For each cone ¥ in /A there is a unique i = i(Y)
such that T3 C ¥ C ;. In fact, i(y) is the srnallest integer i such

that o; contains Y.

(b)Y If Y is a face of Y', then i(¥) < i(y").

Proof. For the uniquenessin (a), if T C ¥ C o3 and T;C ¥ C 0y,
then T; C gj; and T; € 0. Then (») implies that i = j. For the
existence, given ¥, let i be minimal such that ¥ C o;. Write ¥ as
the intersection of some of the (n-1)-dimensional faces of oj; since
these are all intersections of o; with some other n-dimensional cones,
and by assumptiqn these must come later in the sequence, Y must

contain T;, as desired. Assertion (b) follows from the second
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statement in (a).

Now, for 1 < i £ m, set

Y, = U Oy = V() n U, ,
T;C YC O; !

and
Zi = YUY, 1 U...UY,,.

Lemma. (1) Each Z; is closed, Z3 = X, and Zj~ Zj,1 = Y,

(2) If X is nonsingular, then Y; = Cn‘ki, where k; = dim(T;).
Proof. It follows from (a) of the preceding lemma that X is a
disjoint union of Yj,...,Y,. Since the closure of Oy is the union of
all Op for {' containing ¥, the fact that Z; is closed follows from
(b) of the lemma, and the rest of assertion (1) is clear. Since

Vitpn Ug, is an affine open set in the toric variety V(t;) corres-
ponding to a maximal (n-k;)-dimensional cone in N(t;), (2) follows

from what we saw in §2.1.

We can now prove the theorem, showing by descending induction
on i that the canonical map A,(Z;) - H.(Z;) is an isomorphism, and
that the classes of the closures ?J = V(T'j), Jj 2 i, form a basis. We

have a commutative diagram with exact rows:

Ap(2i+1) - Ap(Zi) - Ap(Yi) - 0

l l l

d H2p+1(Yj) i H2p(zi+1) s Hzp(zi) i H2p(Yi) e Hzp_1(2i+1) -

where the second row is the long exact sequence of Borel-Moore
hornology, i.e., homology with locally finite chains. Since Y; is an
affine space, A.(Y;) = Hp.(Y;) = Z, generated by the class of Y;. By
induction, the first vertical map is an isomorphism and Hg(Z;,1) = 0
for q odd. A diagram chase shows that the middle vertical arrow is
an isomorphism, and that A(Z;) is free on the classes [V(tj)], for
Jzi

If A is only simplicial, all of the above argument is valid,
provided rational coefficients are used in place of integers. The
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difference is that now each Y; is a quotient d:n_ki/Gi of affine space
by a finite group, and for such a quotient, the Chow groups and Borel-
Moore homology are the subspaces invariant by the group:

ALCT/G)g = (ALCNQC |,  Hl(CY/G;@) = (Hu(cTa)C.

Theorem. If (%) holds and A is simplicial, then the classes [V(T)]
form a basis for the vector space A,(X)g = H.(X;Q).

Corollary. With the same assumptions,

where dp is the number of p-dimensional cones in A and h; is
the rank of Ay{X) (or Hyi(X)). Egquivalently,

he = ﬁk'('l)i-k(i)dn—i-

Proof. The dimension of A,.x(X)g is the number of cones T; of
dimension k. The number of p-dimensional cones ¥ with T; C ¥ C oy
is (:: l;), and, by (a) of the second lemma, each cone occurs exactly
once in this way.

It follows from the fact that X is locally a quotient of a manifold

by a finite group that Poincare duality is valid:

Hi(X;Q) ® H?n i(x;@) — H2M(X;@) = Q
is a perfect pairing. Since HY{X;@Q) is dual to Hi{X,@), we deduce
Corollary 1. For A simplicial, hy = hy_x for all 0 s k < n.

In our situation we can see this explicitly as follows. With
Oy, ..., 0 and the corresponding Ti,...,Tm as above,let T be
the intersection of o; with all o; such that j is less than i and
dim(o;No;) = n-1.

Exercise. Show that V(t{"),...,V(1ny') give a basis for A.(X)q.
From the fact that dim{t;") + dim(t;) = n for all i, deduce that
hy = hy-k- Use the intersections of the varieties V(t;) and V(tj) to
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show directly that the intersection pairings Ax(X)g® A, x(X)gq — @Q
are perfect pairings.

The fact that X is an orbifold (or V-manifold), i.e., locally a
quotient of a manifold by a finite group, has another important
consequence: both the cohomology and homology (with rational
coefficients) coincide with the intersection homology IH*(X;®@). That

is, the canonical maps
Hi(X;@) — IHY(X;@) — Hz,_(X;Q)

are isomorphisms. It has been established — first using Deligne’'s proof
of the Weil conjectures, then by Saito's putting a pure Hodge structure
on the intersection homology groups — that for any projective variety
X, the intersection homology satisfies the hard Lefschetz theorem: if

w in H2(X) is the class of a hyperplane section, the maps

\J(A)i

IH?"H(X;Q) IHPH(X;@)

are all isomorphisms.(g) This implies in particular that multiplication
by w isinjective from IH! to IHI*? for i<n. For a V-manifoid,
this implies that the rank of H2P~2(X) is no more than the rank of
H2P(X) for 2p < n, which gives

Corollary 2. For A simplicial, hp_y s h, for 1 <p = [%]

P

It would be interesting to prove hard Lefschetz for projective
orbifolds without appealing to the deeper theorem for intersection
homology. Even for toric varieties, proving this fact has been a
challenge. If A is not simplicial, the homology and cohomology of
X(A) can be much more complicated, and in fact need not be
combinatorial invariants of the fan. However, the intersection
homology of an arbitrary toric variety does have a such a description,
which gives relations between the ranks of the intersection homology
and the numbers of cones of each dimension. Then hard Lefschetz gives

inequalities among these numbers.(10)

Exercise. Let X = X(A), where A is the cone over the faces of the
cube with vertices at (%1,+1,21), and lattice generated by the
vertices. Show that Ag(X) = Hg(X) = Z, Az(X) = He(X) = Z, and
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A1(X) = Ho(X) = Z, Ax(X) = Ha(X) = Z®5, Hz(x) = z®2  (11)

Finally, we want to describe the intersection ring A™*X = H*X of
a nonsingular projective toric variety X = X(A). Let D4, ...,Dq be
the irreducible T-divisors, corresponding to the minimal lattice points
Vi, ...,vq along the edges. By what we saw in the last section, if a
cone o is generated by Vigr oo 0 Vigs then V(o) is the transversal
igr -+ oDy
cohomology, this means that A™X is generated as a Z-algebra by the
i =0 in AkRX if
do not generate a cone, since the intersection of the

intersection of D Since the varieties V(o) span the
classes of Dy, ...,Dq. We have seen that Dijj» - - -D
Vil, [P ,Vik
divisors is empty. In addition, if u is any element of M, the divisor
of the rational function X% on X is 2. <u,v;>D;, and this must

vanish in AlX by definition.

Proposition. For a nonsingular projective toric variety X,
A*X = H*X = ZIDy, ... ,D4l/1, where | is the ideal generated by all

(i) D -D for Vigs -+ -4 Vi, not in a cone of A;

i1‘... lk

d
(i) 3 <u,vi>D; for u in M.
i=1
In fact in (i) it suffices to include only the sets of v; without repeats,

and in (ii) one needs only those u from a basis of M.

Proof. Let A’ = Z[D4, ... ,Dg4l/1, with Dj,...,D43 regarded as
indeterminates and 1 generated by the elements in (i) and (ii). By the
discussion before the proposition, there is a canonical surjection from
the ring A' to A*X that takes D; to the class of the corresponding

divisor. For each k-dimensional cone o, let p(o) be the monomial

Dil- e -Dik in A°, where Vigr+ -2 Vy are the generators of o.
Choose an ordering of the n-dimensional cones o4, ...,0,, satisfying
(%), with T4,...,Tqy as before. To complete the proof, i.e,, to show
that A" — A™X is injective, it suffices to show that p(t4),...,p{Tm)

generate A’ as a Z-module. For this we need an "algebraic moving

lemma:"
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Lemma. Let o b ¥< B beconesin A, andlet k = dim(y). Then
there is an equation p(¥) = Zm;p(¥;) in A’, with ¥; cones of

dimension k in A with o < y; but ¥; ¢ B, and m; integers.

Geometrically, V(p) € V(¥) & V(x), and this says we can move V(¥)
off V(p) by a rational equivalence, while staying inside V().

Proof. Renumbering vi,...,v4, we may assume that o is
generated by vy,...,vp,, ¥ by vy,...,vk, and B by vy,...,vg,
and that vy, ...,v, form a basis for N, with 1 s p<k<q=<n.

Take u in M so that <u,vk> =1 and <u,v;> =0 for i<n, i=*k.
Relation (ii) then gives an equation Dy = a,, 1D, ,4+...+a4Dg;
multiplying by Dj-...:Dg_1, we have

d
Dl' P 'Dk = Z aj (D1° N 'Dk-—l)'Di .
i=n+1
Using (i) to throw away any terms for which vy, ...,vk-1, v; do not

generate a cone, this is the required equation.

Next we show that A’ is additively generated by monomials in
Dy, - . .,Bg without multiple factors, i.e,, by the elements p(y) as ¥
varies over all cones in A. By induction it suffices, if vj € ¥, to write
Dj-p(¥) as a linear combination of such monomials. Use the lemma to
write Dj = Xa;Dj, a sum over i such that v; ¢ ¥. Then Dj-p(y) =
2 a;D;-p(¥) has the required form.

Finally, to see that the p(t;) generate A", by descending
induction on i we show that if ¥ lies between T; and o;, then p(y)
is in the submodule generated by those p(T;) with j=zi If y =T
we are done, and if not we use the lemma to write p(y) = Zmp(yy), a
sum over cones ¥; with T C ¥y ¢ ;. By (%), such ¥{ must lie
between Tj and g; for some j>i, and the inductive hypothesis

concludes the proof of the proposition.

If A is only simplicial, the same holds, with essentially the same

proof, but with rational coefficients:

@Dy, ...,Dal/1 =5 A*(X)q == H*(X;@),
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with 1 generated by (i) and (ii). The difference in this case is that if
1

T is generated by wvi,, ... Vi then Dy -...:D; = mV(T).
The proposition remains true for arbitrary complete and non-
singular (or simplicial) toric varieties. The proof given here works
if the maximal cones can be ordered to satisfy the assumption ().
Danilov proved it in general by showing that the ring Z[D4y, ... ,Dgl/J,
where J is the ideal generated by the relations (i), is a Gorenstein
ring.(lz) If X arises from a polytope, this ring is called the Stanley-
Reisner ring of the polytope.

