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Preface

The study of toric varieties is a wonderful part of algebrgégmmetry. There are
elegant theorems and deep connections with polytopeshedits, combinatorics,
commutative algebra, symplectic geometry, and topologyic varieties also have
unexpected applications in areas as diverse as physicegctiteory, algebraic
statistics, and geometric modeling. Moreover, as noted udtof [105], “toric
varieties have provided a remarkably fertile testing gbtor general theories.”
At the same time, the concreteness of toric varieties pesvah excellent context
for someone encountering the powerful techniques of modigbraic geometry
for the first time. Our book is an introduction to this rich gdh that assumes only
a modest background yet leads to the frontier of this actiga af research.

Brief Summary. The text covers standard material on toric varieties, uhioig:
(a) Convex polyhedral cones, polytopes, and fans.

(b) Affine, projective, and abstract toric varieties.

(c) Complete toric varieties and proper toric morphisms.

(d) Weil and Catrtier divisors on toric varieties.

(e) Cohomology of sheaves on toric varieties.

(f) The classical theory of toric surfaces.

(g) The topology of toric varieties.

(h) Intersection theory on toric varieties.

These topics are discussed in earlier texts on the subjert, & 93], [105 and
[218. One difference is that we provide more details, with numnerexamples,
figures, and exercises to illustrate the concepts beingised. We also provide
background material when needed. In addition, we coverge laumber of topics
previously available only in the research literature.

Vi
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The Fifteen Chapters To give you a better idea of what is in the book, we now
highlight a few topics from each chapter.

Chapters 1, 2 and 3 cover the basic material mentioned irsifajr(c) above.
The toric varieties encountered include:

e The affine toric varietyr,, of a finite setez C M ~ Z" (Chapter 1).
e The affine toric varietyJ,, of a polyhedral cone C Ng ~ R" (Chapter 1).

The projective toric variet),, of a finite seteZ C M ~ Z" (Chapter 2).

The projective toric varietyp of a lattice polytopd® C M ~ R" (Chapter 2).
The abstract toric varieti{(y; of a fanX in Ng ~ R" (Chapter 3).

Chapter 4 introduces Weil and Catrtier divisors on toricetes. We compute
the class group and Picard group of a toric variety and defiaesheafd’x,. (D)
associated to a Weil divis@ on a toric varietyXs..

Chapter 5 shows that the classical construckdn= ((C”*1 \ {0})/C* can be
generalized to any toric variels;. The homogeneous coordinate rififx, . . ., Xn]
of P" also has a toric generalization, called the total coordimiaig of Xs;.

Chapter 6 relates Cartier divisors to invertible sheaveXpnWe introduce
ample, basepoint free, and nef divisors and discuss tHatiae to convexity. The
stucture of the nef cone and its dual, the Mori cone, are destin detail, as is
the intersection pairing between divisors and curves.

Chapter 7 extends the relation between polytopes and fikgeoric varieties
to a relation between polyhedra and projective toric mamisip : Xy — U,. We
also discuss projective bundles over a toric variety andhese to classify smooth
projective toric varieties of Picard number 2.

Chapter 8 relates Weil divisors to reflexive sheaves of ramk and defines
Zariski p-forms. Forp = dim X, this gives the canonical shea§ and canonical
divisor Kx. In the toric case we describe these explicitly and studydtaion be-
tween reflexive polytopes and Gorenstein Fano toric vasetneaning that Ky,
is ample. We find the 16 reflexive polygonsi$ (up to equivalence) and note the
relation|oPN M|+ |0P°NN| = 12 for a reflexive polygo® and its duaP°.

Chapter 9 is about sheaf cohomology. We give two methodsdompeiting
sheaf cohomology on a toric variety and prove a dizzyingyaofacohomology
vanishing theorems. Applications range from showing tlaitrral toric varieties
are Cohen-Macaulay to the Dehn-Sommerville equations$onple polytope and
counting lattice points in multiples of a polytope via therEdrt polynomial.

Chapter 10 studies toric surfaces, where we add a few tvadtsg classical
subject. After using Hirzebruch-Jung continued fractimsompute the minimal
resolution of a toric surface singularity, we discuss threctmeaning of ordinary
continued fractions. We then describe unexpected commmextvith Grobner fans
and the MKay correspondence. Finally, we use the Riemann-Roch ¢heon a
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smooth complete toric surface to explain the mysteriougagmce of the number
12 in Chapter 8 when counting lattice points in reflexive golys.

Chapter 11 proves the existence of toric resolutions ofusargies for toric
varieties of all dimensions. This is more complicated tharsurfaces because of
the existence of toric flips and flops. We consider simple mberossing, crepant,
log, and embedded resolutions and study how Rees algetdanatiplier ideals
can be applied in the resolution problem. We also discuss samgularities and
show that a farX is simplicial if and only ifXs: has at worst finite quotient singular-
ities and hence is rationally smooth. We also explain whabogcal and terminal
singularities mean in the toric context.

Chapters 12 and 13 describe the singular and equivariarnoology of a
complete simplicial toric varietXs; and prove the Hirzebruch-Riemann-Roch and
equivariant Riemann-Roch theorems whénis smooth. We compute the funda-
mental group oKy, and study the moment map, with a brief mention of topological
models of toric varieties and connections with symplecéorgetry. We describe
the Chow ring and intersection cohomology of a complete Baiaptoric variety.
After proving Riemann-Roch, we give applications to theumok polynomial and
lattice point enumeration in polytopes.

Chapters 14 and 15 explore the rich connections that linkngs#iic invariant
theory, the secondary fan, the nef and moving cones, Gal#yludaangulations,
wall crossings, flips, extremal contractions, and the tovigimal model program.

Appendices The book ends with three appendices:
e Appendix A: The History of Toric Varieties.
e Appendix B: Computational Methods.
e Appendix C: Spectral Sequences.

Appendix A surveys the history of toric geometry since itgyimis in the early
1970s. Itis fun to see how the concepts and terminology edhAppendix B
discusses some of the software packages for toric geomethgiaes examples
to illustrate what they can do. Appendix C gives a brief idtration to spectral
sequences and describes the spectral sequences used ier€Bagnd 12.

Prerequisites We assume that the reader is familiar with the material aavén
basic graduate courses in algebra and topology, and to andmhéesser degree,
complex analysis. In addition, we assume that the readeh&dsome previous
experience with algebraic geometry, at the level of any efftitlowing texts:

e |deals, Varieties and Algorithntsy Cox, Little and O’Shead9].
e Introduction to Algebraic Geometlyy Hassett133.

e Elementary Algebraic Geometby Hulek [151].

e Undergraduate Algebraic Geometoy Reid P38].
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e Computational Algebraic Geomethby Schenck246].

e An Invitation to Algebraic Geometrigy Smith, Kahanpaa, Kekalainen and
Traves R53.

Chapters 9 and 12 assume knowledge of some basic algelpalody. The books
by Hatcher 135 and Munkres 210] are useful references here.

Readers who have studied more sophisticated algebraicaeggotexts such as
Harris [130], Hartshorne 131], or Shafarevich245 certainly have the background
needed to read our book. For readers with a more modest lmacidjran important
prerequisite is a willingness to absorb a lot of algebraimngetry.

Background Sections Since we do not assume a complete knowledge of algebraic
geometry, Chapters 1-9 each begin with a background sdti@rintroduces the
definitions and theorems from algebraic geometry that aeeled to understand
the chapter. References where proofs can be found are prbvithe remaining
chapters do not have background sections. For some of thagtets, no further
background is necessary, while for others, the materialasersophisticated and
the requisite background is given by careful referencebdditerature.

What Is Omitted We work exclusively with varieties defined over the complex
numbersC. This means that we do not consider toric varieties ovetrarlifields
(see P2 for a treatment of this topic), nor do we consider toric kia(see B9 for
an introduction). Moreover, our viewpoint is primarily algro-geometric. Thus,
while we hint at some of the connections with symplectic getsynand topology in
Chapter 12, we do not do justice to this side of the story. Ewvitimin the algebraic
geometry of toric varieties, there are many topics we hadeth@mit, though we
provide some references that should help readers who wamnptore these areas.
We have also omitted any discussion of how toric varietiesuaed in physics and
applied mathematics. Some pointers to the literature amngn our discussion of
the recent history of toric varieties in 8A.2 of Appendix A.

The Structure of the Text We number theorems, propositions, and equations
based on the chapter and the section. Thus 83.2 refers tiois@obf Chapter 3,
and Theorem 3.2.6, equation (3.2.6) and Exercise 3.2.6p#ax in this section.
Definitions, theorems, propositions, lemmas, remarkseaadtples are numbered
together in one sequence within each section.

Some individual chapters have appendices. Within a chagpendix the
same numbering system is used, except that the section nusibecapital A.
This means that Theorem 3.A.3 is in the appendix to Chapt®n3he other hand,
the three appendices at the end of the book are treated iuthbearing system as
chapters A, B, and C. Thus Definition C.1.1 is in the first sectf Appendix C.

The end (or absence) of a proof is indicatedbyand the end of an example
is indicated by.
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For the Instructor. There is much more material here than you can cover in any
one-semester graduate course, probably more than you &an icoa full year

in most cases. So choices will be necessary depending onatheyitound and
the interests of the student audience. We think it is redsderta expect to cover
most of Chapters 1-6, 8 and 9 in a one-semester course wieestutients have

a minimal background in algebraic geometry. More matergal be covered, of
course, if the students know more algebraic geometry. I€tparmits, you can
use toric surfaces (Chapter 10) to illustrate the power eftitasic material and
introduce more advanced topics such as the resolution gdilsirities (Chapter 11)
and the Riemann-Roch theorem (Chapter 13).

Finally, we emphasize that the exercises are extremely ritapo We have
found that when the students work in groups and presentgbkitions, their en-
gagement with the material increases. We encourage itstsun consider using
this strategy.

For the Student The book assumes that you will be an active reader. This means
in particular that you should do tons of exercises—this & llest way to learn
about toric varieties. If you have a modest background ielaigic geometry, then
reading the book requires a commitment to Ieamthtoric varietiesand algebraic
geometry. It will be a lot of work but is worth the effort. Thisa great subject.

Send Us FeedbackWe greatly appreciate hearing from instructors, studemts,
general readers about what worked and what didn’'t. Pleasfyg noe or all of us
about any typographical or mathematical errors you miglat fin
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Michele Vergne, Mark Walker, Glnter Ziegler, and Dylan Zkwfor many helpful
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and Daniel Erman, our able assistants.
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Notation

The notation used in the book is organized by topic. The nunmogarentheses at
the end of an entry indicates the chapter in which the natdiiet appears.

Basic Sets
Z,Q, R, C integers, rational numbers, real numbers, complex numbers
N semigroup of nonnegative integl@ 1,2, ...}

The Torus
c* multiplicative group of nonzero complex numbéts {0} (1)
(cHn standarch-dimensional torus Q)
M, x™ character lattice of a torus and charactenof M ()
N, Y lattice of one-parameter subgroups of a torus and

one-parameter subgroupwE N (1)

Tn torusN ®z C* = Homy (M, C*) associated tdl andM (1)
Mg, Mg vector spaceM @z R, M ®z Q built from M Q)
Ng, Ng vector spacell ®z R, N®z Q built from N ()
(m,u) pairing ofme M or Mg with u € N or Ng Q)

Hyperplanes and Half-Spaces

Hm hyperplane ifNg defined by(m,—) =0, me Mg \ {0} Q)
HE half-space ifNg defined by(m,—) > 0,me Mg \ {0} (1)
Hu,b hyperplane irMiy defined by(—,u) =b, u € Ng \ {0} (2)
Hp half-space iV defined by(—,u) > b, u< Ng \ {0} )

Xii



Xiv Notation
Cones
Con€S) convex cone generated 1By 1)
o rational convex polyhedral cone Mg (1)
Sparto) subspace spanned by Q)
dimo dimension ofr (1)
aV dual cone obr 1)
Relint(o) relative interior ofo 1)
Int(o) interior of o when Spafv) = Ng 1)
ot set ofme Mg with (m, o) =0 L
T=0,T<0 Tisaface orproperface of (1)
T* face ofo dual tor C o, equalss¥ N7+ (1)
Rays
p 1-dimensional strongly convex cone (a rayNm (1)
u, minimal generator op NN, p a rational ray ilfNg (1)
o(1) rays of a strongly convex conein Ng 1)
Lattices
7.9 lattice generated by (1)
7o element > ,am € Zo/ with > 8 =0 )
No sublatticeZ(o NN) = Sparfo) "N 3
N(o) quotient latticeN /N, (3)
M(o) dual lattice ofN(o), equalss NM (3)
Fans
) fan in Ng (2,3)
(r) r-dimensional cones ot 3)
Y max maximal cones oE 3)
Star(o) star ofo, a fan inN(o) 3)
¥* (o) star subdivision ok foro € & 3)
¥*(v) star subdivision ok for v e || NN primitive (11)
Polytopes and Polyhedra
Ap standarch-simplex inR" (2)
Conv(S) convex hull ofS 1)
dimP dimension of a polyhedroR (2)
Q=P, Q<P Qisaface or proper face & (2)
pe dual or polar of a polytope (2)
A+B Minkowski sum (2)
kP multiple of a polytope or polyhedron (2)
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Cones Built From Polyhedra

C CongP —v) for a vertexv of a polytope or polyhedron (2)

0Q cone of a fac&® < P in the normal farkp (2)

p normal fan of a polytope or polyhedréh (2)

C(P) cone over a polytope or polyhedron Q)

S semigroup algebra &(P) N (M x Z) @)
Combinatorics and Lattice Points of Polytopes

fi number ofi-dimesional faces d? (9)

hp Yoisp(—1)'7P(}) fi, equals Betti numbey(Xp) whenP simple  (9)

L(P) number of lattice points of a lattice polytope 9)

L*(P) number of interior lattice points of a lattice polytope 9)

Ehrp(¢) Ehrhart polynomial of a lattice polytope 9)

Ehi5(¢) p-Ehrhart polynomial of a lattice polytope 9)
Semigroups

S, C[S] affine semigroup and its semigroup algebra (1)

N.os affine semigroup generated ly (1)

Se =SoN affine semigroup¥ NM 1)

H Hilbert basis ofS,, (1)
Rings

Rf, Rs, Ry localization ofR at f, a multiplicative sef, a prime ideap (1)

R integral closure of the integral doma (1)

R completion of local ringR (1)

R®cS tensor product of rings ové? (1)

RC ring of invariants ofG acting onR (1,5)

R[a] Rees algebra of an idealC R (11)

R4 Veronese subring of a graded riRy (14)
Specific Rings

ClX1y- -, %] polynomial ring inn variables 1)

C[[x1,...,%)]]  formal power series ring in variables 1)

C[x,...,xF1] ring of Laurent polynomials (1)

(V) ideal of an affine or projective variety 1,2)

CNV] coordinate ring of an affine or projective variety 1,2)

CV]g graded piece in degreewhenV is projective (2)

C(V) field of rational functions whe¥ is irreducible (1)

Oy p, My p local ring of a variety at a point and its maximal ideal Q)



XVi Notation
Varieties
V(l) affine or projective variety of an ideal (1,2)
Vi subset of an affine variety wheref #0 (D)
S Zariski closure ofSin a variety (1,3)
To(X) Zariski tangent space of a variety at a point (1,3)
dimX, dim, X dimension of a variety and dimension at a point 1,3)
Spe¢R) affine variety of coordinate ring Q)
Proj(S) projective variety of graded rin§ (7
XxY product of varieties (1,3)
X xsY fiber product of varieties 3)
X affine cone of a projective variely (2)
Toric Varieties
Yoy Xy affine and projective toric variety af/ C M (1,2)
Us, =Usn affine toric variety of a cone C Ng (1)
Xy =Xz N toric variety of a farX in Ng 3)
Xp projective toric variety of a lattice polytope or polyhedro (2.7)
) lattice homomorphism of a toric morphispn Xs, — Xs;, (1,3)
s real extension of (1)
Yo distinguished point of,, 3)
O(o) torus orbit corresponding i® € © 3)
V(o) =0(c) closure of orbit ofr € ¥, toric variety of Stafo) (3)
Up affine toric variety of recession cone of a polyhedron @)
Us affine toric variety of a fan with convex support (7
Specific Varieties
Cc", pn affine and projective-dimensional space (1,2)
P(qo,...,0n)  Weighted projective space 2)
éd, Cq rational normal cone and curve (1,2)
Blo(C") blowup of C" at the origin (3)
Bly (o) (Xs) blowup of Xy, alongV (o), toric variety of¥* (o) 3)
I Hirzebruch surface 3)
Sab rational normal scroll 3)
Total Coordinate Ring
S total coordinate ring oKy (5)
Xp variable inScorresponding te € (1) (5)
Ss graded piece oBin degrees € Cl(Xyx) (5)
degx®) degree in ClXyx;) of a monomial inS (5)
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X7 monomial[] ., ) X, for o € & (5)
B(%) irrelevant ideal ofS, generated by the” (5)
x(m Laurent monomia] ], x™%) me M (5)
x{mDb) homogenization of™, mec PbNM (5)
Xp facet variable of a facdt < P (5)
x(M:P) P-monomial associated tne PNM (5)
x(v:P) vertex monomial associated to veriex PN M (5)
M gradedS-module (5)
M(a) shift of M by a € CI(Xy) (5)

Quotient Construction
X/G good geometric quotient (5)
X//G good categorical quotient (5)
Z(%) exceptional set in quotient construction, equAIB(XZ (5)
G group in quotient construction, equals Hpf@l(Xsx),C*) (5)

Divisors
Ox p local ring of a variety at a prime divisor (4)
p discrete valuation of a prime divis@r (4)
div(f) principal divisor of a rational function 4)
D~E linear equivalence of divisors (4)
D>0 effective divisor 4)
Divo(X) group of principal divisors oX 4)
Div(X) group of Weil divisors orX 4)
CDiv(X) group of Cartier divisors oX 4)
CI(X) divisor class group of a normal varieXy 4)
Pic(X) Picard group of a normal variety 4)
Pic(X)gr Pic(X) @z R (6)
SupfD) support of a divisor (4)
Dy restriction of a divisor to an open set (4)
{(U;, i)} local data of a Cartier divisor o 4)
D] complete linear system & (6)
D], [D] “round down” and “round up” of &-divisor 9

Torus-Invariant Divisors
D, =O0(p) torus-invariant prime divisor oKy, of ray p € (1) (4)
De torus-invariant prime divisor oKp of facetF < P (4)
Divr, (Xs) group of torus-invariant Weil divisors oxx (4)
CDivy, (Xs) group of torus-invariant Cartier divisors o; (4)
{My}oes Cartier data of a torus-invariant Cartier divisor ¥n (4)
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Dp Cartier divisor of a polytope or polyhedron 4,7)
P polyhedron of a torus-invariant divisor (4)
Xb toric variety of a basepoint free divisor (6)
Yo fan of Xp (6)
¢*D pullback of a Cartier divisor (6)

Support Functions
D support function of a Cartier divisor 4
©op support function of a polytope or polyhedron 4)
SHX) support functions fok 4)
SHX,N) support functions foE integral with respect tdl (4)

Sheaves
ruy,s) sections of a sheaf over an open set 4)
Zy restriction of a sheaf to an open set 4)
Fp stalk of a sheaf at a point (6)
F ®6,9 tensor product of sheaves 6k-modules (6)
H0mg, (F,%) sheaf of homomorphisms (6)
FV dual sheaf of#, equals#omg, (%, Ox) (6)
fo 7 direct image sheaf
Specific Sheaves
Ox structure sheaf of a variely 3)
Oy sheaf of invertible elements @fy 4)
5% constant sheaf of rational functions 9érirreducible (6)
Ox(D) sheaf of a Weil divisob on X 4)
K ideal sheaf of a subvariet/ C X 3)
M sheaf on Spe®) of anR-moduleM 4)
M sheaf onXy, of the graded&-modulesV (5)
Oxs. (@) sheaf of thesmoduleS(«) (5)
Vector Bundles and Locally Free Sheaves
Z, & invertible sheaf (line bundle) and locally free sheaf (6)
m:V—X vector bundle (6)
m: Vg — X rank 1 vector bundle of an invertible sheaf (6)
f*Z pullback of an invertible sheaf (6)
bew map to projective space determinedWyC I'(X, %) (6)
PV), P(&) projective bundle of vector bundle or locally free sheaf (7
¥ xD fan for rank 1 vector bundMe ¢ for £ = 0k, (D) (7)
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Intersection Theory
degD) degree of a divisor on a smooth complete curve (6)
D-C intersection product of Cartier divisor and complete curve (6)
D =D’, C=C’' numerically equivalent Cartier divisors and complete esrv (6)
N(X), Ny(X) (CDiv(X)/=)®zR and({proper 1-cycles oX}/=) @z R (6)
Nef(X) cone inN*(X) generated by nef divisors (6)
Mov(X) moving cone of a varietX in N*(X) (15)
Eff(X) pseudoeffective cone of a varietyin N1(X) (15)
NE(X) cone inN; (X) generated by complete curves (6)
NE(X) Mori cone, equals the closure of K) (6)
Differential Forms and Sheaves
Qr/c module of Kahler differentials of &-algebraR (8)
0%, FK cotangent and tangent sheaves of a vavety (8)
S| F2, A /x  conormal and normal sheavesYofZ X (8)
0L, QF sheaves op-forms and Zariskp-forms onX (8)
Kx, wy canonical divisor and canonical sh@aﬁ, n=dimX (8)
Q% (logD) sheaf of 1-forms with logarithmic poles @ (8)
Sheaf Cohomology
HO(X,.%) global section§'(X,.#) of a sheaf# on X 9)
HP(X,.7) p-th sheaf cohomology group of a shedfon X 9)
RPf, higher direct image sheaf (9)
Ext”ﬁX (¢,%#) Extgroups of sheaves @fx-modules?, & 9)
C(%,F) Cech complex for sheaf cohomology 9)
X(-F) Euler characteristic o7, equals) _,(—1)PdimHP(X,.7) 9)
Sheaf Cohomology of a Toric Variety
HP(Xs,-4)m  graded piece of sheaf cohomology.#f= 0k, (D) forme M 9)
Vo,m Vom subsets of%| used to computelP(Xs, % )m 9)
Local Cohomology
HP (M) p-th local cohomology of aR-moduleM for the ideall C R 9)
C*(f,M) Cech complex for local cohomology whée= (f) 9)
Ext3(N, M) Ext groups ofR-modulesN, M 9)
Resolution of Singularities
Xsing singular locus of a variety (1)
Exc(¢) exceptional locus of a resolution of singularities (1)



XX Notation
J(c-#) multiplier ideal sheaf (11)
(X,D) log pair,D =), aD;, & €[0,1]NQ (11)

Singularities of Toric Varieties

mult(o) multiplicity of a simplicial cone, equaliN, : Zu; + - - - + Zug] (6,11)
P, parallelotope of a simplicial cone, equdls’; Aiui |0 < A <1} (11)
I1, polytope related to canonical and terminal singularitiedp ~ (11)
O, the polyhedron Corig NN\ {0}) (10,11)
Ycan fan over bounded faces 6f,, reduces to canonical singularities (11)
Topology of a Toric Variety
Ns sublattice ofN generated by>| NN (12)
m1(Xs) fundamental group Xy, isomorphic toN/Ns; (12)
SN real torusN ®z St = Hom, (M, St) ~ (SH)" (12)
(Xs)>0 nonnegative real points of a toric variety (12)
f,p algebraic and symplectic moment mafgs— Mg (12)
s symplectic moment map*™® — CI(Xs)r (12)

Singular Homology and Cohomology

ith singular cohomology ok with coefficients in a rindR 9)
i-th reduced cohomology of 9)
ith cohomology oX with compact supports (12)
ith singular homology oX (12)
ith Borel-Moore homology oK (13)
ith Betti number ofX, equals dinH; (X, Q) (12)
Euler characteristic ok, equals)_, (—1)'bj(X) (9,10,12)
cap and cup products (12)
cohomology ringd ,HP(X, R) under cup product (12)
cohomology class of a subvariéty in H>"~2(X, Q) (12,13)
refined conomology class ¥ in H"~2(X, X \ W, Q) (12,13)
generalized Gysin map (13)

integral [, : H*(X,Q) — Q, equals Gysin map of — {pt} (12,13)

Equivariant Cohomology for a Group Action

EG

BG

EG XG X
Hé(X,R)
Ag, (Ac)o

a contractible space on whichacts freely (12)
the quotienEG/G (12)
quotient ofEG x X modulo relation(e- g,x) ~ (€,9-X) (12)
equivariant cohomology ring, equat’ (EG x X, R) (12)

integral and rational equivariant cohnomology ring of a poin  (12)
fixed point set for action o& on X (12)
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Equivariant Cohomology for a Torus Action

Sym, (M) symmetric algebra dl overZ (12)

Sym, (M) rational symmetric algebra dvl, equals Sym(M) @z Q (12)

s isomorphisns : Sym, (M) =~ (A1)q (12)

D]t equivariant cohomology class offainvariant divisorD (12)

Jyea equivariant integrafy . : Hf (X,Q) — (Ar)q (13)

He(X,Q) completion] [~ ,H¥(X, Q) of equivariant conomology of (13)

A completion of the equivariant cohomology of a point (13)
Chow Groups and the Chow Ring

A(X) Chow group ok-cycles modulo rational equivalence (12)

AK(X) codimensiork cycles modulo rational equivalence (12)

A*(X) integral Chow ring oX smooth and complete (12)

A*(X)g rational Chow ring oX quasismooth and complete (12)
Intersection Cohomology

IHP(X) ith intersection homology of for perversityp (12)

IH(X) ith intersection cohomology of for middle perversity (12)

IH' (X)g ith rational intersection cohomology %f (12)
Cohomology Ring of a Complete Simplicial Toric Variety

54 Stanley-Reisner ideal of the fafy ideal inQ[x, ..., X] (12)

J ideal (3=, (mu)x [ me M) C Q[xq, ..., %] (12)

Ro(X) Jurkiewicz-Danilov ringQ[Xa, ..., %|/(# +J) ~H*(Xs,Q)  (12)

SRy(X) Stanley-Reisner rin@[xa, ..., %]/ ~ Ht (Xs,Q) (12)
Hirzebruch-Riemann-Roch

Gi(&) ith Chern class of a locally free sheéf (13)

ch(.Z) Chern character of a line bundi€ (13)

Td(X) Todd class of the varietf (13)

Bk kth Bernoulli number (13)

¢ =Gi(%) ith Chern class of the tangent bundle (13)

Ti ith Todd polynomial in the; (13)

K(X) Grothendieck group of classes of coherent sheaves on (13)

xT(Z) equivariant Euler characteristic (13)

XIZ) local contribution ofr € X(n) to xT(.¥) (13)

ch’(.¥) equivariant Chern character &f (23)

Td"(X) equivariant Todd class of (13)

Todd(x) formal Todd differential operator for the variable (13)
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Notation

Brion’s Equalities

N

M
[

[
(f
(D)

N
<

]

N

%)

>

M]]Sum

integral semigroup algebra bf

formal semigroup module dfl, formal sumsy .\, amx™
summable elements IA[[M]]

sum of an element € Z[[M]]sum

Dmem Lio AIMH! (X, Z)mx™ € Z[[M]]

Geometric Invariant Theory

PX7 Pa
F,

(C")

1,X Fi,a

s
X

character group of algebraic subgraBg (C*)"

(13)
(13)
(13)
(13)
(13)

(14)

sheaf of sections of rank 1 line bundle 6hfor charactery € G (14)

semistable and stable points for

graded ringPg- ,I'(C', Z,0)®

GIT quotient ofC" by G for x, equals PrdR, ) = (C")$//G
irrelevant ideal ofy

exceptional set of, equalsv (B(x))

polyhedra inR" andMg for y = x2

ith virtual facet ofP,, P,

The Secondary Fan

B, v

Cﬂv C.

FZ,|@7

B(S,lg

YGKz

sy,
)

MOVGKZ

Pokz

lists of r vectors inGg andNg

cones generated by andv

GKZ cones determined by, |
irrelevant ideal determined by, |
secondary fan of.

moving cone of the secondary fan
secondary polytope, normal fanig;xz

Toric Minimal Model Program

R
D-R
f.D
AR

OIN
¢*7¢+

Miscellaneous

extremal ray of the Mori cone

intersection produdd - C for [C] € R \ {0}

birational transform of a divisor by a birational map
index sets determined by a wall relation

fans determined by a wall relation

toric morphisms determined by a wall relation

multiplicative group ofdth roots of unity inC
ordinary continued fraction of a rational number
Hirzebruch-Jung continued fraction of a rational number

(14)
(14)
(14)
(14)
(14)
(14)
(14)

(14)
(14)
(14)
(14)
(14)
(15)
(15)

(15)
(15)
(15)
(15)
(15)
(15)

(1)
(10)
0)(1



Part |. Basic Theory of
Toric Varieties

Chapters 1 to 9 introduce the theory of toric varieties. Tgast of the
book assumes only a minimal amount of algebraic geometry)eatevel
of Ideals, Varieties and Algorithnm{§9]. Each chapter begins with a back-
ground section that develops the necessary algebraic ggome






Chapter 1

Affine Toric Varieties

81.0. Background: Affine Varieties

We begin with the algebraic geometry needed for our studyfioketoric varieties.
Our discussion assumes Chapters 1-5 and 69f [

Coordinate Rings Anideall C S= C[xy,...,X,] gives an affine variety
V()={peC"| f(p)=0forall f €1}

and an affine variety C C" gives the ideal
I(V)={feS|f(p)=0forallpeV}.

By the Hilbert basis theorem, an affine variétyis defined by the vanishing of
finitely many polynomials ir§, and for any ideal, the Nullstellensatz tells us that
L(V(1) =1 ={f eS| ffclforsomel>1} sinceC is algebraically closed.

The most important algebraic object associated ts its coordinate ring

CV] =S/I1(V).

Elements ofC[V] can be interpreted as tlie¢-valued polynomial functions ov.
Note thatC[V] is aC-algebra, meaning that its vector space structure is cabat
with its ring structure. Here are some basic facts aboutdinate rings:

e C[V]is an integral domair= 1 (V) is a prime ideak= V is irreducible.

e Polynomial maps (also calledorphism} ¢ : V; — V. between affine varieties
correspond t@-algebra homomorphisms' : C[V,] — C[V4], where¢*(g) =
go¢forge CVa).

e Two affine varieties are isomorphic if and only if their coimate rings are
isomorphicC-algebras.
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e A point p of an affine variety/ gives the maximal ideal
{f eCNV]|f(p) =0} CCIV],
and all maximal ideals of [V] arise this way.
Coordinate rings of affine varieties can be characterizédllasvs (Exercise 1.0.1).

Lemma 1.0.1. A C-algebra R is isomorphic to the coordinate ring of an affine
variety if and only if R is a finitely generatét-algebra with no nonzero nilpotents,
i.e., if f € R satisfies = 0 for some/ > 1, then f=0. O

To emphasize the close relation betw&eandC[V], we sometimes write
(1.0.2) V = Spe¢C|V]).

This can be made canonical by identifyiRgwith the set of maximal ideals of
C|V] via the fourth bullet above. More generally, one can take @ymutative
ring R and define thaffine schem&pe¢R). The general definition of Spec uses
all prime ideals ofR, not just the maximal ideals as we have done. Thus some
authors would write (1.0.1) ag = Specn{C[V]), the maximal spectrum dE[V].
Readers wishing to learn about affine schemes should cdaduind [131].

The Zariski Topology An affine varietyV C C" has two topologies we will use.
The first is theclassical topologyinduced from the usual topology d@@'. The
second is th&ariski topology where the Zariski closed sets are subvarietieg of
(meaning affine varieties @" contained invV) and the Zariski open sets are their
complements. Since subvarieties are closed in the classfmalogy (polynomials
are continuous), Zariski open subsets are open in the céds$spology.

Given a subseBC V, its closurgé in the Zariski topology is the smallest
subvariety ofV containingS. We call Sthe Zariski closureof S. It is easy to give
examples where this differs from the closure in the classigmlogy.

Affine Open Subsets and LocalizatiorSome Zariski open subsets of an affine
varietyV are themselves affine varieties. Giver C[V]\ {0}, let

Vi={peV|[f(p)#0}CV.

ThenVs is Zariski open irV and is also an affine variety, as we now explain.

LetV C C" havel (V) = (fy,..., fs) and pickg € C[xy, ..., %] representing .
ThenVs =V \ V(g) is Zariski open inv. Now consider a new variableand let
W =V(fy,...,fs,1—gy) C C" x C. Since the projection maf" x C — C" maps
W bijectively ontoVs, we can identify/; with the affine varietyV C C" x C.

WhenV is irreducible, the coordinate ring bf% is easy to describe. L& (V)
be the field of fractions of the integral domai\V|]. Recall that elements @ (V)
give rational functions oN'. Then let

(1.0.2) CMV]f={g/f* eC(V)|geC[V], £>0}.
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In Exercise 1.0.3 you will prove that SpéZV |+ ) is the affine varietys.

Example 1.0.2. Then-dimensional torus is the affine open subset
(C)"=C"\V(xa-:-%) € C",

with coordinate ring

CX1y - s Xnlxgxa = CXEE o XD

Elements of this ring are calldchurent polynomials O

The ringC[V]; from (1.0.2) is an example dbcalization In Exercises 1.0.2
and 1.0.3 you will show how to construct this ring for all affimarieties, not just
irreducible ones. The general concept of localization ssused in standard texts
in commutative algebra such a[ Ch. 3] and 89, Ch. 2].

Normal Affine Varieties Let R be an integral domain with field of fraction.

ThenRis normal orintegrally closedif every element oK which is integral over
R (meaning that it is a root of a monic polynomial Rix|) actually lies inR. For

example, any UFD is normal (Exercise 1.0.5).

Definition 1.0.3. An irreducible affine variety is normal if its coordinate ring
C[V] is normal.

For exampleC" is normal since its coordinate ririg[x, ..., X, is a UFD and
hence normal. Here is an example of a nonnormal affine variety

Example 1.0.4.LetC =V (x® —y?) C C2. Thisis an irreducible plane curve with a
cusp at the origin. Itis easy to see tliHC] = C[x,y]/(x3 —y?). Now letx andy be
the cosets ok andy in C[C] respectively. This giveg/x € C(C). A computation
shows thay/x ¢ C[C] and that(y/x)? = x. Consequentl{C[C] and henc€ are not
normal. We will see below thal is an affine toric variety. O

An irreducible affine variety has anormalizationdefined as follows. Let
CNV] ={aeC(V): aisintegral overC[V]}.