5.3 Riemann-Roch theorem

We begin by summarizing some general intersection theory. The
operation of intersecting with divisors determines, for any line bundie

L on any variety X, first Chern class homomorphisms
AX) - A (X)), am ciL)mro,

defined by the formula cy(L)~[V] = [E], for V a k-dimensional
subvariety, where E is a Cartier divisor on V whose line bundle
@vy(E) is isomorphic to the restriction of L to V. From this one can
construct, for an arbitrary vector bundle E on X, Chern class
homomorphisms o — ci(E)~ o from AR(X) to Ayx-i{X), satisfying
formulas analogous to those in topology. From these one can define
the Chern character ch(E) and the Todd class td(E). These charac-
teristic classes are contravariant for arbitrary maps of varieties. For

a line bundle L, these are given by the formulas
ch(L) = explcy(L)) = 1 +cg(L) +...+ (1/nl)cy(L)™,

n = dim(X); and td(L) = ¢c1(L)/(1 - exp(-c1(LN) =1 + Ycq(L) + ...
For general bundles, they are determined by requiring them to be
multiplicative, i.e., for any short exact sequence 0 - E' - E - E" - 0
of bundles, ch(E) = ch(E")-ch(E"), and td(E) = td(E")-td(E"). (13)

Every variety X has a "homology Todd class” Td(X) in A.(X)q,
(or in Borel-Moore homology H,(X;Q)), which has the form
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Td{X) = TdpX + Tdp-1X + ...+ TdgX,

with Tdy(X) € A(X)qg. The top class Td,X = [X] is the fundamental

class of X. If X is nonsingular, then
Td(X) = td(Tyx) ~ [X],

where td(Tyx) is the Todd class of the tangent bundle Ty of X. If
f: X' — X is a proper birational morphism, with {.(Oyx) = Ox and
Rif(Oyx) = 0 for i>0, then f,(Td(X") = Td(X). The Hirzebruch-
Riemann-Roch formula says that for any vector bundle E on a

complete variety X,
X(X,E) = [ch(E)~ Td(X),

where the integral sign means to take the degree of the zero-
dimensional piece of the term following. For a line bundie L, it says

n 1
XKL = Z o degree(cy(L)¥ ~ Tdi(X)) .

For L trivial, this says that X(X,9yx) = degree(Tdg(X)). If X is
nonsingular, X (X,L) is the degree of the top-codimensional piece of
ch(L) v td(Ty). (14)

When X is a toric variety with divisors D4, ...,Dg as before,
the proposition at the end of §4.3 shows that the Chern classes of the
cotangent bundle Qg( and the structure sheaves GDi are related by

1 d
c(Q%) - .ﬂ'l o(Gp) = 1.
i=
Here ¢ =1 +cy +cp+...+c, is the total Chern class. From the

sequence 0 — G(-D;y) — Ox — Op, —» 0, we have c(@p)) = (1 - Dy~ L
Combining, and using the fact that c;(E”) = (-1)ic,(E), we get

Lemma. The total Chern class of a nonsingular toric variety is

d
oTy) = TT (L+D;) = X [Va)l.
i=1 g€l

.

By the definition of the Todd class of a bundle, we have similarly



110 SECTION 5.3

4o
-
i=1 1 - exp(-Dj)

i

td(Ty)

1+ 20+ L (e1(0)% +c2(x)) + 51; ci(X)ea(X) + ...

Here c¢i(X) = ¢{(Tx). (Note, however, that the D; are not Chern roots
of Ty, since there are more than n of therm.) If X(A) is singular,
we can compute Td(X) by subdividing to find a proper birational
morphism f: X(A') - X(A) from a nonsingular toric variety. From
the last proposition in §3.5 it follows that Td(X(A)) = f (Td(X(A"))),
which gives a method for calculating the Todd class in any given

example.

Exercise. For any toric variety X, show that Td,_1(X) = ¥ Z[D;],
and Tdg(X) = [x] for any point x in x. (158)

We will apply the Hirzebruch-Riemann-Roch formula to the line
bundle 8(D) of a T-Cartier divisor D on X(A) that is generated by
its sections. As we saw in §3.4, the higher cohomology groups of such a
line bundle vanish, and the dimension of the space of sections is the
number of lattice points in a certain convex polytope P = Pp with
vertices in the lattice M. Denote the number of lattice points that are
in P by =#(P), ie., #(P) = Card(PNM). By Riemann-Roch, we

therefore have a formula for the number of such lattice points:

n

(RR) =P = T —l% degree(D¥ ~ Tdy (X)) .

Note that any bounded convex polytope P with vertices in M
arises in this way. Given P, we may find a complete fan A that is
compatible with P, so thereis a T-Cartier divisor D on X = X{(A)
such that O(D) is generated by its sections, and so that these sections
are precisely the linear combinations of the functions X% for u in
PNM. Moreover, by subdividing A if necessary, we may assume that
X(A) is smmooth and projective, although this is rarely necessary.

For any nonnegative integer v, let v:P = {v-u:u € P}. From
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(RR) and the fact that v-P is the polytope corresponding to the divisor
v'D we deduce that v » #(v:P) is a polynomial function of v of

degree at most n:

n
#(v-P) = X(X,8(1-D)) = ¥ apvk ,
k=0
1 K
a = Edegree(D ~ Td(X)} .

Let fp(v) be this polynomial. Note that fp(v) = X(X,8(v-D)) for all
v € Z. Since Tdu(X) = [X], the leading coefficient is a, = (D™)/n!,
where (D) denotes the self-intersection number obtained by
intersecting D with itself n times.

The lattice M determines a volume element on Mg, by
requiring that the volume of the unit cube determined by a basis
of M is 1. Denote the volume of a polytope P by Vol(P). The only
fact we will need is the basic and elementary identity that relates
the volume to the number of lattice points:

# (v-P)

n

Iim
v — oo Vv

() Vol(P) =

This follows from the fact that the error term in estimating the
volume by using unit cubes centered at lattice points of a polytope
is bounded by the (n-1)-dimensional area of the boundary of the
polytope, and this vanishes in the limit.

Applying (RR), we see that =#(v-P)/4v™ — (D®)/n! as v — oo,

where (DM) is the self-intersection number. Therefore,
Corollary. If the polytope P corresponds to the divisor D, then

(D-...-D) (D7)

Vol(P) = ~ - =

The divisor D is described by a collection of elements u(o) in
M/M(c), one for each cone o. For any cone o in A, let P; be the
intersection of P with the corresponding translation of the subspace

perpendicular to o:

Py = Pn(o*+ulo));
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ie.,, Pg=Pn(o*+u) forany u in M that maps to u{o) in
M/M(o). The lattice Ml(o), translated by u(o), determines a volume
element on the space o* + ul(o), !whOSe dimension is the codimension

of o, or the (complex) dimension of V(o). We have

k
Corollary. Vol(Pg) = deg(“‘li—! ~{v(ial).

Proof. Suppose first that V(o) does not belong to the support of D,
ie.,, u(o) = 0. In this case, D restricts to the divisor on the toric
variety V(o) defined by the collection of elements u(t) € M(o)/M(T)
as T Varies over the star of o. This is a divisor whose line bundle
G{(Dly(s)) is generated by its sections, and these sections are the linear
combinations of characters XY for u in o*NPNM = PoNM(c), so we
are reduced to the situation of the preceding corollary. In the general
case D can be replaced by D + div(x"), where u is any element of
M that maps to u(o) in M/M(c). We have seen that the polytope
corresponding to D + div(X") is P - u. The first case applies to this,
and noting that rationally equivalent divisors have the same

intersection numbers, the corollary follows.

In particular, if X(Ap) is constructed from the polytope P as in
§1.5, then the cones o correspond to the faces of P, and in this case
Ps is the face of P corresponding to o.

We know that the classes of the varieties V(o) span A, (X)g, so
the Todd class can be written as a @-linear combination of these

classes:

Td(X) = T rgivi(oll,
[ XN

for some rational numbers rg. As we pointed out, in any example one
can calculate such coefficients, but because of the relations among
these generators for the Chow groups, the coefficients are not unique.
Having such an expression for the Todd class, however, gives a
marvelous formula for the number of lattice points.(16) Combining
(RR) with the preceding corollary, we have

#(P) = Z rU-Vol(Pa) »
geh
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and
n
#(v-P) = 3 apvk , with ap = > ro-Vol(Pg) .

= codim(o)=k
For example, in the two-dimensional case, we may take

Td(X)

X+ 220D + [x],

where x is any point of X. Starting with a convex rational polytope
P in the plane, this leads to

Pick's Formula: #(P) = Area(P) + %.Perimeter(P) + 1 .

Note that the lengths of the edges of P are measured from the
restricted lattice, so the length of an edgé between two lattice points is

one more than the number of lattice points lying strictly between

them.
Area(P) = L7
g 2
Perimeter(P) = 7
= =17 , 7
={P) 13 > + 2 + 1
#(v-P) = 1 +-21'u +12—71)2
As we have seen, the value of the polynomial v = #(v.P) at v = -1

is the number 6 of interior lattice points.

There is great interest in finding useful formulas for the number
of lattice points in a convex polytope, which has sparked efforts in
finding explicit formulas for the Todd classes of toric varieties. One
wants coefficients rg that depend only on the geometry around the
cone o.17) It is also interesting to look for combinatorial formulas for
other characteristic classes of a possibly singular toric variety. For
example, F. Ehlers has shown that MacPherson's Chern class is always
the sum of the classes of all orbit closures, each with coefficient 1,

whether the toric variety is singular or not.(18)

Exercise. Let N = {(xg,...,%xn) € zn+1. S x; = 0}, and define vectors

V0, -.-,¥n in N whose sum is zero by setting vg = (1,0,...,-1),
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vy =(-1,1,0,...,0), ..., vy =(0,...,-1,1). Let A be the fan with cones
generated by proper subsets of {vg,...,v,]), so X(A)=P", and each
V(o) is an intersection of coordinate hyperplanes in P®. Show that
the coefficient ry of V(o) can be taken to be the fraction of o in
the space spanned by o (by volume obtained by intersecting with the

unit ball and using the induced metric from the Euclidean metric on
Ier-f- 1). (19)

Exercise. Let X be the toric variety whose fan consists of the cones
over faces of our standard cube. Compute Td(X), and use this to

compute #(v-P), where P is the dual octahedron.(20)

Exercise. (R. Morelli) Let M = Z3, and let P be the polytope with
vertices at (0,0,0), (1,0,0), (0,1,0), and (1,1,m), where m is a
positive integer. Show that the polynomial #(v+-P) corresponding to
P is 1 + —1&_6—"1— v+ V2 4 %1}3. In particular, if m 2 13, the one-
dimensional Todd class Td;{(X{Ap)) cannot be written as a non-

negative linear combination of the one-dimensional cycles V(ag).

5.4 Mixed volumes

Intersection theory on toric varieties can be used to prove interesting
facts about convex bodies in Euclidean spaces, by exploiting the
interpretation of the volume of a polytope as a self-intersection
number of a divisor on a toric variety. The basic notions involved here
are Minkowski sums and mixed volumes. If P and Q are any convex

compact sets, their Minkowski sum is the convex set
P+Q = {(u+u':uepP, ueql};

note that for a positive integer v, 4:P is the Minkowski sum of v
copies of P. We work in an n-dimensional Euclidean space Mg
coming from a lattice M, which determines a volume Vol(P) for any
compact convex set P. This volume is positive when P has a
nonempty interior. For n = 2, the mixed volume V(P,Q) of two

convex compact sets can be defined by the equation

.