We callC|V]’ theintegral closureof C[V]. One can show tha&E[V]" is normal and
(with more work) finitely generated as@algebra (seef9, Cor. 13.13]). This
gives the normal affine variety

V' = Spe¢C|V])

We callV’ the normalizationof V. The natural inclusiorC[V] C C|V]' = C|V’]
corresponds to a may — V. This is thenormalization map

Example 1.0.5.We saw in Example 1.0.4 that the cu@e& C? defined byx® = y?
has elements,y € C|C] such thaty/x ¢ C[C] is integral overC[C]. In Exer-
cise 1.0.6 you will show that[y/x] C C(C) is the integral closure of[C] and
that the normalization map is the m@p— C defined byt — (t2,t3). O
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At first glance, the definition of normal does not seem veryiiive. Once we
enter the world of toric varieties, however, we will see thatmality has a very
nice combinatorial interpretation and that the nicestctodrieties are the normal
ones. We will also see that normality leads to a nice theodiva$ors.

In Exercise 1.0.7 you will prove some properties of normahdms that will
be used in §1.3 when we study normal affine toric varieties.

Smooth Points of Affine VarietiesIn order to define a smooth point of an affine
varietyV, we first need to definocal rings andZariski tangent spacesVhenV
is irreducible, thdocal ring of V at pis

Ovp={f/geC(V)|f,ge C|V]andg(p) # 0}.

Thus &y p consists of all rational functions ovi that are defined agp. Inside of
Ov,p We have the maximal ideal

myp={¢ € Ov,|o(p) =0}

In fact, my p is the unique maximal ideal ofy ,, so thatdy p is alocal ring.
Exercises 1.0.2 and 1.0.4 explain how to defiRg, whenV is not irreducible.

The Zariski tangent spacefV at p is defined to be
Tp(V) = Home (my, p/m§ ,,C).

In Exercise 1.0.8 you will verify that diffiy(C") = n for everyp € C". According
to [131, p. 32], we can compute the Zariski tangent space of a poiahiaffine
variety as follows.

Lemma 1.0.6. Let V C C" be an affine variety and let @ V. Also assume that
[(V)=(f1,...,fs) CClxq,...,X]. Foreachi, let

of of
dp(fi) = Z - (Pxa -+ + ()Xo

Then the Zariski tangent spacg(V) is isomorphic to the subspace ©f defined
by the equations gl f1) = --- = dp(fs) = 0. In particular, dim T,(V) < n. O

Definition 1.0.7. A point p of an affine varietyV is smoothor nonsingular if
dimTp(V) = dimpV, where dinyV is the maximum of the dimensions of the irre-
ducible components &f containingp. The pointp is singular if it is not smooth.
Finally, V is smoothif every point ofV is smooth.

Points lying in the intersection of two or more irreducibtamponents of are
always singular (seép, Thm. 8 of Ch. 9, §6]).

Since dimT,(C") = n for every p € C", we see thaCC" is smooth. For an
irreducible affine varietyy C C" of dimensiond, fix p € V and writel (V) =
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(f1,...,fs). Using Lemma 1.0.6, it is straightforward to show tNais smooth
at p if and only if the Jacobian matrix

ofi

(1.0.3) o(fa,--o ) = <8_x, P >1§i§s,l§j§n

has rankn — d (Exercise 1.0.9). Here is a simple example.

Example 1.0.8.As noted in Example 1.0.4, the plane cuelefined byx3 = y?
hasl (C) = (x3 —y?) C C[x,y]. A point p= (a,b) € C has Jacobian

‘Jp = (38'27 _Zb)7

so the origin is the only singular point Gf %

SinceTp(V) = Horrkc(m\/,p/m\z,,p,(C), we see tha? is smooth ap when dimV
equals the dimension afy,,/m§ , as a vector space ovék,,p/my . In terms of
commutative algebra, this means thme V is smooth if and only ifdy , is a
regular local ring See [LO, p. 123] or B9, 10.3].

We can relate smoothness and normality as follows.

Proposition 1.0.9. A smooth irreducible affine variety V is normal.

Proof. In §3.0 we will see thaC[V] =, Ov,p. By Exercise 1.0.7C[V] is
normal once we prove that, , is normal for allp € V. Hence it suffices to show
that Oy , is normal whenevep is smooth.

This follows from some powerful results in commutative &ige Oy , is a
regular local ring wherp is a smooth point o¥/ (see above), and every regular
local ring is a UFD (seed9, Thm. 19.19]). Then we are done since every UFD is
normal. A direct proof that’y j is normal at a smooth poigi € V is sketched in
Exercise 1.0.10. O

The converse of Propostion 1.0.9 can fail. We will see in 8t the affine
variety V (xy— zw) C C*is normal, ye (xy— zw) is singular at the origin.

Products of Affine Varieties Given affine varietied/; andV,, there are several
ways to show that the cartesian prodicik V; is an affine variety. The most direct
way is to proceed as follows. L& C C™ = Spe¢C|xy,...,Xm]) andV, C C" =
SpecClyi,...,yn]). Takel (V1) = (f,..., fs) andl (Vo) = (gs,...,q). Since thef;
andg; depend on separate sets of variables, it follows that

VlXVZZV(fla"'7fSagla"‘7gt) g(cm—H]

is an affine variety.

A fancier method is to use the mapping properties of the prodiihis will
also give an intrinsic description of its coordinate ringveéhnV, andV, as above,
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V1 x V, should be an affine variety with projections : V; x Vo — V,; such that
whenever we have a diagram

W $1

ey
V]_ X V2 7"—1> V]_
X
Vo

whereg; : W — V; are morphisms from an affine variaty, there should be a unique
morphismv (the dotted arrow) that makes the diagram commute,s,e.y = ¢;.
For the coordinate rings, this means that whenever we haiageath

with C-algebra homomorphismg' : C[Vi] — C[W], there should be a uniqu@-
algebra homomorphiswi* (the dotted arrow) that makes the diagram commute. By
the universal mapping property of ttensor producof C-algebrasC[Vi] @c C[V;]

has the mapping properties we want. Sifif#;] @c C[V,] is a finitely generated
C-algebra with no nilpotents (see the appendix to this chigptés the coordinate
ring C[V; x V). For more on tensor products, sd@,[pp. 24—27] or §9, A2.2].

Example 1.0.10.LetV be an affine variety. Sinc€" = Spe¢Cly;,...,yn]), the
productV x C" has coordinate ring

CV]®c Clya,...,¥n] = C[V][y1, ..., ¥n].
If V is contained irC™ with I (V) = (f1,..., fs) C C[xq,...,Xn), it follows that
[V xC")=(f1,...,fs) CC[Xe,- -, Xm, Y1, - - - Yn)-
For later purposes, we also note that the coordinate rivg>ofC*)" is
CV]@cChy - YT =CVI ¥ - 0

Given affine varietie¥; andV,, we note that the Zariski topology af x V,
is usuallynot the product of the Zariski topologies & andV>.

Example 1.0.11.ConsiderC? = C x C. By definition, a basis for the product of
the Zariski topologies consists of sétsx U, whereU; are Zariski open irC. Such
a setis the complement of a union of collections of “horiatirénd “vertical” lines
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in C2. This makes it easy to see that Zariski closed setZsuch asv (y — x?)
cannot be closed in the product topology. O

Exercises for 1.0
1.0.1. Prove Lemma 1.0.1. Hint: You will need the Nullstellensatz.

1.0.2. Let R be a commutativ€-algebra. A subse® C R is amultipliciative subsepro-
vided 1€ S, 0¢ S, andSis closed under multiplication. THecalization R; consists of all
formal expressiong/s, g € R, s€ S, modulo the equivalence relation
g/s~h/t < u(tg—sh)=0forsomeuc S
(a) Show that the usual formulas for adding and multiplyragfions induce well-defined
binary operations that mali; into C-algebra.
(b) If Rhas no nonzero nilpotents, then prove that the same is tri®;fo
For more on localization, se&(), Ch. 3] or B9, Ch. 2].
1.0.3. Let R be a finitely generate@-algebra without nilpotents as in Lemma 1.0.1 and

let f € Rbe nonzero. TheB= {1, f,f2,...} is a multiplicative set. The localizatidRs is
denotedR; and is called théocalization of R at f

(a) Show thaRs is a finitely generate@-algebra without nilpotents.

(b) Show thaR; satisfies Spe®;) = SpecR);.

(c) Show thaRs is given by (1.0.2) wheRis an integral domain.

1.0.4. Let V be an affine variety with coordinate rifg[V]. Given a pointp € V, let
S={geC[V]|g(p) # 0}.

(a) Show thatSis a multiplicative set. The localizatioB[V|s is denoteddi, , and is
called thelocal ring of V at p

(b) Show that every € &, has a well-defined valug(p) and that
my,p={¢ € Gy ,p| d(p) =0}
is the unique maximal ideal afy, p.
(c) WhenV is irreducible, show thaf , agrees with the definition given in the text.

1.0.5. Prove that a UFD is normal.

1.0.6. In the setting of Example 1.0.5, show ttaly/x] C C(C) is the integral closure of
C[C] and that the normalizatiol — C is defined byt — (t?,t3).
1.0.7. In this exercise, you will prove some properties of normahdins needed for §1.3.

(a) LetR be a normal domain with field of fractions and letS C R be a multiplicative
subset. Prove that the localizatiBg is normal.

(b) LetR,, a € A, be normal domains with the same field of fracti®hsProve that the
intersectiorﬂaeARa is normal.

1.0.8. Prove that dinTp(C") = nforall pe C".

1.0.9. Use Lemma 1.0.6 to prove the claim made in the text that snrmesthis determined
by the rank of the Jacobian matrix (1.0.3).
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1.0.10. LetV be irreducible and suppose that V is smooth. The goal of this exercise
is to prove thaty , is normal using standard results from commutative algeBean =
dimV and consider the ring dbrmal power serie€[[x1, ..., %n]]. This is a local ring with
maximal idealm = (Xq,...,%,). We will use three facts:

o C[[x1,...,%n]] is a UFD by P80 p. 148] and hence normal by Exercise 1.0.5.
e Sincep eV is smooth, 207, 81C] proves the existence ofaalgebra homomorphism
Ov,p — CJ[X4,...,%n]] that induces isomorphisms
ﬁv7p/m6,p ~ C[[Xq,..- ,Xn]]/me
for all £ > 0. This implies that theompletionsee [LO, Ch. 10])

7 ; £
Ovp= [@ ﬁV-,P/mV,p

is isomorphic to a formal power series ring, i.é?v_,p ~ C[[x1,...,X]]. Such an iso-
morphism captures the intuitive idea that at a smooth péimictions should have
power series expansions in “local coordinates”. . , X,.

o If I C &y pis anideal, then

I = ﬂ;il(l +m€,p)-
This theorem of Krull holds for any ide&lin a Noetherian local ring\ and follows
from [10, Cor. 10.19] withM = A/I.
Now assume that € V is smooth.
(a) Use the third bullet to show that, , — C[[x4,...,%n]] is injective.

(b) Suppose that,b € Oy p satisfybla in C[[x1,...,X,]]. Prove thabjain &y ,. Hint:
Use the second bullet to shane b&y,, +m{ , and then use the third bullet.

(c) Provethaty pis normal. Hint: Use part (b) and the first bullet.
This argument can be continued to show that, is a UFD. SeeZ07, (1.28)]

1.0.11.LetV andW be affine varieties and I&C V be a subset. Prove thaxk W = Sx W.

1.0.12. LetV andW be irreducible affine varieties. Prove thaix W is irreducible. Hint:
Suppos&/ x W = Z; UZ,, whereZ;,Z, are closed. Le¥, = {veV | {v} xWC Z}. Prove
thatV =V, UV, and thay is closed inv. Exercise 1.0.11 will be useful.

81.1. Introduction to Affine Toric Varieties

We first discuss what we mean by “torus” and then explore uarimnstructions
of affine toric varieties.

The Torus The affine variety C*)" is a group under component-wise multiplica-
tion. Atorus Tis an affine variety isomorphic t@C*)", whereT inherits a group
structure from the isomorphism.

The term “torus” is taken from the language lofear algebraic groups We
will use (without proof) basic results about tori that canfiwend in standard texts
on algebraic groups such a37], [152], and 256]. See also 36, Ch. 3] for a
self-contained treatment of tori.
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We begin withcharactersandone-parameter subgroups

A characterof a torusT is a morphismy : T — C* that is a group homo-
morphism. For examplen= (ay,...,a,) € Z" gives a charactey™: (C*)" — C*
defined by

(1.1.1) XMt t) =t
One can show thatll characters of C*)" arise this way (se€lp2 §16]). Thus the
characters ofC*)" form a group isomorphic t@".

For an arbitrary torug, its characters form a free abelian groMpof rank
equal to the dimension df. It is customary to say thah € M gives the character
x™: T — C*.

We will need the following result concerning tori (seeébp, 816] for a proof).

Proposition 1.1.1.

(@) Let Ty and | be tori and letd® : T; — T, be a morphism that is a group homo-
morphism. Then the image &fis a torus and is closed inT

(b) Let T be a torus and let = T be an irreducible subvariety of T that is a
subgroup. Then H is a torus. a

Assume that a torus acts linearly on a finite dimensional vector spé¢ever
C, where the action of € T onw € W is denoted - w. A basic result is that the
linear mapswv— t - w are diagonalizable and can be simultaneously diagonalized
We describe this as follows. Givene M, define theeigenspace

Wn={weW |t-w=x"(t)wforallte T}.

If Wi, # {0}, then everyw € Wi, \ {0} is a simultaneous eigenvector for alt T,
with eigenvalue given by ™M(t). See P56, Thm. 3.2.3] for a proof of the following.

Proposition 1.1.2. In the above situation, we have WD .\ W. O

A one-parameter subgroupf a torusT is a morphism) : C* — T that is a
group homomorphism. For example= (bs,...,by) € Z" gives a one-parameter
subgroup\' : C* — (C*)" defined by

(1.1.2) AU(t) = (P, tPn).

All one-parameter subgroups ¢E*)" arise this way (se€lp2, §16]). It follows
that the group of one-parameter subgroup§@f)" is naturally isomorphic t&".
For an arbitrary toru3, the one-parameter subgroups form a free abelian grkoup
of rank equal to the dimension ®f As with the character group, an elemerd N
gives the one-parameter subgrowf: C* — T.

There is a natural bilinear pairing, ) : M x N — Z defined as follows.

e (Intrinsic) Given a charactey™ and a one-parameter subgroify the com-
positionyMo AU : C* — C* is a character of*, which is given byt — t¢ for
somel € Z. Then(m,u) = ¢.
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e (Concrete) IfT = (C*)"withm= (ay,...,ay) € Z",u=(by,...,by) € Z", then
one computes that

(1.1.3) (m,u) :Za;bi,
i1

i.e., the pairing is the usual dot product.

It follows that the characters and one-parameter subgrofipgorusT form
free abelian groupM andN of finite rank with a pairing( , ) : M x N — Z that
identifiesN with Homz (M, Z) andM with Homy(N,Z). In terms of tensor prod-
ucts, one obtains a canonical isomorphiSmz C* ~ T viau®t — AY(t). Hence
it is customary to write a torus ay.

From this point of view, picking an isomorphisify ~ (C*)" induces dual
bases ofM andN, i.e., isomorphismé#/ ~ Z" andN ~ Z" that turn characters
into Laurent monomials (1.1.1), one-parameter subgroofms monomial curves
(1.1.2), and the pairing into dot product (1.1.3).

The Definition of Affine Toric Variety We now define the main object of study of

this chapter.

Definition 1.1.3. An affine toric varietyis an irreducible affine variety contain-
ing a torusTy ~ (C*)" as a Zariski open subset such that the actiofyodn itself
extends to an algebraic actionf onV. (By algebraic action, we mean an action
Tn xV — V given by a morphism.)

Obvious examples of affine toric varieties 4f&*)" andC". Here are some
less trivial examples.

Example 1.1.4. The plane curve€ = V(x3 —y?) C C? has a cusp at the origin.
This is an affine toric variety with torus

C\ {0} =Cn(C*)?={(t3t3) |teC*} ~C,

where the isomorphism ts— (t2,t3). Example 1.0.4 shows th@tis a nonnormal
toric variety. O

Example 1.1.5. The varietyV =V (xy—zw) C C*is a toric variety with torus
VN(C) = {(to o ta, ity 1) | 1 € C} ~ (C*)3,

where the isomorphism {$;,ty,t3) — (tl,tz,tg,tltztgl). We will see later thaV/ is
normal. O

Example 1.1.6.Consider the surface i@l parametrized by the map
$:C? — It

defined by(st) — (s9,s971t,...,st9"1 t9). Thus® is defined using all degres
monomials ins,t.
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Let the coordinates of9+! bexo, ...,xg and letl C Clxo, ..., X4] be the ideal
generated by the 2 2 minors of the matrix

<Xo X1 - Xd-2 Xd—1>
X1 X2 o Xd-1 X )’

sol = (XiXj+1—Xi+1X; |0 <i < j <d—1). In Exercise 1.1.1 you will verify that
®(C?) = V(I), so thatCq = ®(C?) is an affine variety. You will also prove that
I(éd) =1, so thatl is the ideal of all polynomials vanishing . It follows that|

is prime since/(1) is irreducible by Proposition 1.1.8 below. The affine suefag

is called theational normal cone of degreeahd is an example ofdeterminantal
variety. We will see below that is a toric ideal.

It is straightforward to show th&l is a toric variety with torus
B((C*)?) =Can (CH)*H = (€)%,
We will study this example from the projective point of viewChapter 2. O

We next explore three equivalent ways of constructing affinie varieties.

Lattice Points In this book, aattice is a free abelian group of finite rank. Thus
a lattice of rankn is isomorphic taZ". For example, a torugy has latticesM (of
characters) anhl (of one-parameter subgroups).

Given a torusTy with character latticéM, a sete/ = {my,...,ms} C M gives
characters¢™ : Ty — C*. Then consider the map

(1.1.4) ®,: Ty — CS
defined by
D, (t) = (Xml(t),...,xms(t)) e Cs.
Definition 1.1.7. Given a finite setez C M, the affine toric variety,, is defined
to be the Zariski closure of the image of the miap from (1.1.4).

This definition is justified by the following proposition.

Proposition 1.1.8. Givene C M as above, leZ.«# C M be the sublattice gener-
ated by.e/. Then Y, is an affine toric variety whose torus has character lattice
747 . In particular, the dimension of .y is the rank ofZ.<7 .

Proof. The map (1.1.4) can be regarded as a map

b, Ty — (C*)°
of tori. By Proposition 1.1.1, the image = ®.,(Ty) is a torus that is closed in
(C*)%. The latter implies tha¥,, N (C*)* =T sinceY,, is the Zariski closure of

the image. It follows that the image is Zariski openMg. Furthermore,T is
irreducible (it is a torus), so the same is true for its ZargdtsureY,, .



14 Chapter 1. Affine Toric Varieties

We next consider the action d@f. SinceT C (C*)3, an element € T acts on
CS® and takes varieties to varieties. Then

T=t-TCt'Y,

shows that - Y,, is a variety containing . HenceY,, Ct-Y,, by the definition of
Zariski closure. Replacingwith t—* leads toY,, =t-Y,,, so that the action of
induces an action ovi,,. We conclude that,, is an affine toric variety.

It remains to compute the character latticeTofwhich we will temporarily
denote byM’. SinceT = ®,(Tn), the mapd ., gives the commutative diagram

Tn —5 (C*)S

\J

where— denotes a surjective map ard an injective map. This diagram of tori
induces a commutative diagram of character lattices

M&ZS

N

M’.

Sinceéfw : Z° — M takes the standard basgs...,esto m,..., m, the image of
®,, is Zo/. By the diagram, we obtaiM’ ~ Z.o/. Then we are done since the
dimension of a torus equals the rank of its character lattice O

In concrete terms, fix a basis bf, so that we may assunid = Z". Then thes
vectors inZ C Z" can be regarded as the columns ohans matrix A with integer
entries. In this case, the dimensionYgf is simply the rank of the matriA.

We will see below that every affine toric variety is isomoipto Y., for some
finite subsetw’ of a lattice.

Toric Ideals LetY,, C C®>= SpecC|x,...,Xs]) be the affine toric variety com-
ing from a finite sete = {my,...,ms} C M. We can describe the idekY,,) C
C[x1,...,Xs] as follows. As in the proof of Proposition 1.18,, induces a map of
character lattices

6@7 75— M
that sends the standard basis...,es to m,...,ms. LetL be the kernel of this
map, so that we have an exact sequence

0—L—Z5— M.

In down to earth terms, elements= (/4,...,/{s) of L satisfy Ziszléimi =0 and
hence record the linear relations amongrtte
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Givenl = ({,...,0s) € L, set
0, = Zéia and ¢ = —Zfia.
4i>0 1i<0
Note that! = ¢, — ¢_ and that/,,/_ € N®. It follows easily that the binomial

/ 2 4 —4
X+ =X =[Ig=0%" —Ia<o%
vanishes on the image @f,, and hence olY,, sinceY,, is the Zariski closure of
the image.

Proposition 1.1.9. The ideal of the affine toric variety,YC C®is
I(Yo) = (x% —=x~ [LeLl) = (x*-x"|a,f e N®anda— B €L).

Proof. We leave it to the reader to prove equality of the two idealghanright
(Exercise 1.1.2). Let, denote this ideal and note thiat C I(Y,/). We prove
the opposite inclusion following2p4, Lem. 4.1]. Pick a monomial order on

C[xa,...,X%s| and an isomorphisriy ~ (C*)". Thus we may assund = Z" and

the map® : (C*)" — C?® is given by Laurent monomials™ in variablest, ..., t,.

If 1L #1(Yy), then we can pickf € I(Y,,) \ I. with minimal leading monomial
x* = []>_,x¥. Rescaling if necessary® becomes the leading term 6f

Sincef (t™,...,t™) is identically zero as a polynomial t, ... ,t,, there must
be cancellation involving the term coming frotfi. In other words f must contain
a monomiak’ = [T>_, x* < x® such that

This implies that

sothate — =37 ;(a —b)e € L. Thenx® —x? € I, by the second description
of I.. It follows that f —x® +x% also lies inl(Y,,)\ I and has strictly smaller
leading term. This contradiction completes the proof. a

Given &7 C M, there are several ways to compute the idg¥l,) = I, of
Proposition 1.1.9. In simple cases, the rational impfieition algorithm of 9,
Ch. 3, 83] can be used. One can also computasing a basis of. and ideal
quotients (Exercise 1.1.3). For more on computingee 64, Ch. 12].

Inspired by Proposition 1.1.9, we make the following deiomit
Definition 1.1.10. Let L C Z® be a sublattice.
(@) Theideal_ = (x* —x% | a,8 € N*anda — 3 € L) is called dattice ideal
(b) A prime lattice ideal is called ®@ric ideal.
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Since toric varieties are irreducible, the ideals appegainProposition 1.1.9
are toric ideals. Examples of toric ideals include:

Example 1.1.4 (x3 —y?) C C[x,y]
Example 1.1.5 (xz—yw) C C[x, Y,z W]
Example 1.1.6 (xiXj+1—Xi+1X; |0<i< j<d—1) CC[xo,...,Xd].

(The latter is the ideal of the rational normal cabeC C%*1) In each example,
we have a prime ideal generated by binomials. As we now shaeh &leals are
automatically toric.

Proposition 1.1.11. An ideal I C C[xy,...,Xg| is toric if and only if it is prime and
generated by binomials.

Proof. One direction is obvious. So suppose thetprime and generated by bino-
mialsx® —x%. Then observe that ()N (C*)%is nonempty (it containgl, ..., 1))
and is a subgroup dfC*)s (easy to check). Sincé(l) C C®is irreducible, it fol-
lows thatV (1) N (C*)®is an irreducible subvariety ¢fC*)® that is also a subgroup.
By Proposition 1.1.1, we see that=V(l) N (C*)%is a torus.

Projecting on theth coordinate of C*)® gives a charactef — (C*)® — C*,
which by our usual convention we write 88" : T — C* for mj € M. It follows
easily thatV () =Y, for & = {my,...,ms}, and sincd is prime, we havd =
[ (Y.,) by the Nullstellensatz. Thelnis toric by Proposition 1.1.9. O

We will later see that all affine toric varieties arise from¢adeals. For more
on toric ideals and lattice ideals, the reader should copadd, Ch. 7].

Affine Semigroups A semigroupis a setS with an associative binary operation
and an identity element. To be affine semigroupwe further require that:

e The binary operation o is commutative. We will write the operation as
and the identity element as 0. Thus a finite.sét_ S gives

No = {} cy@mm|am e N} CS.
e The semigroup is finitely generated, meaning that there isite ffete” C S
such thalN.e7 =S.
e The semigroup can be embedded in a latkite

The simplest example of an affine semigroupNi5C Z". More generally, given
a latticeM and a finite setz C M, we get the affine semigrouf.z C M. Up to
isomorphism, all affine semigroups are of this form.

Given an affine semigroup C M, the semigroup algebraC[S] is the vector
space ovefC with S as basis and multiplication induced by the semigroup siract
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of S. To make this precise, we think & as the character lattice of a tortlig, so
thatm € M gives the charactey™. Then

CIS] = { ZCme | cm € C andcy, = 0 for all but finitely manym},
mes
with multiplication induced by

m+-m’

X™x™ =x
If S=Ng for o7 = {my,...,ms}, thenC[S] = C[x™,...,x™].
Here are two basic examples.

Example 1.1.12.The affine semigroupi" C Z" gives the polynomial ring

CIN"] = C[xa,-- -, Xn],
wherex; = x® andey, ..., €, is the standard basis @f". O
Example 1.1.13.1f e,...,6, is a basis of a latticéM, thenM is generated by
of = {+ey,...,+6} as an affine semigroup. Settihg= x® gives the Laurent
polynomial ring

C[M] = C[t, ... tEh.
Using Example 1.0.2, one sees tfiaM] is the coordinate ring of the tordg. ¢

Affine semigroup rings give rise to affine toric varieties akofvs.

Proposition 1.1.14.LetS C M be an affine semigroup. Then:
(@) C[S] is an integral domain and finitely generated a€aalgebra.

(b) Spec¢C|S)) is an affine toric variety whose torus has character latfs and
if S = N for a finite seteZ C M, thenSpe¢C[S]) =Y,y

Proof. Asnoted above¢Z = {my,...,ms} impliesC[S]=C[x™,...,x™], soC[S]
is finitely generated. Sincg[S] C C[M] follows from S C M, we see tha€|[S] is
an integral domain by Example 1.1.13.

Using.«/ = {my,...,ms}, we get theC-algebra homomorphism
7 :ClXa,...,X] — C[M]
wherex; — x™ € C[M]. This corresponds to the morphism
&, Ty — C°

from (1.1.4), i.e.;t = (P)* in the notation of §1.0. One checks that the kernel
of 7 is the toric ideal (Y,,) (Exercise 1.1.4). The image ofis C[x™,...,x™| =
C[S], and then the coordinate ring 8f, is

(C[YQ/] = (C[Xl, . ,Xs]/| (YVQ{)

(1.1.5) = C[xa,...,xs/Ker(r) ~ Im(x) = C[S].
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This proves that Spé€[S]) = Y,,. SinceS = N.oZ impliesZS = Z.<7, the torus of
Y., = Spe¢C|S]) has the desired character lattice by Proposition 1.1.8. [

Here is an example of this proposition.

Example 1.1.15.Consider the affine semigrodpC Z generated by 2 and 3, so
thatS = {0,2,3,... }. To study the semigroup algebS], we use (1.1.5). If we
sete = {2,3}, then®d ,(t) = (t2,t3) and the toric ideal i$(Y,,) = (x3 —y?) by
Example 1.1.4. Hence

C[S] = C[t%,t°] ~ Clx,y]/ (* — y?)
and the affine toric variety,, is the curvex® = y? from Example 1.1.4. O

Equivalence of ConstructionsBefore stating our main result, we need to study
the action of the toru3y on the semigroup algebf@M]. The action ofTy on
itself given by multiplication induces an action @jM] as follows: ift € Ty and

f € C[M], thent - f € C[M] is defined byp — f(t~. p) for p € Ty. The minus
sign will be explained in 85.0.

The following lemma will be used several times in the text.

Lemma 1.1.16.Let AC C[M] be a subspace stable under the action@f Then
A= @ C-x™.
X

Proof. Let A’ = @XmeAC -x™ and note that’ C A. For the opposite inclusion,
pick f # 0in A. SinceA C C[M], we can write

f= Z Cme>

me %
where# C M is finite andcy, # 0 for allme %. Thenf € BN A, where

B=Sparix™|me %) C C[M].

An easy computation shows thiaty™ = x™(t=1)x™. It follows thatB and
henceBN A are stable under the action &f. SinceBN A is finite-dimensional,
Proposition 1.1.2 implies th&nN Ais spanned by simultaneous eigenvectorgof
This is taking place ifC[M], where simultaneous eigenvectors are characters. It
follows thatBN Ais spanned by characters. Then the above expressidref@MA
implies thaty™ € Afor me 2. Hencef € A, as desired. a

We can now state the main result of this section, which as#egait our various
approaches to affine toric varieties all give the same clagbjects.
Theorem 1.1.17.Let V be an affine variety. The following are equivalent:
(a) V is an affine toric variety according to Definition 1.1.3.
(b) V =Y, for afinite sete in a lattice.
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(c) V is an affine variety defined by a toric ideal.
(d) V = Spec¢C[S]) for an affine semigrou§.

Proof. The implications (b)= (c) < (d) = (a) follow from Propositions 1.1.8,

1.1.9 and 1.1.14. For (a» (d), letV be an affine toric variety containing the
torusTy with character latticé. Since the coordinate ring a§; is the semigroup

algebraC[M], the inclusionTy C V induces a map of coordinate rings

CV] — C[M].

This map is injective sinc@&y is Zariski dense iV, so that we can regafd|V] as
a subalgebra of [M].

Since the action ofy onV is given by a morphisnTy xV — V, we see that
if tc€ Ty andf € C|V], thenp+ f(t~1. p) is a morphism orv. It follows that
C[|V] C C|M] is stable under the action ®f. By Lemma 1.1.16, we obtain

cvl= & c-x™
xMeCV]
HenceC[V| = C[S] for the semigrous = {me M | x" e C[V]}.
Finally, sinceC|V] is finitely generated, we can finfi,..., fs € C[V] with
C|V] =C[fy,..., . Expressing eaclfi in terms of characters as above gives a
finite generating set @&. It follows thatS is an affine semigroup. O

Here is one way to think about the above proof. When an iribthiaffine
varietyV contains a toru3y as a Zariski open subset, we have the inclusion

CV] C CM.

ThusC[V] consists of those functions on the torfg that extend to polynomial
functions onV. Then the key insight is that is a toric varietyprecisely when the
functions that extend are determined by the characterseki@nd

Example 1.1.18.We have seen that = V(xy—zw) C C* is a toric variety with

toric ideal(xy—zw) C C[x,y,z w]. Also, the torus i$C*)3 via the mag(ty, tp,t3) —
(tl,tz,t3,t1t2t3‘l). The lattice points used in this map can be represented as the
columns of the matrix

100 1
(1.1.6) 010 1.
001 -1

The corresponding semigro$pC Z2 consists of théN-linear combinations of the
column vectors. Hence the elementsSoére lattice points lying in the polyhe-
dral region inR? pictured in Figure 1 on the next page. In this figure, the four
vectors generatin§ are shown in bold, and the boundary of the polyhedral region
is partially shaded. In the terminology of §1.2, this polgted region is aational
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(0,0,2)

(0,1,0)

(1,0,0

(1,1,-1)
Figure 1. Cone containing the lattice points correspondiny te: V (xy — zw)

polyhedral coneln Exercise 1.1.5 you will show th&tconsists ofll lattice points
lying in the cone in Figure 1. We will use this in §1.3 to prokat is normal. ¢

Exercises for §1.1
1.1.1. Asin Example 1.1.6, let
| = (XiXj+1—Xi4+1Xj | 0<i< j<d—-1) CClx,...,Xd]
and letCy be the surface parametrized by
B(st) = (7,897, .. ., std L td) e CUFL
(a) Prove thaV/(l) = ®(C?) € C%*2. ThusCy = V(I).
(b) Prove that (6d) is homogeneous.

o~

(c) Consider lex monomial order witty > x3 > --- > Xg. Let f € 1(Cy) be homogeneous
of degreel and letr be the remainder of on division by the generators of Prove
thatr can be written

I = ho(Xo,X1) + ha(X1,%2) + - -+ hg—1(Xd—1, Xd)

whereh; is homogeneous of degrée Also explain why we may assume that the
coefficient ofx{ in h; is zero for 1<i<d—1.
(d) Use part (c) and(s?,s%1,...,st9,t9) = 0 to show that = 0.

~

(e) Use parts (b), (c) and (d) to prove that | (Cy). Also explain why the generators of
| are a Grobner basis for the above lex order.

1.1.2. LetL C Z® be a sublattice. Prove that
(xH+ —x|rel)y=(x*—x"|a,f eN®, a—pelL).

Note that whert € L, the vectord . ,/_ € N° have disjoint support (i.e., no coordinate is
positive in both), while this may fail for arbitrary, 3 € N® with oo — 5 € L.
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1.1.3. Letl_ be atoric ideal and leil, .. ., ¢ be a basis of the sublattiteC Z3. Define
=% —x li=1,...r).

Prove thatl, = I: (x,---Xs)>°. Hint: Givena, 8 € N* with o — 3 € L, write o — 3 =
&l & € Z. This implies

i <Xéi+>ai <Xéi>_ai

X —-1= — — -1

YA A
a>0 \ X'~ a<0 \ X

Show that multiplying this byx; - - - xs) gives an element df for k > 0. (By being more
careful, one can show that this result holds for lattice lsleee P04, Lem. 7.6].)

1.1.4. Fix an affine varietw/. Thenfy,..., fs € C[V] give a polynomial maj@® : V — C°,
which on coordinate rings is given by

o* : C[xq,...,X] — C[V], X — fj.
LetY C C® be the Zariski closure of the image ®f
(a) Prove that(Y) = Ker(®*).
(b) Explain how this applies to the proof of Proposition 14L.

1.1.5. Letmy = (1,0,0),m, = (0,1,0),ms = (0,0,1),my = (1,1,—1) be the columns of
the matrix in Example 1.1.18 and let

4
C= {Z)\im | Ai EREO} gRs
i=1

be the cone in Figure 1. Prove ti@an Z3 is a semigroup generated by, mp, mg, my.

1.1.6. An interesting observation is that different sets of l&foints can parametrize the
same affine toric variety, even though these parametrizabehave slightly differently. In
this exercise you will consider the parametrizations

dy(st) = (S,st,st?) and Py(st) = (3, st,t3).
(a) Prove thafb; and®, both give the affine toric variety = V (xz—y?3) C C3.
(b) We can regaré; and®, as maps
®1:C?>—Y and d,:C%>—Y.
Prove thatb, is surjective and thab; is not.

In general, a finite subsey C Z" gives a rational mag@,, : C" --» Y,,. The image of
®,, in CSis called atoric setin the literature. Thu®;(C?) and®,(C?) are toric sets. The
papers 169 and [239 study when a toric set equals the corresponding affine tariety.