2:V(P,Q) = Vol(P + Q) - Vol(P) - Vol(@Q) ,
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where of course Vol denotes ordinary area. In particular, V(P,P) is
the area of P. For example, if Q = B(g) is the disk of radius ¢, then
P + Q is a closed e-neighborhood of P, and the right side of this

equation, when divided by &, approaches the circumference of P as

¢ approaches O.

P + B(e)

The mixed volume is multilinear, so V(P,B(g)) = ¢-V{(P,B), where B
is the unit disk. It follows that 2-V(P,B) is the circumference of P.
The isoperimetric inequality that the area of P is ¢t most the square
of the circumference divided by 4w translates to the inequality
V(P,Q)% = V(P,P)-V(Q,Q).

Our goal in this section is to prove generalizations of these facts.
To start, we will consider only n-dimensional convex polytopes whose
vertices are in M. All of the assertions, in fact, will extend to general
convex compact sets, by approximating them with such rational
polytopes (for a finer lattice). We have seen that if a complete fan A
is compatible with a polytope P, i.e., the corresponding function y¢p is
linear on the cones of A, then P corresponds to a T-Cartier divisor
D on the toric variety X = X(A). The line bundle O(D) is generated
by its sections, which have a basis of characters X" for u in PNM.
As we saw at the end of §3.4, the assumption that P is n-dimensional
implies that the map from X to projective space given by these
sections has an image that is an n-dimensional variety.

If any finite number of such polyhedra P4, ...,Pg are given, we
may find one such A that is compatible with each of them; if desired,
by subdividing the fan, we may even make X = X{A) nonsingular and
projective. If E; is the divisor on X corresponding to the polytope
P;, then, for any nonnegative integers vi,...,¥s, the polytope
v3:Py + ...+ v P corresponds to the divisor vi-Ej +...+ vg-Eg.
From the corollary in the preceding section we deduce a fundamental

result of Minkowski that the volume of a nonnegative linear
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combination of polytopes is a polynomial of degree n in the

coefficients w4, ..., vg. In fact, we havg the formula

(v1-Ef +...+vg-E))"

&D) Vol(vi-Py + ...+ v,-Pg) = :
n!

For n polytopes P4, ...,P,, n! times the coefficient of vi-...-v, in

this polynomial is defined to be the mixed volume of Py,...,P,, and

is denoted V(Pyq, ... ,P,). We will give a closed formula for this in a

minute, but what will be useful is this intersection-theoretic

characterization:

(Eg-...-Ep)

(2) V(Py, ... ,Py) = l
n.

The mixed volume has a simple expression as an alternating sum
of ordinary volumes:

n
~

(3) n!V(P4,...,Pn) = Vol(Py+...+P,) - .21V01(P1+...+Pi+...+Pn)
i=

n
+ 2 Vol(Py+..+Pj+ . +Pj+..+Pp) - ... + (—1)"—1.21 Vol(Pj) .
i=

i<j

This follows from (2) and the algebraic identity
n ~
nt-(Eq-....E ) = (Eq+...+E)" - '21(E1+”'+ Ej+...+E)"
i=

n
+ 2 (Eq+..+ ;Ii+...+éj+,..+En)" S D LD 3 ¢ A L
i<j i=1

(Here and in the following, to avoid a flood of parentheses, we often
write EM™ in place of (EM™) for a divisor E; it is always the intersection
number that is meant.) Many other properties of mixed volume are
easy to prove either from (2), or directly from the definition. For
example, we see immediately that V(Pq,...,P,) is a symmetric and

multilinear function of its variables:

(4) V(a-P+b-Q,P2,...,Py) = a-V(P,Py,...,P,) + b-V(Q,Po, ...,Py)
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for nonnegative integers a and b. It also follows from this definition
that

(5) V(P,...,P) = Vol(P).

Exercise. Prove, for two polytopes P and Q, the Steiner

decomposition:

(6) Vol(P +Q) = X (§)V(Pi;Qn-1),
i=0

where V(P,i;Q,n-i) denotes the mixed volume of i copies of P and

n-i copies of Q.

The mixed volume is invariant under arbitrary translations of

the polytopes:
(7) V(Py{+uq,...,Pp+uy) = V(Py,...,Py)

for any uji,...,un in M. This follows from the fact that P; + y;
corresponds to the divisor E; - div(x"1), because intersection numbers

of rationally equivalent divisors are the same.

Exercise. If M is replaced by iM, show that the mixed volumes

are all multiplied by m?", Show that

(8) V{(A(P1), ..., A(PL)) = ldet{A)I-V(Py, ..., ,Py)
for any linear transformation A of M.

An important fact that is far less obvious is the nonnegativity of
mixed volumes. This follows from the fact that the intersection
number of n divisors Ej, when each O(E;) is generated by its

sections, is nonnegative. The following is a stronger result:
(9 V(Qy,...,Qu) £ V(Py,...,Pn) if QC Pj for 1 cisn.

It suffices to prove this when Q; = P; for iz 2. If E; are the divisors
corresponding to P;, and Fji corresponds to Q4, the fact that Qi is
contained in P; implies that E; =F4 +Y with Y an effective

divisor. Changing E; to rationally equivalent divisors if necessary, we

may assume each E; restricts to a Cartier divisor on Y. Then

(Eq-Eg-...+Ep) - (Fy*Ep+...-E) = (Y-Ep-...-Ep) = (Egly-...-Enly).
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This is nonnegative since it is the intersection number of n-1 divisors
on Y whose line bundles O(E|ly) are generated by their sections.(21)
In particular, if P is the smallest convex set containing Py, ... ,P,,

(9) gives the inequality

(10) V(Pq,...,Pn) = Vol(P).

We also derive a stronger version of nonnegativity:

(11) V(Py,...,Pp) > 0 if Int(Py)# & for 1 2izn.

To see this, replace M by ?ln— M and translate the polytopes if
necessary so that the intersection Q = {1P; has nonempty interior,
and then (9) and (5) imply that the mixed volume is at least the
volume of Q.

For a simple example, let Py and P2 be the polyhedra in R2

with vertices in Z2 as shown:

—~ |

s P1+P2

\p i

Py

Then Vol(P{) = 2, Vol(P3) = 1%, and Vol{P;+P3) =11, so
V(P1,Pp) = %(Vol(Py+P3) - Vol(Py) - Vol(P2)) = 4.
The volume of the convex hull P is 4'%.

Exercise. Prove the additivity formula: given P and Q such that
PUQ is convex, and Py,1,...,P,, then

(12) V(PUQK;Prsts-- Pp) + VIPNQK; Py, .-, Py)
= V(P,k; pk+1:--.~'Pn) +V(Q,k; Pryt,--.,Pn)d,

where the notation means that the first polytope is repeated k times.
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Finally, we have a deecper result, known as the Alexandrov-

Fenchel inequality:
(13) V(Py,...,Pn)% 2 V(P1,P4,P3,...,Pn)-V(P2,Py,P3, ... ,P,).

Following Teissier and Khovanskii, this can be deduced from the Hodge
index theorem. If E4, ... ,E, are the corresponding divisors on the
variety X, which we can take to be nonsingular, (13) is equivalent to

the inequality
(Eq- ...-Ep)2 2 (Ey+Eq-Ez- ... -Ep)(Ep+Ep-Exz- ... Ep).

The maps ¢;: X — P determined by the divisors E; have n-
dimensional images. The Bertini theorem (22) implies that if H; is a
generic hyperplane in P'l, then Y = (.p3"1(H3)ﬂ oo Nnea YHY) is a
nonsingular irreducible surface. Since cpi'l(Hi) is rationally equivalent
to Ej, if we define Dy and D2 to be the restrictions of E; and Ej

to the surface Y, this inequality becomes
(D1°D3)? > (Dy-Dy)(D3-Dyp) .

This is a consequence of the Hodge index theorem, which says that

if A and B are divisors on a nonsingular projective surface, with
(A-A) > 0 and (A-B) = 0, then (B-B) < 0.(23) To deduce the displayed
inequality, we know that (D4-Dy) 2 0, and the inequality is obvious

if (D1-D1) = 0. If (D1-Dy1) >0, take A =Dy and B = aDy - bDy, with
a = (Dy:Dy) and b = (D3-D3); the index theoremn gives the inequality
(aDy - bD1)? < 0, which is immediately seen to be equivalent to the
displayed equation. Note that if n = 2, the Bertini argument is

unnecessary.
Exercise. (a) Given P, Q, Ry,1,...,Rp,, and 0 <i <k, prove the
inequality
V(P,i;Q,k~i; Rk 1s-- - RS 2 V(P K Ris1,-..,Rn) -V(Q,k; Rkaq,-. RS0
k
(b) Show that V(Py,...,P)k > -ﬂl V(P k; Prat,.-»Pn) .
i=

{c) Deduce the inequality ,

(14) V(Pi, ..., P)™ 2 Vol(Py) ... -Vol(P,) .29
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The inequality (14) is equivalent to the inequality
(Eq- ... cE)" 2 (E{™)- ... (E™.

This is also a general fact, for divisors E; such that each O(E;) is
generated by its sections, on any complete irreducible n-dimensional
variety. This appealing generalization of the Hodge index theorem was

apparently only recently discovered by Demailly.(25)

Exercise. Prove the Brunn-Minkowski inequality for two convex

polytopes P and Q:

VYVal(P+Q) 2 VYVol(P) + VY Voi(q) . (28)

Now let M = Z", so Mp = R", with its usual metric. Let B
denote the ball of radius one, and B(tg) the ball of radius £. All of the
preceding results extend to arbitrary compact convex sets, by the

following exercise.

Exercise. Define a distance d{(P,Q) between compact convex sets to
be the minimum € such that P ¢ Q + B(e) and Q € P + B(g). Show
that d defines a metric (with triangle inequality). Show that the
operations P, Q— P +Q; P Vol(P); Py,...,P, = V(Py,...,P,)

are continuous. Show that for any compact convex Q and any
positive £ there is a positive integer m and an n-dimensional convex
polytope P with vertices in %M such that d(P,Q) < €.

The mixed volurmes are particularly interesting when taken with
several copies of one compact convex set and the other copies a ball.

For example, the expansion
n n n n .
Vol(P + B(e)) = 3 (7)V(P,i;B(e),n-i) = X (P)V(P,i;B,n-i)en!
i=0 j=

interprets the mixed volumes of P and the unit ball B in terms of

the rate of growth of the volume of an €-neighborhood of P:

k
S Vol(P4BW)|y L = nln-1)-...(n-ke1)-V(P.n-ki B.K) .
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In particular, the first derivative of this function, which we denote by

S(P), is given by the formula
S(P) = n-V(P,...,P,B).

So S(P) is the limit of (Vol{P+B(g)) - Vol{P))/e as & goes to O.
When the boundary of P is smooth, S(P) is its (n-1)-dimensional
area; if not, this is a reasonable measure for it. Inequality (14) then

implies a classical isoperimetric inequality
S(P)™ > n"-v,-Vol(P)1

where v, is the volume of B.

It is also interesting to interchange the roles of P and B, since
the limit of (Vol(B+e-P) - Vol(B))/e as £ goes to O can be written as
S(B)-d(P)/2, where d(P) is the mean diameter of P. In other words,
d(P) = 2.-n-V(P,B, ... ,B)/S(B), and (14) gives the inequality

d(P)? 2 2%.n".Vol(P)-Vol(B)""1/S(B)® = 2".Vol(P)/Vol(B) .

In particular, this gives the inequality Vol(P) < (d/2)"-Vol(B), where

d is the maximal diameter of P.

Exercise. Show that f(t) = V(t-P + (1-)Q,k;Rg,1,...,Rp)k has the
upper convexity property: f(t) = (1-t)f(0) + tf(1). In particular,

sp+@t/ (1) 5 gpyl/ (1), gt/ (e (27)

5.5 Bezout theorem

A regular function on the torus T = Hom(M,C*) has the form

F=2Za, XY the sum over a finite number of points u in M. With

M = Z™, this is a Laurent polynomial, i.e., a finite linear combination
of monomials in variables X1, ...,X, with arbitrary integer
exponents. The convex hull of the points u for which a, is not zero is
called the Newton polytope or polyhedron of F. (28) We need the

following simple fact. '

Lemma. Let A be a complete fan compatible with the Newton
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polytope P of F, and let E be the T-Cartier divisor on X(A)
corresponding to P. Then E+div(F) is an effective divisor on X(A).

Proof. The assertion is that the order of E+div(F) along any
codimension one subvariety D of X(A) is nonnegative. This is clear
if D meets T, since F is regular on T. Otherwise D is the
subvariety corresponding to an edge of A. With v the generator of

this edge, we have

ordp(F) 2 minordp(xY) = min <u,v> = yp(v) = -ordp(E),
a,*0 uePNM

as required.

Suppose Fqy,...,F, are Laurent polynomials. We want to

estimate the number of their common zeros in T = (£L*)". Let
Z ={z €T: Fi(2)=...=Fu(z)=0}.

If z is an isolated point of Z, let i{(z;F4,...,F,) denote the inter-
section multiplicity of the hypersurfaces defined by the F; at the
point z; this intersection number is a positive integer, and it is 1
exactly when the hypersurfaces meet transversally at z. Our Bézout
formula, generalizing slightly results of D. N. Bernstein, A. G.
Kouchnirenko, and A. G. Khovanskii,(zg) is

Proposition. Let P; be the Newton polytope of F;. Then

Z i(z;Fq,...,Fp) = nt-V(Pq, ... ,Py),

z isolated in Z
where V(Py, ... ,Py) is the mixed volume.

Proof. Take A compatible with all of the polytopes, so each P;
corresponds to a T-Cartier divisor E; on X(A). We have seen that
the right side of the inequality is the intersection number (E;-...-Epy).
Since D; = div(F;) + E; is rationally equivalent to E;, this intersection
number is the same as (Diy-...:D,). Each divisor D; meets the torus
T in the hypersurface defined there by F; = 0, so the left side of the
inequality is at most the sum of the intersection multiplicities of the

divisors Dg,...,D, at their isolated points of intersection. The line
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bundles O(D;) = O(E;) are generated by their sections, so we are
reduced to a general fact of intersection theory: if Dy, ...,D, are
effective Cartier divisors on a complete irreducible variety, whose line
bundles ©(D;) are generated by their sections, then the sum of their
intersection multiplicities at their isolated points of intersection is at

most the intersection number (D4-...:Dy). (30)

Note that it is not necessary to assume that Z is finite; and even
if Z is finite, the divisors D;, which represent the closures of the
hypersurfaces F; = 0, can have non-isolated intersections on the
complement of the torus.

If the polytopes P; are fixed, it is also true that, for generic F;
with these P; as Newton polygons, the intersections are all isolated
and transversal, and equality holds in the preceding display. This
follows from the fact that, in this case, the divisors D; will be the
inverse images of generic hyperplanes for the corresponding maps from
X(A) to projective spaces, and the Bertini theorem guarantees that
these will have only isolated transversal intersections.

For an example with n = 2, consider the polynomials
Fi =X2+Y24+X3Y and Fp=X2Y +XxXY2+1.

The Newton polygons P3; and P2 are those sketched in the preceding
section. Since the mixed volume V(P4,P3) is 4, the number of
common isolated zeros must be at most 8. Early estimates bounded
the number of zeros by n!-Vol{(P), where P is the convex hull of

P4, ...,P,. As we saw in the preceding section, the mixed volume
gives a sharper estimate. In the above example, the volume of this

convex hull is 4%, so that estimate would allow 9 solutions.

Exercise. Show that there are exactly 8 common solutions to these

equations in (€*)2, so all of the intersection numbers must be 1.

Consider the case of n polynomials F; in CIXq,...,X,], with
deg(F;) £ dj. The Newton polytope of F; is contained in d;-P, where
P=((ty,...,tn) € R®:t; 2 0 and Zt; < 1). The standard fan for P9,
regarded as the compactification for €™ as usual, is compatible with
these polytopes, so the sum of the intersection numbers at isolated

zeros in {(C*)? — or €™ or P" — is at most
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n!-V(dy-P,...,dp-P) = n!+di+...:dn:V(P,...,P)
= nl+dy+...+dp+Vol(P) = dy-...-d, ,

since Vol(P) = 1/n!, so the usual Bezout theorem is recovered.

5.6 Stanley's theorem

Stanley has given a beautiful application of toric varieties to the
problem of characterizing the numbers of vertices, edges, and faces of
all dimensions of a convex simplicial polytope K in Euclidean n-space.

Let K be a convex polytope in 3-space, with fg vertices, f4
edges, and fp faces. To begin, we have Euler’'s formula:

(&) fo-fy +fp = 2.

If the polytope is simplicial, i.e., all of its faces are triangles, the facts

that each face has three edges and each edge is on two faces give
(2) 3fr = 2fy .

To bound a solid takes more than three vertices, i.e.,

(3) fg =2 4.

Note that the triple is determined once the number of vertices is
specified. It is an easy exercise to show that any triple of integers
(fg.f1,12) satisfying these three conditions can be realized from a
convex simplicial polytope in 3-space. Starting with a solid simplex
(with fg = 4), it suffices to show how to construct a new polytope
with one more vertex than a given one. This is achieved by putting a
new vertex just outside the middle of a face, and taking the convex
hull of the new set of vertices.

For n = 4, the numbers f{g, {1, f2, f3 satisfy Euler’s equation:
(1) fg - f1 +fp~fz = 0.
Since 3-simplices have four 2-faces, each on two 3-simplices,

(2) fp = 2fz .



STANLEY'S THEOREM 125

To bound a 4-dimensional solid, as before,
(3) fg 2 5.

There is also a quadratic inequality, valid in all dimensions, which
comes from the fact that two vertices can be joined by at most one

edge:
(4) f1 < Yfolfg - 1) .

This time there is also a less ocbvious lower bound on the number of

edges:
(5) f1 z 4fg - 10.

For example, if fy = 5, these conditions determine the other
numbers: f; = 10, fz = 10, and f3 = 5. This example is achieved by
(the boundary of) a 4-simplex.

Exercise. The conditions (1)-(5) allow two possibilities for (fg,f4, {2, f3)
with six vertices: (6,14,16,8) and (6,15,18,9). Construct simplicial

polytopes to realize these two possibilities.

The claim is that these five conditions are necessary and
sufficient for the existence of a simplicial 4-polytope. In general, the
problem is to characterize the n-tuples (fg,f1,...,fn-1) of integers
that can be realized as the numbers of vertices, edges, ..., (n-1)-faces
of an n-dimensional convex simplicial polytope. Although it is easy to
generalize some of the equations listed above for polytopes of dimension
three and four — at least for equations (1)-(4) — it is far from obvious
what the complete answer should be, or how to prove it.

There is a convenient way to rewrite the equations, which
suggests generalizations, by looking at successive differences. This
replaces the sequence (fg,f1,...,f,-1) by an equivalent sequence of
integers (hg,hy,...,h,). Write the integers f; down the right side of
a triangle, and the integer 1 down the left, and then fill in the spaces
from the top down so that each integer inside is the difference of the

integer above it to the right and that above and to the left:
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1 fo
1 fg-1 fq
1 fog-2 fi~-fo+1 fo
1 fo-3 f1-2fg+3  fo-fi+fg-1
Denote the bottom row, from right to left, by (hg,hy,...,hy). In

formulas, the relations are simply
o i-pri
(=) hy, = Ep (-1) (p)fn—i—1 ,

where we set f_1 = 1.
Euler's equation is equivalent to the equation

hg = hy,.

For n=3 and n = 4, equations (1) and (2) are equivalent to the

equations
(A) hg = h, and hy = hp-1.

The generalization fg = n+l of equation (3) is equivalent to h,_3 2 1,

or, modulo the above, to

(By) hy 2 hg = 1.

Equation (5) for n = 4 is equivalent, modulo the equations (A), to

(Bp) hy 2 hy ,

while equation (4) is equivalent to
h, - h 1

(c} h2-h1$(1 §+ )

The Dehn-Sommerville equations are the generalizations of the
equations {A): hp = h,_,. They were expressed in this form by
Sommerville in the 1920's. The generalizations of the equations (B) are
not hard to guess, but {(C) is more subtle. The complete answer is given

in the following theorem, which was conjectured by P. McMullen.

>
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Given a sequence fg, f1, ... ,fy_1 of integers, set f_4 =1 and

m = [%] For 0 <p <n, define hy by (%), and, for 1 <p < m, set
gp = hp - hpg.

Theorem. A sequence of integers fg, f1, ...,fn_1 occurs as the
number of vertices, edges, ..., (n-1)-faces of an n-dimensional

convex simplicial polytope if and only if the following conditions hold:
(I) (Dehn-Sommerville) hp=hp.p for 0 spsm;
(I (g4, -..,8m) is a Macaulay vector, ie,
(a) gp20 for 1<p=m,

and, if one writes

= (5) (0 (7).

with np>npg4>...>n.2r 21, then

(b)  gper < (2":11) + (n,,-;)*'l) et (::i) ’

-

for 1 s psm-1.

Note that for any positive integer p, any positive integer gp has
a unique expression in the form (a), by taking np maximal such that
(r};") < gp, and then continuing with the difference. In words, (b) says
that the bound for gp,1 is obtained from the expression for g, by
increasing each entry in each binomial number by cne. If gp= 0, the
condition is interpreted to'mean that gp+1 = 0. The existence of a
convex polytope with such face numbers was established by Billera and
Lee by a direct ingenious argument; the necessity was proved by
Stanley‘(sl) We give Stanley's argument.