1.1.7. In Example 1.1.6 and Exercise 1.1.1 we constructed thenatioormal conéd
using all monomials of degrekin s,t. If we drop some of the monomials, things become
more complicated. For example, consider the surface pdriaee by

B(st) = (s, s%,st5,t%) e C*.
This gives a toric variety C C*. Show that the toric ideal of is given by
1(Y) = (xw—yzyw? — 2° xZ —y’w,x’z—y°) C C[xy,z W].
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The idealC,4 has quadratic generators; by removi#itf, we now get cubic generators. See
Example B.1.1 for a computational approach to this exerc&ee also Example 2.1.10,
where we will study the paramaterizati®from the projective point of view.

1.1.8. Instead of working ovefC, we will work over an algebraically closed fieldof
characteristic 2. Consider the affine toric varietg k> parametrized by

®(s,t,u) = (4 t4 ut, Lu tr?ud) e K°.
(a) Find generators for the toric idda& 1 (V) C K[Xq, X2, X3, X4, X5].
(b) Show that dinV = 3. You may assume that Proposition 1.1.8 holds &ver

(c) Show that = \/<le1 + x8xa, Xg + X323,

It follows thatV C k® has codimension two and can be defined by two equationsyi.e.,
is aset-theoretic complete intersectiofhe paper12 shows that if we replack with an
algebraically closed field of characterisfic- 2, then the above parametrizatiomsvera
set-theoretic complete intersection.

1.1.9. Prove that a lattice idedl for L C Z* is a toric ideal if and only iZ3/L is torsion-
free. Hint: WhenZ®/L is torsion-free, it can be regarded as the character laifiadorus.
The other direction of the proof is more challenging. If yai gtuck, seeq04, Thm. 7.4].

1.1.10. Prove that = (x? — 1,xy— 1,yz— 1) is the lattice ideal for the lattice
L={(ab,c)eZ*|a+b+c=0mod 2 C 73
Also compute the primary decompositionlab show that is not prime.
1.1.11.Let Ty be atorus with character lattidd. Then every point € Ty gives an evalua-
tion map¢; : M — C* defined byg (m) = x™(t). Prove thaty is a group homomorphism
and that the map— ¢ induces a group isomorphism
Tn ~ Homy (M, C¥).
1.1.12. Consider toriTy andT, with character latticesl; andM,. By Example 1.1.13, the
coordinate rings of; andT; areC[M;] andC[M;]. Let® : T; — T, be a morphism that is
a group homomorphism. The@ninduces maps
d:My;— M; and & : C[My] — C[My]
by composition. Prove that* is the map of semigroup algebras induced by the ﬁi@p
affine semigroups.

1.1.13. A commutative semigrou§ is cancellativeif u+v = u+wimpliesv = w for all
u,v,w € S andtorsion-freeif nu= nvimpliesu=vforallne N\ {0} andu,v € S. Prove
thatS is affine if and only if it is finitely generated, cancellatpand torsion-free.

1.1.14. The requirement that an affine semigroup be finitely genériatanportant since
lattices contain semigroups that are not finitely generdted example, let > 0 be irra-
tional and consider the semigroup

S={(ab) e N?|b>ra} C 7%

Prove thatS is not finitely generated. (The generatorsSadre related to continued frac-
tions. For example, when = (1++/5)/2 is the golden ratio, the minimal generators of
S are(0,1) and (Fon, Fony1) for n=1,2,..., whereF, is thenth Fibonacci number. See
[231 and [259. Continued fractions will play an important role in Chapi®.
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1.1.15. Suppose thap : M — M is a group isomorphism. Fix a finite sef C M and
let #Z = ¢(o7). Prove that the toric varieti€s,, andYg are equivariantly isomorphic
(meaning that the isomorphism respects the torus action).

81.2. Cones and Affine Toric Varieties

We begin with a brief discussion of rational polyhedral coaad then explain how
they relate to affine toric varieties.

Convex Polyhedral ConesFix a pair of dual vector spacédr andNg. Our dis-
cussion of cones will omit most proofs—we refer the readeflfaf for more
details and218 App. A.1] for careful statements. See al§d[128, 24].

Definition 1.2.1. A convex polyhedral coné Ny is a set of the form

o = CondS) = {Z)\uu | A > 0} C Ng,
ues

whereSC Ny is finite. We say that is generatedoy S. Also set Coné)) = {0}.

A convex polyhedral cone is in fact convex meaning thak,y € o implies
X+ (1—-Ayeo forall 0< )\ <1, and is acone meaning thak € o implies
Ax € g forall A > 0. Since we will only consider convex cones, the cones gaipf
Definition 1.2.1 will be called simply “polyhedral cones.”

Examples of polyhedral cones include the first quadraiiior first octant in
R3. For another example, the cone Comee,, e; + €3, + &) C R3 is pictured
in Figure 2. Itis also possible to have cones that contaiineelimes. For example,

Figure 2. Cone inR® generated by, e, e + 3,6 + €3
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Conder, —e1) C R? s thex-axis, while Conée;, —ey, &) is the closed upper half-
plane{(x,y) € R? | y > 0}. As we will see below, these last two examples are not
strongly convex

We can also create cones uspagytopeswhich are defined as follows.

Definition 1.2.2. A polytopein N is a set of the form
P = Conv9) = {Z)\uu A0 A= 1} C Ng,
ues ues
whereSC N is finite. We say thaP is theconvex hullof S,

Polytopes include all polygons I&? and bounded polyhedra R®. As we will
see in later chapters, polytopes play a prominent role ithtbery of toric varieties.
Here, however, we simply observe that a polytBp€ Ni gives a polyhedral cone
C(P) € Nr x R, called thecone of Pand defined by

CP)={\-(ul)eNgxR|uecP, A>0}.

If P=Con\S), then we can also describe thisGd) = CongSx {1}). Figure 3
shows what this looks whdnis a pentagon in the plane.

Figure 3. The coneC(P) of a pentagorP C R?

The dimensiondim ¢ of a polyhedral cone is the dimension of the smallest
subspac®V = Spario) of Ng containingo. We call Spafo) the spanof o.

Dual Cones and FacesAs usual, the pairing betwedvir andNg is denoted , ).
Definition 1.2.3. Given a polyhedral cone C N, its dual coneis defined by
oV ={meMg | (mu)>0forallue o}
Duality has the following important properties.

Proposition 1.2.4.Leto C N be a polyhedral cone. TherY is a polyhedral cone
inMg and(cv)¥ =o. O
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Givenm# 0 in Mg, we get the hyperplane
Hn={ueNg | (mu) =0} C Ng
and the closed half-space
Hi = {ueNg | (mu) >0} C Ng.

ThenHp, is a supporting hyperplane®f a polyhedral coner C Ng if o C H.,
andH} is asupporting half-space Note thatHy, is a supporting hyperplane of
o if and only if me ¢V \ {0}. Furthermore, ifmy,...,ms generates", then it is
straightforward to check that

(1.2.1) o=Hf N---NH.

Thus every polyhedral cone is an intersection of finitely ynelnsed half-spaces.
We can use supporting hyperplanes and half-spaces to dafiesof a cone.

Definition 1.2.5. A face of a coneof the polyhedral cone is 7 = HyNo for some

me oV, written 7 < 0. Usingm = 0 shows that is a face of itself, i.e.g < o.
Facesr # o are calledoroper faceswrittent < o.

The faces of a polyhedral cone have the following obviouperties.

Lemma 1.2.6. Leto = Con€S) be a polyhedral cone. Then:

(a) Every face ob is a polyhedral cone.

(b) An intersection of two faces efis again a face of.

(c) Aface of a face of is again a face of. a

You will prove the following useful property of faces in Exese 1.2.1.

Lemma 1.2.7. Let T be a face of a polyhedral cone If vwe o and v+w € 7,
thenyw e 7. O

A facetof ¢ is a facer of codimension 1, i.e., dim = dim o — 1. Anedgeof o
is a face of dimension 1. In Figure 4 on the next page we ikista 3-dimensional
cone with shaded facets and a supporting hyperplane (a ipldinis case) that cuts
out the vertical edge of the cone.

Here are some properties of facets.
Proposition 1.2.8. Leto C Ng ~ R" be a polyhedral cone. Then:
(@) If o =HJ N---NHf form e 0¥, 1<i <s, theno¥ = Congmy, ..., ms).
(b) If dimo = n, then in(a) we can assume that the facetsadre 7 = Hy, No.
(c) Every proper face < o is the intersection of the facets @containingr. [

Note how part (b) of the proposition refines (1.2.1) when dim dim Ng.
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Hno

supporting
hyperplane ~

Figure 4. A conecs C R® and a hyperplankl supporting an edgel N

When working inR", dot product allows us to identify the dual witl'. From
this point of view, the vectorsy,...,ms in part (a) of the proposition aracet
normals i.e., perpendicular to the facets. This makes it easy tqchenexamples.

Example 1.2.9.1t is easy to see that the facet normals to the cene R3 in
Figure 2 aremy = €;,mp = €;,Mg = €3, My = €; + & — €3. Hence

This is the cone of Figure 1 at the end of §1.1 whose latticatpaiescribe the
semigroup of the affine toric variely(xy— zw) (see Example 1.1.18). As we will
see, this is part of how cones describe normal affine torietias.

Now considerr¥, which is the cone in Figure 1. The reader can check that the
facet normals of this cone aeg, e, e; + €3, + €3. Using duality and part (a) of
Proposition 1.2.8, we obtain

o= (c")" =Condey,e,e1+€3,6&+€3).

Hence we recover our original descriptioncofSee also Example B.2.1. O
In this example, facets of the cone correspond to edges dfidk More gen-

erally, given a face < o C Ng, we define

rt={meMg|(mu)=0forallue r}

™ ={meo’|{mu)=0foralluer}

=o' N7t

We call* thedual faceof  because of the following proposition.

Proposition 1.2.10.1f 7 is a face of a polyhedral coneandr* = ¢V N7+, then:
(a) 7* is a face ofr".
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(b) The mapr — 7* is a bijective inclusion-reversing correspondence betwbe
faces ofr and the faces of V.

(c) dim7+dim7* =n. O

Here is an example of Proposition 1.2.10 when diry dim Ng.
Example 1.2.11.Let 0 = Condey, &) C R3. Figure 5 showsr andsV. You

Figure 5. A 2-dimensional cone C R® and its duab" C R®
should check that the maximal face @f namelyo itself, gives the minimal face
o* of 0¥, namely thez-axis. Note also that
dimo+dimo* =3
even thoughr has dimension 2. O
Relative Interiors As already noted, thepanof a cones C Ng is the smallest

subspace ol containingo. Then therelative interior of o, denoted Relirt), is
the interior ofo in its span. Exercise 1.2.2 will characterize Rélintas follows:

uc Relint(o) <= (mu)>0forallmes"\ot.
When the span equaldz, the relative interior is just the interior, denoted(tnj.

For an example of how relative interiors arise naturallyppmse thatr < o.
This gives the dual face* = ¢V N7+ of ¢¥. Furthermore, ifm ¢ ¢V, then one
easily sees that

me 7" < 7 CHnNo.
In Exercise 1.2.2, you will show thatific ¢V, then

me Relint(7*) <= 7 =HmNo.

Thus the relative interior Relifit™) tells us exactly which supporting hyperplanes
of o cut out the face-.
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Strong Convexity Of the cones shown in Figures 1-5, all butin Figure 5 have
the nice property that the origin is a face. Such cones atedcsttongly convex
This condition can be stated several ways.
Proposition 1.2.12.Leto C Ng ~ R" be a polyhedral cone. Then:
o is strongly convex—> {0} is a face ofr
<= ¢ contains no positive-dimensional subspace pf N
<= oN(—o)={0}
<= dimo"’ =n. O
You will prove Proposition 1.2.12 in Exercise 1.2.3. Oneotlary is that if a

polyhedral coner is strongly convex of maximal dimension, then saris The
cones pictured in Figures 1—4 satisfy this condition.

In general, a polyhedral cone always has a minimal face that is the largest
subspac#V contained ins. Furthermore:

e W=0nN(-0).

e W = HnNo whenevem € Relint(aV).

e 0 =0/W C Nr/W is a strongly convex polyhedral cone.
See Exercise 1.2.4.

Separation When two cones intersect in a face of each, we can separateribe
with the following result, often called theeparation lemma

Lemma 1.2.13(Separation Lemma)Let 1,02 be polyhedral cones in Nthat
meet along a common fage= o1 No,. Then

T=HnNoi=HmNo2
for any me Relint(oy) N (—o2)Y).
Proof. GivenA,BC Ng, we setA—B={a—b|ac A, be B}. A standard result
from cone theory tells us that
o) N(—02)" = (01— 02)".

Now fix m € Relint(cy N (—o2)¥). The above equation and Exercise 1.2.4 imply
thatH,, cuts out the minimal face af; — oy, i.e.,

Hmﬂ(O'l—O'z) = (0'1—0'2) ﬂ(o‘z—dl).
However, we also have
(oc1—02)N(02—01)=T—T.

One inclusion is obvious since = o1 Noy. For the other inclusion, write
(0'1—0'2) ﬂ(o‘z—dl) as

U=ai—ax=hy—Dby, ag,by oy, abpecon.
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Thena; + by = ap + by implies that this element lies in= o1 N o». Sinceay,b; €
o1, we havea;,b; € 7 by Lemma 1.2.7, andy, by € 7 follows similarly. Hence
u=a;—aper7—r,as desired.
We conclude thatlyN (01 — 02) = 7 — 7. Intersecting withrq, we obtain
HnNoi=(r—7)No1=r,

where the last equality again uses Lemma 1.2.7 (Exercis®)1.¥ instead we
intersect with—o», we obtain

HnN(—02) = (1 —7)N(—032) = —T,
andHyN oo = 7 follows. O

In the situation of Lemma 1.2.13 we c#ll,, aseparating hyperplane

Rational Polyhedral ConesLet N andM be dual lattices with associated vector
spacedNg = N®z R andMgr = M ®7 R. ForR" we usually use the latticg".

Definition 1.2.14. A polyhedral coner C Ny is rational if o = Con€S) for some
finite setSC N.

The cones appearing in Figures 1, 2 and 5 are rational. Wewitsteut proof
that faces and duals of rational polyhedral cones are @tidturthermore, itr =
CongS) for SC N finite andNg = N®z Q, then

(1.2.2) oNNg = {>cshutl| Ay > 0in Q}.

One new feature is that a strongly convex rational polyedose o has a
canonical generating set, constructed as follows.gll® an edge of. Sinceo is
strongly convexyp is aray, i.e., a half-line, and sincg is rational, the semigroup
pNNis generated by a unique elementc pNN. We callu, theray generatorof
p. Figure 6 shows the ray generator of a rational gag the plane. The dots are
the latticeN = Z? and the white ones agen N.

Figure 6. A rational rayp C R? and its unique ray generatog

Lemma 1.2.15.A strongly convex rational polyhedral cone is generatedhigyray
generators of its edges. O
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It is customary to call the ray generators of the edgesrthemal generators
of a strongly convex rational polyhedral cone. Figures 12nbdow 3-dimensional
strongly convex rational polyhedral cones and their rayegators.

In a similar way, a rational polyhedral coaef maximal dimension has unique
facet normalswhich are the ray generators of the duadl, which is strongly con-
vex by Proposition 1.2.12.

Here are some especially important strongly convex cones.

Definition 1.2.16. Let o C Ng be a strongly convex rational polyhedral cone.
(a) o is smoothor regular if its minimal generators form part of/A-basis ofN,
(b) o is simplicial if its minimal generators are linearly independent dRer

The coner pictured in Figure 5 is smooth, while those in Figures 1 ande2 a
not even simplicial. Note also that the dual of a smooth (respplicial) cone of
maximal dimension is again smooth (resp. simplicial). Latghe section we will
give examples of simplicial cones that are not smooth.

Semigroup Algebras and Affine Toric VarietiesGiven a rational polyhedral cone
o C Ng, the lattice points

Se=0'NMCM
form a semigroup. A key fact is that this semigroup is finitggnerated.

Proposition 1.2.17(Gordan’s Lemma) S, = ¢¥ NM s finitely generated and
hence is an affine semigroup.

Proof. Sinces" is rational polyhedraly¥ = CongT) for a finite sefl C M. Then
K= {3 met omM| 0 < 6y < 1} is a bounded region d¥lr ~ R", so thatk "M is
finite sinceM ~ Z". Note thatT U(KNM) C S, .

We claimT U (KNM) generate$,, as a semigroup. To prove this, takes S,
and writew =} .+ Amm where Ay > 0. ThenAm = [ Am] 4 0m With [Ap] € N

and 0< 6, < 1, so that

meT meT
The second sum is iIK "M (remembem € M). It follows thatw is a nonnegative
integer combination of elements ®fU (KN M). O

Since affine semigroups give affine toric varieties, we getfdfiowing.

Theorem 1.2.18.Leto C Ng ~ R" be a rational polyhedral cone with semigroup
S, =0cVNM. Then

U, = Spe¢C|S,]) = Spe¢C[o” NM])
is an affine toric variety. Furthermore,

dimU, =n < thetorus of Y is Ty = N®z C* < o is strongly convex
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Proof. By Gordan’s Lemma and Proposition 1.1.14, is an affine toric variety
whose torus has character lattiés, C M. To studyZS,, note that

2S5 =S5 —So = {m—mp | my,mp € S, }.
Now suppose thdtme ZS,, for somek > 1 andm e M. Thenkm=m; — m, for
my,mp € S, = oV N M. Sincem, andny, lie in the convex set", we have

m+mp = gmy+ 2tmp e 0.

It follows thatm = (m+ my) —m, € ZS,,, so thatM /ZS,, is torsion-free. Hence
(1.2.3) the torus df), is Ty < ZS, =M <= rankZS, =n.

Sinceo is strongly convex if and only if dirr¥ = n (Proposition 1.2.12), it remains
to show that

dimU, =n <= rankZS, =n <= dim¢’ =n.

The first equivalence follows since the dimension of an affonie variety is the
dimension of its torus, which is the rank of its charactetidat We leave the proof
of the second equivalence to the reader (Exercise 1.2.6). O

Remark 1.2.19.

(&) For the rest of the book, we will always assume that Ny is strongly convex
since we wanfy to be the torus of the affine toric variety,.

(b) The reader may ask why we focus erc Ng sinceU, = Spe¢C|as¥ NM])
makess¥ C Mg seem more important. The answer will become clear once we
understand how normal toric varieties are constructed fafiime pieces. The
discussion following Proposition 1.3.16 gives a first hihow this works.

Example 1.2.20.Let 0 = Condey, e, €1 + 3,6+ €3) C Ng = R3 with N = Z3.
This is the cone pictured in Figure 2. By Example 1.2:9,is the cone pictured
in Figure 1, and by Example 1.1.18, the lattice points in tuee are generated
by columns of matrix (1.1.6). It follows from Example 1.1.tt&tU,, is the affine
toric varietyV (xy— zw). O

Example 1.2.21.Fix 0<r <nand set = Con€ey,...,e) CR". Then
o’ =Condey,...,&,+641,...,%6n)
and the corresponding affine toric variety is
Uy = SpedClxy,... . %, X4, ... x5 1]) = C" x (C*)™

(Exercise 1.2.7). This implies thatdfC Ng ~ R" is a smooth cone of dimension
thenU, ~ C" x (C*)"". Figure 5 from Example 1.2.11 shows-2 andn=3. ¢

Example 1.2.22.Fix a positive integed and letc = Congde; — &,&) C R2.
This has dual coneV = Condey, e; +de). Figure 7 on the next page show$
whend = 4. The affine semigrouf, = ¢ NZ? is generated by the lattice points
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(1,i) for 0 <i < d. Whend = 4, these are the white dots in Figure 7. (You will
prove these assertions in Exercise 1.2.8.)

Figure 7. The cones” whend = 4

By 81.1, the affine toric variety,, is the Zariski closure of the image of the
map® : (C*)?2 — C4*? defined by
®(st) = (s;st,st?,...,st).
This map has the same image as the rfsap — (s%,s9-1t,...,std=1t9) used in
Example 1.1.6. Thusl, is isomorphic to the rational normal coly C C9*!
whose ideal is generated by the2 minors of the matrix

Xo X1 -+ Xd—2 Xd-1
X1 X2 0 Xde1 Xd )
Note that the cones ands" are simplicial but not smooth. O

We will return to this example often. One thing evident in Exade 1.1.6 is the
difference betweewone generator&ind semigroup generatorghe cones" has
two generators but the semigroSp = ¢V NZ2 hasd + 1.

When o C Ng has maximal dimension, the semigroGp = ¢V NM has a
unigue minimal generating set constructed as follows. Bedimelemenin= O of
S, to beirreducibleif m=nf +m’ form',m” € S, impliesm =0 orm’” = 0.

Proposition 1.2.23.Leto C Ngr be a strongly convex rational polyhedral cone of
maximal dimension and I&, = ¥ NM. Then
2 ={meS, | misirreducible
has the following properties:
(a) 7 is finite and generates, .
(b) 27 contains the ray generators of the edges 6f
(c) 7 is the minimal generating set &, with respect to inclusion.
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Proof. Proposition 1.2.12 implies that is strongly convex, so we can find an
elementu € 0 NN\ {0} such thatm,u) € N for all me S, and(m,u) = 0 if and
only if m=0.

Now suppose than € S, is not irreducible. Them = n' +m” wherem’ and
m’ are nonzero elements 6§. It follows that

(m,u) = (m',u) + (M’ u)
with (m',u), (m’,u) € N\ {0}, so that
(m,u)y < (mu) and (M’ u) < (mu).

Using induction onlm,u), we conclude that every element%f is a sum of irre-
ducible elements, so tha¥’ generate$,. Furthermore, using a finite generating
set ofS,, one easily sees tha¥’ is finite. This proves part (a). The remaining
parts of the proof are covered in Exercise 1.2.9. O

The sets# C S, is called theHilbert basisof S, and its elements are the
minimal generator®f S,. More generally, Proposition 1.2.23 holds for any affine
semigroupS satisfyingS N (—S) = {0}. Algorithms for computing Hilbert bases
are discussed ir2p4, 7.3] and 64, Ch. 13], and Hilbert bases can be computed
using the computer progralformaliz [57]. See Examples B.3.1 and B.3.2.

Exercises for §1.2
1.2.1. Prove Lemma 1.2.7. Hint: Write=HyNo formeoV.

1.2.2. Here are some properties of relative interiors. £&t Nz be a cone.
(@) Show thatifu € o, thenu € Relint(s) if and only if (m,u) > 0 forallme oV \ ot.
(b) LetT <o andfixme oV. Prove that
mer* < 71 CHyNo
me Relint(7*) <= 7=HmnNo.

1.2.3. Prove Proposition 1.2.12.

1.2.4. Leto C Ng be a polyhedral cone.

(a) Use Proposition 1.2.10 to show thahas a unique minimal face with respect+o
LetW denote this minimal face.

(b) Prove thaww = (oV)*.

(c) Prove thaw is the largest subspace containedin

(d) Prove thaWW =onN(—o0).

(e) Fixme ¢V. Prove thame Relint(c") if and only if W = HyNo.

(f) Prove that = o /W C Ng/W is a strongly convex polyhedral cone.

1.2.5. LetT < 0 C Ng and letr — 7 be defined as in the proof of Lemma 1.2.13. Prove

thatr = (r — ) N 7. Also show that — r = Spar{r), i.e.,7 — 7 is the smallest subspace
of Ng containingr.
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1.2.6. Fix a latticeM and let Spaff5) denote the span ov& of a subset C M.
(a) LetSC M be finite. Prove that rarfkS = dim SparS).

(b) LetSC Mg be finite. Prove that dim Col(8) = dim Spars).

(c) Use parts (a) and (b) to complete the proof of Theoremi..2.

1.2.7. Prove the assertions made in Example 1.2.21.

1.2.8. Prove the assertions made in Example 1.2.22. Hint: Firsizghat when a cone is
smooth, the ray generators of the cone also generate thesporrding semigroup. Then
write the coner™ of Example 1.2.22 as a union of such cones.

1.2.9. Complete the proof of Proposition 1.2.23. Hint for part (Bhow that the ray
generators of the edges @f are irreducible irb,. Given an edge of ¢V, it will help to
picku e o NN\ {0} such thap = H,No".

1.2.10. Let 0 C Ng be a cone generated by a set of linearly independent vectdg.i
Show thats is strongly convex and simplicial.

1.2.11. Explain the picture illustrated in Figure 8 in terms of Prsjtion 1.2.8.

O-V

Figure 8. A coneo in the plane and its dual

1.2.12.LetP C Ny be a polytope lying in an affine hyperplane (= translate offzelnglane)

not containing the origin. Generalize Figure 3 by showirgg Ehgives a strongly convex

polyhedral cone ifNg. Draw a picture.

1.2.13. Consider the cone = Cond3e; — 26, &) C R?.

(@) DescriberV and find generators of N Z2. Draw a picture similar to Figure 7.

(b) Compute the toric ideal of the affine toric varigéfy and explain how this exercise
relates to Exercise 1.1.6.

1.2.14. Consider the simplicial cone = Condey, &, e; + & + 2e3) C R3,

(@) DescriberV and find generators of' N Z2.

(b) Compute the toric ideal of the affine toric variéty.

1.2.15. Let ¢ be a strongly convex polyhedral cone of maximal dimensioereHs an

example taken froml1j05 p. 132] to show that andsV need not have the same number
of edges. Let C R* be the cone generated bg 2-¢; forall 1 <i,j < 4,i # |.

(a) Show that has 12 edges.
(b) Show thatV is generated bg and—e + 2} ;,€,1<i<4andhas 8 edges.
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81.3. Properties of Affine Toric Varieties

The final task of this chapter is to explore the propertiesfiifietoric varieties.
We will also study maps between affine toric varieties.

Points of Affine Toric Varieties We first consider various ways to describe the
points of an affine toric variety.

Proposition 1.3.1. Let V = Spe¢C[S]) be the affine toric variety of the affine
semigroufsS. Then there are bijective correspondences between thefiold):

(a) Paints pe V.
(b) Maximal idealsm C CIS].

(c) Semigroup homomorphisnts— C, whereC is considered as a semigroup
under multiplication.

Proof. The correspondence between (a) and (b) is standardg8eEm. 5 of Ch.
5, 84]). The correspondence between (a) and (c) is spediattimric case.

Given a pointp € V, defineS — C by sendingme S to x™(p) € C. This
makes sense singe" € C[S] = C[V]. One easily checks th&t— C is a semigroup
homomorphism.

Going the other way, let : S — C be a semigroup homomorphism. Since
{xM}mes is a basis ofC[S], v induces a surjective linear m&{S| — C which is
aC-algebra homomorphism. The kernel of the n@§] — C is a maximal ideal
and thus gives a poirg € V by the correspondence between (a) and (b).

We constructp concretely as follows. Let7 = {my,...,ms} generatesS, so
thatV =Y, C C® Letp= (y(m),...,7(ms)) € C>. Let us prove thap € V. By
Proposition 1.1.9, it suffices to show thett — x” vanishes ap for all exponent
vectorsa = (ay,...,as) ands = (by,...,bs) satisfying

S S
> am=> bim.
i=1 i=1

This is easy, since being a semigroup homomorphism implies that

f[w(m)"’“ Zv(iaam> :7(ibiM) :ﬁf}/(m)bi.

It is straightforward to show that this point ¥fagrees with the one constructed in
the previous paragraph (Exercise 1.3.1). a

As an application of this result, we describe the torus aaioV. In terms of
the embeddiny =Y, C C®, the proof of Proposition 1.1.8 shows that the action
of Ty onY,, is induced by the usual action ¢£*)% on C®. But how do we see the
action intrinsically, without embedding into affine spadéts is where semigroup
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homomorphisms prove their value. Rix Ty andp € V, and letp correspond to
the semigroup homorphism — ~(m). In Exercise 1.3.1 you will show that p
is given by the semigroup homomorphism— x™(t)~(m). This description will
prove useful in Chapter 3 when we study torus orbits.

From the point of view of group actions, the actionTaf onV is given by a
mapTy x V — V. Since both sides are affine varieties, this should be a ngrph
meaning that it should come from&algebra homomorphism

C[S]| =CV] — C[Ty x V] =C[Tn] ®c CV] = C[M] ®c C[S].
This homomorphism is given by™ — x™® x™ for me S (Exercise 1.3.2).
We next characterize when the torus action on an affine taiety has a

fixed point. An affine semigroup is pointedif SN (—S) = {0}, i.e., if 0 is the
only invertible element o$. This is the semigroup analog of strongly convex.

Proposition 1.3.2. Let V be an affine toric variety. Then:

(a) If we write V= Spe¢CJS]), then the torus action has a fixed point if and only
if S is pointed, in which case the unique fixed point is given bysdmigroup
homomaorphisn$ — C defined by

(1.3.1) M {1 m=0
0 m#0.

(b) If we write V=Y, C C®for &/ C S\ {0}, then the torus action has a fixed
point if and only if0 € Y., in which case the unique fixed pointOs

Proof. For part (a), letp € V be represented by the semigroup homomorphism
v:S — C. Thenp s fixed by the torus action if and only §™(t)~(m) = ~v(m)
for allme S andt € Ty. This equation is satisfied fon= 0 sincey(0) = 1, and if
m# 0, then pickingt with x™(t) # 1 shows thaty(m) = 0. Thus, if a fixed point
exists, then it is unique and is given by (1.3.1). Then we aredince (1.3.1) is a
semigroup homomorphism if and onlySfis pointed.

For part (b), first assume thet=Y,, C C® has a fixed point, in which case
S = N« is pointed and the unique poiptis given by (1.3.1). Ther? C S\ {0}
and the proof of Proposition 1.3.1 imply thais the origin inC®, so that 0c Y,,.
The converse follows since®C? is fixed by (C*)S, hence by, N (C*)s. O

Here is a useful corollary of Proposition 1.3.2 (Exercis23).

Corollary 1.3.3. Let U, be the affine toric variety of a strongly convex rational
polyhedral cones C Ng. Then the torus action onJhas a fixed point if and
only if dim o = dim Ng, in which case the fixed point is unique and is given by the
maximal ideal

(x™[me S;\{0}) CC[S,],

where as usuab, = oV N M. O
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We will see in Chapter 3 that this corollary is part of the egpondence be-
tween torus orbits dfl, and faces ob.

Normality and Saturation We next study the question of when an affine toric
varietyV is normal. We need one definition before stating our normaliterion.

Definition 1.3.4. An affine semigrouf® C M is saturatedif for all ke N\ {0} and
me M, kme S impliesme S.

For example, ifo C Ng is a strongly convex rational polyhedral cone, then
S, = oY NM is easily seen to be saturated (Exercise 1.3.4).

Theorem 1.3.5.LetV be an affine toric variety with torus, TThen the following
are equivalent:

(&) V is normal.
(b) V = SpecC|[S]), whereS C M is a saturated affine semigroup.

(c) V =Spec¢C|[S,]) (=U,), whereS, = o NM ando C Ng is a strongly convex
rational polyhedral cone.

Proof. By Theorem 1.1.1%/ = Spe¢C|[S]) for an affine semigroup contained in
a lattice, and by Proposition 1.1.14, the toru¥/ dfas the character lattidéd = ZS.
Also letn=dimV, so thatM ~ Z".

(@) = (b): If V is normal, thenC[S] = C|V] is integrally closed in its field of
fractionsC(V). Suppose thatme S for somek € N\ {0} andm e M. Theny™
is a polynomial function offy and hence a rational function dhsinceTy CV is
Zariski open. We also havg™ ¢ CJ[S] sincekme S. It follows thaty™ is a root
of the monic polynomiaXk — xX™ with coefficients inC[S]. By the definition of
normal, we obtairny™ € C[S], i.e.,me S. ThusS is saturated.

(b) = (c): Letw C S be afinite generating set 6f ThensS lies in the rational
polyhedral cone Corfe7) C Mg, and rankZ.e/ = nimplies dim Coné</) = n by
Exercise 1.2.6. It follows that = Cond.<7)¥ C Ny is a strongly convex ratio-
nal polyhedral cone such th&tC oV N M. In Exercise 1.3.4 you will prove that
equality holds whe$ is saturated. Hence=S,,.

(c) = (a): We need to show th&[S,] = C[s¥ NM] is normal wherr C Ny is
a strongly convex rational polyhedral cone. kgl..., pr be the rays ob. Sinces
is generated by its rays (Lemma 1.2.15), we have

r
o/ = ﬂp,\/
i=1

Intersecting withM givesS, = ({_; S,:, which easily implies

€IS, = (CIS,)
i=1
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By Exercise 1.0.7C[S,| is normal if eachC[S,, | is normal, so it suffices to prove
that C[S,] is normal wherp is a rational ray inNg. Letu, € pNN be the ray
generator ofp. Sinceu is primitive, i.e, %up ¢ N for all k > 1, we can find a
basise, ..., €&, of N with u, = e; (Exercise 1.3.5). This allows us to assume that
p=Condey), so that

C[S,] = Clxa, %5, ... %]
by Example 1.2.21. BUE[xy,...,X,] is normal (it is a UFD), so its localization

CX1, -+, Xnlxpxa = ClXa, X5, o 3
is also normal by Exercise 1.0.7. This completes the proof. O

Example 1.3.6. We saw in Example 1.2.20 thelt= V(xy— zw) is the affine toric
varietyU,, of the coner = Congey, e, e; + €3, + €3) pictured in Figure 2. Then
Theorem 1.3.5 implies that is normal, as claimed in Example 1.1.5. O

Example 1.3.7. By Example 1.2.22, the rational normal coBg C C4*1 is the
affine toric variety of a strongly convex rational polyhddrane and hence is nor-
mal by Theorem 1.3.5.

It is instructive to view this example using the parametitra
O (st) = (s4,s7 M, st )

from Example 1.1.6. Plotting the lattice points i for d = 2 gives the white
squares in Figure 9 (a) below. These generate the semigreuN.<Z, and the
proof of Theorem 1.3.5 gives the con€ = Congey, &), which is the first quad-
rant in the figure. At first glance, something seems wrong. dffiee variety@z

is normal, yet in Figure 9 (a) the semigroup generated by thitevequares misses
some lattice points imrV. This semigroup does not look saturated. How can the
affine toric variety be normal?

(b)

Figure 9. Lattice points for the rational normal cofie

The problem is that we are using the wrong lattice! Propmsifi.1.8 tells us
to use the lattic& <7, which gives the white dots and squares in Figure 9 (b). This
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figure shows that the white squares generate the semigrdatiioé points ino".
HencesS is saturated and everything is fine. O

This example points out the importance of working with therect lattice.

The Normalization of an Affine Toric Variety The normalization of an affine toric
variety is easy to describe. L¥ét= Spe¢C|S]) for an affine semigroufs, so that
the torus ofV has character lattickl = ZS. Let CongS) denote the cone of any
finite generating set & and setr = CongS)Y C Ng. In Exercise 1.3.6 you will
prove the following.

Proposition 1.3.8. The above cone is a strongly convex rational polyhedral cone
in Ng and the inclusiorC[S] C C[s¥ N M] induces a morphism}J— V that is the
normalization map of V. O

The normalization of an affine toric variety of the folyy is constructed by
applying Proposition 1.3.8 to the affine semigrd¥ip’ and the latticeZ.o7 .

Example 1.3.9.Let o7 = {(4,0),(3,1),(1,3),(0,4)} C Z2. Then
d(st) = (s*, %, s83,t%)

parametrizes the surfade, C C* considered in Exercise 1.1.7. This is almost
the rational normal con€,, except that we have omittes#t?. Using (2,2) =
3((4,0)+(0,4)), we see thalN.</ is not saturated, so thit, is not normal.

Applying Proposition 1.3.8, one sees that the normalinatiby,, is C4. You
can check this usinformaliz [57] as explained in Example B.3.2. Note also that
C. is an affine variety irC°, and the normalization map is induced by the obvious
projectionC® — C*., O

Proposition 1.3.8 tells us that’ N M is thesaturationof the semigrous. In
the appendix to Chapter 3 we will see that the normalizatiap by, — V con-
structed in Proposition 1.3.8 is onto but not necessarigrtorone.

Smooth Affine Toric Varieties Our next goal is to characterize when an affine toric
variety is smooth. Since smooth affine varieties are norfebfosition 1.0.9),
we need only consider toric varietiés, coming from strongly convex rational
polyhedral cones C Ng.

We first studyJ,, wheno has maximal dimension. ThexY is strongly convex,
so thatS, = ¥ N'M has a Hilbert basis#’. Furthermore, Corollary 1.3.3 tells us
that the torus action dd, has a unique fixed point, denoted heredyc U,,. The
point p, and the Hilbert basigZ are related as follows.

Lemma 1.3.10.Leto C N be a strongly convex rational polyhedral cone of max-
imal dimension and let ;[ (U,) be the Zariski tangent space to the affine toric
variety U, at the above point p Thendim T, (U,) = |77].
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Proof. By Corollary 1.3.3, the maximal ideal f[S,| corresponding t@, ism =
(x"|me S, \{0}). Since{x"}mes, is a basis ofC[S,|, we obtain

nm=Pcx"= P " e P "= ( P (CX”‘) Om2,
ms£0 mirreducible mreducible met

It follows that dimm/m2 = |#|. To relate this to the maximal idealy, p, in the
local ring Oy, p,, We use the natural map

2 2
m/m %ng,pa/mua,pg

which is always an isomorphism (Exercise 1.3.7). Sifig&U,,) is the dual space
of my, p, /mf, p, . We see that dirfiy, (U,) = |7 O

The Hilbert basis# of S, givesU, =Y,» C C®, wheres = |.#|. This affine
embedding is especially nice. Givemy affine embeddingJ, — C’, we have
dimT,, (U,) </ by Lemma 1.0.6. In other words, difiy, (U, ) is a lower bound
on the dimension of an affine embedding. Then Lemma 1.3.1@sskiwat when
o has maximal dimension, the Hilbert basisSf gives the most efficient affine
embedding otJ,.

Example 1.3.11.In Example 1.2.22, we saw that the rational normal cGp&
C9+1 s the toric variety coming fromr = Condde; — e;,6) C R? and thatS, =
oV NZ?is generated byl,i) for 0<i <d. These generators form the Hilbert basis
of S, so that the Zariski tangent space af @4 has dimensionl + 1. HenceC%t!
in the smallest affine space in which we can emBed O

We now come to our main result about smoothness. Recall frbid that a
rational polyhedral cone ismoothif it can be generated by a subset of a basis of
the lattice.

Theorem 1.3.12.Leto C Ng be a strongly convex rational polyhedral cone. Then
U, is smooth if and only it is smooth. Furthermore, all smooth affine toric
varieties are of this form.

Proof. If an affine toric variety is smooth, then it is normal by Prejion 1.0.9

and hence of the forr,. Also, Example 1.2.21 implies that if is smooth as

a cone, therJ,, is smooth as a variety. It remains to prove the converse. So fix
o C Ng such that), is smooth. Leh = dimU, = dim Ng.

First suppose that has dimensiom and letp, € U, be the point studied in
Lemma 1.3.10. Since, is smooth inU,, the Zariski tangent spacg, (U,) has
dimensionn by Definition 1.0.7. On the other hand, Lemma 1.3.10 implrex t
dim Ty, (Uy) is the cardinality of the Hilbert basi#” of S, = ¢¥ N M. Thus

n=|#|>|{edgesp Co"}| >n,

where the first inequality holds by Proposition 1.2.23 (eadgep C ¢V con-
tributes an element of7’) and the second holds since ditt = n. It follows
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that o hasn edges and#” consists of the ray generators of these edges. Since
M = ZS, by (1.2.3), then edge generators of' generate the latticel ~ Z" and
hence form a basis &fl. Thusc" is smooth, and thea = (¢¥)" is smooth since
duality preserves smoothness.

Next suppose dimr =r < n. We reduce to the previous case as follows. Let
N1 € N be the smallest saturated sublattice containing the gemsraf . Then
N/N; is torsion-free, which by Exercise 1.3.5 implies the exisgeof a sublattice
N> € N with N = N; @ No. Note rankN; =r and rankN, =n—r.

The coneo lies in both(N1)r andNg. This gives affine toric varietied, n,
andU, ny of dimensions andn respectively. Furthermoréy = N; & N, induces
M =M1 &My, so thato C (N1)r ando C Ny give the affine semigrougs, n, € M
andS, N C M respectively. Itis straighforward to show that

SoN = SoN, B My,
which in terms of semigroup algebras can be written
C[SoN] = C[So N, | ®c C[M2].
The right-hand side is the coordinate ringfn, x Tn,. Thus
(1.3.2) UsN >~ Ug Ny X T,
which in turn implies that
Uo N~ Ugpn X (C)"" C UGN, x CM

Since we are assuming tHag  is smooth, it follows that, n, x C"~" is smooth
at any point(p,q) in U, n, x (C*)"". In Exercise 1.3.8 you will show that

(1.3.3) Uon, x C"" is smooth atp,q) = U, is smooth ap.
Letting p = p, € U, ,, the previous case implies thatis smooth inN; since
dimo = dim (N;)r. Henceo is clearly smooth ifN = N; & N. O

Equivariant Maps between Affine Toric VarietiesWe next study map¥; — V,
between affine toric varieties that respect the torus astimv; andVs.

Definition 1.3.13. Let Vi = Spe¢C|[Si]) be the affine toric varieties coming from
the affine semigroupS;, i = 1,2. Then a morphism : V; — V; is toric if the cor-
responding map of coordinate rings : C[S,] — C[S4] is induced by a semigroup
homomorphismp : S, — S;.

Here is our first result concerning toric morphisms.

Proposition 1.3.14.Let Ty, be the torus of the affine toric variety,V=1,2. Then:
(@) A morphismy : V; — Vs is toric if and only if
#(Tny) € T,
and¢| : Ty, — Tn, is @ group homomorphism.
1
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(b) A toric morphismy : V1 — V; is equivariant meaning that

o(t-p) = o(t) - (p)
forallt € Ty, and pe Vi.

Proof. LetV, = Spe¢C|[Si]), so that the character lattice f is M; = ZS;. If ¢
comes from a sAemigroup homomorphigm S, — S, then¢ extends to a group
homomorphismy : My — M7 and hence gives a commutative diagram

ClSs 2% Sy
i i
CMs] — C[M4.

Applying Spec, we see that(Ty,) C T, andg|; : Ty, — Ty, is @ group homo-
1
morphism sincely, = Homy(M;,C*) by Exercise 1.1.11. Conversely, df sat-
isfies these conditions, theg|;. : Ty, — Ty, induces a diagram as above where
1

the bottom map comes from a group homomorphi%mvlz — Mj. This, com-
bined with¢* (C[S,]) € C[S4], implies thatp induces a semigroup homomorphism
$: S, — S1. This proves part (a) of the proposition.

For part (b), suppose that we have a toric map/; — V. The action ofTy,
onV is given by a morphisn®; : Ty, x Vi — V;, and equivariance means that we
have a commutative diagram

TNl X Vl i} V]_

] ]

TN2 X V2 i} V2.

If we replaceV; with Ty, in the diagram, then it certainly commutes singe
1

is a group homomorphism. Then the whole diagram commutes $j x Ty, is
Zariski dense iy, x Vi. O

We can also characterize toric morphisms between affinevarieties coming
from strongly convex rational polyhedral cones. First ribi& a homomorphism
¢ : Ni — N, of lattices gives a group homomorphism Ty, — Ty, of tori. This
follows from'_l'|\|i = N; ®7z C*, and one sees thatis a morphism. Also, tensoring
with R giVES@R : (Nl)R — (NZ)R-

Here is the result, whose proof we leave to the reader (Ese2cB.9).
Proposition 1.3.15. Suppose we have strongly convex rational polyhedral cones

oi C (Nj)r and a homomorphisns : Ny — Np. Theng : Ty, — Ty, extends to a
map of affine toric varieties : U,, — U,, if and only if¢g (1) C o2. O
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Faces and Affine Open Subsetdet o C Ng be a strongly convex rational poly-
hedral cone and let < o be a face. Then we can fimd € ¢¥ N M such that
7=HmNo. This allows us to relate the semigroup algebras ahdr as follows.

Proposition 1.3.16.Let r be a face o> and as above write = Hy,N o, where
me o¥ NM. Then the semigroup algebf@[S.] = C[r¥ NM] is the localization of
C[Sy] =C[o¥ nM] at x™ e C[S,]. In other words,

C[S+] = C[Ss]ym.
Proof. The inclusionr C o impliesS, C S;, and sincdm,u) =0 forallu e , we
have+me 7V. It follows that

Sy +Z(—m) CS,.

This inclusion is actually an equality, as we now prove. Fiinde setSC N with
o = Con€S) and pickm € S... Set

C = max{|(m,u)|} € N.

It is straightforward to show thatY +Cme S,,. This proves that
Se+Z(—m) =S,

from whichC[S;] = C[S,],~ follows immediately. O

This interprets nicely in terms of toric morphisms. By Prsition 1.3.15, the
identity mapN — N and the inclusion C ¢ give the toric morphisn, — U,, that
corresponds to the inclusidd[S,] C C[S;]. By Proposition 1.3.16,

(1.3.4) U, =SpecC[S;]) = SpedC[Sy]ym) = Spe¢C[S,])ym = (Ug)ym C U,.

ThusU, becomes an affine open subsellf whenr < ¢. In particular, if two
coness andg’ intersect in a common face= o N¢’, then we have inclusions

U, 2U: CU, .
We will use this in Chapters 2 and 3 when we glue together afffirie varieties to
create more general toric varieties.

The role of faces is the key reason why we describe affine varieties using
o C Ng rather tharr¥ C Mg. This answers the question raised in Remark 1.2.19.

Sublattices of Finite Index and Rings of InvariantsAnother interesting class of
toric morphisms arises when we keep the same cone but chamtgdtice. Here is
an example we have already seen.

Example 1.3.17.In Example 1.3.7 the dual of = Conde;,e;) C R? interacts
with the lattices shown in Figure 10 on the next page. To mhiseprecise, let us
name the lattices involved: the lattices

N'=7Z%2CN={(a/2,b/2) |abecZ, a+b=0mod 2
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[ ] ([ ] (o] [ ] (o]
o o e o e
oY fod
[ ] ([ ] (o] [ ] (o]
o (o] [ ] o [ ]

Figure 10. Lattice points ofr¥ relative to two lattices

haveo C N C Ng, and the dual lattices
M =7Z2DM={(ab)|abecZ, a+b=0mod 2

havesY C Mg € Mg. Note that duality reverses inclusions and thlaandN are
indeed dual under dot product. In Figure 10 (a), the black dothe first quadrant
form the semigroufs, ' = oY NM’, and in Figure 10 (b), the white dots in the
first quadrant forn, y = 0¥ N M.

This gives the affine toric varietié$, - andU, n. ClearlyU, . = C? sinceo
is smooth forN’, while Example 1.3.7 shows thif, \ is the rational normal cone
62. The inclusionN’ C N gives a toric morphism

C?=U,n — Uyn =Co.
Our next task is to find a nice description of this map. O
In general, suppose we have lattiddsC N, whereN’ has finite index inN,

and letc C N = Ng be a strongly convex rational polyhedral cone. Then the
inclusionN’ C N gives the toric morphism

¢ : UU,N/ - Uo,N~

The dual lattices satisfiyl’ © M, so that¢ corresponds to the inclusion

CleYNM'] 2 Cle¥ NM]
of semigroup algebras. The idea is to realiZe ' N M] as a ring of invariants of a
group action orC[o¥ NM/].
Proposition 1.3.18.Let N have finite index in N with quotient & N/N’ and let
o € N = Ng be a strongly convex rational polyhedral cone. Then:
(a) There are natural isomorphisms

G~ Homgz (M’ /M, C*) = ker(Ty: — Tn).
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(b) G acts onC[s¥ N M’] with ring of invariants
CleY NM'|® =C[¢¥ NM].
(c) G acts on U/, and the morphisng : U, n+ — U, n IS constant on G-orbits
and induces a bijection

Usn' /G~ Ugn.

Proof. SinceTy = Homy(M,C*) by Exercise 1.1.11, applying Hort—,C*) to
0—M—M-—M/M—0
gives the sequence
1— Homy(M'/M,C*) — Ty — Ty — L.

This is exact since Hog(—,C*) is left exact andC* is divisible. Note also that
sinceN’ has finite index irN, we have inclusions

N'CNCNp and MCM CMg.
The pairing betweeM andN induces a pairindlg x Ng — Q. Hence the map
M'/M xN/N' — C*  ([m],[u]) — 2 (MW

is well-defined and induceS = N/N’ ~ Homy(M’/M,C*) (Exercise 1.3.10).

The action ofTy: on U,y induces an action o6 on U,y sinceG C Ty-.
Using Exercise 1.3.1, one sees thag # G andy € U, n/, theng- ~ is defined by
the semigroup homomorphism — g([m'])~y(m') form' € ¥ NM'. It follows that
the corresponding action on the coordinate ring is given by

g- X" =g(m)) X", meoVnMm.
(Exercise 5.0.1 explains why we need the inverse.) Sinice M’ lies inM if and
only if g([m']) = 1 for all g € G, the ring of invariants
CleVNM'|®={f eClcVNM']|g-f = fforallge G},

is preciselyC[oY NM], i.e.,

Cle¥NM® =C[e¥ NM].
This proves part (b).

When a finite groups acts algebraically of£", [69, Thm. 10 of Ch. 7, 84]

shows that the ring of invarian@[xy, . .. ,X,|® C C[xg, ..., X,] gives a morphism of
affine varieties

C" = SpecC|xy, ..., %) — SpedC[xy, ..., %|°)
that is constant ofs-orbits and induces a bijection
C"/G ~ SpedC[xy, ..., X]®).



46 Chapter 1. Affine Toric Varieties

The proof extends without difficulty to the case whemcts algebraically oW =
SpecR). Here,R® C R gives a morphism of affine varieties

V = Spe¢R) — Spe¢R®)
that is constant o-orbits and induces a bijection
V /G ~ Spe¢R®).

From here, part (c) follows immediately from part (b). O

We will give a careful treatment of these ideas in 85.0, wheeewill show
that the map SpéR) — Spe¢R®) is ageometric quotient

Here are some examples of Proposition 1.3.18.
Example 1.3.19.In the situation of Example 1.3.17, one computes has$ the
group u2 = {£1} acting onUg N = SpecC|s,t]) ~ C? by —1-(s,t) = (—s,—t).
Thus the rational normal cori& is the quotient

C2?/p2 =Ugn: /p12~Usn = Co.
We can see this explicitly as follows. The invariant ringasidy seen to be
C[s t]*2 = C[s?,st,t?] = C[Cy] ~ Cxo, X1, X2]/ (XoXo — X3),
where the last isomorphism follows from Example 1.1.6. Ftbmpoint of view
of invariant theory, the generatas$ st, t? of the ring of invariants give a morphism
d:C%2—C3 (st)— (% stt?)
that is constant op,-orbits. This map also separates orbits, so it induces
C?/ua~ @(C?) =Gy,

where the last equality is by Example 1.1.6. But we can algtktabout this in
terms of semigroups, where the exponent vectos® @t t? give the Hilbert basis
of the semigrougs, N pictured in Figure 10 (b). Everything fits together very
nicely. O

In Exercise 1.3.11 you will generalize Example 1.3.19 todhse of the ratio-
nal normal con&y for arbitraryd.

Example 1.3.20.Let 0 C Ng ~ R" be a simplicial cone of dimensiamwith ray
generatordly,...,Un. ThenN’ = > | Zu; is a sublattice of finite index im.
Furthermore is smooth relative tdN’, so thatU, n = C". It follows thatG =
N/N’ acts onC" with quotient

(Cn/G = UU,N’/G ~ UJ’N.

Hence the affine toric variety of a simplicial cone is the igmttof affine space by
a finite abelian group. In the literature, varieties likgn are calledorbifolds and
are said to bé)-factorial. O
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Exercises for §1.3

1.3.1. Consider the affine toric variety,, = Spe¢C[S]), wheres/ = {my,...,ms} and
S=Ng/. Lety:S — C be a semigroup homomorphism. In the proof of Propositiorl1.3
we showed thap = (y(my),...,v(ms)) lies inY,,.

(a) Prove that the maximal ide&f € CI[S] | f(p) = O} is the kernel of theC-algebra
homomorphisn€C[S] — C induced byy.

(b) The torusTy of Y., has character lattiddl = Z.o# and fixt € Ty. As in the discussion
following Proposition 1.3.1t - p comes from the semigroup homomorphism—
x™(t)y(m). Prove that this corresponds to the point

(X™ (), x™() - (v(ma), -,y (M) = (™ () y (M), ..., x ™ (t)y(me)) € C°
coming from the action df € Ty C (C*)Sonp €Y, C C®.
1.3.2. Let V = Spe¢C|S]) with Ty = Spe¢C[M]), M = ZS. The actionTy xV —V
comes from &-algebra homomorphis[S] — C[M] ®¢ C|[S]. Prove that this homomor-

phism is given byy™ — x™® x™. Hint: Show that this formula determines tGealgebra
homomorphisnC[M] — C[M] ®c C[M] that gives the group operatidi x Ty — Tn.

1.3.3. Prove Corollary 1.3.3.

1.3.4. Let & C M be afinite set.

(a) Prove that the semigrouyaeZ is saturated irM if and only if N7 = Cond.«/) N M.
Hint: Apply (1.2.2) to Conés) C M.

(b) Complete the proof of (b} (c) from Theorem 1.3.5.
1.3.5. Let N be a lattice.

(a) LetN; C N be a sublattice such thhblt/N; is torsion-free. Prove that there is a sublat-
tice N, € N such thatN = N; & No.

(b) Letu € N be primitive as defined in the proof of Theorem 1.3.5. Proat thhas a
basisey, ..., e, such that; = u.

1.3.6. Prove Proposition 1.3.8.

1.3.7. Let p be a point of an irreducible affine varie#y Thenp gives the maximal ideal
m = {f € C|V]| f(p) = 0} as well as the maximal ideaty , C Oy , defined in §1.0.
Prove that the natural map/m? — mvyp/m\z,yp is an isomorphism of-vector spaces.

1.3.8. Prove (1.3.3). Hint: Use Lemma 1.0.6 and Example 1.0.10.

1.3.9. Prove Proposition 1.3.15.

1.3.10.Prove the assertions made in the proof of Proposition 1&h8erning the pairing
M’ /M x N/N’ — C* defined by([m'], [u]) — e2mi(m ),

1.3.11. Let g = {¢ € C* | ¢ = 1} be the group ofith roots of unity. Thenyy acts onC?
by ¢- (x,y) = (¢x,Cy). Adapt Example 1.3.19 to show tr@f/ud ~ Cy. Hint: Use lattices
N'=7?CN={(a/d,b/d)|a,be Z,a+b=0 modd}.

1.3.12. Prove that the normalization map in Proposition 1.3.8 igig tnorphism.

1.3.13.Leto; C (N;)gr andoz C (N;)r be strongly convex rational polyhedral cones. This
gives the cone x o2 C (N1 @ Np)g. Prove thatl,, «», ~ U,, xU,,. Also explain how
this result applies to (1.3.2).
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1.3.14. By Proposition 1.3.1, a poirg of an affine toric variety = Spec¢C|S)) is repre-
sented by a semigroup homomorphismS — C. Prove thap lies in the torus oV if and
only if v never vanishes, i.ey(m) # 0 forallme S.

Appendix: Tensor Products of Coordinate Rings

In this appendix, we will prove the following result used ib.@ in our discussion of prod-
ucts of affine varieties.

Proposition 1.A.1. If R and S are finitely generate@-algebras without nilpotents, then
the same is true for R¢ S.

Proof. The tensor product is clearly a finitely generateé@lgebra. Hence we need only
prove thatR®c S has no nilpotents. If we writR ~ C[xq,...,%y]/I, thenl is radical and
thus has a primary decompositibs: (°_, P, where eacl®, is prime (see9, Ch. 4, §7]).
This gives

S
R~C[xq, ..., %]/l — EDClx,....x]/R
i=1
where the map to the direct sum is injective. Each quoti#rt, ..., x,]/P is an integral
domain and hence injects into its field of fractidfs This yields an injection

S
R— €DK,
i=1
and since tensoring over a field preserves exactness, wa ggeeation

S
R®(C S—s @ Ki®c S
i=1
Hence it suffices to prove thEt®c Shas no nilpotents whek is a finitely generated field
extension ofC. A similar argument usin§then reduces us to showing théat ¢ L has no
nilpotents wherkK andL are finitely generated field extensions@f

SinceC has characteristic 0, the extensiBre L has a separating transcendence basis
(see 59 p. 519]). This means that we can fipg,...,y; € L such thatys,...,y; are
algebraically independent ov€randF = C(yi,...,Y:) C L is afinite separable extension.
Then

K®cL~K®c (F®rL) ~ (K®cF)®kL.
ButC=K®cF =K®&cC(ys,...,%t) = K(y1,...,¥) is a field, so that we are reduced to
considering
C®elL
whereC andL are extensions df andF C L is finite and separable. The latter and the
theorem of the primitive element imply that~ F[X]/(f(X)), where f(X) has distinct
roots in some extension &f. Then

Cer L~ Car FIX]/(f(X)) =~ CX]/{f(X)).
Sincef (X) has distinct roots, this quotient ring has no nilpotentsr @ault follows. O

A final remark is that we can repladgwith any perfect field since finitely generated
extensions of perfect fields have separating transcendeses (se€lp9, p. 519]).



Chapter 2

Projective Toric Varieties

§2.0. Background: Projective Varieties

Our discussion assumes that the reader is familiar with ldm@entary theory of
projective varieties, at the level 089, Ch. 8].

In Chapter 1, we introduced affine toric varieties. In geheraoric variety is
an irreducible variet) overC containing a toru3y ~ (C*)" as a Zariski open set
such that the action dfC*)" on itself extends to an action o We will learn in
Chapter 3 that the concept of “variety” is somewhat subtlen¢¢ we will defer
the formal definition of toric variety until then and insteadncentrate on toric
varieties that live in projective spa®', defined by

(2.0.1) P" = (C™*\ {0})/C*,

whereC* acts via homotheties, i.e\, (ao,...,a,) = (A\ay, ..., ay) for A € C* and
(ag,...,an) € C™1. Thus(ay,...,a,) arehomogeneous coordinate$a point in
P" and are well-defined up to homothety.

The goal of this chapter is to use lattice points and polyddjeecreate toric
varieties that lie inP". We will use the affine semigroups and polyhedral cones
introduced in Chapter 1 to describe the local structure edd¢hvarieties.

Homogeneous Coordinate RingsA projective varietyV C P" is defined by the
vanishing of finitely many homogeneous polynomials in thiypoamial ringS=
C[xo,---,X%n]. Thehomogeneous coordinate rirg V is the quotient ring

CV] =$/1(V),

wherel (V) is generated by all homogeneous polynomials that vanidh.on
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The polynomial ringSis graded by setting dég ) = 1. This gives the decom-
positionS= Py , S, whereS; is the vector space of homogeneous polynomials
of degreed. Homogeneous ideals decompose similarly, and the abovéinate
ring C|V] inherits a grading where

ClV]g =S/1(V)a-

The ideall (V) C S= CIxo,...,Xy] also defines an affine varieﬁ/g c™1 called
theaffine coneof V. The varietyV satisfies

(2.0.2) V=(V\{o}p/Cr,
and its coordinate ring is the homogeneous coordinate fihg de.,
CN]=CNV].

Example 2.0.1.In Example 1.1.6 we encountered the ideal
| = (XXj+1—%+1X] | 0<i< j <d—1) CC[xo,...,Xd]
generated by the 2 2 minors of the matrix

Xo X1 -+ Xd—2 Xd-1
X1 X2 v Xd—1 X4 )

Sincel is homogeneous, it defines a projective varigfyC P that is the image of
the map

$.pl— pd
defined in homogeneous coordinates(by) — (s%,s9-1t,... st t9) (see Ex-
ercise 1.1.1). This shows th@}, is a curve, called theational normal curveof

degredal. Furthermore, the affine cone @j is the rational normal coréd C i+t
discussed in Example 1.1.6.

We know from Chapter 1 thdty is an affine toric surface; we will soon see
thatCy is a projective toric curve. O

Example 2.0.2. The affine toric variety/ (xy— zw) C C* studied in Chapter 1 is
the affine cone of the projective surfae= V(xy—zw) C P3. Recall that this
surface is isomorphic tB* x P! via the Segre embedding

Plxp! . p3

given by (s,t;u,v) — (sutv,svitu). We will see below thaV ~ P! x P! is the
projective toric variety coming from the unit square in thane. O

As in the affine case, a projective variatyC P" has theclassical topology
induced from the usual topology @', and theZariski topology where the Zariski
closed sets are subvarietiesofmeaning projective varieties 8 contained irv)
and the Zariski open sets are their complements.
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Rational Functions on Irreducible Projective VarietiesA homogeneous polyno-
mial f € Sof degreed > 0 does not give a function di" since

f(AX0, -, M%) = A4 (X0, ..., %n).

However, the quotient of two such polynomidisg € & gives the well-defined
function .

g :P"\V(g) — C.
providedg # 0. We write this asf/g: P" --» C and say thaff /g is arational
functiononP".

More generally, suppose thétC P" is irreducible, and lef,g € C|V] = C|V]
be homogeneous of the same degree with0. Thenf andg give functions on
the affine cond/ and hence an elemerfig € C(V). By (2.0.2), this induces a
rational functionf /g:V --» C. Thus

C(V)={f/ge C(V)| f,ge C[V] homogeneous of the same degrgpe; 0}

is the field of rational functions od. It is customary to write the set on the left as
C(V)o since it consists of the degree 0 element&€ (¥ ).

Affine Pieces of Projective VarietiesA projective varietyV C P" is a union of
Zariski open sets that are affine. To see whyllet P"\ V(x;). ThenU; ~ C" via
the map

(203) (a057an)'—>(%77%7%7’%)7
so that in the notation of Chapter 1, we have

Ui =SpedC3,... 5 et 1))

ThenV NU; is a Zariski open subset df that maps via (2.0.3) to the affine variety
in C" defined by the equations

Xi— Xi
(2.0.4) f3e,... . 52, L5, ) =0

asf varies over all homogeneous polynomiald (/).

We callV NnU; anaffine pieceof V. These affine pieces coversince thel;
coverP". Using localization, we can describe the coordinate rirfgghe affine
pieces as follows. The variabkginduces an elememnt € C[V], so that we get the
localization
(2.0.5) CV]x = {f/x¥| f e CV], k> 0}

asin Exercises 1.0.2 and 1.0.3. Note t8at |x has a well-define@-grading given
by ded f /xX) = deg f) — k when f is homogeneous. Then

(2.0.6) (CV]x)o = {f/xX e C|V]x | f is homogeneous of degrég

is the subring ofC[V]x consisting of all elements of degree 0. This gives an affine
piece ofV as follows.
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Lemma 2.0.3. The affine piece YA\U; of V has coordinate ring
CNVNUYi] ~ (CV]x)o-

Proof. We have an exact sequence

0—1(V) — CIx,..., %] — C|V] — 0.
If we localize atx;, we get the exact sequence
(2.0.7) 0— I (V)x — C[Xo,...,%n]x — C|V]x — 0

since localization preserves exactness (Exercises 1@.2.8.2). These sequences
preserve degrees, so that taking elements of degree 0 pvesact sequence

0— (I (V)Xi)o - (C[X()v - 7Xn]Xi)0 - (C[V]Z)O — 0.

Note that(C[xo,...,Xalx)o = C[32,..., 52, 52,..., 5], If f €1(V) is homoge-
neous of degrek, then

f/xf = f(32,.. B2 158 %) € (I(V)x o
By (2.0.4), we conclude thdt (V )y )o maps tol (V NU;). To show that this map
is onto, letg(3e,... 52, X2 . %) € |(VNU;). Fork>>0,xfg = f(xo,...,%)
is homogeneous of degrée It then follows easily thak; f vanishes oV since
g=0onVNU; andx = 0 on the complement df;. Thusx f € 1(V), and then

(x F)/ ) € (1(V)x )o maps tog. The lemma follows immediately. O

One can also explore what happens when we intersect affinegdenU; and
V NU;jfori# j. By Exercise 2.0.3y NU; NUj is affine with coordinate ring

We will apply this to projective toric varieties in 82.2. Welhalso see later in
the book that Lemma 2.0.3 is related to the “Proj” constarctiwhere Proj of a
graded ring gives a projective variety, just as Spec of ainary ring gives an
affine variety.

Products of Projective Space€ne can study the produBt” x P™ of projective
spaces using the bigraded ri@gxo, ..., %n, Yo, - - ., Ym|, Wherex; has bidegreél, 0)
andy; has bidegre€0,1). Then a bihomogeneous polynomiabf bidegree(a, b)
gives a well-defined equatioh= 0 in P" x P™. This allows us to define varieties
in P" x P™M using bihomogeneous ideals. In particular, the idédl of a variety
V C P"x PMis a bihomogeneous ideal.

Another way to study" x P™Mis via theSegre embedding
]P;n % ]P)m _ ]P,nm-i—n—f—m

defined by mappinday, .. .,an,bo, . ..,by) to the point
(aobo, &by, .. ., a0bm, a1 bo, ... ,@1bm, ..., @nbo, .. ., @nbm).
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This map is studied ing9, Ex. 14 of Ch. 8, §4]. IfP"™"*M has homogeneous
coordinatesqj for 0<i <n,0< j <m, thenP" x P™ C P"™ "™ Mis defined by the
vanishing of the Z 2 minors of the(n+ 1) x (m+ 1) matrix

Xo0 -t Xom

X0 0 Xnm
This follows since ann+ 1) x (m+ 1) matrix has rank 1 if and only if it is a
productA!B, whereA andB are nonzero row matrices of lengths- 1 andm+ 1.

These approaches give the same notion of what it means toliavariety of
P" < P™. A homogeneous polynomi&l(x;;) of degreed gives the bihomogeneous
polynomial F (xy;) of bidegree(d,d). Hence any subvariety @&"™ "™ lying
in P" x P™ can be defined by a bihomogeneous ideaCiw, ... ,%n,Yo,- - -, Ym|-
Going the other way takes more thought and is discussed irciEge2.0.5.

We also have the following useful result proved in Exercigk&

Proposition 2.0.4. Given subvarieties \C P" and WC P™, the product Vx W is
a subvariety of*" x P™, O

Weighted Projective SpaceThe graded ring associated to projective spétes
C|xo,---,Xn], where each variabbg has degree 1. More generally, &gt ...,q, be
positive integers with gady, .. .,q,) = 1 and define
P(Co, -+, Gn) = (C™H\{0})/ ~,
where~ is the equivalence relation
(ag,...,an) ~ (bo,...,bn) < a =\, i=0,...,nfor some\ € C*.
We callP(qp, ...,qn) aweighted projective spacélote thatP" = P(1,...,1).

The ring corresponding t8(qo, . ..,0qn) is the graded rin@[Xo, . . . , X,|, where
xi now has degreq. A polynomial f isweighted homogeneoo$degred if every
monomialx® appearing inf satisfiesa - (o, ...,0n) = d. The equationf = 0 is
well-defined orP(qp, . . . ,qn) Wwhenf is weighted homogeneous, and one can define
varieties inP(qo, . . .,qn) using weighted homogeneous idealsiiXo, . .. , Xy].

Example 2.0.5.We can embed the weighted projective pl&ig, 1,2) in P2 using
the monomials, xox1, X2, %, of weighted degree 2. In other words, the map

P(1,1,2) — P
given by
(20,21,82) — (85,8081, 87, 8)
is well-defined and injective. One can check that this mapded

P(1,1,2) =~ V(yoy2 - ¥;) C P®,
whereyo, y1,Y»,y3 are homogeneous coordinatesih O
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Later in the book we will use toric methods to construct prtije embeddings
of arbitrary weighted projective spaces.

Exercises for §2.0

2.0.1. Let R be a commutativ€-algebra. Givenf € R\ {0} and an exact sequence of
R-modules 0— M; — M, — M3z — 0, prove that

0— Mi1®rRt — M2®rRi — M3 ®grRf — 0
is also exact, wherBs is the localization oR at f defined in Exercises 1.0.2 and 1.0.3.

2.0.2.LetV C P" be a projective variety. If we s&= C[Xo, . ..,%n], thenV has coordinate
ring C[V] = S/1(V). Letx; be the image of in C[V].

(a) Note thatC[V] is anSmodule. Prove thaf V] ~ C[V] ®sS;.

(b) Use part (a) and the previous exercise to prove thatqpi®exact.

2.0.3. Prove the claim made in (2.0.8).

2.0.4. LetV C P" be a projective variety. Tak®,..., fn € § such that the intersection
VNV(fo,..., fm) is empty. Prove that the map

(8, ...,an) — (fo(@o,...,an),..., fm(ao,...,an))
induces a well-defined functioh : V — P™.

2.0.5. LetV C P" x P™ be defined byf,(x;,y;) = 0, wheref,(x,y;) is bihomogenous of
bidegree(ay,by), £ =1,...,s. The goal of this exercise is to show that when we embed

P" x PMin P"™ MM yia the Segre embedding described in the iétiecomes a subvariety
of pnm+n+m

(a) For each, pick an integed, > max{ay,b,} and consider the polynomialg ., g =
x*yPf,(x,y;) where¢ =1,...,sand|a| = d, — &, |3| = d, —b,. Note thatf, , s is
bihomogenous of bidegréd,,d,). Prove that/ C P" x P™is defined by the vanishing
of the fg@,@.

(b) Use part (a) to show th¥tis a subvariety oP"™ "™ under the Segre embedding.
2.0.6. Prove Proposition 2.0.4

2.0.7. Consider the Segre embeddiRg§ x P — P3. Show that after relabeling coordi-
nates, the affine cone @ x P! in P2 is the varietyV (xy—zw) C C* featured in many
examples in Chapter 1.