The main idea is to produce a toric variety X = X(A) for some
complete simplicial fan A, so that the number dy of k-dimensional
cones in A is the same as the number fig.1 of (k-1)-dimensional
faces of the given simplicial polytope. To do this, note that, since the

polytope is simplicial, moving all of its vertices slightly gives a polytope
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with the same numbers of faces in each dimension. By such a
perturbation we can assume the vertices are in the rational points Ng
of a given lattice N, or by refining N, that the vertices are all in N.
We may also translate so that the origin is in the interior of the
polytope. Now define A to be the set of cones over the faces of the
polytope (with vertex at the origin)}, together with the cone {0}). The
equation dy = fy-1 (with dg = f_1 = 1) is then clear. The variety
X = X(A) is complete, and locally a quotient of C” by a finite abelian
group, since A is simplicial. In addition, X is projective. In fact, if
P in Mp is the polar polytope to the given polytope, then A = Ap,
and X = X(Ap) comes equipped with an ample line bundle.

We can now apply the theorems about the cohomology of the
toric variety X from the first part of this chapter. The rational

cohomology H*(X) = H*(X;Q) wvanishes in odd dimensions, and
o 2p Z i-p i = i=p (i
hp, = dimHP(X) = igp(-l) (p )a,y = igp('l) (p I S

We saw that (I} is a corollary of Poincare duality, and that (11}(a)
follows from the hard Lefschetz theorem for intersection homology. To
prove (I)(b), we use the other general fact we know about the

cohomology of X: it is generated by classes of divisors. Set
R' = HA(X;0)/w-HP2(0) ,

where, as before, w is the class of a hyperplane. Then R™ = BRI =

H*(X)/(w) is a commutative graded Q-algebra, with R% = @, thatis
generated by the part R! of degree one. Macaulay characterized the
sequences (g1, g2, ...) of integers that can be the dimensions of such
an algebra: they must form a Macaulay vector as in (II). (32) Noting

that

gp = dimRP = dimH2P(X) - dimH?P"%(X) = hp - hp_g
for 1 < p £ m, the proof of the theorem is complete.
Exercise. (a) Show that the relation between the fy's and the hp's

can be expressed by the polynomial identity

n n .
p};o hpt? = EO foojog (t-1)".
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(b) Show that

A
o]

P -
fp-1 = q%o(:_:)hn_q for 0 <p

(¢} Show that the Dehn-Sommerville equations (I) are equivalent to

the equations:

n-1
fo = (-1t kgp(—i)k(gji)fk for -1 <p<n.

Exercise. For n =5, use (I) to solve for fp, f3, and f4 in terms of
fo and f3, and write (Il) as inequalities for fg and fjy.

Exercise. Prove that

hy +p+1 v-n+p-1
hps(lp )=( N ) for 0 <ps<n,
where v = fg is the number of vertices. (Here the convention is that
(2) takes its usual values for 0 < b < a, and is otherwise 0, except
that (—01) = 1.) Deduce the Motzkin-McMullen upper bound

conjecture:
o v v-k k
fF’ = kz=;~v_——l_&_( k )(p+1—k) when n =2m ;
m
P+2 fv-k k+1
fp < Z v — k (k*i)(p+1—k) when n = 2m+1 .

Prove that these inequalities are valid for any convex n-dimensional
polytope, simplicial or not. Show that these inequalities become
equalities for a (simplicial) cyclic polytope: the convex hull of v
points on the rational normal curve {(1,t2,¢3, ... ,t")].(ss)
Exercise. Deduce the lower bound conjecture: for a simplicial
polytope,
1
fp = (g)fo —(::1)}3 for 1 < p <n-2;
fn-1 2 (n-D)fg - (n+1)(n-2).

Exercise. A convex n-dimensional polytope is called simple if each
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vertex lies on exactly n (n-1)-faces. Characterize the sequences

(fg, ... ,fn_1) of integers that arise from a simple polytope.(34)

These links between toric varieties and polytopes have spurred

renewed interest in both subjects.(ss)
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/92 s trivial and generated by Y; and on U"4 it is trivial and
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the fourth generator is then a linear equation among the eight
numbers. These siX equations have a solution space of dimension three.

Chapter 2

1. A point given by a homomorphism x: S; — € of sermnigroups is fixed
exactly when x(u) =0 for all u = 0, sinceif u + 0 there is a point
in the torus t: M — €* with t(u) = 1, and (t-x)}(u) = t(u)x(u). For o
not to span NRp means that S; contains some nonzero u together
with -u, so x(u)x(-u) = 1.

2. See [Oda, §3.2] for Ishida's more intrinsic and more general
construction of these complexes.

3. Use the simultaneous diagonalizability of commuting matrices; see
§15 of

J. Humphreys, Linear Algebraic Groups, Springer-Verlag, 1975.

4. Diagonalizing, one may assume T = (€*)T actson V =C" by
(21, ....,2¢)ej = (zimij. - -zrmrj)ej .

The ring of invariants is C€[S], where
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USSR - Sbornik 63 (1989), 165-180.
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6. For more on quotient singularities, see

F. Hirzebruch, "Uber vierdimensionale Riemannsche Fldchen
mehrdeutiger analytischer Funktionen von zwei komplexen
Veranderlichen,” Math. Ann. 126 (1953), 1-22.
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m =d; and (ag,...,an) =(dg,.-..,dj-1,dj+1, ....dp). (b) Take N'
generated by the v;. This realizes P(dg,...,d,) as P"/G, where
G=N/N'= pgyx...xHg, /He, where c¢ is the greatest common

divisor of the d;. For more on twisted projective spaces see

S. Mori, "On a generalization of complete intersections,” J. Math.
Kyoto Univ. 15 (1975), 619-646.

8. If ¢ is an algebraic group homomorphism, and the corresponding
map ¢* CIT,T"Y] - €[T,T"!] takes T to F(T), show that F(T{Tp) =
F(T{)F(T2), and deduce that F(T) = TE for some k.

9. Such limits play an important role in invariant theory:

D. Mumford and J. Fogarty, Geometric Invariant Theory,
Springer-Verlag, 1982.

For constructions of quotients of toric varieties by subtori of the given
torus, see

M. M. Kapranov, B. Sturmfels, and A. V. Zelevinsky, "Quotients of
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toric varieties,” Math. Ann. 290 (1991), 643-655.

10. When f{ is not proper, and X is emmbedded in a variety X

so that the morphisrn f extends to a proper morphism from X to

Y — which is in fact always possible — it is easy to construct such a
discrete valuation ring and maps. In fact, one can take R to be the
ring €(t} or Cl[t]l of convergent or formal power series, with the
maps corresponding to an analytic map of a small disk, with center
mapping to a point of the closure of X that is not in X. For a formal
proof, see [Hart, Ch. II, Exer. 4.11].

11. Look at the covering by the affine open U, and consider the
distinguished points X,;. For more on this, see [Oda, §1.5].

12. Let N be the lattice of rank r+n-1 generated by vectors
Wi, ...,wy and vg,...,V,, with relations

wit...+wp = 0, vog+...+V, = ajwp +...+a,w,.
Let A be fan consisting of cones generated by subsets of these vectors

that do not contain all of the wj's or all of the vj's. See {Oda, §1.7]
for more on toric bundles.

13. Given the descriptions of the points in terms of semigroup
homomorphisms, this is equivalent to the fact that an element u in
g” isin o* exactly when ¢"(u) isin (o')*, which follows from the
fact that ¢(g') contains points in the relative interior of o.

14. The simplest example has rays also through (2,1,1), (2,1,2), and
(3,1,2), with cones as indicated:

(0,0,1)

(1,0,0) (0.1.0)

For more on this see

M. Teicher, "On toroidal embeddings of 3-folds,” Israel J. Math, 57
(1987), 49-67.

Recently it has been shown that any two nonsingular complete toric
varieties of the same dimension can be obtained from each other by a
sequence of maps that are blow-ups along smooth toric centers or the
inverses of such maps. In fact, there are two independent proofs:
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J. Wlodarczyk, "“Decompeositions of birational toric maps in blow-
ups and blow-downs. A proof of the weak Oda conjecture,”
preprint.

R. Morelli, “The birational geometry of toric varieties,” preprint.

15. Write vj = -av;+ bvi,1 and vj,3 = -cv; -dvi,;, with a, b, ¢,
and d positive integers. The determinant of (.2 °;) should be 1,
but ad + bc = 2.

16. For (a), take the longest possible sequence of consecutive vectors in
the same half-plane, and apply the topological constraint (see Note 15)
to see where adjacent vectors can lie. For (b), write v = "ijO + bj'vl,
and set c; = bj+bj’; since ¢ 23 and ¢; =1, thereisa j with
¢j>cjer and cj z cjoq; show that aj = 1.

17. The matrices give changes of bases from one pair of adjacent
vectors to the next.

18. The condition (»*») insures that the vectors go around the origin
only once.

19. See the calculations of Note 3 to Chapter 1.
20. For example, see [Odal and

V. E. Voskresenskii and A. A. Klyachko, "Toroidal Fano varieties
and root systemns,” Math. USSR Izv. 24 (1985), 221-244.

V. Batyrev, "On the classification of srnooth projective toric
varieties,” Tohoku Math. J. 43 (1991), 569-585.

21. For the relations among these generators — as well as the relation
between the integers b; and the integers aj — see the article by
Riemenschneider in Note 6.

22. The Hirzebruch-Jung continued fraction for (k+1)/k produces a
string of k 2's.

23. If k-k' = 1 (mod m), write k-k’ =1 - srb; the matrix (5 1)
maps N = z2 isomorphically to itself and maps o onto g', giving an
isomorphism between U; and Ug. The converse follows from the fact
that the configuration obtained by the resolution process described
here is the minimal resolution (none of the self-intersection nurmbers of
exceptional rational curves is -1), which is uniquely determined by
the singularity. This means that the singularity determines the
sequence apg,...,a,, up toreplacing it by the reverse sequence

ay, ...,aq, which corresponds to the pair (m,k') with kk' =1

(mod m). Note that the singularity of U; is a cone over a lens space,
and two such lens spaces are homeomorphic exactly when m'=m
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and k' =k or kk'= £1 (mod m). For a reference, see the
Hirzebruch article in Note 6.

24. The existence of such v is a simple case of a theorem of
Minkowski, which can be seen by comparing the approxirmnate number
of points to the volume of large solids (Zt;v;, -m; < t; s m;}. For the
general case, see §24.1 of
G. H. Hardy and E. M. Wright, An Introduction to the Theory of
Numbers, fourth edition, Oxford Univ. Press, 1960.

25. The cone over a quadric was described in

M. F. Atiyah, "On analytic surfaces with double points,” Proc.
Royal Soc. A 247 (1958), 237-244.

For flips, flops, and the relation to Mori's program see:

J. Kollar, "The structure of algebraic threefolds — an introduction
to Mori's program,” Bull. Amer. Math. Soc. 17 (1987), 211-
273.

M. Reid, "Decomposition of toric morphisms,” pp. 395-418 in
Arithmetic and Geometry ll, Progress in Math. 36,
Birkhauser, 1983,

M. Reid, "What is a flip?", preprint, 1992.

T. Oda and H. S. Park, “Linear Gale transforms and Gelfand-
Kapranov-Zelevinskij decompositions,” Tohoku Math. J. 43
(1991), 375-399.

Recently, Batyrev has used toric varieties as a testing ground for the
“mirror symmetry” conjectures coming from physics:

V. V. Batyrev, "Dual polyhedra and mirror symmetry for Calabi-
Yau hypersurfaces in toric varieties,” preprint, 1992.

V. V. Batyrev, "Variations of the mixed Hodge structures of affine
hypersurfaces in algebraic tori,” Duke Math. J. 69 (1993),
349-409.

Chapter 3

1. Any M-graded ideal (or submodule of the field of rational functions)
has the forrn @ CXY, the sum over some subset of M; see Note 3 to
Chapter 2. For complete proofs of these facts, including the following
exercise, see [Oda’, §5].

2. This follows from the fact that ¢.(x¢) = X, because ¢, takes
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Tne'-orbits to Tn-orbits. The last assertion uses the properness of ¢,.

3. Note that normality is crucial; the fact that the closed complement
is small is not enough. The complement of a point in an irreducible
variety can be simply connected without the variety being simply
connected — for example if the variety is constructed by identifying
two points in a simply connected variety. For an amplification of these
points, see

W. Fulton and R. Lazarsfeld, "Connectivity and its applications in
algebraic geometry,” Springer Lecture Notes 862 (1981),
26-92.

4. This is true with any coefficient group or sheaf: if C° is an
injective resolution of the sheaf, this is the spectral sequence of the
double complex @Cq(Uioﬂ. ..NU; ), with the vertical maps coming
from the complex €° and the horizontal maps the “Cech” maps of
alternating surns of restrictions. For details, see [Hirz, §1.2} and

R. Goderment, Topologie algebrique et theorie des faisceaux,
Act. Sci. et Ind., Hermann, Paris, 1958.

5. See [Hirz, §1.4] for basic facts about Chern classes.

6. If the data (fy} is used to define Cartier divisors, the data {fygy]
defines the same Cartier divisor whenever g, is a nowhere zero
regular function on Ug; in addition, one identifies data with
equivalent restrictions to a common refinement of the open covering.
If the variety V rneets the affine open set U, theideal p of VNUg,
is a prime ideal in the affine ring A of Ug, and the local ring of V is
the localization Ap. If X is normal and V has codimension one, Ap
is integrally closed and one-dimensional, so a discrete valuation ring.
The order of D at V is the order of f, with respect to this discrete
valuation. That a Cartier divisor is determined by its Weil divisor
follows frorn the fact that A is the intersection of these rings Ap. For
more on this see [Shaf, §1ll.1], [Hart, §11.6], and [Fult, §2.21.

7. Thereis a u € S; such that <u,v> =1, where v is the first
lattice point along T. )

8. This is local, so it is enough to do it on an affine Ug, in which case
it follows from the preceding lemma.

9. This exact sequence follows readily from the definitions, see

[Fult, §1.8]

10. For exarnple, X = Ty, with n > 2. All algebraic line bundles are
trivial, but H%(Ty) = A?M = 0; the torus has analytic line bundles
that are not algebraic.

11. We have seen that (i) = (ii), and (ii) = (iii) = (iv) are clear from
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the proposition. If o is a maximal cone that is not simplicial, with

generators Vi, ...,V,, one can find positive integers a; so that the
points {(1/a;)v; are not in a hyperplane, so there is no u(o) with
<u{o),vi> = ~ka; for 1 <i <r and any positive k.

12. The graph of this map is the resolution X(ZA).

13. Find a strictly convex function ¢ with ¢(v;) € Z. For the second
assertion, use the generators of sermigroups found in §2.6. In fact, if D
is an ample divisor on an n-dimensional toric variety, then (n-1)D is
always very ample. This is proved in

G. Ewald and U. Wessels, "On the armmpleness of invertible sheaves

in complete projective toric varieties,” Results in Math. 19
(1991), 275-278.

14. If the corresponding function is given by u(o) on the maximal
cone o, both are equivalent to the condition that (u(cr),vj> > -aj
whenever Vv; ¢ o.

15. Use all of the hyperplanes spanned by (n-1)-dimensional cones.
16. For more on the projectivity of nonsingular toric varieties see

P. Kleinschmidt and B. Sturmfels, "Smooth toric varieties with
small Picard number are projective,” Topology 30 (1991),
289-299.

More exarnples like those in the text can be found in
M. Eikelberg, “The Picard group of a compact toric variety,"
Results in Math. 22 (1992), 509-527.

17. If P = {uq,...,u}, the affine ring of Uy is generated by
variables Yji,...,Y, (with Y;= x(ui * 1)), and relations generated
by TTY;® - ]TYibi if Taju; = Zbyu; and Xa; = Zb;. This is the
homogeneous coordinate ring of Xp in PF~L

18. It suffices to look at the restriction of ¢ to the torus Ty, where
the map is a map of algebraic tori Ty — (€*)7/C* determined by a
homormorphism of lattices from N to Z'/Z-(1,...,1). The dimension
of @(X) is the rank of the image of N, which is the dimension of P.

Chapter 4

1. For the topology of moment maps for more general actions of tori
on algebraic varieties, see

M. Goresky and R. MacPherson, "On the topology of algebraic torus
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actions,” Springer Lecture Notes 1271 (1987), 73-90.

2. For more on moment maps, including generalizations of these
statements and proofs, see [Jurk] and

M. F. Atiyah, “Convexity and commuting Harniltonians,” Bull.
London Math. Soc. 14 (1982), 1-15.

M. F. Atiyah, "Angular mornentum, convex polyhedra and
algebraic geometry,"” Proc. Edinburgh Math. Soc. 26 (1983),
121-138.

V. Guillemin and S. Sternberg, "Convexity properties of the
moment mapping,” Invent. Math. 67 (1982), 491-513.

F. C. Kirwan, Cohomology of Quotients in Symplectic and
Algebraic Geometry, Princeton Univ. Press, 1984.
L. Ness, "A stratification of the null cone via the moment map,”

Amer. J. Math. 106 (1984), 1281-1325; appendix by D.
Mumford, "Proof of the convexity theorem,” 1326-1329.

3. This is a general construction for divisors with normal crossings.
There is a spectral sequence Hq(X,Qg((logD)) = HP*9(X+D,L), with
Q')"((log D) = /\P(Q%((log D)). Reference:

P. Deligne, Equations Differentielles a Points Singuliers Réguliers,
Springer Lecture Notes 163, 1970.

4. For details and generalizations to singular toric varieties, see [Oda,
Ch. 31 )

5. Construct this inductively over the simplices of S. Note that, on S,
Z is defined by the equation ¢ < u and Z' by the equation u+1 < §,
so there is a band between them on each simplex.

6. For the four isornorphisms use: (i) the first exercise; (ii) duality of
cohomology and homology; (iii) the second exercise; (iv) the first
exercise.

7. The sections of OUx(-XD;) are computed as before. For i>0, u € M,
setting Z = [v € [Al:ulv) =20}, Z' = (v € |Al:u(v)+k(v) £ 0}, and
S ={v € |A}: k(v) = 1}, the same argument shows that

HIX,Q%)_, = HL(AD = ANs . zns) = Ai"lzns),
which vanishes since ZNS is the intersection of a strongly convex
cone with a polyhedral sphere.
8. For more on the dualizing complex on toric varieties, see [Oda, §3.2].

9. One reason for this is the general Riemann-Roch theorem, which
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gives an interpretation for the coefficients of the polynomial. We will
discuss this in Chapter 5.

10. For this and generalizations to several divisors, see

A. G. Khovanskii, "Newton polyhedra and the genus of complete
intersections,” Funct. Anal. Appl. 12 (1978), 38-46.

11. Serre realized in the 1960's, based on the Weil conjectures, that
there should be such virtual betti nurmbers. This rnotivated the search
for weights, mixed Hodge structures, and motives. See pp. 185-191 of

A. Grothendieck, "R écoltes et Semailles: réflexions et ternoignage
sur un passe de matheérnaticien,” Montpellier, 1985.

For the construction of the rnixed Hodge structures, see

P. Deligne, “Theorie de Hodge, II, [1I" Publ. Math. .HE.S. 40 (1971),
5-57, 44 (1974), 5-77.

Although these papers do not explicitly do the construction for
cohomology with compact supports, the methods required to do this
are similar. This has been carried out, on the dual Borel-Moore
homology groups, in
U. Jannsen, "Deligne homology, Hodge-D-con jecture, and motives,”

in Beilinson's Conjectures on Special values of L-Functions,

(M. Rapoport, N. Schappacher, and P. Schneider, eds.),

pp. 305-372, Academnic Press, 1988.

These virtual polynomials are discussed in
V. I. Danilov and A. G. Khovanskii, "Newton polyhedra and an
algorithm for computing Hodge-Delighe numbers,” Math.
USSR lzv. 29 (1987), 279-298.
A. H. Durfee, "Algebraic varieties which are a disjoint union of
subvarieties,” Lecture Notes in Pure and Appl. Math. 105
(1987), 99-102,

12. This is proved in [Dani, §14], based on

J. H. M. Steenbrink, "Mixed Hodge structure on the vanishing
cohomology,” in Real and Complex Singularities, Oslo, 1976,
(P. Holm, ed.), pp. 565-678, Sitjthoff & Noordhoff, 1977.

It can also be deduced from the fact that the intersection homology
always has a pure Hodge structure, as in the discussion in §5.2.

13. Here is one way to prove this. Note that the equality X(X) =
Xc(X) is true whenever X is an even-dimensional oriented manifold,
since H;(X) and HYM)-l(x) are dual vector spaces. For a general
X, take a covering by a finite number of affine open sets X,; Mavyer-
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Vietoris sequences imply that
XX = T XKy N NX, )
XelX) = Z(-l)”lxc(xaln. CNXg )

It therefore suffices to show that X(X) = X AX) if X is affine. Let
Y be the singular locus of X, and U = X v Y. [t suffices by induction
on the dimension to show that X{X) = X(Y)+ ¥{(U). Let m: X — X be
a resolution of singularities, with ¥ = w~}(Y) a divisor with (strong)
norrnal crossings. It follows by induction on the nurnber of cornponents
of ¥ that X(¥) = X(¥), so X{(X) = % (¥)+ X(U). Thereis a
neighborhood N of Y in X such that Y is a deformation retract of
N and Y is a deformation retract of w 1(N). (For example, emmbed
X as a closed subvariety of €™ so that Y = MnX for a linear
subspace M of €™, and take N to be the intersection of X with an
e-neighborhood of M; the fact that w is proper implies that iy s
a deformation retract of w }(N).) By Mayer-Vietoris, the equation
X{X) = x(¥)+ x(U) is equivalent to the equation X{n L(N)~ ¥) = 0.
Since w H(N)s ¥ = N+ Y, it follows that X(N~ Y) = 0, and this is
equivalent to the equation YX({X) = X(Y)+ x(U).