82.1. Lattice Points and Projective Toric Varieties

We first observe tha®" is a toric variety with torus
Ten =P"\V(Xo--X1) = {(20,--,8) €P" | @---an # 0}
- {(1,1:1,.. . ,tn) € ]P)n | t]_,. .. ,tn € C*} >~ ((C*)n

The action ofTpn on itself clearly extends to an action &Y, makingP" a toric
variety. To describe the lattices associatedig we use the exact sequence of tori

1— (C* I ((C*)nJrl L> T[pn —1
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coming from the definition (2.0.1) &". Hence the character lattice ©fn is

(2.1.2) My ={(80,...,80) € Z™| 1 & =0},

and the lattice of one-parameter subgrouffsis the quotient
M=7"7(1,.. 1),

Lattice Points and Projective Toric VarietiesLet Ty be a torus with lattice$

and N as usual. In Chapter 1, we used a finite set of lattice points/of&

{my,...,ms} C M to create the affine toric variety,, as the Zariski closure of
the image of the map

DTy — C%  t— (x™(1),...,x"™(1)).
To get a projective toric variety, we regafiel, as a map tqC*)® and compose
with the homomorphismr : (C*)® — Tps-1 to obtain
(2.1.2) T 22 €5 ™ Tpes CPSL,
Definition 2.1.1. Given a finite setz’ C M, the projective toric varietyX,, is the
Zariski closure inPS~1 of the image of the map o &, from (2.1.2).

Proposition 2.1.2. X, is a toric variety of dimension equal to the dimension of the
smallest affine subspace of;Montaining.c/.

Proof. The proof thatX,, C P51 is a toric variety is similar to the proof given
in Proposition 1.1.8 of Chapter 1 th¥t, C C® is a toric variety. The assertion
concerning the dimension of,, will follow from Proposition 2.1.6 below. [

More concretelyX,, is the Zariski closure of the image of the map
Tn — P t— (x™(1),...,x™(1))

given by the characters coming from’ = {my,...,ms} C M. In particular, if
M = Z", theny™ is the Laurent monomid™ andX_, is the Zariski closure of the
image of

Tn— P51t (t™, . tTs).
In the literature, ¥ C Z" is often given as an x s matrix A with integer entries, so
that the elements af7 are the columns oA.

Here is an example where the lattice points themselves ariceta
Example 2.1.3.Let M = Z3<3 be the lattice of 3 3 integer matrices and let
3 = {3 x 3 permutation matricgsC 7>
Write C[M] = C[t;*, ... 5], where the variables give the generig 3 matrix

1 b t3
ty t5 tg
t7 tg g
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with nonzero entries. Also |é° have homogeneous coordinateg indexed by

triples such that(} #?) is a permutation irSs. ThenXg, C P® is the Zariski

closure of the image of the map — P° given by the Laurent monomialg;ty for
(122) € 5. The ideal ofX, is
| (X,) = (X123%231%312 — X132%321%213) < ClXijk ],

where the relation comes from the fact that the sum of the p&tion matrices
corresponding ta;23, X231, X312 €quals the sum of the other three (Exercise 2.1.1).
Ideals of the toric varieties arising from permutation ritats have applications to
sampling problems in statistics (s&6§, p. 148]). O

The Affine Cone of a Projective Toric VarietyThe projective varietyX,, C PS—1
has an affine con¥,, C C°. How doesX,, relate to the affine toric variety,, C C°
constructed in Chapter 1?

Recall from Chapter 1 that whes = {m,...,ms} C M, the mapeg — m
induces an exact sequence
(2.1.3) 0—L—Z—M
and that the ideal of, is the toric ideal
IL=(x*—x|a,8 e N®anda— B €L)
(Proposition 1.1.9). Then we have the following result.

Proposition 2.1.4. Given Y/, X, and | as above, the following are equivalent:
(@) Y, C CSis the affine con&_,, of X, C PS~1.

(b) 1L =1(Xx).

(c) I is homogeneous.

(d) Thereis ue N and k> 0in N such thatm,u) =k fori=1,...,s.

Proof. The equivalence (a)> (b) follows from the equalities(X.,) = 1(X.,) and
I =1(Y,), and the implication (b} (c) is obvious.

For (c) = (d), assume thai_ is a homogeneous ideal and take— x® < I,
for a — 8 € L. If x* andx? had different degrees, thert,x’ € I, = 1(Y,,) would
vanish onY,,. This is impossible sincél,...,1) € Y., by (2.1.2). Henc® and
x? have the same degree, which implies thatl,...,1) = 0 for all £ € L. Now
tensor (2.1.3) witl) and take duals to obtain an exact sequence

Ny — Q° — Homg(Lg, Q) — 0.

The above argument shows tijt. .., 1) € Q% maps to zero in Hog(Lg, Q) and
hence comes from an element Ng. In other words{m;, ) = 1 for alli. Clearing
denominators gives the desirad N andk > 0 in N.
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Finally, we prove (d)= (a). SinceY,, C X,, andX,, is irreducible, it suffices
to show that
Xy N(C*)PC Yy
Letpe XN (C*)3. SinceX,, N Tps-1 is the torus ofX,,, it follows that

p=p-(x™(),....x"™8(t))
for someu € C* andt € Ty. The elementi € N from part (d) gives a one-parameter

subgroup offy, which we write ag- +— \Y(7) for 7 € C*. Then\Y(7)t € Ty maps
to the pointq € Y, given by

a= (XA, ... xTAUT)Y) = (T, M),

sincexM(\Y(7)) = 7(™Y by the description of , ) given in §1.1. The hypothesis
of part (d) allows us to rewritg as

q=7 (™)., x™(t))-
Usingk > 0, we can choose so thatp = q € Y,,. This completes the proof. [

The condition(m,u) =k, i =1,...,s, for someu € N andk > 0 in N means
that.¢ lies in an affine hyperplane ®g not containing the origin. Whell = Z"
and.«Z consists of the columns of anx s integer matrixA, this is equivalent to
(1,...,1) lying in the row space oA (Exercise 2.1.2).

Example 2.1.5. We will examine the rational normal cun@ C P9 using two
different sets of lattice points.

First let.e7 consist of the columns of thex2(d + 1) matrix
d d-1 -- 1 0
A= (o 1 .. od-1 d)'
The columns give the Laurent monomials defining the ratiommaimal curveCqy
in Example 2.0.1. It follows thaty is a projective toric variety. The ideal f
is the homogeneous ideal given in Example 2.0.1, and thegoonding affine
hyperplane ofZ? containing.e (= the columns ofd) consists of all point¢a, b)

satisfyinga+b = d. Itis equally easy to see thét,...,1) is in the row space of
A. In particular, we have

Xy=Cq and Yy :éd.
Now let# = {0,1,...,d —1,d} C Z. This gives the map
By:C—PY t (Lt,... 19709,

The resulting projective variety is the rational normalweyri.e., Xz = Cq4, but
the affine variety of# is not the rational normal cone, i.eYy # Cd This is
becausé(Yx) C C[xo,...,Xd] is not homogeneous. For exampié,— x, vanishes
at(Lt,...,t9 1 t9) e Co* forall t € C*. Thusx? —x; € 1(Yz). O
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Given any«/ C M, there is a standard way to modify so that the conditions
of Proposition 2.1.4 are met: usg x {1} C M@ Z. This lattice corresponds to the
torusT, x C*, and since

(21.4) @, (tm) = X™O p, . x™O) ) = g (X™), .., xS (1),

it follows immediately thai,,/, (1, = X C PS1. Sinces x {1} lies in an affine
hyperplane missing the origin, Proposition 2.1.4 impliest X, has affine cone
Yox{1y = X.s. WhenM = Z" and 7 is represented by the columns of ax s
integer matrixA, we obtaine x {1} by adding the row(1,...,1) to A.

The Torus of a Projective Toric VarietyOur next task is to determine the torus
of X,,. We will do so by identifying its character lattice. This lalso tell us the
dimension ofX,,. Givene/ = {my,...,ms} C M, we set

Lo = {37 am|a €L, Y7 a =0}
The rank ofZ'</ is the dimension of the smallest affine subspadelgitontaining
the setw (Exercise 2.1.3).
Proposition 2.1.6. Let X, be the projective toric variety o C M. Then:
(a) The latticeZ’« is the character lattice of the torus of X
(b) The dimension of X is the dimension of the smallest affine subspace f M

containing.«/. In particular,

rankZ.o/ — 1 if o/ satisfies the conditions of Proposition 2.1.4

dmX, =
“ {rankZ;af otherwise.

Proof. To prove part (a), leM’ be the character lattice of the tortis,, of X,,. By
(2.1.2), we have the commutative diagram

Tn —— Tps1—— ps—1

N

Tx,,
which induces the commutative diagram of character lattice

M —— Ms1

N

MI
since#s_1 = {(a,...,as) € Z°| >;_,a = 0} is the character lattice a1 by
(2.1.1). The map#s_1 — M is induced by the mafi®* — M that sendg to m.
ThusZ'«/ is the image of#s_1 — M and hence equald’ by the above diagram.

The first assertion of part (b) follows from part (a) and theebation that
rankZ'<e/ is the dimension of the smallest affine subspac#/gfcontaining.<.



§2.1. Lattice Points and Projective Toric Varieties 59

Furthermore, ifY,, equals the affine cone &f,,, then there isi € N with (my,u) =
k > 0 for alli by Proposition 2.1.4. This implies thgf > ; am,u) = k(>3 &),
which gives the exact sequence

0 —Zo — 2 " 2kz—0.

Thenk > 0 implies rankZ.«Z — 1 = rankZ'«/ = dim X,,. However, ifY,, # X,
then the ideal, is not homogeneous. Thus some generator y? is not homo-
geneous, so thdtv— 3) - (1,...,1) # 0. Buta— 3 € L, whereL is defined by

0—L—Z°—Z« —0.
This implies that in the exact sequence
0— Ms1—7°—7—0

(see (2.1.1)), the image &fC ZSis ¢Z C Z for somef > 0. This gives a diagram

0 0 0
1 l 1
O—-LNAs1—L—¢Z—0
1 1 ]
0— Ms1——75——7Z—0
! ! 4
0— Z'of — Zof = Z/0Z -0
l l 1
0 0 0
with exact rows and columns. Hence ré — rankZ'«s7 = dim X, . O

Example 2.1.7. Let o7 = {e1,&,€ + 26,261 + &} C Z2. One computes that
7./ =72 butZ'e/ = {(a,b) € Z? |a+b=0mod 2. ThusZ'e/ has index 2 in
7.2/ . This means that,, # X,, and the map of tori

Ty

of Tng

is two-to-one, i.e., its kernel has order 2 (Exercise 2.1.4) O

Affine Pieces of a Projective Toric VarietySo far, our treatment of projective toric
varieties has used lattice points and toric ideals. Whex¢har semigroups? There
are actually lots of semigroups, one for each affine piecéof- PS5,

The affine open seéf; = PS~1\ V(%) contains the toru3ps—:. Thus
TXd =Xy NTps—1 C Xy NU;.
SinceX,, is the Zariski closure ofx_, in Ps—1 it follows thatX,, NU; is the Zariski
closure ofTy_, inUj ~ CS L. ThusX., NU; is an affine toric variety.
GivenaZ = {my,...,ms} C Mg, the affine semigroup associatedtg NU; is
easy to determine. Recall tHat~ C5~ s given by

(a,...,a) — (a1/&,...,8-1/8,8i+1/&,...,85/&).
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Combining this and/™ /x™ = x™~™ with the map (2.1.2), we see th4t, NU;
is the Zariski closure of the image of the map

v — Cs1
given by
(2.1.5) t— (x™™ (), x ™), ™M), ™).
If we setef = o7 —my = {m; —m; | j # i}, it follows that
X NUi =Yy = SpecCISi]),
whereS; = N.¢ is the affine semigroup generated &4 We have thus proved the
following result.

Proposition 2.1.8. Let X, C P51 for &/ = {my,...,ms} C Mg. Then the affine
piece X, NU;j is the affine toric variety

Xz NUi =Y, = SpecClSi])
wheres = &/ —m; andS; = N O

We also note that the results of Chapter 1 imply that the tofis, has char-
acter latticeZ.o. Yet the torus isTx_,, which has character lattic&.«7 by Propo-
sition 2.1.6. These are consistent siffee! = Z'<7 for all i.

Besides describing the affine piecés NU; of X, C PS~1, we can also de-
scribe how they patch together. In other words, we can givenaptetely toric
description of the inclusions

Xy NUi 2 XyNnUinU; € X, NU;
wheni # j. For instancel); NU; consists of all points oK, NU; wherex; /% # 0.
In terms of X, NU; = Sped¢C|[S;]), this means those points whexdi—™ £ 0.
Thus
(2.1.6) Xy NUiNUj = Speo{C[Si])ijfmi = Spec((C[Si]ijfmi ),
so that if we setn = m; —m, then the inclusiorX,, NU;NU; C X, NU; can be
written
(2.1.7) Spe(C|Si]),m C Spe¢C|Si]).
This looks very similar to the inclusion constructed in (4)3using faces of cones.
We will see in §2.3 that this is no accident.

We next say a few words about how the polytdhe Con(«7) C Mg relates
to X,,. As we will learn in §2.2, the dimension &fis the dimension of the small-
est affine subspace ®fg containingP, which is the same as the smallest affine
subspace oMy containing.«/. It follows from Proposition 2.1.6 that
dimX, =dimP.

Furthermore, the vertices &fgive an especially efficient affine covering X, .
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Proposition 2.1.9.Givens/ = {m,...,ms} CM, let P=ConV /) C Mg and set
J={je{1,...,s} | mjis avertex of B. Then

Xy = U Xz N Uj .
j€d
Proof. We will prove that ifi € {1,...,s}, thenX, NU; C X, NU; for somej € J.
The discussion of polytopes from §2.2 below implies that

PN MQ = {Zjejrjmj ’ r e @20, szJFj = 1}.
Giveni € {1,...,s}, we havem, € PN'M, so thatm is a convexQ-linear combi-
nation of the vertices;. Clearing denominators, we get integ&rs 0 andk; > 0
such that
Thus}_;.;kj(mj —m;) = 0, which implies thatm —m; € S; whenk; > 0. Fix
such aj. Theny™~™ e C[S;] is invertible, SO(C[Si]ij—mi = CI[Si]. By (2.1.6),
X NU; ﬂUj = Spec{C[Si]) = X NU;, giving X,y NU; € X,y ﬂUj. Ol

Projective Normality An irreducible varietyv C P" is calledprojectively normal
if its affine coneV C C™! is normal. A projectively normal variety is always
normal (Exercise 2.1.5). Here is an example to show thatdheerse can fail.

Example 2.1.10.Let <7 C Z? consist of the columns of the matrix

4 3 10
01 3 4)°

giving the Laurent monomials, st, st t4. The polytopeP = Conv.«7) is the line
segment connectingt, 0) and(0,4), with vertices corresponding & andt®. The
affine piece oX,, corresponding ts* has coordinate ring

Cls’t/s*,st/s", 1%/ = Clt/s. (t/9)°, (t/9)"] = Clt/d],

which is normal since it is a polynomial ring. Similarly, osees that the coordinate
ring corresponding to* is C[s/t], also normal. These affine pieces co¥gy by
Proposition 2.1.9, so that,, is normal.

Since(1,1,1,1) is in the row space of the matriX,, is the affine cone oK.,
by Proposition 2.1.4. The affine variety, is not normal by Example 1.3.9, so that
X,z is normal but not projectively normal. See Example B.1.2d@ophisticated
proof of this fact that uses sheaf cohomology from Chapter 9. O

The notion of normality used in this example is a bit ad-hocsiwe have not
formally defined normality for projective varieties. Once define normality for
abstract varieties in Chapter 3, we will see that ExamplélR.iks fully rigorous.

We will say more about projective normality when we expldre ¢onnection
with polytopes suggested by the above results.
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Exercises for §2.1

2.1.1.Consider the sef?; C Z3*2 of 3 x 3 permutation matrices defined in Example 2.1.3.

(a) Prove the claim made in Example 2.1.3 that three of theptation matrices sum to
the other three and use this to explain WhysXo31X312 — X132%321%213 € | (X2, ).

(b) Show that dinKs, = 4 by computingZ’ #s.

(c) Conclude thak(Xz,) = (X123%231X312 — X132X321%213) -

2.1.2. Let & C Z" consist of the columns of amx s matrix A with integer entries. Prove
that the conditions of Proposition 2.1.4 are equivalenh#dassertion thatl,...,1) € Z°
lies in the row space ok overR or Q.

2.1.3. Given a finite set C M, prove that the rank df’<7 equals the dimension of the
smallest affine subspace (ov@ror R) containing<? .

2.1.4. Verify the claims made in Example 2.1.7. Also compl(€,, ) and check that it is
not homogeneous.

2.1.5. LetV C P" be projectively normal. Use (2.0.6) to prove that the affieegsv NU;
of V are normal.

2.1.6. Fix a finite subsety C M. Givenme M, let&Z + m={m +m|m € «/}. Thisis

thetranslateof .7 by m.

(a) Prove thats and its translates + m give the same projective toric variety, i.¥,, =
Xez +m-

(b) Give an example to show that the affine toric varieYigsandY., ., can differ. Hint:
Pick o7 so that it lies in an affine hyperplane not containing theiarighen translate
&/ to the origin.

2.1.7. In Proposition 2.1.4, give a direct proof that () (c).

2.1.8. In Example 2.1.5, the rational normal cur@Zg C P9 was parametrized using the
homogeneous monomiadd’, i + j = d. Here we will consider the curve parametrized by
a subset of these monomials corresponding to the exponetotrse

‘Q{ = {(aO) b0)7 MR} (anybn)}
whereag > a; > --- > a, anda + bj = d for everyi. This gives the projective curve
X CP". We assume > 2.

(a) Ifap < dora, > 0, explain why we can obtain the same projective curve usiogan
mials of strictly smaller degree.

(b) Assumeay = d anda, = 0. Use Proposition 2.1.8 to show tlats smooth if and only
if a3 =d— 1 anda,_; = 1. Hint: For one direction, it helps to remember that smooth
varieties are normal.

§2.2. Lattice Points and Polytopes

Before we can begin our exploration of the rich connecticetsvben toric varieties
and polytopes, we first need to study polytopes and theicdagioints.
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Polytopes Recall from Chapter 1 that a polytopeC Mg is the convex hull of
a finite setSC Mg, i.e., P = Con(S). Similar to what we did for cones, our
discussion of polytopes will omit proofs. Detailed treatitseof polytopes can be
found in [51], [128 and [281].

The dimensionof a polytopeP C Mg is the dimension of the smallest affine
subspace oMp containingP. Given a nonzero vectarin the dual spacélg and
b € R, we get theaffine hyperplane k, andclosed half-space ﬂ defined by

Hub={meMg | (mu)=b} and Hj,={meMg|(mu)>b}.
A subsetQ C P is afaceof P, written Q < P, if there areu € Ng \ {0}, b € R with
Q=HupNP and PC Hj}.

We say thatd, , is asupporting affine hyperplania this situation. Figure 1 shows
a polygon with the supporting lines of its 1-dimensionalefacThe arrows in the
figure indicate the vectons

N

Figure 1. A polygonP and four of its supporting lines

We also regardP as a face of itself. Every face &fis again a polytope, and
if P=ConV(S) andQ = H, NP as above, the® = ConvSNHyp). Faces of
P of special interest arfacets edgesandvertices which are faces of dimension
dimP — 1, 1 and 0 respectively. Facets will usually be denoted byetter F.

Here are some properties of faces.

Proposition 2.2.1. Let PC Mg be a polytope. Then:

(a) P is the convex hull of its vertices.

(b) If P = ConvS), then every vertex of P lies in S.

(c) If Qis a face of P, then the faces of Q are precisely the fac®slygihg in Q.
(d) Every proper face X P is the intersection of the facets F containing QU

A polytope P C Mg can also be written as a finite intersection of closed half-
spaces. The converse is true provided the intersectioruisdeal. In other words,

if an intersection .
P= ﬂ HJirbi
i=1
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is bounded, theR is a polytope. Here is a famous example.

Example 2.2.2.A d x d matrixM € R9*9 js doubly-stochastiif it has nonnegative
entries and its row and column sums are all 1. If we reg@#d® as the affine
space]Rdz with coordinatess;j, then the set#y of all doubly-stochastic matrices
is defined by the inequalites

Zidzlaij >1, Zidzlaij <1 (allj)

d d :

o1& =1 Y@ <1 (alli).
(We use two inequalities to get one equality.) These indiipsmleasily imply that
0<aqj < 1foralli, j, so that#q is bounded and hence is a polytope.

Birkhoff and Von Neumann proved independently that theisestof. 7y are
thed! permutation matrices and that dimg = (d — 1)2. In the literature, #4 has
various names, including thBirkhoff polytopeand thetransportation polytope
See P81, p. 20] for more on this interesting polytope. O

WhenP is full dimensionali.e., dimP = dim Mg, its presentation as an inter-
section of closed half-spaces has an especially nice fooause each fac&t has
auniquesupporting affine hyperplane. We write the supporting affipeerplane
and corresponding closed half-space as

He = {meMg | (mug) =—ar} and HF = {me Mg | (M Ug) > —ar},
where(ug,ar) € Ng x R is unique up to multiplication by a positive real number.
We callug aninward-pointing facet normabf the facet~. It follows that

(221) P= ()] Hf ={meMg|(mug) > —a for all facetsF < P}.
F facet

In Figure 1, the supporting lines plus arrows determine thpperting half-planes
whose intersection is the polygéh We write (2.2.1) with minus signs in order to
simplify formulas in later chapters.

Here are some important classes of polytopes.

Definition 2.2.3. Let P C Mg be a polytope of dimensiodh.

(a) Pis asimplexor d-simplexif it hasd + 1 vertices.

(b) Pissimplicial if every facet ofP is a simplex.

(c) Pissimpleif every vertex is the intersection of precisalyfacets.

Examples include the Platonic solidsR:
e A tetrahedron is a 3-simplex.
e The octahedron and icosahedron are simplicial since the@t$ are triangles.
e The cube and dodecahedron are simple since three facetainavery vertex.
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PolytopesP; andP, arecombinatorially equivalenif there is a bijection
{faces ofP, } ~ {faces ofP,}

that preserves dimensions, intersections, and the faagorel<. For example,
simplices of the same dimension are combinatorially ed@ntaand in the plane,
the same holds for polygons with the same number of vertices.

Sums, Multiples, and Duals Given a polytopeP = Conv(S), its multiple rP =

ConVrS) is again a polytope for any> 0. If P is defined by the inequalities
(mu)>-a, 1<i<s

thenrP is given by

(mu)>—ra, 1<i<s

In particular, wherP is full dimensional, therP andrP have the same inward-
pointing facet normals.

TheMinkowski sunof subset#\;,A» C My is
Al+A={m+mp|m €A, m e A}

Given polytoped; = Conv(S;) andP, = Conv\(S,), their Minkowski sunP, + P, =
Conv(S; + $) is again a polytope. We also have the distributive law

rP+sP=(r+s)P.

WhenP C My is full dimensional and 0 is an interior point Bf we define the
dual or polar polytope
P°={ueNg | (mu)>—1forallme P} C Ng.

Figure 2 shows an example of this in the plane.

Figure 2. A polygonP and its duaP° in the plane

When we writeP = {me Mg | (m,ug) > —ag,F facet asin (2.2.1), we have
ag > 0 for all F since 0 is in the interior. TheR°® is the convex hull of the vectors
(1/ar )ur € Nr (Exercise 2.2.1). We also hayB°)° = P in this situation.
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Lattice Polytopes Now letM andN be dual lattices with associated vector spaces
Mg andNg. A lattice polytope RC My is the convex hull of a finite s&C M. It
follows easily that a polytope iMy is a lattice polytope if and only if its vertices
lie in M (Exercise 2.2.2).

Example 2.2.4. Thestandard n-simplein R" is
Ap=Conv0,ey,...,6en).
Another simplex inR3 is P = ConV0, ey, &, € + & + 3e3), shown in Figure 3.

erte+3e;

€

Figure 3. The simplexP = Conv(0, &1, &, & + € + 3e3) C R®

The lattice polytopeg\s andP are combinatorially equivalent but will give very
different projective toric varieties. O

Example 2.2.5. The Birkhoff polytope defined in Example 2.2.2 is a latticdypo
tope relative to the lattice of integer matric&$<? since its vertices are the permu-
tation matrices, whose entries are all O or 1. O

One can show that faces of lattice polytopes are againdattitytopes and that
Minkowski sums and integer multiples of lattice polytopee kttice polytopes
(Exercise 2.2.2). Furthermore, every lattice polytopenisraersection of closed
half-spaces defined ovit, i.e.,P = ﬂiszl Hljijbi whereu; € N andb; € Z.

When a lattice polytop® is full dimensional, the facet presentation given in
(2.2.1) has an especially nice form.Hfis a facet ofP, then the inward-pointing
facet normals oF lie on a rational ray ifNg. Let us denote the unique ray gener-
ator. The corresponding- is integral sincgm,ur) = —ar whenmis a vertex of
F. It follows that

(2.2.2) P={me Mg | (mug) > —af for all facetsF < P}
is theuniquefacet presentation of the lattice polytope
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Example 2.2.6.Consider the squaie= Conv(+e; + &) C R?. The facet normals
of P aret+e; and+e, and the facet presentation Bfis given by

(m +ey) > —1.

Since theag are all equal to 1, it follows th&®® = Conv(+e;, &) is also a lattice
polytope. The polytopeB andP° are pictured in Figure 2.

It is rare that the dual of a lattice polytope is a lattice paphe—this is related
to thereflexive polytopethat will be studied later in the book.

Example 2.2.7.The 3-simplexP = Conv(0, ey, &, € + & + 3e3) C R3 pictured in
Example 2.2.4 has facet presentation

-3

(Exercise 2.2.3). However, if we replaee8 with —1 in the last inequality, we get
integer inequalities that defiri@/3)P, which isnot a lattice polytope. O

The combinatorial type of a polytope is an interesting dbgfcstudy. This
leads to the question “Is every polytope combinatoriallyiegjent to a lattice
polytope?” If the given polytope is simplicial, the answer‘yes"—just wiggle
the vertices to make them rational and clear denominatagstta lattice polytope.
The same argument works for simple polytopes by wiggling féeet normals.
This will enable us to prove results about arbitrary simiglior simple polytopes
using toric varieties. But in general, the answer is “no”™erthexist polytopes in
every dimensior> 8 not combinatorially equivalent to any lattice polytopen A
example is described 281, Ex. 6.21].

A First Guess for the Toric Variety of PolytopeA lattice polytopeP gives a finite
set of lattice point® N M, which in turn gives a projective toric varie¥p~y. This
is a natural candidate for the toric varietyf However,Xp~n may fail to reflect
the properties oP when there are too few lattice points.

Example 2.2.8.1n Example 2.2.4, we defined the standard 3-simgigxand the
3-simplexP = ConV(0,e;,e,, €1 + e + 3e3). Both have only four lattice points
(their vertices). Thus the toric varietie§, 7z and Xpqzs live in P2, and in fact
we haveX,qzs = Xprze = P2 (Exercise 2.2.3). Yef\; andP are very different
lattice polytopes. For example, the nonzero verticed gform a basis ofZ®, but
this is not true forP. O
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We will see below that the constructiéh— PN M — Xp~m Works fine when
the lattice polytopd® has “enough” lattice points. Hence our first task is to ex@lor
what this means.

Normal Polytopes Here is one way to say th&has enough lattice points.
Definition 2.2.9. A lattice polytopeP C Mg is normal if

(kP)YNM + ((P)NM = ((k+£)P)NM
forallk,/ € N.

The inclusion(kP) "M + (¢P)NM C ((k+¢)P) M is automatic. Thus nor-
mality means that all lattice points ¢k ¢)P come from lattice points dfP and
£P. In particular, a lattice polytope is normal if and only if

POAM+---+PNM = (kP)NM.
k times

for all integersk > 1. So normality means th&® has enough lattice points to
generate the lattice points in all integer multiplesof

Lattice polytopes of dimension 1 are normal (Exercise 2.24re is another
class of normal polytopes.

Definition 2.2.10. A simplex P C My is basicif P has a vertexn, such that the
differencesm— my, for verticesm # my of P, form a subset of &-basis ofM.

This definition is independent of which vertax € P is chosen. The standard
simplexAp C R" is basic, and any basic simplex is normal (Exercise 2.2.%xeM
general simplices, however, need not be normal.

Example 2.2.11.We noted in Example 2.2.8 that the only lattice pointdPof
Conv(0,er, e, € + & + 3e3) C R3 are its vertices. It follows easily that

er+e+e3=1(0)+ 3(2e1) + 3(262) + £(2e1 + 26, + 6e3) € 2P

is not the sum of lattice points &. This shows thaP is not normal. In particular,
P is not basic. O

Here is an important result on normality.

Theorem 2.2.12.Let PC Mg be a full dimensional lattice polytope of dimension
n> 2. Then kP is normal for all & n— 1.

Proof. This result was first explicitly stated irb}], though as noted in5p], its
essential content follows fron®4§] and [187]. We will use ideas from187] and
[223 to show that

(2.2.3) (kP)NM+PNM = ((k+1)P)"M for ke Z, k>n—1,



§2.2. Lattice Points and Polytopes 69

In Exercise 2.2.6 you will show that (2.2.3) implies tk&is normal for all integers
k> n—1. Note also that for (2.2.3), it suffices to prove that

(k+1)P)NnM C (kP)nM+PNM
since the other inclusion is obvious.

First consider the case wheReis a simplex with no interior lattice points.
Let the vertices oP bemy,...,m, and takek > n— 1. Then(k+ 1)P has vertices
(k+1)mg, ..., (k+1)my,, so that a pointme ((k-+1)P) M is a convex combination

m= Y"1 oui(k+1)m, wherey; >0, S i = 1.
If we set); = (k+ 1), then
m= " ,Aim, where); >0, > J A =k+ 1.

If \j > 1 for somei, then one easily sees that—m € (kP)"M. Hencem =
(m—m) + m; is the desired decomposition. On the other hand; i 1 for all i,
then

Nn=N-1)+1<k+1=>" A<n+1,
so thatk=n—1 and)_{' ; \i = n. Now consider the lattice point

M= (Mo+--+my) —m= > (1—\)m.
The coefficients are positive singg< 1 for alli, and their sum s~ ,(1—\j) =
n+1—n=1. Hencemis a lattice point in the interior d? since 1— A; > 0 for all

i. This contradicts our assumption Brand completes the proof whétis a lattice
simplex containing no interior lattice points.

To prove (2.2.3) for the general case, it suffices to proveRhs a finite union
of n-dimensional lattice simplices with no interior latticeipts (Exercise 2.2.7).
For this, we use Carathéodory’s theorem (&234[Prop. 1.15]), which asserts that
for a finite seteZ C Mg, we have

Conv(«) = JConw( ),

where the union is over all subse#C o7 consisting of dim Confw') + 1 affinely
independent elements. Thus each Go#yis a simplex. This enables us to write
our lattice polytopeP as a finite union oh-dimensional lattice simplices.

If an n-dimensional lattice simple® = Conwo, ..., W,) has an interior lattice
pointv, then

n
Q= UQi, Qi = Conv(wp, ..., Wi,...,Wn,V)
i=0

is a finite union oh-dimensional lattice simplices, each of which has fewegriot
lattice points thar® sincev becomes a vertex of eah. By repeating this process
on thoseQ; that still have interior lattice points, we can eventuallyiter Q and
hence our original polytopP as a finite union oh-dimensional lattice simplices
with no interior lattice points. You will verify the detaila Exercise 2.2.7. [



70 Chapter 2. Projective Toric Varieties

This theorem shows that for the nonnormal 3-simpeof Example 2.2.11, its
multiple 2P is normal. Here is another consequence of Theorem 2.2.12.

Corollary 2.2.13. Every lattice polygon B R? is normal. a

We can also interpret normality in terms of the condpflefined by
C(P) =CongP x {1}) C Mg x R.

This was introduced in Figure 3 of Chapter 1. The key featd@ithis cone is that
kPis the “slice” ofC(P) at heightk, as illustrated in Figure 4. It follows that lattice
pointsm € kP correspond to pointem, k) € C(P) N (M x Z).

height = 2

C(P)

height =1

Figure 4. The coneC(P) sliced at heights 1 and 2

In Exercise 2.2.8 you will show that the semigradP) N (M x Z) of lattice
points inC(P) relates to normality as follows.

Lemma 2.2.14.Let PC Mg be a lattice polytope. Then P is normal if and only if
(PNM) x {1} generates the semigroug ) N (M x Z). O

This lemma tells us tha& C Mg is normal if and only if(PNM) x {1} is the
Hilbert basis ofC(P) N (M x Z).

Example 2.2.15.In Example 2.2.11, the simpldx= ConV(0, ey, e;,e; + € + 3e3)
gives the con€(P) C R*. The Hilbert basis o€(P) N (M x Z) is
(0.1),(e1,1),(e2,1),(er + €2+ 3e3,1), (e1 + €2+ €3,2), (€1 + €2+ 2€3,2)

(Exercise 2.2.3). Since the Hilbert basis has generatoreight greater than 1,
Lemma 2.2.14 gives another proof tiais not normal. O
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In Exercise 2.2.9, you will generalize Lemma 2.2.14 as fedlo
Lemma 2.2.16.Let PC Mg ~ R" be a lattice polytope of dimension>n2 and let
ko be the maximum height of an element of the Hilbert basigBj CThen:
(@) ko<n-1.
(b) kP is normal for any k> kg. a

The Hilbert basis of the simpleR of Example 2.2.15 has maximum height 2.
Then Lemma 2.2.16 gives another proof thRti normal. The paperB7] gives
a version of Lemma 2.2.16 that applies to Hilbert bases ofrgeneral cones.

Very Ample PolytopesHere is a slightly different notion of what it means for a
polytope to have enough lattice points.

Definition 2.2.17. A lattice polytopeP C My is very ampleif for every vertex
m e P, the semigroup m = N(PNM —m) generated by the s&eNM —m =
{m —m|m € PNM} is saturated itM.

This definition relates to normal polytopes as follows.

Proposition 2.2.18. A normal lattice polytope P is very ample.

Proof. Fix a vertexmy € P and takem € M such thakme Sp r,, for some integer
k> 1. To prove tham e Sp m,, write Kme Sp iy, as

KM= >"vepam 8w (M — M),  aw €N.
Pickd € N so thatkd> >/ cpm @mw. Then

km+kdmy =3 cpam @M + (kd— 3",/ cprm@m ) Mo € kdP.
Dividing by k givesm+ dy € dP, which by normality implies that
d

m+dm):Zm, m € PN M for all i.
i—1

We conclude thatn =3¢ | (m —my) € Sp m,, as desired. O

Combining this with Theorem 2.2.12 and Corollary 2.2.13:githe following.

Corollary 2.2.19. Let PC Mg ~ R" be a full dimensional lattice polytope. Then:
(@) If dimP > 2, then kP is very ample for allk n— 1. a
(b) If dimP = 2, then P is very ample.

Part (a) was first proved irOf]. We will soon see that very ampleness is
precisely the property needed to define the toric varietylaftee polytope.

The following example taken fronbp, Ex. 5.1] shows that very ample poly-
topes need not be normal, i.e., the converse of Propositba&is false.
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Example 2.2.20.Given 1<i < j < k < 6, let[ijk] denote the vector i8 with 1
in positionsi, j,k and 0 elsewhere. Thy$23 = (1,1,1,0,0,0). Then let

o ={[123,[124,[135, (146, [156], [236], 245, [256], (345, (346 } C A

The lattice polytopeP® = ConV(.27) lies in the affine hyperplane @® where the
coordinates sum to 3. As explained 5%], this configuration can be interpreted in
terms of a triangulation of the real projective plane.

The points ofe7 are the only lattice points d? (Exercise 2.2.10), so that is
the set of vertices dP. Number the points af7 asmy,...,mye. Then

10 10
(LLLLLY) =2) m=> {(2m)
i=1 i=1

shows thatv = (1,1,1,1,1,1) € 2P. Sincev is not a sum of lattice points d?
(when(ijk] € <7, the vectorv— [ijk] is not in <), we conclude thaP is not a
normal polytope.
To show thaP is very ample, we first prove that x {1}U{(v,2)} CR®xRis
a Hilbert basis of the semigrod@(P) NZ’, whereC(P) C R® x R is the cone over
P x {1}. We show how do this usinBormaliz [57] in Example B.3.1. Another
approach would be to ugi2 [14(0.
Now fix i and letSp , be the semigroup generated by the— m. Takeme
78 such thatkm e Spm. As in the proof of Proposition 2.2.18, this implies that
m+dm € dP for somed € N. Thus(m+dm,d) € C(P)NZ’. Expressing this in
terms of the above Hilbert basis easily implies that
10
m=a(v—2m) +Zaj(mj -m), aajeN.
j=1
If we can show that— 2m; € Sp 1, thenme Sp 1, follows immediately and proves
thatSp , is saturated. Whein= 1, one can check that

v+ [123 = [124 + [135 + [236],
which implies that
V—2my = (Mp —my) + (Mg — My) + (Mg — M) € Sp .

One obtains similar formulas for= 2,...,10 (Exercise 2.2.10), which completes
the proof thaP is very ample.
The polytopeP has further interesting properties. For example, up to affin
equivalenceP can be described as the convex hull of the 10 poin&igiven by
(0,0,0,0,0),(0,0,0,0,1),(0,0,1,1,0),(0,1,0,1,1),(0,1,1,1,0)
(1,0,1,0,1),(1,0,1,1,1),(1,1,0,0,0),(1,1,0,1,1),(1,1,1,0,0).
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Of all 5-dimensional polytopes whose vertices lig{h1}°, this polytope has the
most edges, namely 45 (se®)[ Since it has 10 vertices and 4-5(120) every pair
of distinct vertices is joined by an edge. Such polytope2areighborly O

Exercises for §2.2

2.2.1. Let P C Mg be a full dimensional polytope with the origin as an intepoint.

(a) WriteP ={me Mg | (m,ug) > —a for all facetsF }. Prove thatg > O for all F and
thatP° = ConV((1/ar)ur | F a facej.

(b) Prove that the dual of a simplicial polytope is simple &ite versa.

(c) ProvethafrP)° = (1/r)P° forallr > 0.

(d) Use part (c) to construct an example of a lattice polytwpese dual is not a lattice
polytope.

2.2.2. Let P C Mg be a polytope.

(a) Prove thaP is a lattice polytope if and only if the vertices Bflie in M.

(b) Prove thaP is a lattice polytope if and only ® is the convex hull of its lattice points,
i.e.,,P=Conv PNM).

(c) Prove that every face of a lattice polytope is a lattickyiope.

(d) Prove that Minkowski sums and integer multiples of tatpolytopes are again lattice
polytopes.

2.2.3.LetP=ConV0, ey, e, e+ e+ 3e3) C R® be the simplex studied in Examples 2.2.4,

2.2.7,2.2.8,2.2.11and 2.2.15.

(a) Verify the facet presentation &fgiven in Example 2.2.7.

(b) Show that the only lattice points Bfare its vertices.

(c) Show that the toric varietfpz: is P2, as claimed in Example 2.2.8.

(d) Show that the vectors given in Example 2.2.15 form thééfil basis of the semigroup
CP)N(M x Z).

2.2.4. Prove that every 1-dimensional lattice polytope is hormal.

2.2.5. Recall the definition of basic simplex given in Definition 2.Q.

(a) Show that if a simplex satisfies Definition 2.2.10 for oeetex, then it satisfies the
definition for all vertices.

(b) Show that the standard simpléy, is basic.
(c) Prove that a basic simplex is hormal.
2.2.6. LetP C Mg ~ R" be ann-dimensional lattice polytope.
(a) Prove that (2.2.3) implies that
(kPYNM+ ((P)NM = ((k+£)P)NM
for all integersk > n—1 and/ > 0. Hint: When? = 2, we have
(kP NM+PNM+PNM C (kP)NnM+ (2P)NM C ((k+2)P)NM.

Apply (2.2.3) twice on the right.

(b) Use part (a) to prove th&P is normal wherk > n— 1 andP satisifes (2.2.3).
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2.2.7. Let P C Mg ~ R" be ann-dimensional lattice polytope.

(a) Follow the hints given in the text to give a careful proodttP is a finite union of
n-dimensional lattice simplices with no interior latticeipis.

(b) In the text, we showed that (2.2.3) holds forradimensional lattice simplex with no
interior lattice points. Use this and part (a) to show tha2 () holds forP.

2.2.8. Prove Lemma 2.2.14.

2.2.9. In this exercise you will prove Lemma 2.2.16. As in the lemiabky be the maxi-

mum height of a generator of the Hilbert basi<gP) N (M x Z).

(a) Adapt the proof of Gordan’s Lemma (Proposition 1.2.brsthow that if 77 is the
Hilbert basis of the semigroup of lattice points in a strgngdnvex cone Corfe?),
then the lattice points in the cone can be written as the union

N UUmer (M+Nor).
(b) If the Hilbert basis o€(P)N (M x Z) is {(my, hy),...,(ms, hs) }, then conclude that
C(P)N(Mx Z) = SUU, ((m,hi) +9),
whereS = N((PNM) x {1}).
(c) Use part (b) to show that (2.2.3) holds for k.

2.2.10. Consider the polytopE = ConV.«7) from Example 2.2.20.
(a) Prove thaty is the set of lattice points d?.
(b) Complete the proof begun in the text tiais very ample.

2.2.11. Prove that every proper face of a simplicial polytope is guax.

2.2.12.In Corollary 2.2.19 we proved th&tP is very ample fork > n— 1 using Theo-
rem 2.2.12 and Proposition 2.2.18. Give a direct proof oftkeker result thatP is very
ample fork sufficiently large. Hint: A vertexn € P gives the con€p 1, generated by the
semigroubp n, defined in Definition 2.2.17. The co@ n is strongly convex since is
a vertex and hend@ N M has a Hilbert basis. Furthermof@; ,, = Cyp xm for all k € N.
Now argue that whek is large,(kP) "M — kmcontains the Hilbert basis @ nNM. A
picture will help.

2.2.13.Fix an integem > 1 and consider the 3-simpléx= ConV0, ae;, ae, &) C R3.

(a) Work out the facet presentation®fand verify that the facet normals can be labeled
so thatug+ u; +u, +aug = 0.

(b) Show thaP is normal. Hint: Show tha®NZ3+ (kP) N Z3 = ((k+ 1)P) N Z3.
We will see later that the toric variety &fis the weighted projective spa¢l,1,1, a).

82.3. Polytopes and Projective Toric Varieties

Our next task is to define the toric variety of a lattice pabgo As noted in §2.2,
we need to make sure that the polytope has enough latticespdlence we begin
with very ample polytopes. Strongly convex rational polyta¢ cones will play an
important role in our development.
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The Very Ample CaselLet P C Mg be a full dimensional very ample polytope
relative to the latticéVl, and let dimP = n. If POM = {my,...,ms}, thenXpqy is
the Zariski closure of the image of the m&p— PS! given by

t— (x™(t),....x™(t)) e PSL.
Fix homogeneous coordinates ..., Xs for PS~1.
We examine the structure &b~y C PS~! using Propositions 2.1.8 and 2.1.9.
For eachm; € PN'M consider the semigroup
Si=N(PNM-—m,)

generated byn; —m; for mj € PN M. In P51 we have the affine open subset
U; ~ €5~ consisting of those points where+ 0. Proposition 2.1.8 showed that
the affine open piecEp~v NU; of Xpy is the affine toric variety

Xpam NU; ~ SpecC[Si)),
and Proposition 2.1.9 showed that
Xpam = U Xpam NU;.
m; vertex ofP

Here is our first major result aboMbrv.

Theorem 2.3.1.Let X~ be the projective toric variety of the very ample polytope
P C Mg, and assume that P is full dimensional witim P = n. Then:

(a) For each vertex me PN M, the affine piece pam NU; is the affine toric variety
Xpam NU; = Uai = Spec{@[a,\/ N M])

wheregi C Ny is the strongly convex rational polyhedral cone dual to thee
CondPNM —m;) C Mg. Furthermoredim o; = n.

(b) The torus of ¥~w has character lattice M and hence is the torys T

Proof. LetC; = CondPNM —m;). Sincem is a vertex, it has a supporting hy-
perplaneH, 4 such thatP C Hljja andPNHya= {m}. It follows thatH,o is a
supporting hyperplane of @C; (Exercise 2.3.1), so th&}; is strongly convex. Itis
also easy to see that dih = dim P (Exercise 2.3.1). It follows tha&; ando; =C"
are strongly convex rational polyhedral cones of dimension

We haveS; C CiNM = ¢ N M. By hypothesisP is very ample, which means
thatS; C M is saturated. Sinc& andC; = ;" are both generated BJNM — m,
part (a) of Exercise 1.3.4 impli€s = oY "M. (This exercise was part of the proof
of the characterization of normal affine toric varietiesegivin Theorem 1.3.5.)
Part (a) of the theorem follows immediately.

For part (b), Theorem 1.2.18 implies th&§ is the torus ofU,, sinceo; is
strongly convex. Thefy C U,; = Xpam NU; € Xpnm shows thafTy is also the
torus ofXpm. O
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The affine pieceXprm NU; andXprm NU; intersect inkpy NU;NU;. In order
to describe this intersection carefully, we need to study the coness; ando;j fit
together inNg. This leads to our next topic.

The Normal Fan The conesr; C Ng appearing in Theorem 2.3.1 fit together in a

remarkably nice way, giving a structure called tit@mal fan of P

Let P C Mg be a full dimensional lattice polytope, not necessarily\ample.
Faces, facets and verticesPivill be denoted byQ, F andv respectively. Hence
we write the facet presentation Bfas

(2.3.1) P={meMg | (mug)> —ae forall F}.

A vertexv € P gives cones
C,=CondPNM—-v)CMg and o, =C) C Ng.
(Whenv = m;, these are the con€ando; studied above.) Fac€3C P containing
the vertexv correspond bijectively to face3, C C, via the maps
Q+— Q,=CondQNM—v)
Q—Q=(Q+v)NP

which are inverses of each other. These maps preserve donsnimclusions, and
intersections (Exercise 2.3.2), as illustrated in Figure 5

(2.3.2)

Q

Figure 5. The coneC, of a vertexv € P

In particular, all facets of, come from facets dP containingv, so that

C, ={me Mg | (mug) > 0 for all F containingv}.
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By the duality results of Chapter 1, it follows that the duaheo, is given by
oy = Condug | F containsv).
This construction generalizes to arbitrary fa€es P by setting
oq = Condur | F containsQ).
Thus the coner is the ray generated hy-, andop = {0} since{0} is the cone
generated by the empty set. Here is our main result abou treees.
Theorem 2.3.2.Let PC Mg be a full dimensional lattice polytope and s&t =
{oq | Q= P}. Then:
(a) For all o € Xp, each face ofg is also inXp.
(b) The intersectiorg N og of any two cones ikp is a face of each.
Remark 2.3.3. A finite collection of strongly convex rational polyhedrabrnes
that satisfies (a) and (b) of Theorem 2.3.2 is callddra General fans will be

introduced in Chapter 3. Since the cones in theXarare built from the inward-
pointing normal vectorsi, we callXp the normal fanor inner normal fanof P.

Theorem 2.3.2 will follow from the results proved below. Biust, we give a
simple example of a polytope and its normal fan.

Example 2.3.4.The 2-simplexA, C R? has vertices @, e. Let P = kA, for an
integerk > 0. Figure 6 show® and its normal fartp. At each vertex; of P, we

Vo

/

Vo / Vi

Figure 6. The triangleP = kA, C R? and its normal farte

show the cone; = C, generated by the normal vectors of the facets containing
The reassembled cones appear on the rightras

Notice that the coneS,; C Mg do not fit together nicely; rather, it is their duals
o; € Ng that give the fartp. This explains why cones iNg are the key players in
toric geometry. O

Here is the first of the results we need to prove Theorem 2.3.2.
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Lemma 2.3.5. Let Q be a face of P and let}g be a supporting affine hyperplane
of P. Then ue oq if and only if QC H,p N P.

Proof. First suppose that € og and writeu = ZQCF AeUg, Ap > 0. Then setting

bo = — > "cr AFar easily implies thaP C HJ“bo andQ C Hyp, NP. Recall that
the integersa- come from the facet presentation (2.3.1). It follows tHat, is a
supporting hyperplane @&. SinceHy, is a supporting hyperplane by hypothesis,
we must havdy = b, henceQ C H, , N P.

Going the other way, suppose thtC H,p N P. Take a vertexr € Q. Then
P C H/, andv € Hy}, imply thatC, C H;,. Henceu € C}/ = o, so that
u:ZveF )\|:U|:, )\|: > 0.
Let Fp be a facet of containingv but notQ, and pickp € Q with p ¢ Fy. Then
p,v € Q C Hyp imply that
b= (p,u) = \cr Ar (P, UF)
b= <V,U> - ZVEF AR <V7UF> = _ZVGF AFaF,

where the last equality usée, ur) = —ag for v € F. These equations imply

2veF AF <p7 UF> = _ZveF AFaF.

However,p ¢ Fy gives(p, Ug,) > —ar,, and since p,ur) > —ag for all F, it follows
that \r, = 0 wheneveQ ¢ Fy. This givesu € og and completes the proof of the
lemma. O

Corollary 2.3.6. If Q < P and F< P is a facet, thenpi € og ifand only if QC F.

Proof. One direction is obvious by the definition of), and the other direction
follows from Lemma 2.3.5 sincely., 5 is a supporting affine hyperplane Bf
Wlth Hqu_aF ﬁ P — F. D

Theorem 2.3.2 is an immediate consequence of the followiaggsition.

Proposition 2.3.7. Let Q and Q be faces of a full dimensional lattice polytope
P C Mg. Then:

(@ Qc Q'ifand only ifoy C 0q.
(b) IfQ C Q, thenoy is a face ofrg, and all faces obq are of this form.
(c) cgNog = ogr, where @ is the smallest face of P containing Q and Q

Proof. To prove part (a), note that  C @, then any facet containin@’ also
containsQ, which impliesoy C 0. The other direction follows easily from
Corollary 2.3.6 since every face is the intersection of tgngefs containing it by
Proposition 2.2.1.
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For part (b), fix a vertex € Q and note that by (2.3.2)) determines a fac®,
of C,. Using the duality of Proposition 1.2.1Q,, gives the dual face

Q; =C/NQy =ovNQy
of the coner,. Then usingr, = Con€ug | v € F) andQ, C C, = ¢/, one obtains

Qi = COHQUF | veF, Qv - HuF,O)'

Sincev € Q, the inclusionQ, C Hy. o is equivalent t&Q C Hy. _a-, Which in turn

is equivalent taQ C F. It follows that
(2.3.3) Q; = Congur | QC F) =g,

so thatoq is a face ofv,, and all faces of, arise in this way.

In particular,Q C Q' means thaty is also a face of,, and sincery C oq
by part (a), we see thaty is a face ofrg. Furthermore, every face of; is a face
of o, by Proposition 1.2.6 and hence is of the fosg for some faceQ’. Using
part (a) again, we see th@tC Q’, and part (b) follows.

For part (c), letQ” be the smallest face &f containingQ andQ’. This exists
because a face is the intersection of the facets contaitiag thatQ” is the inter-
section of all facets containin@ and@’ (if there are no such facets, the{ = P).
By part (b)oq- is a face of botlrg andog . Thusog: C ogNogy.

It remains to prove the opposite inclusioncfNog = {0} = op, thenQ” =P
and we are done. FoNog # {0}, any nonzeras in the intersection lies in both
oq andog. The proof of Proposition 2.3.8 given below will show théf, is a
supporting affine hyperplane &f for someb € R. By Lemma 2.3.5u € og and
u € og imply thatQ andQ’ lie in H,p N P. The latter is a face dP containing
Q andQ’, so thatQ” C Hyp, NP sinceQ” is the smallest such face. Applying
Lemma 2.3.5 again, we see that 0. O

Proposition 2.3.7 shows that there is a bijective corredpnoe between faces
of P and cones of the normal fadp. Here are some further properties of this
correspondence.

Proposition 2.3.8. Let PC Mg be a full dimensional lattice polytope of dimension
n and consider the cones, in the normal fan®p of P. Then:

(@) dimQ+dimog = n for all faces Q=< P.
(b) N = Uv vertex of POV = UJQEEP Q-

Proof. Suppose < P and take a vertex of Q. By (2.3.2) this gives a fac®, of
the coneC,, which has a dual fac®; of the dual con&€,’ = o,. SinceQ} = oq
by (2.3.3), we have

dimQ+dimog =dimQ, +dimQ; =n,
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where the first equality uses Exercise 2.3.2 and the secdlmivéofrom Propo-
sition 1.2.10. This proves part (a). For part (b), let Ngx be nonzero and set
b = min{(v,u) | v vertex ofP}. ThenP C HIb andv € Hy, for at least one ver-
tex of P, so thatu € o, by Lemma 2.3.5. The final equality of part (b) follows
immediately. d

A fan satisfying the condition of part (b) of Proposition 83s calledcom-
plete Thus the normal fan of a lattice polytope is always complgte will learn
more about complete fans in Chapter 3.

In general, multiplying a polytope by a positive integer maseffect on its
normal fan, and the same is true for translations by lattaiatp. We record these
properties in the following proposition (Exercise 2.3.3).

Proposition 2.3.9. Let PC Mg be a full dimensional lattice polytope. Then for
any lattice point me M and any integer k> 1, the polytopes m P and kP have
the same normal fan as P. O

Examples of Normal Fans Here are some more examples of normal fans.

Example 2.3.10.Figure 7 shows a lattice hexagéhin the plane together with
its normal fan. The vertices d? are labeleds,...,vg, with corresponding cone
o1,...,06 inthe normal fan. In the figurd® is shown on the left, and at each vertex
vi, we have drawn the normal vectors of the facets contaimirand shaded the
coneo; they generate. On the right, these cones are assembledaaigineto give
the normal fan.

Figure 7. A lattice hexagorP and its normal farte

Notice how one can read off the structureRofrom the normal fan. For exam-
ple, two conesr; ando; share a ray irtp if and only if the vertices;; andyv; lie
on an edge oP.

The hexagorP is an example of aonotopesince it is a Minkowski sum of
line segments (three in this case). Notice also Hats determined by three lines
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through the origin. In 86.2 we will prove that the normal faraay zonotope is
determined by an arrangement of hyperplanes containingribie. O

Example 2.3.11.Consider the cubB C R® with vertices(+1,+1,+1). The facet
normals arete;, +6&, €3, and the facet presentation Bis

(m+g) > -1

The origin is an interior point oP. By Exercise 2.2.1, the facet normals are the
vertices of the dual polytop®, the octahedron in Figure 8.

c/
|

Figure 8. A cubeP C R® and its dual octahedrd®®

However, the facet normals also give the normal fai®,0fnd one can check
that in the above figure, the maximal cones of the normal farthe octants aR3,
which are just the cones over the facets of the dual polyRspe O

As noted earlier, it is rare that bofhand P° are lattice polytopes. However,
wheneverP C My is a lattice polytope containing 0 as an interior point, istigi
true that maximal cones of the normal faip are the cones over the facets of
P° C Ng (Exercise 2.3.4).

The special behavior of the polytopBsand P° discussed in Examples 2.2.6
and 2.3.11 leads to the following definition.

Definition 2.3.12. A full dimensional lattice polytopé® C My is reflexiveif its
facet presentation is

P={me Mg | (mug) > —1 for all facetsF }.
If P is reflexive, then 0 is a lattice point &f and is theonly interior lattice
point of P (Exercise 2.3.5). Sinca- = 1 for all F, Exercise 2.2.1 implies that
P° = ConV(ug | F facet ofP).
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ThusP° is a lattice polytope and is in fact reflexive (Exercise 2.3.5

We will see later that reflexive polytopes lead to some vetgrasting toric
varieties that are important for mirror symmetry.

Intersection of Affine Pieces Let P C Mg be a full dimensional very ample poly-
tope and ses= |[PNM|. This gives
Xprm C P51,
If Xprm NU, is the affine piece corresponding to a ventex P, then
Xprm NU, = U,, = Spe¢Clo, NM])

by Theorem 2.3.1. Thus the affine pieég.w NU, is the toric variety of the cone
o, in the normal fartp of P.

Our next task is to describe the intersection of two of théeespieces.

Proposition 2.3.13.Let PC Mg be full dimensional and very ample.vt w are
vertices of P and Q is the smallest face of P containirjnd w, then

Xpam MU, NU,, = Uy, = SpegClog NM])
and the inclusions
Xpam MUy 2 Xpam MUy NUy, € Xpam MU,
can be written
(2.3.4) Us, 2 (Us, ) yuv =Uag = (Ug,, ) v € U,
Proof. We analyzed the intersection of affine pieces<gfy in 82.1. Translated
to the notation being used here, (2.1.6) and (2.1.7) im@y th
Xerm MUy MUy = (Ug, )y = (Ug,, )y vw.
Thus all we need to show is that
(Us, )yw— =Uoq-
However, we havev —v € C, = ¢/, so thatr = H,,_, N, is a face ofo,. In this
situation, Proposition 1.3.16 and equation (1.3.4) impbtt
(Ug,) oy = Us.

Thus the proposition will follow once we prove= ogq, i.e., H,—, No, = oq.
Sinceoq = o, N oy, by Proposition 2.3.7, it suffices to prove that

Hy_yNoy, =0, Now.

Letue Hy,_,Noy. If us0, there ish € R suchH,, is a supporting affine hyper-
plane ofP. Thenu € o, impliesv € Hy, by Lemma 2.3.5, so that € Hy, since

u € Hy—_y. Applying Lemma 2.3.5 again, we geftc o,,. Going the other way, let
ueco,Noy. If U#£D0, pickb € R as above. Then € o0, N0, and Lemma 2.3.5
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imply thatv,w € Hyp, from whichu € H,,_, follows easily. This completes the
proof. d

This proposition and Theorem 2.3.1 have the remarkabldt st the normal
fan Xp completely determines the internal structureXgfy: we build Xpqw from
local pieces given by the affine toric varietids,, glued together via (2.3.4). We
do not need the ambient projective sp&&e! for any of this—everything we need
to know is contained in the normal fan.

The Toric Variety of a Polytope We can now give the general definition of the
toric variety of a polytope.

Definition 2.3.14. Let P C Mg be a full dimensional lattice polytope. Then we
define thetoric variety of Pto be

Xp = Xkp)nMm

wherek is any positive integer such thiaP is very ample.

Such integerk exist by Corollary 2.2.19, and K and/ are two such integers,
then kP and /P have the same normal fan by Proposition 2.3.9, namgly=
Yp = Yp. It follows that while Xxp)nm and Xp)nw lie in different projective
spaces, they are built from the affine toric varieties glued together via (2.3.4).
Once we develop the language of abstract varieties in Chaptee will see that
Xp is well-defined as an abstract variety.

We will often speak ofXp without regard to the projective embedding. When
we want to use a specific embedding, we will sa§ ‘is embedded usingP”,
where we assume thkP is very ample. In Chapter 6 we will use the language of
divisors and line bundles to restate this in terms of a divi3p on Xp such that
kDp is very ample precisely whekP is.

Here is a simple example to illustrate the difference betw&eas an abstract
variety andXp as sitting in a specific projective space.

Example 2.3.15.Consider thex-simplexA,, C R". We can definXa, usingkA,
for any integelk > 1 sinceA, is normal and hence very ample. The lattice points
in KA, correspond to the, = (”JIQ") monomials ofClts, ..., ty] of total degree< k.
This gives an embeddinga, € P~ 1. Whenk =1, AyNZ" = {0,ey,...,en}

implies that
Xa, = P".

The normal fan ofA, is described in Exercise 2.3.6. For an arbitragy 1, we can
regardX,, C P%~! as the image of the map

U PN — Pl
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defined using all monomials of total degre@ C[xo,...,%n] (Exercise 2.3.6). It
follows that this map is an embedding, usually called\temnese embeddin@ut
when we forget the embedding, the underlying toric varistystP".

The Veronese embedding allows us to construct some integestfiine open
subsets oP". Let f € C[xo,...,X,] be nonzero and homogeneous of dedgread
write f = z‘(ﬂ:kcaxa. We write the homogeneous coordinate&f! asy,, for
la| =k. ThenL = 3", | _y CaYa is @ nonzero linear form in the variablgs, so that

PS—1\ V(L) is a copy ofC*x~! (Exercise 2.3.6). If follows that
P"\V(f) ~ 1 (P") N (P* 1\ V(L))

is an affine variety (usually not toric). This shows tffdthas a richer supply of
affine open subsets than just the open Bets P\ V(x) considered earlier in the
chapter. O

When we explain the Proj construction®f later in the book, we will see the
intrinsic reason whyP"\ V() is an affine open subset Bf'.

Example 2.3.16.The 2-dimensional analog of the rational normal cuyes the
rational normal scroll §p,, which is the toric variety of the polygon

Pab = Conv(0,ae;, &, be; + &) C R?,

wherea,b € N satisfy 1< a <b. The polygonP = P, 4 and its normal fan are
pictured in Figure 9.

V2=e2 V3=4?1+62 04
]
o,
2p
02

V]_:O V4=2€1

Figure 9. The polygon of a rational normal scroll and its normal fan

In general, the polygoR, , hasa+ b+ 2 lattice points and gives the map
(C*2 — PP+ (st) - (1,55,...,84,1,8t,5%,...,5%)

such thatS, p, = Xp, , is the Zariski closure of the image. To describe the image, we
rewrite the map as

Cx Pt — P3P (s A 1) — (A, S\, SN, ..., PN, 11,510, S, ..., SP ).
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When(\, 1) = (1,0), the map is— (1,5,8%,...,53,0,...,0), which is the rational
normal curveC, mapped to the firsa+ 1 coordinates of2tP+1  |n the same
way, (A, ) = (0,1) gives the rational normal curnv@&, mapped to the ladt+ 1
coordinates of*atb+1 |f we think of these two curves as the “edges” of a scraoll,
then fixings gives a point on each edge, and lettiig.) € P! vary gives the line
of the scroll connecting the two points. So it really is a #tro

An important observation is that the normal fan depemug on the difference
b—a, since this determines the slope of the slanted eddg ©fIf we denote the
difference byr € N, it follows that as abstract toric varieties, we have

XPl,r+l = XPz,r+2 = XPs,r+3 =

since they are all constructed from the same normal fan. Ep@hn 3, we will see
that this is the Hirzebruch surface;.

But if we think of the projective surfac&, C Pat+b+l thena andb have a
unique meaning. For example, they have a strong influencheoddfining equa-
tions of Syp. Let the homogeneous coordinatesP3f®+! bexo, . .., %a, Y0, - - -, Yb
and consider the 2 (a+ b) matrix

<Xo Xg o Xa1|Yo Y1 Yb—1>.

X1 X =+ Xa Y1 Y2 - W
One can show tha{S, ) € C[xo, ..., Xa, Yo, - - - , Yb] IS generated by the;22 minors
of this matrix (see 130, Ex. 9.11], for example). O

Example 2.3.16 is another example of a determinantal yadstis the rational
normal curve from Example 2.0.1. Note that the rational redrourveCy comes
from the polytopd0,d] = dA;, where the underlying toric variety is just.

Exercises for §2.3

2.3.1. This exercise will use the same notation as the proof of Téradt.3.1.

(a) LetHy a be a supporting hyperplane of a vertexc P. Prove thatd, o is a supporting
hyperplane of G G

(b) Prove that din€C; = dim P.

2.3.2. Consider the maps defined in (2.3.2).

(a) Show that these maps are inverses of each other and ddfijextion between the
faces of the con€, and the faces dP containingv.

(b) Prove that these maps preserve dimensions, inclusiodsntersections.
(c) Explain how this exercise relates to Exercise 2.3.1.

2.3.3. Prove Proposition 2.3.9.

2.3.4. Let P C Mg be a full dimensional lattice polytope containing O as aerinr point,
and letP° C Ny be its dual polytope. Prove that the normal tag consists of the cones
over the faces dP°. Hint: Exercise 2.2.1 will be useful.



86 Chapter 2. Projective Toric Varieties

2.3.5. Let P C Mg be a reflexive polytope.
(a) Prove that 0 is the only interior lattice pointff
(b) Prove thaP° C Ny is reflexive.

2.3.6. This exercise is concerned with Example 2.3.15.

(a) Letey,...,e, be the standard basis Bf'. Prove that the normal fan of the standard
n-simplex consists of the cones Cd@Bg for all proper subsetS C {ep,e,...,en},
wheregy = fzi”:la. Draw pictures of the normal fan for= 1,2, 3.

(b) For an integek > 1, show that the toric varietfxa, € P%~1 is given by the map
v : P" — PS—1defined using all monomials of total degie® C[xo, ..., Xn].

2.3.7. Let P C Mg ~ R" be ann-dimensional lattice polytope and I€ C P be a face.
Prove the following intrinsic description of the cotig € Xp:

og={ueNg | (mu) < (m,u)forallme Q, m € P}.

2.3.8. Prove that all lattice rectangles in the plane with edgeslfehito the coordinate
axes have the same normal fan.

82.4. Properties of Projective Toric Varieties

We conclude this chapter by studying when the projectivie taariety Xp of a
polytopeP is smooth or normal.

Normality. Recall from §2.1 that a projective variety pgojectively normalf its
affine cone is normal.

Theorem 2.4.1.Let PC Mg be a full dimensional lattice polytope. Then:
(&) Xp is normal.

(b) Xp is projectively normal under the embedding given by kP if anlg if kP is
normal.

Proof. Part (a) is immediate sincés is the union of affine piecdd,, , v a vertex
of P, andU,, is normal by Theorem 1.3.5. In Chapter 3 we will give an irgign
definition of normality that will make this argument comligtrigorous.

It remains to prove part (b). The discussion following (2)1shows that the
projective embedding oKp given byXp)nm hasY(kp)nm)x (1} as its affine cone.
By Theorem 1.3.5, this is normal if and only if the semigrduf( (kP) "1M) x {1})
is saturated irM x Z. Since((kP) M) x {1} generates the cor@(P), this is
equivalent to the assertion that the semigr@(®) N (M x Z) is generated by
((kPyNM) x {1}. Then we are done by Lemma 2.2.14. O

Smoothness Given the results of Chapter 1, the smoothnes$sak equally easy
to determine. We need one definition.
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Definition 2.4.2. Let P C My be a lattice polytope.

() Given a vertexw of P and an edgd containingv, let wg be the first lattice
point of E different fromv encountered as one tranvergestarting atv. In
other wordswg — v is the ray generator of the ray Cdie— V).

(b) P is smoothif for every vertexv, the vectorsvg — v, whereE is an edge oP
containingv, form a subset of a basis M. In particular, if dimP = dim Mg,
then the vectorsig — v form a basis oM.

We can now characterize whéd is smooth.

Theorem 2.4.3.Let PC Mg be a full dimensional lattice polytope. Then the fol-
lowing are equivalent:

(a) Xp is a smooth projective variety.

(b) Xp is a smooth fan, meaning that every conéjgis smooth in the sense of
Definition 1.2.16.

(c) P is a smooth polytope.

Proof. Smoothness is a local condition, so that a variety is smdatid only if its
local pieces are smooth. This is smooth if and only itJ,, is smooth for every
vertexv of P, andU,, is smooth if and only ifr, is smooth by Theorem 1.3.12.
Since faces of smooth cones are smooth dpaonsists of ther, and their faces,
the equivalence (8% (b) follows immediately.

For (b) < (c), first observe that, is smooth if and only if its duaC, = o is
smooth. The discussion following (2.3.2) makes it easy éotkat the ray genera-
tors ofC, are the vectorsie — v from Definition 2.4.2. It follows immediately that
P is smooth if and only ifC, is smooth for every vertex, and we are done. [

The theorem makes it easy to check the smoothness of simphepbes such
as the toric variety of the hexagon in Example 2.3.10 or tkierral normal scroll
S.p of Example 2.3.16 (Exercise 2.4.1).

We also note the following useful fact, which you will provekxercise 2.4.2.

Proposition 2.4.4. Every smooth full dimensional lattice polytope—RVI is very
ample. O

One can also ask whether every smooth lattice polytope mmalorThis is an
important open problem in the study of lattice polytopes.

Here is an example of a smooth reflexive polytope whose dumtismooth.

Example 2.4.5.Let P = (n+1)A,—(1,...,1) C R", whereA, is the standard
n-simplex. ThusP is the translate ofn+1)A, by (—1,...,—1). Proposition 2.3.9
implies thatP andA,, have the same normal fan, so tRandXp are smooth. Note
also thatXp = Xa, = P".
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The polytopeP has the following interesting properties (Exercise 2.4E3st,
P has the facet presentation

x>-1 i=1
X1 ==X > =1,

LN,

so thatP is reflexive with dual

P°=Conv(ey,€1,...,61), €@=—€ — - —6€n.

The normal fan oP° consists of cones over the facesRofln particular, the cone
of ¥po corresponding to the vertey € P° is the cone

g =COMVVy,...,Vn), Vi=e&+(n+1)a.
Figure 10 show® and the coneg, whenn = 2.

\2

Vi

Figure 10. The conere, of the normal fan oP°

For generah, observe that; —v; = (n+1)(e —¢;). This makes it easy to
see thatZvy + - - - + Zv, has index(n+1)"~1 in Z". Thusog, is not smooth when
n > 2. It follows that the “dual” toric varietyXp. is singular forn > 2. Later we
will construct Xp- as the quotient o™ under the action of a finite grou@ ~
(Z)(n+1)Z)" 1, O
Example 2.4.6. ConsiderP = Conv(0,2e;,&,) C R2. SinceP is very ample, the
lattice pointsPNZ2 = {0, e1,2e;, e} give the magC*)? — P2 defined by

(st)— (Ls st

such thaip is the Zariski closure of the image.Rf has homogeneous coordinates
Yo,Y1,Y2,Ys, then we have

Xp =V (yoy2 — y%) C P3.