When Y is a point and N is a small neighborhood of Y, the
equation YX(N ~» Y) = 0 says that the link of the singularity has zero
Euler characteristic. This was noticed by Sullivan:

D. Sullivan, “Combinatorial invariants of analytic spaces,”
Springer Lecture Notes 192 (1971), 165-168.

Sullivan has shown that stratified spates with odd-dimensional strata
have vanishing Euler characteristic. S. Weinberger, and M. Goresky
and R. MacPherson have verified that this can be used to extend the
results of this exercise to arbitrary spaces that can be stratified with
even-dimensional strata. For relevant techniques, see

M. Goresky and R. MacPherson, Stratified Morse Theory,
Springer-Verlag, 1988.

Chapter 5

1. For general results about intersection theory, we refer to [Fult]l. The
facts used in the proof of the proposition are proved in [Fult, §1.8-1.9].
Recently the author, R. MacPherson, and B. Sturmfels have shown
that the relations among the generators [V(g)] for Ayx(X) are
generated by those of the form [div(XY)] for u in M(t), and * a

cone of A of dimension n-k-1. ,
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2. Assume that ¢ has independent (minimal) generators wy, ... » W,
and Y has one more generator v = V;, and let @ be a lift of e to
Ny, so Ny = N;®Z-e. Take a positive integer integer p so that
PV = i wqg+...+Mp-W, + prs-e,
for some integers mj and s = s;. Then
p-mult(y) = [Ny:ZZ-wj+ Z-p-v]
= [Ng:ZZ-wjl-[Z-8:Z-p-s-€] = mult(a)p's,
which shows that s = mult(y)/mult(o).
3. For basic facts about intersecting with divisors, in particular the

fact that rationally equivalent divisors on X determine rationally
equivalent cycles on V, see [Fult, Ch. 2].

4. All the extrernal rays in Mori's sense are determined by curves
V(c), and one can see directly whether V(o) is numerically effective
or not. See [0da, §2.5] and the article by Reid in Note 25 of Chapter 2
for toric constructions of the corresponding contractions of such curves.

5. In general, when X is nonsingular, V-W can be constructed as a
rational equivalence class of the expected dimension on VNW. For the
construction of intersections on a nonsingular variety, see [Fult, Ch. 8].

6. When X is globally a quotient of a rnanifold M by a finite group
G, then A*(X)g can be identified with the ring of invariants in
A*(M)g. When X is only locally such a quotient, the construction is
harder, but there are now several ways to extend intersection theory
to these varieties (and beyond):

H. Gillet, "Intersection theory on algebraic stacks and Q-varieties,”
J. of Pure and Appl. Algebra 34 (1984), 193-240.

A. Vistoli, "Alexander duality in intersection theory,” Compositio
Math. 70 (1989), 199-225.

A. Vistoli, “Intersection theory on algebraic stacks and on the
moduli spaces,” Invent. Math. 97 (1989), 613-670.

S. Kimura, "On varieties whose Chow groups have intersection
products with Q-coefficients,” University of Chicago thesis,
1990.

7. For this we follow [Danil, based on the article by Ehlers in Note 6 of
Chapter 2, and

J. Jurkiewicz, "Chow rings of projective non-singular torus
ernbedding,” Colloquiurm Math. 43 (1980), 261-270.

8. This problem is related to the "shellability” problem for cones. See

A. Bjoerner, M. LasVergnas, B. Sturmfels, N. White, and G. Ziegler,
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Oriented Matroids, Cambridge Univ. Press, 1993.

9. To see that H™(X) = IH™(X) = Hyjn(x)-m(X) when X isan n-
dimensional V-manifold, the point is that intersection homology is
calculated by putting local conditions on cycles. There are now quite a
number of surveys about intersection homology. The original paper is

M. Goresky and R. MacPherson, "Intersection homology theory,”
Topology 19 (1983), 135-162.

A recent survey, also emphasizing geometric intuition, is

R. MacPherson, Intersection Homology and Perverse Sheaves,
AMS Lecture Notes, 1991.

For Hodge theory and intersection homology, see

M. Saito, "Mixed Hodge modules,” Publ. Res. [nst. Math. Sci. (Kyoto
Univ.) 26 (1990), 221-333. :

10. For the relations between intersection hornology betti nurmbers and
the nurnbers of cones, including statements, proof, and some history,
see

K.-H. Fieseler, “Rational intersection cohomology of projective
toric varieties,” J. Reine Angew. Math. 413 (1991), 88-98.

For more on these questions, see Note 35.

11. Let X — X be the resolution of singularities considered in §2.6,
and let ¥ be the union of the six lines in X that is mapped to the set
Y of six singular points in . X. The facts that H(X,¥Y) = H{(X,Y) = H(X)
for i 2 2, and that X is the blow-up of P3 at four points give most
of the answer, together with an exact sequence

0 — Hiz(X) — Ha¥) - HxX) — Ha(X) — 0.
To finish, the 6 by 5 rnatrix in the rniddle is calculated. Note in
particular that A.(X) — H.(X) need not be surjective; replacing X
by X x X, one sees that the cycle map need not be surjective in even
degrees. For a recipe for calculating the rational homology of a three-
dimensional comnplete toric variety, see

M. McConnell, "The rational homology of toric varieties is not a
combinatorial invariant,” Proc. Amner. Math. Soc. 105 (1989),
986-991.

12. See [Dani, §10L

13. For Chern classes, Chern character, and Todd class in topology, see
[Hirz]l. For Chow theory, see [Fuit, Ch. 3]

14. For the Hirzebruch-Riemann-Roch formula, as well as a discussion

B
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of Grothendieck's extension to morphisrns between smooth projective
varieties, see [Hirz], and [Fult, Ch. 15]. For the extension to the singular
case of Baum-Fulton-MacPherson, as well as the extension to the non-
projective case by Fulton-Gillet, see [Fult, Ch. 18].

15. In the nonsingular case, td(Tx) =1 + 222ZD;+... . In the singular
case, take a toric resolution of singularities, and note that divisors
corresponding to any new edges are mapped to zero. Note in particular
that Td,-1(X) need not be in the image of Pic(X), since we have seen
that ZD; need not be a Q-Cartier divisor. The expression for Tdg(X)
follows from the fact that X(X,0x) =1 when X is complete.

16. In the nonsingular case this can be found in [Dani, §11}, based on

A. G. Khovanskii, "Newton polyhedra and toric varieties,” Funct.
Anal. Appl. 11 (1977), 289-296.

17. Morelli has given general formulas for the coefficients, showing
that it is possible to assigh the numbers rg in a way that depends
only on o:
R. Morelli, "Pick’s theorern and the Todd class of a toric variety,”
Advances in Math,, to appear.

Pommersheirn has given some explicit forrmulas, relating some of these
coefficients to Dedekind sums:

J. E. Pommersheim, "Toric varieties, lattice points and Dedekind
surns,” Math. Ann. 296 (1993), 1-24.

Generalizations have recently been announced by S. Cappell and J.
Shaneson. For an approach using equivariant K-theory and Lefschetz-
Riermnann-Roch, see

M. Brion, “Points entiers dans les polyedres convexes,” Ann. sci.
E. N. S. 21 (1988), 653-663.

18. A proof has recently appeared:

G. Barthel, J.-P. Brasselet, and K.-H. Fieseler, "Classes de Chern des
varietes toriques singulieres,” C. R. Acad. Sci. Paris 315
(1992), 187-192.
19. For a cormbinatorial description of these numbers and a proof, see
P. Diaconis and W. Fulton, "A growth model, a game, an algebra,
Lagrange inversion, and characteristic classes,” Rend. Sem.
Mat. Torino, in press.

Another proof has been given by Morelli in the paper of Note 17.

20. The coefficients ry can be taken to be 1 for dim(c) =10, 1/2
for dim(o) =1, 7/36 for dim{(oc) = 2, and 1/6 for dim{(c) = 3. This
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gives the formula #(v-P) =1+ (7/3)v + 212 + (2/3)05.

21. This follows from the fact that the intersection number can be
realized by counting the number of intersections of inverse images of
generic hyperplanes in the corresponding projective spaces. For a
stronger result, proved jointly with R. Lazarsfeld, see [Fult, §12.2]

22. A modern treatment of the Bertini theorems is given in

J.-P. Jouanolou, Theoremes de Bertini et Applications,
Birkhauser Boston, 1983.

23. For a proof and discussion, see [Fult, Ex. 5.2.4]. Note that there is
no need to take X to be nonsingular; the surface Y will then only be
irreducible and cornplete, but the inequality (Dl-Dz)2 2z (D1-Dy X(D2-D3p)
is still valid for arbitrary Cartier divisors Dy and D3, provided at
least one has nonnegative self-intersection; for example, one can apply
the usual index theorem on a resolution of singularities of Y.

24. The inequalities follow formally from the case k = 2. For example,
for k =n =3,
V(P1,P3,P3)® = V(Py,P3,P3)2-V(P3,P3,P1)2.V(P3,Py,P3)?

2 nV(Pi,Pi,PJ) .

i
Taking two of these equal, one sees that
V(P1,P1,P2)3 2 V(P;,P{,P1)2-V(P32,P5,P3) = Vol(P1)2-Vol(P3) ,
which is (b). This gives
V(P1,P2,P3)° 2 VOl(P1)2-Vol(P3)-Vol(P2)2-Vol(P3)-Vol(P3)2-Vol(Py) ,
and taking cube roots gives (c).
25. This can be deduced from the case n = 2, by the same forrmnal

rmanipulations as in the preceding note. For a direct proof for ample
divisors, see §5 in

J.-P. Demailly, "A numerical criterion for very ample line
bundles,” preprint.

The general case can be deduced frorn this by replacing E; by E; + eH;
with H; ample, and letting € go to zero — which is analogous to
approxirating bounded convex sets by n-dimensional convex
polytopes. (Thanks to L. Ein for pointing this out.)

26. Use (6) with the preceding exercise.
27. For more on mixed volumes, including references, history, and

many more inequalities that can be deduced from these formulas, see
[BZ, Ch. 4].

»
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28. New results on Newton polyhedra have been found in a series of
" papers by Gelfand, Kapranov, and Zelevinsky; see, eg.,

I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, "Newton
polytopes of the classical resultant and discriminant,”
Advances in Math. 84 (1990), 237-254.
29. See

D. N. Bernstein, "The number of roots of a systern of equations,”
Funct. Anal. Appl. 9 (1975), 183-185,

A. G. Kouchnirenko, "Polyédres de Newton et nombres de Milnor,"
Invent. Math. 32 (1976), 1-31.

30. This is a result of the author and R. Lazarsfeld, the point being
that any non-isolated components must give nonnegative contributions
to the total intersection number. For a proof, see [Fult, §12.2].

For a generalization in another direction — to other groups — see

B. Ya. Kazarnovskii, "Newton polyhedra and the Bezout formula
for matrix-valued functions of finite~dimensional
representations,” Funct. Anal. Appl. 21 (1987), 319-321,

31. The references are

L. J. Billera and C. W. Lee, "A proof of the sufficiency of
McMullen's condition for f-vectors of simplicial convex
polytopes,” J. Combin. Theory (A) 31 (1981), 237-255.

R. Stanley, "The number of faces of a simplicial convex polytope,”
Advances in Math. 35 (1980), 236-238.

32. For a proof of Macaulay's result, see

G. F. Clernents and B. Lindstrom, "A generalization of a
combinatorial theorem of Macaulay,” J. Combin. Th. 7
(1969), 230-238.

33. For a discussion of these problems, with references, see

R. Stanley, "The number of faces of simplicial polytopes and
spheres,” in Discrete Geometry and Convexity (J. Goodman
et al, eds.), Ann. New York Acad. Sci. 440 (1985), 212-223.

C. W. Lee, "Some recent results on convex polytopes,”
Contemporary Math. 114 (1990), 3-19.

34, The dual of a simple polytope is sirnplicial.

35. For more on the relations between toric varieties and face
numbers, see

R. Stanley, "Generalized h-vectors, intersection cohomology of
toric varieties, and related results,” in Commutative
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Algebra and Combinatorics, pp. 187-213, Advanced Studies
in Pure Math. 11, 1987.

R. Stanley, "Subdivisions and local h-vectors,” J. Amer. Math.
Soc. 5 (1992), 805-851.

This intrusion of algebraic geometry into the world of polytopes has
provided a challenge to combinatorialists. Recently G. Kalai and P.
McMullen have announced proofs of Stanley’s theorem that do not
depend on toric varieties. McMullen's recent preprint, "On simple
polytopes,” provides a challenge back to algebraic geometers: to
understand better intersection theory on singular toric varieties.
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the torus associated to N (or M) 3,17
dual lattices, of rank n 4
N®R 4
pairing between a space or lattice and its dual 4, 37
(strongly convex rational polyhedral) cones 4,9, 15
fan 4, 20
dual of a cone a 4,9
semigroup defined by o, equal to o¥NM 4,12
"group algebra” of semigroup S 4, 16
affine toric variety of the cone o 4, 16, 54
toric variety of the fan A 4, 20
nonnegative real numbers 6,13,78, 98
Hirzebruch surface 7-8
dual vector spaces 9
perpendicular to facet T 11
half-space determined by T 11
subspace spanned by o 9,12
dimension of o, equal to dim(R-g) 9
vector space perpendicular to o 12
o“NTt*, the dual face to T 12
nonnegative integers 13
T is a face of « 15
element of C[S] corresponding to u in S 15, 37
affine variety of A 15
closed points of Spec(A) 16
semigroup homomorphisms 16
group ring CI[S;]; the affine ring of Uy, 16
morphism induced by ¢: N' —» N 22-23
polar set or polar of K 24
fan from polytope P € Mp 26
X(Ap) thetoric variety of Ap 27
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Xg distinguished point of Uy, 28, 37-38
Ng lattice generated by oNN 29
N(o) N/Ng 29, 52
Hm group of m'h roots of unity 33
P(dp, ...,dn) twisted or weighted projective space 35
G multiplicative group C* 36
Ay one-parameter subgroup C€C* — TN from v € N 37
1Al support of fan A 38
mult(o) multiplicity of o 48
(O orbit corresponding to T 51-5¢
v{Tt) closure of 0., X(Star(T)) 51-5¢
M(T) T*NM ' 52
Star(T) Star of cone T 52
IS o+ (NJg 7/ (ND)R 52
Ug(t) Spec(C€lT N M(T)]), open affine in V(T) 53
m1(X) fundamental group of X 56-57
HY(X) cohomology group of X 58
X AX) topological Euler characteristic of X 59, 80, 93-95
Dy irreducible divisors corresponding to edges of fan 60
vy generators of edges of fan 60
g(D) line bundle (invertible sheaf) of divisor D 60
D] Weil divisor of Cartier divisor D 60
ordsy, order along a codimension one subvariety 60
div(f) divisor of a rational function f 60
u(a) elt. of M/M(g) 3: X“(") generates O(D) on Ug; 62
Pic(X) Picard group of X 63-65
ApX kP Chow group of X 63, 96
YD piecewise linear function which is u(o) on o 66, 68
Pplao) {u€ Mp:uzy¢p on ol 66
Pp polytope fu € Mg : u z ¢p} giving sections of O(D) 66
¢p map to projective space defined by divisor D 69
Hiz( ) ith 1ocal cohomology group with support in Z 74
HP(X,¥F) pt! sheaf cohomology group with coefs. in F 74
X (X,9(D})) Z(-1)Pdim HP(X,0(D)} 75

X(A), manifold with singular corners of X(A) 78



Sn -
K

n‘

o

Q(log D)
wx

fp(v)

dx

ﬁj(X)

Py(t)

hy

Xe(X)

VW

(D-V)
Al(X)g

T, Ty

iy)

pl(o)

ch(E)

td(E)

Td(X)

c(E)

#=(P)

P

(D") or DM
Vol(P)

Pg

P+Q
V(Py,...,Pp)
B, B(e)
i(z;Fq,...,Fp)
fx

INDEX OF NOTATION

compact torus Hom(M,S1)

moment map from X(A) to Mg

induced map from X(A), to polytope in Mg
sheaf of i-forms on X

differentials with logarithmic poles along D
dualizing sheaf of X

Card(v-PNM)

number of k-dimensional cones in A

J"h betti number of X

(virtual) Poincaré polynomial Zﬁjtj
Bok(X(A))

Euler characteristic with compact support
intersection cycle or cycle class

degree of DV

Chow group AL-i(X)®Q with rational coefficients

top dimensional cones and associated subcones

smallest 1 such that o contains ¥
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79

81

81

86

87

89

90, 111
91
91-95
92-93
92, 126
93, 94
97, 99
99

99

101
102

monomial in D corresponding to generators of o 106

Chern character of vector bundle E
iTodd class of vector bundle E

Todd class of variety X

total Chern class of vector bundle E
Card(PNM)

{veu:u € P)

self-intersection number of a divisor D
volume of a polytope P

Pn(oc* + u(o))

{u+u'":ueP, ueQ}), Minkowski sum
mixed volume of polytopes Pq,...,P,
unit ball, ball of radius ¢

intersection multiplicity of F; at z

number of k-dimensional faces of a polytope

108
108

108-109

109
110
110
111
111
111
114

114, 116
115, 120

122
125



INDEX

action of torus 19, 23, 31
adjunction formula 91
affine toric variety 4,16

Alexandrov-Fenchel inequality

119
ample divisor 70-72, 74, 99
arithmetic genus 75, 91
Ap singularity 47
betti numbers 91-95
Bézout theorem 121-124

blowing up 6, 40-43, 50, 71
Borel-Moore homology 103, 108
boundary of a cone 10-11
boundary of a polytope 25, 90,

111
Brunn-Minkowski inequality

120
canonical divisor 85-86, 88
Cartier divisor 60
character 37
Chern class 59-60, 108-109,

113
Chow group 63, 96-101
Chow's Lemma 72

Cohen-Macaulay 30, 31, 73, 89

compatible fan 73
complete fan 39
complete toric variety 39

cohomology

betti 58, 93, 101-108, 128

of line bundle 67,74, 110
convex function 67
conveXx polyhedral cone 9
convex polytope,

polyhedron 23, 25

155

cotangent bundle 86, 108-109
cotangent space 28
cube 24, 27, 50, 65, 69-70,
105-106, 114
cyclic quotient singularity 32,

35

cyclic polytope 129
Dehn-Somerville equations 126
differentials 86
dimension of a cone 9
distinguished point 28, 37-38,
42, b1, 55-56, 61

divisor 60-63
dual of a cone 4,9
dual face 12
dualizing sheaf 89
duality theorem for cones 9
equivariant 48, 60, 80
Euler characteristic 59, 80,
93-95

Euler's formula 124-126
exceptional divisor 47
face 9, 23
facet 10, 24
fan (in a lattice) 20
Farkas' theorem 11
fiber bundle 29, 41, 70, 93
fundamental group 56-57
generated by sections 67-68
generators of a cone 9
Gordon's lemma 12, 30
Grothendieck duality 89
Gubeladze's theorem 31
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half-space 11
hard Lefschetz theorem 105

Hirzebruch surface 7-8, 43, 70
Hirzebruch-Jung

continued fraction 46
Hirzebruch-Riemann-Roch 109
Hodge index theorem 119-120
interior of a cone 12
intersection homology 94, 105,

128
intersection multiplicity 99, 122
intersection product 97-101
intersection ring 106-108
inversion formula 91
isoperimetric inequalities 121
lattice 4
Laurent polynomial 16, 121

line bundle 8, 44, 59-60, 63-77

local cohomology group 74
logarithmic poles 87
lower bound con jecture 129
MecMullen conjecture 126
Macaulay vector 127-128
manifold with corners 78-80
Minkowski sum 114
mixed volume 114-121
moment map 81-85
monomials 17,19
Mori's program 50
moving lemma (algebraic) 106-

107
multiplicity of cone 48

Newton polytope,
polyhedron 121

INDEX

Noether's formula 86
non-projective variety 71-72,
102
nonsingular 28-29
normal 29,73

octahedron 24, 27. 69-70, 114

one-parameter subgroup 36-39

orbifold 34
orbit 51-56
Pick's formula 113
piecewise linear function 66, 68
Poincare duality 104
polar 24
polyhedron 66
polytope 23
toric variety of 23-27
principal divisor 60
projective bundle 8, 42
projective space 6-7, 22,70, °
76,113-114, 123
proper morphism 39-40

proper intersection 97-98, 100

quadric cone 5,17, 27, 49, 72

quotient singularity 31-36,

100, 104
Q-Cartier divisor 62, 65, 89
rational cone 20
rational normal curve 32
rational ruled surface 8
rational polytope 24
rational singularities 47, 76
refinement of fan 45
relative interior 12
residue 87, 91

resolution of singularities 45-50



Riemann-Roch 108-114
saturated 18-19, 30
self-intersection number 8,

47, 111
Separation Lemma 13
Serre duality 87-91
simple polytope 129-130
simplex, simplicial cone 15
simplicial fan 34, 65
Stanley-Reisner ring 108
Stanley's theorem 124-130
star of cone 52
Steiner decomposition 117

strictly convex function 68
strongly convex cone 4,12, 14
support of Cartier divisor 96-97
support of fan 38
surface (nonsingular) 42-44
T-Cartier divisor 61-64, 66
T-Woeil divisor 60, 63
Todd class 108-114
toric variety 4, 20
torus 36,79
torus action 23, 51-56
twisted projective space 35-36
upper bound conjecture 129
Veronese embedding 35, 73
very ample divisor 69
virtual Poincare polynomial
92-93
volume 111
V-manifold 34

INDEX 157
weighted projective space
35-36
Weil conjectures 94

Weil divisor, T-Weil divisor
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