Comparing this to Example 2.0.5, we see tHatis the weighted projective space
P(1,1,2). Later we will learn the systematic reason why this is true.
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The varietyXp is not smooth. By working on the affine pie¥g NUs, one can
check directly that0,0,0, 1) is a singular point oKp.

We can also use Theorem 2.4.3 and the normal fa?, shown in Figure 11.
One can check that the cones and o1 are smooth, but, is not, so thatp

Figure 11. The polygon givingP(1,1,2) and its normal fan

is not a smooth fan. In terms &% note that the vectors fromp to the first lattice
points along the edges containimgdo not generat&?. Either way, Theorem 2.4.3
implies thatXp is not smooth.

If you look carefully, you will see that is the only nonsmooth cone of the
normal fanXp. Once we study the correspondence between cones and orbits i
Chapter 3, we will see that the nonsmooth cenecorresponds to the singular
point (0,0,0,1) of Xp. O

Products of Projective Toric VarietiesOur final task is to understand the toric
variety of a product of polytopes. L& C (M;)r ~ R" be lattice polytopes with
dimB =n; for i =1,2. This gives a lattice polytopB; x P, C (M1 x Ma)g of
dimensionn; + no.
ReplacingP; andP, with suitable multiples, we can assume tRandP, are
very ample. This gives projective embeddings
XH(_>]P>3717 S:‘F)IQMI‘7

so that by Proposition 2.0.Xp, x Xp, is a subvariety oP$—1 x P%~1, Using the
Segre embedding
P lxpela,psl s—gs,,

we get an embedding
(2.4.1) Xp, X Xp, — P71,

We can understand this projective variety as follows.
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Theorem 2.4.7.1f P. and B are very ample, then:
(@) PLx P, C (M1 x Ma)r is a very ample polytope with lattice points
(P x P)N (Mg x Mp) = (PLNMy) x (PN Mg).
Thus the integer s defined above is §P; x P,) N (M1 x My)|.
(b) The image of the embedding, Xp, — P! determined by the very ample
polytope R x P, equals the image of2.4.1)
(€) Xp,xp, > Xp, X Xp,.

Proof. For part (a), the assertions about lattice points are cl€he vertices of
Py x P, consist of ordered pairs/,V2) wherey; is a vertex off (Exercise 2.4.4).
Given such a vertex, we have

(P]_ X Pz) N (Ml X Mz) — (V]_,Vz) = (Plﬂ Ml—Vl) X (Pzﬂ M2—V2).

SinceR is very ample, we know thaf (R N M; — v;) is saturated itM;. From here,
it follows easily thatP?, x P, is very ample.

For part (b), lefTy, be the torus oKp. SinceTy; is Zariski dense iXp, it fol-
lows thatTy, x Ty, is Zariski dense iXXp, x Xp, (Exercise 2.4.4). When combined
with the Segre embedding, it follows thdp, x Xp, is the Zariski closure of the
image of the map

T, X Ty, — P21
given by the characters™y™, wherem ranges over the;, elements ofP, N M;
andn ranges over the, elements o, N M. When we identifyTy, x Ty, with
Ty N, the producty™y™ becomes the charactgf™™), so that the above map
coincides with the map

Tpxn, — P51

coming from the product polytopE, x P, C (M; x M2)r. Part (b) follows, and
part (c) is an immediate consequence. a

Here is an obvious example.

Example 2.4.8.SinceP" is the toric variety of the standardsimplex A, it fol-
lows thatP" x P™is the toric variety ofA,, x Anm.

This also works for more than two factors. ThB$ x P! x P! is the toric
variety of the cube pictured in Figure 8. O

To have a complete theory of products, we need to know whaidregpto the
normal fan. Here is the result, whose proof is left to the eedBxercise 2.4.5).

Proposition 2.4.9.Let R C (M;)r be full dimensional lattice polytopes foH 1, 2.
Then

EP1><P2 = Epl X Epz. ]
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Here is an easy example.

Example 2.4.10.The normal fan of an intervdh,b] C R, wherea < bin Z, is
given by

o1 0 00

The corresponding toric variety B'. The cartesian product of two such intervals
is a lattice rectangle whose toric variety$ x P! by Theorem 2.4.7. If we set
gij = oi X oj, then Proposition 2.4.9 gives the normal fan given in Fidize

10 00

Figure 12. The normal fan of a lattice rectangle givifig x P*

We will revisit this example in Chapter 3 when we constructctvarieties
directly from fans. O

Proposition 2.4.9 suggests a different way to think aboetpgioduct. Let;
range over the vertices &f for i = 1,2. Then thes,, are the maximal cones in the
normal fanXp, which implies that
(2.4.2) Xp =UyUo,, =12
Thus

X, % Xe, = (UyUnn,) % (UyUn,)
= Uwpwo)Yor, XUon,
U(vl,vz)ualeav2
= U(vl,vz)UU(vl,vz) = Xpyxp,-
In this sequence of equalities, the first follows from (2)4tBe second is obvious,

the third uses Exercise 1.3.13, the fourth uses Propogt&d, and the last follows
since(vy,V2) ranges over all vertices & x P».

This argument shows that we can construct cartesian predtiearieties using
affine open covers, which reduces to the cartesian prodadtioé varieties defined
in Chapter 1. We will use this idea in Chapter 3 to define thées&@n product of
abstract varieties.
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Exercises for §2.4

2.4.1. Show that the hexagd®= ConV(0, ey, &, 2e; + 2,1 + 2€,, 261 + 2€,) pictured in
Figure 6 and the trapezoig,, pictured in Figure 9 are smooth polygons. Also, of the
polytopes shown in Figure 8, determine which ones are smooth

2.4.2. Prove Proposition 2.4.4.

2.4.3. Consider the polytope = (n+ 1)A,—(1,...,1) from Example 2.4.5.

(a) Verify the facet presentation Bfgiven in the example.

(b) What is the facet presentation®f? Hint: You know the vertices d®.

(c) Letvi=ep+ (n+1)g, wherei=1,...,nandey = —e; —--- — &,, and then sett =

ZN1+ -+ -+ Zvn. Use the hint given in the text to pro#@ /L ~ (Z/(n+1)Z)"~1. This
shows that the index df in Z" is (n+1)"~1, as claimed in the text.

2.4.4. LetR C (Mj)r ~ R"™ be lattice polytopes with difff = n; fori = 1,2. Also letS

be the set of vertices .

(a) Use supporting hyperplanesto prove that every eleni&toS; is a vertex o, x Ps.

(b) Prove thaP; x P, = ConS; x &) and conclude the®, x S is the set of vertices of
P x P..

2.4.5. The goal of this exercise is to prove Proposition 2.4.9. Waxkfrom Exercise 2.4.4

that the vertices dP, x P, are the ordered paifs;,Vv2) wherev; is a vertex ofR.

(@) Adapt the argument of part (a) of Theorem 2.4.7 to show @ga,) = C,, x Cy,.
Taking duals, we see that the maximal conesgt.p, areoy, v,) = ov, x ov,.

(b) Given rational polyhedral cones C (N)g and faces; C oj, prove thatr x 72 is a
face ofo; x 0, and that all faces of; x o, arise this way.

(c) Provethabp «p, = Xp, X Zp,.

2.4.6. Consider positive integers=t gp < o1 < --- < gn With the property thaty | er‘:oq,—
fori =0,...,n. Setki = (}_{_oq;)/qi fori=1,...,nand let

Pop.....qn = CONV(0, k€1, ko€y, ..., Ka€n) — (1,...,1).

Prove thalPy,, .. q, is reflexive and explain how it relates to Example 2.4.5. W pvove
later that the toric variety of this polytope is the weighpedjective spac®(do, ..., 0n).

2.4.7. The Sylvester sequendg defined byag = 2 anday;1 = 1+ apa; - - - a. It begins
2,3,7,431807,... and is described in2b1, AO0O0058]. Now fix a positive integer> 3
and definey,...,0n by o =1 =1 andg =2(a,-1— 1)/an—i fori=2,....,n. Forn=3
and 4 this gives 11,4,6 and 11,12,28 42. Prove thaty,...,(, satisfies the conditions
of Exercise 2.4.6 and hence gives a reflexive simplex, derf@jein [215. This paper
proves that when > 4, Sy has the largest volume of attdimensional reflexive simplices
and conjectures that it also has the largest number ofdgttiints.



Chapter 3

Normal Toric Varieties

83.0. Background: Abstract Varieties

The projective toric varieties studied in Chapter 2 are ogiof Zariski open sets,
each of which is an affine variety. We begin with a general tanson of abstract
varieties obtained by gluing together affine varieties inaaalogous way. The
resulting varieties will beabstractin the sense that they do not come with any
given ambient affine or projective space. We will see that thiexactly the idea
needed to construct a toric variety using the combinatdiash contained in a fan.

Sheaf theory, while important for later chapters, will makdy a modest ap-
pearance here. For a more general approach to the concdpitdct variety, we
recommend standard books such@(,[[13]] or [245.

Regular Functions LetV = Spe¢R) be an affine variety. In §1.0, we defined the
Zariski open subsat; =V \ V(f) CV for f € Rand showed that; = Spe¢Rs),
whereRs is the localization oR at f. The open setg; form abasisfor the Zariski
topology onV in the sense that every open &kts a (finite) unionU = J;gVi

for someSC R (Exercise 3.0.1).

For an affine variety, a morphismi — C is called aregular map so that the
coordinate ring o¥/ consists of all regular maps frovhto C. We now define what
it means to be regular on an open subsét of

Definition 3.0.1. Given an affine variety = Spe¢R) and a Zariski opet) CV,
we say a functionp : U — C is regular if for all p € U, there existsf, € R such
thatp € Vi, CU andg},, € Ry,. Then define

p

oy(U)={¢:U— C|¢isregulas.
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The conditionp € V¢, means that,(p) # 0, and sayingb|Vf € Rf, means that
p
¢ = ap/ fp"® for somea, € Randn, > 0.
Here are some cases wherg(U) is easy to compute.

Proposition 3.0.2. Let V = Spe¢R) be an affine variety. Then:
(@) oy (V) =R.
(b) If f € R, thendy, (Vs) = Rs.

Proof. Itis clear from Definition 3.0.1 that elementsRidefine regular functions
onV, hence elements @, (V). Conversely, itp € &y (V), then for allp € V there
is fp € Rsuch thatp € Vs, and¢ = ap/fp" € Rf,. The ideall = (fo” | peV)CR
satisfiesV (1) = () sincefy(p) # 0 for all p € V. Hence the Nullstellensatz implies
that+/1 = 1(V(I)) = R, so there exists a finite S&C V and polynomialsyy, for

p € Ssuch that
pesS

Hencep =3~ csOpfp"¢ = 3 pesOpap € R, as desired.
For part (b), letU C V; be Zariski open. Theb) is Zariski open inv, and
whenevem € Rsatisfies/y C U, we havevy = Vg with coordinate ring

Rg = (Rt )g/1e

for all £ > 0. These observations easily imply that
(3.0.1) ov(U) = Gy, (V).
Then settind) = V; gives

Ov(Vt) = Oy, (V) =Ry,
where the last equality follows by applying part (aMo= Spe¢Ry). O
Local Rings WhenV = Spe¢R) is an irreducible affine variety, we can describe
regular functions using thiecal rings &y ;, introduced in 81.0. A rational func-

tion in C(V) is contained in the local ring , precisely when it is regular in a
neighborhood op. It follows that whenevetd CV is open, we have

() Ov.p= 60 (V).

pey
Thus regular functions dd are rational functions ovi that are defined everywhere
onU. In particular, whetd =V, Proposition 3.0.2 implies that

(3.0.2) () Ov.p=00v(V)=R=C[V].
peVv
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The Structure Sheaf of an Affine Variety Given an affine variety, the mapping
U~ oy(), U CV open
has the following useful properties:
e WhenU’ C U, Definition 3.0.1 shows that there is an obvious restrictiap

puy : Ov(U) — Gy (U)

defined bypy u/(¢) = ¢|,.. It follows thatpy y is the identity map and that
PU’ U O PUU = PUU” whenevet” CU’ CU.

e If {U,} is an open cover df CV, then the sequence
0— ov(U) — [ Ua) =] (UanUp)
o 718

is exact. Here, the second arrow is defined by the restretgrny, and the
double arrow is defined byy, u,nu, and pu,u.nu,- Exactness ath, (U)
means that regular functions are determined locally,tiva regular functions
onU are equal if their restrictions to dll, are equal. For the middle term,
exactness means that we haveeguializer an element(f,) € [], Ov(U,)
comes fromf € 0y (U) if and only if the restrictiond |, , = fsly,qu, are
equal for allo, 3. This is true because regular functions onltheagreeing on
the overlapsJ, NUg patch together to give a regular functiondn

In the language of sheaf theory, these properties imply dhats a sheaf of C-
algebras, called thstructure sheabf V. We call(V, &) aringed space oveC.
Also, since (3.0.1) holds for all open sé&tsC V¢, we write

Ny, = Oy,

In terms of ringed spaces, this medks, 4y |,, ) = (Vi, Ov,).

Morphisms By 81.0, a polynomial mappin@ : Vi — V., between affine vari-
eties corresponds to tii&-algebra homomorphisrd* : C|V,] — C[V;] defined by
D*(¢p) = po P for ¢ € C[V2]. We now extend this to open sets of affine varieties.

Definition 3.0.3. LetU; CV; be Zariski open subsets of affine varietiesiferl, 2.
A function ® : U; — U, is amorphismif ¢ — ¢ o ® defines a map

O* 1 Oy,(Ug) —> Oy, (Uy).

Thus® : U; — Uy is a morphism if composing with regular functions okJ,
gives regular functions ob;. Note also thatb* is a C-algebra homomorphism
since it comes from composition of functions.

Example 3.0.4. Suppose that : V; — V, is a morphism according to Defini-
tion 3.0.3. IfV = Spe¢R)), then the above map* gives theC-algebra homo-
morphism

R2 - ﬁVg(VZ) — ﬁvl(vl) - Rl.
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By Chapter 1, theC-algebra homomaorphisR, — R; gives a map of affine va-
rietiesV1 — V,. In Exercise 3.0.3 you will show that this is the original map
® : V; — V, we started with. O

Example 3.0.4 shows that when we apply Definition 3.0.3 to srizgiween
affine varieties, we get the same morphisms as in ChapterBxdrrise 3.0.3 you
will verify the following properties of morphisms:

e If U is open in an affine variety, then
oy(U)={¢:U — C| ¢ is amorphisn}.
Hence regular functions du are just morphisms frord to C.
e A composition of morphisms is a morphism.
e Aninclusion of open setd/ C U of an affine variety/ is a morphism.

e Morphisms are continuous in the Zariski topology.

We say that a morphisn® : U; — U is anisomorphismf @ is bijective and its
inverse functiond—1:U, — U is also a morphism.

Gluing Together Affine Varieties We now are ready to define abstract varieties by
gluing together open subsets of affine varieties. The medehat happens fdr".
Recall from §2.0 of thaP" is covered by open sets
Ui =P"\V(x) = SpedC[%,... A2 X2 l)
fori =0,...,n. EachU; is a copy ofC" that uses a different set of variables. For
i # j, we “glue together” these copies as follows. We have opesetab
(3.0.3) (U)xy CU; and (Uj)x CUj,
% X

and we also have the isomorphism
(3.0.4) gji - (Ui)y — (Uj)x

% %
since both give the same open BeNUj in P". The notationgj; was chosen so
thatg;i (x) meansx € U; since the index is closest t, hencegji (x) € Uj. At the
level of coordinate ringsyji comes from the isomorphism

L0 [% Xj—1 Xj+1 Xl ~ C[X Xi—1 Xiy1 Xa7
gj,.c[xj,..., TR ,...,Xj] C[y“_,..., T ,...,)Q]X_J

defined by
e %/ (k#]j) and (&),

Xj Xj Xi
We can turn this around and start from the affine variafies C" given above
and glue together the open sets in (3.0.3) using the isorsongly;; from (3.0.4).
This gluing is consistent sinag = gj‘il andgyi = gkj 0 gji wherever all three maps
are defined. The result of this gluing is the projective spte
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To generalize this, suppose we have a finite collecfMp}, of affine varieties
and for all pairsw, 3 we have Zariski open se¥;, C V,, and isomorphismgg,, :
V3, =V, satisfying the following compatibility conditions:

® 0us = ggi for all pairsa, 3.
® 980 (V3a NVya) = Vo NV, 5 andgy, = g,5 003, 0NV, NV, for all a, 5,7,

The notationgg, means that in the expressigp, (x), the pointx lies inV,, since
«a is the index closest tg, and the resuljg, (X) lies inV;.

We are now ready to glue. L&t be the disjoint union of th¥/,, and define
arelation~ onY by a~ bif and only ifa € V,, b € V3 for somea, 5 with b =
03« (@). The first compatibility condition shows thatis reflexive and symmetric;
the second shows that it is transitive. Hereés an equivalence relation and we
can form the quotient spacé=Y / ~ with the quotient topology. For eaeh let

Us={[a eX|aeV,}.

ThenU, C X is an open set and the map(a) = [a] defines a homeomorphism
h, : V, ~ U, C X. ThusX locally looks like an affine variety.

Definition 3.0.5. We call X theabstract varietydetermined by the above data.

An abstract varietyX comes equipped with the Zariski topology whose open
sets are those sets that restrict to open sets inléacihe Zariski closed subsets
Y C X are calledsubvarietiesof X. We say thaX isirreducibleif it is not the union
of two proper subvarieties. One can show tKais a finite union of irreducible
subvarietieX =Y, U---UYs such thal; Z Y; fori # j. We call theY; theirreducible
componentsf X.

Here are some examples of Definition 3.0.5.

Example 3.0.6. We saw above thaP" can be obtained by gluing together the
open sets (3.0.3) using the isomorphisgasfrom (3.0.4). This shows thak"

is an abstract variety with affine open subdédts” P". More generally, given a
projective varietyy C P", we can cove¥ with affine open subse¥$NU;, and the
gluing implicit in equation (2.0.8). We conclude that piijee varieties are also
abstract varieties. O

Example 3.0.7.In a similar way,P" x C™ can be viewed as gluing affine spaces
U; x C™ ~ C"™ ™ along suitable open subsets. THRisx C™is an abstract variety,
and the same is true for subvarietiés P" x C™. O

Example 3.0.8.LetVy = C? = Spe¢C[u,Vv]) andV; = C? = Spe¢C|w, Z), with

Vio =Vo\ V(v) = Spe¢Clu,v)y)
Vo1 =V1\V(2) = SpecC{w, ;)
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and gluing data

010 : Viop — Vo1 coming from theC-algebra homomorphism
010: C[w,Z; — CJu,v]y defined byw+— uv and z— 1/v

and

Joz1: Vo1 — V1o coming from theC-algebra homomorphism

Oo1 : Clu,vly — C|w, 7], defined byu+—wz andv— 1/z
One checks thayy; = gl‘ol, and the other compatibility condition is satisfied since
there are only tw/. It follows that we get an abstract variexXy

The varietyX has another description. Consider the prodBtt C? with
homogeneous coordinatég,x;) on P! and coordinategx,y) on C2. We will
identify X with the subvarietyV = V (xoy — x;x) C P! x C2, called theblowup of
C? at the origin and denoted B(C?). First note thaP! x C2 is covered by

Uo x C? = SpedC[x1/x0,x,y]) and U x C2 = Spe¢C[xo/x1,X,Y]).
ThenW is covered byp =W N (Ug x C?) andWy =W N (Uy x C?). Also,
Wo =V (y — (¥1/%0)X) € U x C?,

which gives the coordinate ring

Clxa/X0, X Y1/ (Y= (xa/%0)X) >~ C[x,xa /%] viay — (x1/X0)X.
Similarly, Wy = V(x— (Xo/X1)y) C U1 x C? has coordinate ring

Cho/x1, %Y1/ (x= (Xo/x1)y) ~ Cly,%0/x1] ~ Viax— (xo/X1)y.
You can check that these are glued togethedim exactly the same wayy and
V; are glued together iK. We will generalize this example in Exercise 3.0.80

Morphisms Between Abstract Varietied et X andY be abstract varieties with
affine open coverX = J, U, andY = J;Uj. A morphism® : X — Y is a Zariski
continuous mapping such that the restrictions

‘1)|uam<1>*1(u[;) UaN@7HUj) — Uj
are morphisms in the sense of Definition 3.0.3.

The Structure Sheaf of an Abstract VarietyLet U be an an open subset of an
abstract varietyX and seW, = h;(U NU,) C V,. Then a functionp : U — C is
regular if

¢oha|wa W, —C
is regular for alle. The compatibility conditions ensure that this is well-defi,
so that one can define

Ox(U)={¢:U — C|¢isregulas.
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This gives thestructure sheafdx of X. Thus an abstract variety is really a ringed
space(X, Ox) with a finite open coveringU,, }, such thatU,, 0|, ) is isomor-
phic to the ringed spad®/,,, &y, ) of the affine variety,,. (We leave the definition
of isomorphism of ringed spaces to the reader.)

Open and Closed Subvarietiessiven an abstract varieti{ and an open subset
U, we note that has a natural structure of an abstract variety. For an affine
open subset), C X, U NU, is open inU, and hence can be written as a union
UNUy = Uses(Ua)t for a finite subse8 C C[U,]. It follows thatU is covered

by finitely many affine open subsets and thus is an abstraigtyai he structure
sheafdy is simply the restriction oy to U, i.e., Oy = Ox|,. Note also that a
function¢ : U — C is regular if and only ify is a morphism as defined above.

In a similar way, a closed subsétC X also gives an abstract variety. For an
affine open sety C X, YNU is closed inU and hence is an affine variety. Thus
Y is covered by finitely many affine open subsets and thus is sinea variety.
This justifies the term “subvariety” for closed subsets ofahstract variety. The
structure sheaf’y is related todx as follows. The inclusiom:Y <« X is a mor-
phism. Leti. &y be the sheaf oX defined byi. 0y (U) = 6y (U NY). Restricting
functions onX to functions or gives a map of sheave®, — i, &y whose kernel
is the subsheaf4, C Oy of functions vanishing olY, meaning

HU)={feoxU)|f(p)=0forallpeYNU}.
In the language of Chapter 6, we have an exact sequence okshea

0— &K — Ox — i, 0y — 0.

All of the types of “variety” introduced so far can be subsuhuader the con-
cept of “abstract variety.” From now on, we will usually bentking of abstract
varieties. Hence we will usually say “variety” rather thab$tract variety.”

Local Rings and Rational Functions Let p be a point of an affine variety.
Elements of the local ringy , are quotientsf /g in a suitable localization with
f,ge CV] andg(p) # 0. It follows thatVy is a neighborhood gpinV andf /g is
a regular function oWy. In this way, we can think of elements 6%, , as regular
functions defined in a neighborhood pf

This idea extends to the abstract case. Given a poiot a variety X and
neighborhoodbl1, U, of p, regular functiond; : U; — C areequivalent at pwritten
f1 ~ fp, if there is a neighbhorhood € U C U3 NU; such thatfy |, = f5| ;.

Definition 3.0.9. Let p be a point of a variet). Then
Oxp={f:U—C|U isaneighborhood ap in X}/ ~

is thelocal ring of X at p.



100 Chapter 3. Normal Toric Varieties

Every ¢ € Ox p has a well-defined valug(p). It is not difficult to see that
Ox p is a local ring with unique maximal ideal

my,p={¢ € Oxp| ¢(p) =0}.
The local ringdx , can also be defined as the direct limit

ﬁ)@p = lim ﬁx(U)
peuU

over all neighborhoods gj in X (see Definition 6.0.1).

WhenX is irreducible, we can also define the field of rational fumsiC(X).
A rational functionon X is a regular functionf : U — C defined on a nonempty
Zariski open setJ C X, and two rational functions oX are equivalentif they
agree on a nonempty Zariski open subset. In Exercise 3.QL4vilbshow that this
relation is an equivalence relation and that the set of edpmee classes is a field,
called thefunction fieldof X, denotedC(X).

Normal Varieties We return to the notion of normality introduced in Chapter 1.

Definition 3.0.10. A variety X is callednormal if it is irreducible and the local
rings Ox p are normal for allp € X.

At first glance, this looks different from the definition givéor affine varieties
in Definition 1.0.3. In fact, the two notions are equivalenthe affine case.

Proposition 3.0.11.LetV be an irreducible affine variety. Thé€hV] is normal if
and only if the local ringgy , are normal for all pe V.

Proof. If Oy, is normal for allp, then (3.0.2) shows th&t[V] is an intersection
of normal domains, all of which have the same field of fractio®ince such an
intersection is normal by Exercise 1.0.7, it follows tfid¥/] is normal.

For the converse, suppose tligV] is normal and letv € C(V) satisfy
af ekt ta=0, a € Oy p.

Write & = g;/fi with g;, fi € C[V] and fi(p) # 0. The productf = f;--- fy has
the properties thad; € C[V]; and f(p) # 0. The localizationC[V]s is normal by
Exercise 1.0.7 and is containedd¥y ,, sincef(p) # 0. Hencea € CV]s C Gy p.
This completes the proof. d

Here is a consequence of Proposition 3.0.11 and Definitid1G.

Proposition 3.0.12. Let X be an irreducible variety with a cover consisting of
affine open setsyY Then X is normal if and only if each,\f's normal. a
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Smooth Varieties For an affine variety/, the definition of asmooth point g V
(Definition 1.0.7) used,(V), the Zariski tangent space ®f at p, and dimV,
the maximum dimension of an irreducible componer afontainingp. You will
show in Exercise 3.0.2 thd}(X) and dim, X are well-defined for a poinp € X of
a general variety.

Definition 3.0.13. Let X be a variety. A pointp € X is smoothif dim Tp(X) =
dimp X, andX is smoothif every point ofX is smooth.

Products of Varieties As another example of abstract varieties and gluing, we
indicate why the producX; x X, of varietiesX; and X, also has the structure of

a variety. In 81.0 we constructed the product of affine viaset From here, it is
relatively routine to see that X; is obtained by gluing together affine varietids
andX; is obtained by gluing together aﬁin@%, thenX; x X, is obtained by gluing
together theJ,, x Ué in the corresponding fashion. FurthermoXg,x X, has the
correct universal mapping property. Namely, given a diagra

w 1

o
X]_ X X2 7'r—1> X]_
k
X2

whereg; : W — X; are morphisms, there is a uniqgue morphismW — Xj x X;
(the dotted arrow) that makes the diagram commute.

Example 3.0.14.Let us construct the produt x C2. Write P =V, UV, where
Vo = Spe¢C|u]) andV; = Spe¢C|v]), with the gluing given by

C|v]y =~ Cluly, vi—1/u.
ThenP?! x C? is constructed from
Uo x C2 = SpedC[u] ®c C[x,y]) ~ C3
Uy x C2 = SpedC[V] ®c C[x,y]) ~ C3,

with gluing given by
(U x (CZ)u ~ (U x (CZ)V
corresponding to the obvious isomorphism of coordinatgsiin O

Separated VarietiesFrom the point of view of the classical topology, arbitrary
gluings can lead to varieties with some strange properties.

Example 3.0.15.1n Example 3.0.14 we saw how to constriit from affine va-
rietiesVo = Spe¢C|u]) ~ C andV; = Spe¢C|v]) ~ C with the gluing given by
vi— 1/uon open set€* ~ (Vp)y C Vo andC* ~ (V1)y C V4. This expresseB! as
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consisting ofC* plus two additional points. But now consider the abstradewa
arising from the gluing map

(VO)u B (Vl)v

that corresponds to the map @talgebras defined by— u. As before, the glued
variety X consists ofC* together with two additional points. However here we
have a morphismr : X — C whose fiberr—1(a) overa € C* contains one point,
but whose fiber over 0 consists of two poinfs, corresponding to @& Vy and p,
corresponding to @ Vi. If U1,U, are classical open sets Xawith p; € U; and

p2 € Uy, thenU; NU, # (). So theclassicaltopology onX is not Hausdorff. ¢

Since varieties are rarely Hausdorff in the Zariski topgl@gxercise 3.0.5), we
need a different way to think about Example 3.0.15. CondigeproductX x X
and thediagonal mapping\ : X — X x X defined byA(p) = (p, p) for p€ X. For
X from Example 3.0.15, there is a morphistnx X — C whose fiber over over 0
consists of the four pointp;, pj). Any Zariski closed subset of x X containing
one of these four points must contain all of them. The imagéhefdiagonal
mapping containgps, p1) and (pz, p2), but not the other two, so the diagonal is
not Zariski closed. This example motivates the followingrgon.

Definition 3.0.16. We say a varietyX is separatedif the image of the diagonal
mapA : X — X x X is Zariski closed inX x X.

For instanceC" is separated because the image of the diagon@l'in C" =
Spe¢C(xy,...,Xn,Y1,---,Yn]) is the affine varietW (x; —y1, ... ,Xn — Yn). Similarly,
any affine variety is separated.

The connection between failure of separatedness anddalfuhe Hausdorff
property in the classical topology seen in Example 3.0.85jeneral phenomenon.

Theorem 3.0.17.A variety is separated if and only if it is Hausdorff in thesdécal
topology. d

Here are some additional properties of separated varigecise 3.0.6).

Proposition 3.0.18. Let X be a separated variety. Then:
(@) If f,g:Y — X are morphisms, thefy € Y | f(y) =g(y)} is Zariski closed in Y .
(b) If U,V are affine open subsets of X, themWV is also affine. O

The requirement thaX be separated is often included in ttiefinition of an
abstract variety. When this is done, what we have called iztyais sometimes
called apre-variety

Fiber Products Finally in this section, we will define fiber products of vaieés,
a construction required for the discussion of proper mampkiin §3.4. First, if we
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have mappings of sets: X — Sandg:Y — S then thefiber product XxgsY is
defined to be

(3.0.5) X xsY = {(xy) € Xx Y| f(x) =g(y)}.

The fiber product construction gives a very flexible langutayedescribing or-
dinary products, intersections of subsets, fibers of maspithe set where two
mappings agree, and so forth:

e If Sis a point, therX xgY is the ordinary producK x Y.

e If XY are subsets dBandf,g are the inclusions, theX xsY ~ XNY.

o If Y ={s} C S thenX xg¥Y ~ f~1(s).
The third property is the reason for the name. All are easyceses that we leave
to the reader.

In analogy with the universal mapping property of the pradliscussed above,
the fiber product has the following universal property. Wéenm we have map-
pings ¢1 : W — X and ¢, : W — Y such thatf o ¢1 = go ¢, there is a unique
v:W — X xgY that makes the following diagram commute:

Y—S

Equation (3.0.5) defines xsY as a set. To prove that xsY is a variety, we
assume for simplicity tha® is separated. Thefh: X — Sandg:Y — Sgive a
morphism(f,g) : X xY — Sx S and one easily checks that

XXsY = (fag)il(A(S)%

whereA(S) C Sx Sis the diagonal. This is closed Bix SsinceSis separated,
and it follows thatX xsY is closed inX x Y and hence has a natural structure as
a variety. From here, it is straightforward to show tKat sY has the desired uni-
versal mapping property. Proving that<sY is a variety wherSis not separated
takes more work and will not be discussed here.

In the affine case, we can also describe the coordinate ring>ofY. Let
X = SpedR;), Y = Spe¢R;), andS= Spe¢R). The morphismd,g correspond
to ring homomorphism$* : R — Ry, g* : R— R,. Hence bothR;, R, have the
structure ofR-modules, and we have the tensor prode¢cRr R,. This is also a
finitely generatedC-algebra, though it may have nilpotents (Exercise 3.0.9). T
get a coordinate ring, we need to take the quotient by thd e all nilpotents.
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Then one can prove that
X xg¥Y = SpecﬁRl QR Rz/N).

We can avoid worrying about nilpotents by constructiigsY as theaffine scheme
Spe¢R; ®rRz). Interested readers can learn about the construction ofgioel-
ucts as schemes i8(, 1.3.1] and 31, pp. 87-89].

Exercises for 83.0

3.0.1. LetV = Spe¢R) be an affine variety.

(a) Show that every ide&lC R can be written in the fornh= (fy,..., f5), wheref; € R
(This is the Hilbert basis theorem i)

(b) LetW CV be a subvariety. Show that the complemenif\bin V can be written as a
union of a finite collection of open affine sets of the fovim

(c) Deduce that every open cover éf(in the Zariski topology) has a finite subcover.
(This says that affine varieties agaasicompacin the Zariski topology.)

3.0.2. As in the affine case, we want to say a vari¥tys smooth atp if dim Ty(X) =

dimp X. In this exercise, you will show that this is a well-definedian.

(a) Show that ifp € X is in the intersection of two affine open s&{sN Vg, then the
Zariski tangent spacél,, , andTy, , are isomorphic as vector spaces oter

(b) Show that dirgX is a well-defined integer.
(c) Deduce that the proposed notion of smoothnegsatvell-defined.

3.0.3. This exercise explores some properties of the morphismsatkiin Definition 3.0.3.

(a) Prove the claim made in Example 3.0.4. Hint: Take a ppiatV; and definem, =
{f e Ry| f(p) = 0}. Then describ¢d*)~(mp) in terms ofd(p).

(b) Prove the properties of morphisms listed on page 96.

3.0.4. Let X be an irreducible abstract variety.

(@) Letf,gbe rational functions oX. Show thatf ~ gif f|, = g|, for some nonempty
open setd C X is an equivalence relation.

(b) Show that the set of equivalence classes of the relatipait (a) is a field.

(c) Show thatifu C X is a nonempty open subsetXfthenC(U) ~ C(X).

3.0.5. Show that a variety is Hausdorff in the Zariski topology ifiaanly if it consists of

finitely many points.

3.0.6. Consider Proposition 3.0.18.

(a) Prove part (a) of the proposition. Hint: Show first thef if Y — X x X is defined by
F(y) = (f(y),9(y)). thenZ = F~1(A(X)).

(b) Prove part (b) of the proposition. Hint: Show first thahV can be identified with
AX)N(U xV) T X x X.

3.0.7. LetV = Spe¢R) be an affine variety. The diagonal mappiAg V — V x V cor-
responds to &-algebra homomorphisiR®¢c R — R. Which one? Hint: Consider the
universal mapping property &f x V.
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3.0.8. In this exercise, we will study an important variety i~ x C", the blowup of
C" at the origin, denoted B(C"). This generalizes B(C?) from Example 3.0.8. Write
the homogeneous coordinates®ir! asxo, ..., X,_1, and the affine coordinates @i as

Y1,...,Yn. Let
(3.0.6) W =BlIo(C") =V(x_1y; —Xj_1yi | 1<i< j<n) CP"1xC".
LetUi_1,i=1,...,n, be the standard affine opensAf—:

U_1=P" 1\ V(x_1),

i =1,...,n (note the slightly non-standard indexing). So the; x C" form a cover of
P-1xC".
(@) Show thatforeach=1,...,n,W_; =WnN (Uj_; x C") ~

Xo Xi—2 X Xn—1
Spec C|——,...,—,—,..., Vi
P C( [Xi—l Xi—1 Xi—1 Xi—1 y.})

using the equations (3.0.6) definivg
(b) Give the gluing data for identifying the subs®s 1 \ V(xj—1) andWj_1 \ V(Xi_1).

3.0.9. LetV = V(y? —x) C C? and consider the morphism: V — C given by projection
onto thex-axis. We will study the fibers af.

(@) As noted in the text, the fiber—(0) = {(0,0)} can be represented as the fiber
product{0} xcV. In terms of coordinate rings, we haf@} = Spe¢C[X]/(x)),
C = Spe¢C[x])) andV = Spec¢C|[x,y]/(y?> — X). Prove that

CIX/ (%) @cpw Clx,y1/(y? —x) = Clyl/{y?).
Thus, the coordinate ring3[x]/(x), C[x] andC[x,y]/(y? — X) lead to a tensor product
that has nilpotents and hence cannot be a coordinate ring.
(b) If a# 0inC, thent—%(a) = {(a,£+/a)}. Show that the analogous tensor product is

C[X/(x—a) ®c CIx Y1/ (y* —X) ~ Clyl/{y* —a)
~ Clyl/(y— va) & Clyl/{y+Va).

This has no nilpotents and hence is the coordinate ringéfa).
What happens in part (a) is that the two square roots coinsidehat we get only one
point with “multiplicity 2.” The multiplicity informationis recorded in the affine scheme
SpecCly]/(y?)). This is an example of the power of schemes.

83.1. Fans and Normal Toric Varieties

In this section we construct the toric variety. corresponding to a fal. We will

also relate the varietie¥s, to many of the examples encountered previously, and
we will see how properties of the fan correspond to propegiech as smoothness
and compactness o&.
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The Toric Variety of a Fan A toric variety continues to mean the same thing as in
Chapters 1 and 2, although we now allow abstract varietiés 83.0.

Definition 3.1.1. A toric variety is an irreducible varietyX containing a torus
Ty ~ (C*)" as a Zariski open subset such that the actiofyain itself extends to an
algebraic action ofy on X. (By algebraic action, we mean an actigx X — X
given by a morphism.)

The other ingredient in this section is a fan in the vectocepé.

Definition 3.1.2. A fan X in N is a finite collection of cones C Nr such that:
(a) Everyo € 3 is a strongly convex rational polyhedral cone.
(b) Forallo € X2, each face of is also inX.
(c) Foralloy, o € X, the intersectionr; N o, is a face of each (hence alsoi).
Furthermore, i is a fan, then:

e Thesupportof X is || =, cx 0 € Nr.

e Y(r) is the set of-dimensional cones df.

We have already seen some examples of fans. Theorem 2.3\2 dhat the
normal fanXp of a full dimensional lattice polytopE C My is a fan in the sense
of Definition 3.1.2. However, there exist fans that are nataédo the normal fan
of any lattice polytope. An example of such a fan will be givieftxample 4.2.13.

We now show how the cones in any fan give the combinatoria datessary
to glue a collection of affine toric varieties together tdgian abstract toric variety.
By Theorem 1.2.18, each condn X gives the affine toric variety

U, = SpecC|S,]) = Spe¢C[s" NM]).

Recall from Definition 1.2.5 that a faee< ¢ is given byr = o NHy,, whereme oV
andHpy = {u € Nr | (m,u) = 0} is the hyperplane defined log. In Chapter 1, we
proved two useful facts:

First, Proposition 1.3.16 used the equality

(3.1.1) S =S5 +Z(—m)

to show thatC[S;] is the localizatiorC[S,|,m. ThusU, = (U, ),m whent < 0.
Second, ifr = 01N oy, then Lemma 1.2.13 implies that

(3.1.2) o1NHm=7=02NHm,

for someme o) N (—02)¥ NM. This shows that

(3.1.3) Ug, 2 (Ugy)ym =Ur = (U,) —m C Ug,.

The following proposition gives an additional property betS, and their
semigroup rings that we will need.
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Proposition 3.1.3.If 01,02 € ¥ andT = o1 N oy, then
S:=S5,+Ss,.

Proof. The inclusionS,, +S,, C S, follows directly from the general fact that
o) + o) = (01No2)¥ = 7. For the reverse inclusion, taee S, and assume
thatm e o) N (—o2)¥ NM satisfies (3.1.2). Then (3.1.1) applieddpgives p =
q-+¢(—m) for someq € S, and/ € N. But —m € o, implies—me S,,, so that
p € Ss, +So,. O

This result is sometimes called teeparation lemmand is a key ingredient in
showing that the toric varietie$s; are separated in the sense of Definition 3.0.16.

Example 3.1.4.Let 01 = Conde; + e,€;) (as in Exercise 1.2.11), and let =
Conder,e; + &) in Ng = R2 Thenr = o1 N0y = Conde; + ). We show the
dual conesr; = Conde;, —e; + &), o) = Conde; — e,&), and7” = o) + 0y
in Figure 1.

Figure 1. The conesr, 02,7 and their duals

The dark shaded region on the rightisNoy. Noter = o1 NHm=02NH_p,
wherem= —e; + & € 0} and—m=e; — & € o). SinceS; is the set of all sums
m+m withme oy "M andm' € 0y "M, we see thab, =S,, +S,,. O

Now consider the collection of affine toric varietids = Spe¢C[S,|), where
o runs over all cones in a fan. Let o; andoy be any two of these cones and let
T =o01Noy. By (3.1.3), we have an isomorphism

907,01 (Uol)xm = (Uoz)x—m
which is the identity oiJ.. By Exercise 3.1.1, the compatibility conditions as in

§3.0 for gluing the affine varietidd,, along the subvarietied),; ), are satisfied.
Hence we obtain an abstract variedy associated to the fax.

Theorem 3.1.5.Let Y be a fan in \. The variety X is a normal separated toric
variety.
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Proof. Since each cone i is strongly convex,{0} C N is a face of allo €

Y. Hence we hav@y = Spe¢C[M]) ~ (C*)" C U, for all . These tori are all
identified by the gluing, so we havg C Xs. We know from Chapter 1 that each
U, has an action offy. The gluing isomorphisng,, ,, reduces to the identity
mapping onC[S,,n,,]. Hence the actions are compatible on the intersections of
every pair of sets in the open affine cover, and patch togéthgive an algebraic
action of Ty on Xs..

The varietyXy, is irreducible because all of thé, are irreducible affine toric
varieties containing the toruky. FurthermorelJ, is a normal affine variety by
Theorem 1.3.5. Hence the variety: is normal by Proposition 3.0.12.

To see thaKy is separated it suffices to show that for each pair of cones,
in 3, the image of the diagonal map

A:U; =Ug xXUg,, T=01N02

is Zariski closed (Exercise 3.1.2). B comes from theC-algebra homomor-
phism
A* : C[S4,] ®c C[Ss,] — C[S;]
defined byy™® x" — x™™". By Proposition 3.1.3A* is surjective, so that
C[5+] ~ (C[Ss,] @c C[So,]) /ker(A™).

Hence the image oA is a Zariski closed subset bf,, xU,,. O

Toric varieties were originally known dsrus embeddingsand the varietys,
would be writtenTyemb(X) in older references such a&1f8. Other commonly
used notations ar¥(X), or X(A), if the fan is denoted byA. When we want to
emphasize the dependence on the lafiiceve will write X5, asXs .

Many of the toric varieties encountered in Chapters 1 andr2ecfsom fans.
For example, Theorem 1.3.5 implies that a normal affine waitety comes from
a fan consisting of a single cometogether with all of its faces. Furthermore, the
projective toric variety associated to a lattice polytope&hapter 2 comes from a
fan. Here is the precise result.

Proposition 3.1.6. Let PC Mg be a full dimensional lattice polytope. Then the
projective toric variety X ~ Xs;,, whereXp is the normal fan of P.

Proof. WhenP is very ample, this follows immediately from the descriptiaf the
intersections of the affine open piecesgfin Proposition 2.3.13 and the definition
of the normal far>p. The general case follows since the normal fanB ahdkP
are the same for all positive integdes a

In general, every separated normal toric variety comes fadian. This is a
consequence of a theorem of Sumihiro fra26%.
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Theorem 3.1.7(Sumihiro) Let the torus Jj act on a hormal separated variety X.
Then every point g X has a §-invariant affine open neighborhood. a

Corollary 3.1.8. Let X be a normal separated toric variety with torus. TThen
there exists a fatt in Ng such that X~ Xs..

Proof. The proof will be sketched in Exercise 3.2.11 after we haweldped the
properties offy-orbits on toric varieties. O

Examples We now turn to some concrete examples. Many of these arevamiic
eties already encountered in previous chapters.

Example 3.1.9. Consider the fart in Nz = R? in Figure 2, whereN = Z? has

standard basie;, . This is the normal fan of the simplek, as in Example 2.3.4.
Here we show all points in the cones inside a rectangularimgwox (all figures
of fans in the plane in this chapter will be drawn using the saonvention.)

Figure 2. The fanX for P?

From the discussion in Chapter 2, we exp¥gt~ P?, and we will show
this in detail. The far® has three 2-dimensional coneg = Con€e;, &), o1 =
Cond—e; — e;,&), ando, = Conde;,—e; — ), together with the three rays
7ij = oiNoj for i # j, and the origin. The toric varietXs; is covered by the
affine opens

Ug, = Spe¢ClSq,]) ~ SpecC(x,y])
U,, = SpecClS,,]) ~ Spe¢C[x *,x"1y])
Us, = SpecClS,,]) ~ SpedC[xy *,y]).
Moreover, by Proposition 3.1.3, the gluing data on the coatté rings is given by
Gi0: CX Yx = C[x ", x 1],
G301 CxYly = Clxy *,y Yy

G CX X Yylay = Clxy Ly Hyya
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Itis easy to see that if we use the usual homogeneous cotesng, x,%z) onP?,
thenx — % andy — % identifies the standard affine opgnC P2 with Uy € Xs.
Hence we have recover@? as the toric varietys. O

Example 3.1.10.Generalizing Example 3.1.9, 1&g = R", whereN = Z" has
standard basie;, .. .,e,. Set
@=—€ -8~

and letX be the fan inNg consisting of the cones generated by all proper subsets
of {ey,...,en}. This is the normal fan of the-simplex A, and Xy, ~ P" by Ex-
ample 2.3.15 and Exercise 2.3.6. You will check the detailgetify that this gives

the usual affine open cover Bf' in Exercise 3.1.3.

Example 3.1.11.We classify all 1-dimensional normal toric varieties asdats.
We may assumBl = Z andNg = R. The only cones are the intervaig = [0, c0)
ando; = (—o0,0] and the trivial cone- = {0}. It follows that there are only four
possible fans, which gives the following list of toric veigs:

{7}, which givesC*
{00, 7} and{o1,7}, both of which giveC
{00,01,7}, which givesP!.

Here is a picture of the fan fd':

o1 6 00
This is the fan of Example 3.1.10 when= 1. O

Example 3.1.12.By Example 2.4.8P" x P™ is the toric variety of the polytope
An x Am. The normal fan ofA, x A, is the product of the normal fans of each
factor (Proposition 2.4.9). These normal fans are deatiivé&xample 3.1.10. It
follows that the product fal givesXy, ~ P" x P™,

Whenn = m= 1, we obtain the fait C R? ~ Ny pictured in Figure 3 on the
next page. Here, we can use an elementary gluing argumehovothat this fan
givesP! x PL. Label the 2-dimensional coneg = o; x o} as above. Then

Spe¢CSoy,)) =~ C[xY]
SpeC(Sa,]) = Clx 1]
[Sona]) = Clx 7]
[Soos]) = Clxy ]

We see that iUy andU; are the standard affine open setﬁ”?nthenumj ~Uj x U;
and it is easy to check that the gluing mabkes~ P* x P O

SpecC[S,,,]) ~
SPetC|Say,]) ~
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10 00

11 01

Figure 3. A fan ¥ with Xg ~ P! x P*

Example 3.1.13.Let N = Nj x Np, with Ny = Z" andN, = Z™. Let X4 in (N1)r
be the fan givingP", but letX;, be the fan consisting of the cone Coeg. .., en)
together with all its faces. Thel = X1 x ¥, is a fan inNg and the the corre-
sponding toric variety i¥s; ~ P" x C™. The caséP! x C? was studied in Exam-
ple 3.0.14. O

Examples 3.1.12 and 3.1.13 are special cases of the folljpgémeral con-
struction, whose proof will be left to the reader (Exercisk8).

Proposition 3.1.14. Suppose we have fahg in (N1)g andXz in (N2)g. Then
YyxYo={o1xo02|0i €%}
isafanin(Np)r x (N2)r = (N1 x Nz)r and
Xy xm, ~ Xg, X X, O

Example 3.1.15. The two conesr; ando, in Ng = R? from Example 3.1.4 (see
Figure 1), together with their faces, form a fan By comparing the descriptions
of the coordinate rings of,, given there with what we did in Example 3.0.8, it is
easy to check thaty; ~ W, whereW C P! x C? is the blowup ofC? at the origin,
defined a®V = V (xoy — x1x) (Exercise 3.1.5).

Generalizing this, leN = Z" with standard basis;, ..., e, and then seg =
e1+---+e,. LetX be the fan ifNg consisting of the cones generated by all subsets
of {ep,...,en} not containing{ey, ..., e }. Then the toric variet)s, is isomorphic
to the blowup ofC" at the origin (Exercise 3.0.8). O

Example 3.1.16.Letr € N and consider the faR, in Ng = R? consisting of the
four coness; shown in Figure 4 on the next page, together with all of thedes.
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Figure 4. A fan 3, with X5, ~ 54

The corresponding toric variels, is covered by open affine subsets,
U, = SpedC[x,y]) ~ C?
Us, = Spe¢Clx,y 1) ~C?
U,, = Spec¢C[x 1, x "y 1)) ~ C?
Uy, = SpedCx 1, x"y]) ~ C?,
and glued according to (3.1.3). We cAjt, theHirzebruch surface’.

Example 2.3.16 constructed thational normal scroll §j, using the polygon
P,p With b > a > 1. The normal fan oP,, is the fanX,_5 defined above, so that
as an abstract variets, p, ~ % _,. Note also thav# ~ P! x P, O

X
X

The Hirzebruch surface#? will play an important role in the classification of
smooth projective toric surfaces given in Chapter 10.

Example 3.1.17.Let qo,...,0n € Z~o Satisfy gcdqp,...,q,) = 1. Consider the
weighted projective spad®qo,...,qn) introduced in Chapter 2. Define the lattice
N=7Z"1/7-(0p,...,0n) and lety;, i = 0,...,n, be the images iN of the standard
basis vectors i7", so the relation

qu0+"'+ann:0

holds inN. Let X be the fan made up of the cones generated by all the proper sub-
sets of{up,...,up}. Wheng; = 1 for all i, we obtainXy, ~ P" by Example 3.1.10.

And indeed Xy, ~ IP(qo, . .,qn) in general. This will be proved in Chapter 5 using
the toric generalization of homogeneous coordinaté®in

Here, we will consider the special caBél, 1,2), whereup = —u; — 2up. The
fan ¥ in Ng is pictured in Figure 5 on the next page, using the plane sshbg
Uy, Up. This example is different from the ones we have seen so tarsidero, =
Con€ug,up) = Cong—u; — 2Up,up). Thenoy = Cond —up,2u; — Uup) C M, so the
situation is similar to the case studied in Example 1.2.88eéd, there is a change
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Figure 5. A fan X with Xs ~P(1,1,2)

of coordinates defined by a matrix in G2, Z) that takesr to the cone withd = 2
from that example. It follows that there is an isomorphidgy ~ V (xz—y?) C c3
(Exercise 3.1.6). This is the rational normal c&®e hence has a singular point
at the origin. The toric variets, is singular because of the singular point in this
affine open subset.

In Example 2.4.6, we saw that the polytope= Conv(0,2e;,&;) C R? gives
Xp ~P(1,1,2) and that the normal faRp coincides with the fan shown above()

There is a dictionary between propertiesXef and properties of that gener-
alizes Theorem 1.3.12 and Example 1.3.20. We begin with $emenology. The
first two items parallel Definition 1.2.16.

Definition 3.1.18. Let ¥ C Nr be a fan.

(a) We sayx is smooth(or regular) if every cones in X is smooth (or regular).
(b) We sayX is simplicial if every cones in X is simplicial.

(c) We sayX is completeif its support|X| = |,y o is all of Ng.

Theorem 3.1.19.Let X be the toric variety defined by a faihC Ng. Then:

(a) Xx is a smooth variety if and only if the fanis smooth.

(b) Xs is an orbifold(that is, X% has only finite quotient singularitigsf and only
if the fanX is simplicial.

(c) Xs is compact in the classical topology if and onlyfis complete.

Proof. Part (a) follows from the corresponding statement for affiomi varieties,
Theorem 1.3.12, because smoothness is a local propertyn{fidefi3.0.13). In
part (b), Example 1.3.20 gives one implication. The othepliocation will be
proved in Chapter 11. A proof of part (c) will be given in 83.4. a

The blowup ofC? at the origin (Example 3.1.15) is not compact, since the
support of the cones in the corresponding fan is not alR&f The Hirzebruch
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surfacess from Example 3.1.16 are smooth and compact because evegyirton
the corresponding fan is smooth, and the union of the conB2.isThe variety
P(1,1,2) from Example 3.1.17 is compact but not smooth. It is an olthifd has
only finite quotient singularities) since the correspondian is simplicial.

Exercises for §3.1

3.1.1. Let ¥ be a fan inNg. Show that the isomorphisngs, ., satisfy the compatibility
conditions from 80 for gluing the, together to creatXs.

3.1.2. Let X be a variety obtained by gluing affine open subg®ts} along open subsets
Vo €V, by isomorphismg, s : Vg >~ V3,. Show thaiX is separated when the image of
A V5 — V, x Vg defined byA(p) = (p,das(p)) is Zariski closed for alby, 5.

3.1.3. Verify that if X is the fan given in Example 3.1.10, th&g ~ P".
3.1.4. Prove Proposition 3.1.14.

3.1.5.LetN ~Z", letey,...,e, € N be the standard basis andégt=e; +--- +€,. LetX
be the set of cones generated by all subse{egf..,e,} not containing{ey,...,e}.

(a) Show that: is a fan inNg.
(b) Construct the affine open subsets covering the correspgroric varietyXs, and
give the gluing isomorphisms.

(c) Show thatXs is isomorphic to the blowup of" at the origin, described earlier in
Exercise 3.0.8. Hint: The blowup is the subvariety®Sf* x C" given byW =
V(xy; —Xyi | 1 <i< j<n). CoverW by affine open subseWf =W, and com-
pare those affines with your answer to part (b).

3.1.6. In this exercise, you will verify the claims made in Exampl.27.

(a) Show that there is a matrixe GL(2,Z) defining a change of coordinates that takes
the cone in this example to the cone from Example 1.2.22, awldfie mapping that
takeso) to the dual cone.

(b) Show that SpE|[S,,]) ~ V(xz—y?) C C3.

3.1.7. In Ng = R?, consider the fart. with cones{0}, Conéde;), and Coné—e;). Show
thatXs, ~ P! x C*.

83.2. The Orbit-Cone Correspondence

In this section, we will study the orbits for the action™@f on the toric varietyXs..
Our main result will show that there is a bijective corregpemce between cones
in ¥ and Ty-orbits in Xs;. The connection comes ultimately from looking at limit
points of the one-parameter subgroupgpdefined in §1.1.

A First Example We introduce the key features of the correspondence between
orbits and cones by looking at a concrete example.
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Example 3.2.1.ConsiderP? ~ X, for the fanX from Figure 2 of §3.1. The torus
Tn = (C*)? C P2 consists of points with homogeneous coordindfes, t), s,t # 0.
For eachu = (a,b) € N = Z2?, we have the corresponding curveia:

AU(t) = (Lt3,t9).

We are abusing notation slightly; strictly speaking, the-parameter subgrouy'
is a curve in(C*)?, but we view it as a curve ift? via the inclusion(C*)? C P2,

We start by analyzing the limit of(t) ast — 0. The limit point inP? depends
onu= (ab). Itis easy to check that the pattern is as follows:

limit is (1,1,0)
!
o o o o
limit is (1,0,0)
limit is (0,1,0)
- e——t——e—e>  |imit is (1,0,1)
—— limitis (1,1,1)

a-e--e--e--0--

limit is (0,0,1)

O-0--0--0--0--0--

limit is (0,1,1)
Figure 6. lim_o\"(t) for u= (a,b) € Z2

For instance, supposeb > 0 inZ. These points lie in the first quadrant. Here,
it is obvious that lina_o(1,t2,t?) = (1,0,0). Next suppose thai=b < 0 in Z,
corresponding to points on the diagonal in the third quadrdate that

(1,t3,tP) = (1L,t3,t3) ~ (t73,1,1)

since we are using homogeneous coordinateB?in Then —a > 0 implies that
limi—o(t™2,1,1) = (0,1,1). You will check the remaining cases in Exercise 3.2.1.

The regions ol described in Figure 6 correspond to cones of theXarin
each case, the set afgiving one of the limit points equald N Relint(c), where
Relint(o) is therelative interiorof a cones € X. In other words, we have recovered
the structure of the falt by considering these limits!

Now we relate this to th@y-orbits in?2. By considering the descriptid?? ~
(C2\ {0})/C*, you will see in Exercise 3.2.1 that there are exactly s@ygarbits
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in P2

(X0,X1,%2) | X #Oforalli} (1,1,1)
(X0,X1,%2) | X2 = 0, andXp, X1 # 0} > (1,1,0)
(X0,X1,%2) | X1 = 0, andXp, X2 # 0} > (1,0,1)
(X0,X1,X%2) | X0 = 0, andxy, %z # 0} 5 (0,1,1)
( )
( )

O1=H{
0)) {
O3 {
Os={
Os =1

X0,X1,X2) | X1 = %2 =0, andxp # 0} = {(1,0,0) }

Os = {(X0,X1,X2) | Xo =% =0, andx; # 0} = {(0,1,0)}

O7 = {(X0,X1,X2) | Xo =x1 =0, andx, # 0} = {(0,0,1)}.
This list shows that each orbit contains a unique limit poiHence we obtain a
correspondence between comeand orbitsO by

o corresponds t@® < tIirrg))\“(t) € Ofor all u € Relint(o).
We will soon see that these observations generalize toradl\tarietiesXs.. O

Points and Semigroup Homomorphismst will be convenient to use the intrinsic
description of the points of an affine toric varidty, given in Proposition 1.3.1.
We recall how this works and make some additional obsemstio

¢ Points ofU,, are in bijective correspondence with semigroup homomaerpgi
v:S, — C. Recall thaS, = ¢V NM andU,, = Spe¢C|[S,]).
e For each cone we have a point df), defined by

1 meS,Not=0ctnM
meS, — .
0 otherwise

This is a semigroup homomorphism singén o= is a face ofsV. Thus, if
m,m €S, andm+m €S, Not, thenmm € S,Not. We denote this point
by v, and call it thedistinguished pointorresponding te.

e The pointy, is fixed under th@y-action if and only if dimo = dim Ng (Corol-
lary 1.3.3).

o If 7 <o is aface, then, € U,. This follows sinces™ C 7.

Limits of One-Parameter Subgroupsin Example 3.2.1, the limit points of one-
parameter subgroups are exactly the distinguished paintthé cones in the fan
of P2 (Exercise 3.2.1). We now show that this is true for all affiectvarieties.

Proposition 3.2.2. Leto C Ng be a strongly convex rational polyhedral cone and
letue N. Then

UE o <— tIim AY(t) exists inU,,.

—0

Moreover, if ue Relint(o), thenlim;_o AY(t) = 7,.
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Proof. Givenu € N, we have
tIing))\“(t) exists inU, < tIim0 xM(A\"(t)) exists inC for all me S,
— tlimot<""u> exists inC for all me S,

<= (mu)>0forallmes’NM
< ue(ad") =o,
where the first equivalence is proved in Exercise 3.2.2 aadther equivalences
are clear. This proves the first assertion of the proposition
In Exercise 3.2.2 you will also show that whare o NN, lim;_,oAY(t) is the
point corresponding to the semigroup homomorphtsm- C defined by

mes’'NM >—>t|in’g)t<m’u>.

If ue Relint(c), then(m,u) >0 forallme S, \ o+ (Exercise 1.2.2), an@in,u) =0
if me S, Not. Hence the limit point is precisely the distinguished paipt [

Using this proposition, we can recover the farfrom Xx, cone by cone as in
Example 3.2.1. This is also the key observation needed toipthof of Corol-
lary 3.1.8 from the previous section.

Let us apply Proposition 3.2.2 to a familiar example.

Example 3.2.3.Consider the affine toric variety = V (xy— zw) studied in a num-
ber of examples from Chapter 1. For instance, in Exampld 8, ve showed that
V is the normal toric variety corresponding to a cenehose dual cone is

(3.2.1) o’ =Condey, e, 3,6 + € — €3),
andV = Spe¢ClsV NM]).
In Example 1.1.18, we introduced the toflis= (C*)3 of V as the image of
(3.2.2) (t1,t2,t3) > (ta, b, ta, tatts ).
Givenu = (a,b,c) € N = Z2, we have the one-parameter subgroup
(3.2.3) AU(t) = (t8tP,tC tathbc)

contained inv, and we proceed to examine limit points using Propositidh23.
Clearly, lim_o\Y(t) exists inV if and only if a,b,c > 0 anda+ b > c. These
conditions determine the comeC Ny given by

(3.2.4) o = Condey, &,6 + 63,6 + ).

One easily checks that (3.2.1) is the dual of this cone (Es®r8.2.3). Note
also thatu € Relint(c) meansa,b,c > 0 anda+ b > ¢, in which case the limit
lim{_oAY(t) = (0,0,0,0), which is the distinguished point,. O
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The Torus Orbits Now we turn to thely-orbits in Xs;. We saw above that each
coneo € X has a distinguished point, € U, C Xx. This gives the torus orbit

O(O’) :TN-’)/JQXZ.

In order to determine the structure ©fo), we need the following lemma, which
you will prove in Exercise 3.2.4.

Lemma 3.2.4. Let o be a strongly convex rational polyhedral cone in.NLet N,
be the sublattice of N spanned by the points inN, and let No) = N/N,.

(a) There is a perfect pairing
(,):0"NMxN(0) = Z,
induced by the dual pairing, ) : M x N — Z.
(b) The pairing of part(a) induces a natural isomorphism
Homz (o MM, C*) ~ Ty(y),
where ) = N(o) @z C* is the torus associated to(). O
To studyO(o) C U,, we recall how € Ty acts on semigroup homomorphisms.

If pe U, isrepresented by : S, — C, then by Exercise 1.3.1, the pointp is
represented by the semigroup homomorphism

(3.2.5) t-y:me— x"(t)y(m).
Lemma 3.2.5. Let o be a strongly convex rational polyhedral cone in.N'hen
O(0)={7:S, = C|y(m #0&mestnM}
~ Homy (o NM, C*) = Ty ),
where No) is the lattice defined in Lemma 3.2.4.

Proof. The set)’ = {v:S, — C | y(m) # 0< me o NM} containsy, and is
invariant under the action @i described in (3.2.5).

Next observe that is the largest vector subspace Mf contained ino".
Hences NM is asubgroupof S, = ¢V NM. If v € O, then restrictingy to
meS,Not = ol NM yields agroup homomorphisr : - NM — C* (Exer-
cise 3.2.5). Conversely, i : 0= NM — C* is a group homomorphism, we obtain
a semigroup homomaorphisme O’ by defining

A(m)  ifmeotnM
3(my = 7™ .
0 otherwise.
It follows thatO’ ~ Homy (o N M, C*).
Now consider the exact sequence

(3.2.6) 0— N, — N — N(0) — 0.
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Tensoring withC* and using Lemma 3.2.4, we obtain a surjection
Tn=N®;C* — TN(O') = N(O’) ®R7C* ~ HOTT'Iz(O'L N M,(C*)
The bijections
N Homy (o NM,C*) ~ O’
are compatible with th@y-action, so thafly acts transtively ol®’. Then~y, € O/
implies thatO’ = Ty -7, = O(0), as desired. O

The Orbit-Cone CorrespondenceOur next theorem is the major result of this
section. Recall that the face relatien< ¢ holds whenr is a face ofs.

Theorem 3.2.6(Orbit-Cone Correspondencelet X be the toric variety of the
fan X in Ng. Then:

(a) There is a bijective correspondence
{coness in ¥} «— {Ty-orbits inXy}
o« O(0) ~ Homy (o NM, C*).
(b) Let n=dim Ng. For each coner € ¥, dimO(o) = n—dimo.
(c) The affine open subset;lis the union of orbits
U, = | o).
=0
(d) 7 <oifandonly if Qo) C O(r), and
o(7) = |J 0(0),

70

whereO(r) denotes the closure in both the classical and Zariski togiela

For instance, Example 3.2.1 tells us that¥dt there are three types of cones
and torus orbits:

e The trivial cones = {(0,0)} corresponds to the orb®(o) = Ty € IP?, which
satisfies dinD(o) =2 =2—-dimo. This is a face of all the other cones in
3, and hence all the other orbits are contained in the closutkBigone by
part (d). Note also that, = O(c) ~ (C*)? by part (c), since there are no
cones properly contained in

e The three 1-dimensional conegjive the torus orbits of dimension 1. Each is
isomorphic toC*. The closures of these orbits are the coordinate ¥X&g in
P2, each a copy oP!. Note that each is contained in two maximal cones.

e The three maximal cones in the fanX correspond to the three fixed points
(1,0,0),(0,1,0),(0,0,1) of the torus action ofP?. There are two of these in
the closure of each of the 1-dimensional torus orbits.
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Proof of Theorem 3.2.6.Let O be aTy-orbit in Xs. SinceXy is covered by the
Tyn-invariant affine open subsdis. C Xy, andU,, NU,, =U,,n,,, there is a unique
minimal cones € ¥ with O C U,,. We claim thatO = O(o). Note that part (a) will
follow immediately once we prove this claim.

To prove the claim, lety € O and consider those € S, satisfying~y(m) # 0.
In Exercise 3.2.6, you will show that theses lie on a face ofrV. But faces ofr"
are all of the formsV N7+ for some facer < o by Proposition 1.2.10. In other
words, there is a face < o such that

{meS, [y(m) #£0} =c"NriNM.

This easily impliesy € U.. (Exercise 3.2.6), and then= ¢ by the minimality ofc.
Hence{me S, | v(m) # 0} = - NM, and theny € O(c) by Lemma 3.2.5. This
impliesO = O(o) since two orbits are either equal or disjoint.

Part (b) follows from Lemma 3.2.5 and (3.2.6).

Next consider part (c). We know thidt, is a union of orbits. Ifr is a face o,
thenO(7) C U, C U, implies thatO(7) is an orbit contained itJ,. Furthermore,
the analysis of part (a) easily implies that any orbit corgdiinU, must equal
O(r) for some facer < o.

We now turn to part (d). We begin with the closure@fr) in the classical
topology, which we denot®(7). This is invariant undefy (Exercise 3.2.6) and
hence is a union of orbits. Suppose ti) C O(r). ThenO(7) C U,, since
otherwiseO(7) NU,, = @, which would implyO(r) nU,, = () sinceU,, is open in
the classical topology. Once we ha@¢r) C U,,, it follows thatr < o by part (c).

Conversely, assume < ¢. To prove thatO(c) C O(7), it suffices to show that

O(7)NO(o) # 0. We will do this by using limits of one-parameter subgroups a
in Proposition 3.2.2.

Let v, be the semigroup homomorphism corresponding to the digshgd
point of U, sov,(m) = 1 if me 7+ NM, and 0 otherwise. Lat € Relint(s), and
fort € C* definey(t) = AY(t) - v,. As a semigroup homomorphismt) is

me— x"(AY(t)) - (m) =t (m).

Note thaty(t) € O(7) for all t € C*since the orbit ofy; is O(r). Now lett — 0.
Sinceu € Relint(o), (mu) >0 if me ¢\ o', and=0if mec o*. It follows
that~(0) = lim;_,o~(t) exists as a point ibJ, by Proposition 3.2.2, and represents
a point inO(o). But it is also in the closure oD(7) by construction, so that

O(0)NO(T) # 0. This establishes the first assertion of (d), and

ot - J o)

70

follows immediately for the classical topology.
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It remains to show that this set is also the Zariski closurezelintersectO()
with an affine open subset,, parts (¢) and (d) imply that

o(r)nU, = [ J O(0).

70’ <0
In Exercise 3.2.6, you will show that this is the subvariéty) C U, for the ideal

(3.2.7) | =(x™|mertn(e)NM)CC[(c') NM]=S,.

This easily implies that the classical clos@ér) is a subvariety oKXy, and hence
is the Zariski closure oD(7). O

Orbit Closures as Toric VarietiesIn the example o2, the orbit closure®(7)
also have the structure of toric varieties. This holds inegah We use the notation

V(1) =0(7).
By part (d) of Theorem 3.2.6, we have< ¢ if and only if O(¢) CV(7), and

V(r) =[] 0(0).

T=0

The torusO(7) = Ty(,) is an open subset of (1), whereN(7) is defined in
Lemma 3.2.4. We will show that () is a normal toric variety by constructing
its fan. For each cone € ¥ containingr, leta be the image cone iN(7)r under
the quotient map

Ng — N(7)r
in (3.2.6). Then
(3.2.8) Stafr) = {7 CN(r)r | T X0 €X}
is a fan inN(7)r (Exercise 3.2.7).

Proposition 3.2.7. For any T € ¥, the orbit closure \(7) = O(7) is isomorphic to
the toric variety X r)-

Proof. This follows from parts (a) and (d) of Theorem 3.2.6 (Exer@2.7). [

Example 3.2.8.Consider the faix in Ng = R3 shown in Figure 7 on the next page.
The support of is the cone in Figure 2 of Chapter 1, alids obtained from this
cone by adding a new 1-dimensional coné the center and subdividing. The
orbit O(7) has dimension 2 by Theorem 3.2.6. By Proposition 3.2.7, thé o
closureV(r) is constructed from the cones Bfcontainingr and then collapsing
7 to a point inN(7)r = (N/N,)r ~ R2. This clearly gives the fan fdP* x P, so
thatV (7) ~ P! x P, O
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Figure 7. The fanX and its 1-dimensional conein Example 3.2.8

A nice example of orbit closures comes from the toric varigyof a full
dimensional lattice polytopE C Mg. Here, we use the normal faiy of P, which
by Theorem 2.3.2 consists of cones

(3.2.9) oq = Condur | F is a facet ofP containingQ)

for each face) < P. Recall thatus is the facet normal of.

The basic idea is that the orbit closurédiizg) is the toric variety of the lattice
polytopeQ. SinceQ need not be full dimensional ik, we need to be careful.
The idea is to translate by a vertex ofQ so that the origin is a vertex @. This
affects neithe®p nor Xp, butQ is now full dimensional in Spa®) and is a lattice
polytope relative to Spd@) N M. This gives the toric variet)Xq, which is easily
seen to be independent of how we translate to the origin. derer result.

Proposition 3.2.9. For each face Q< P, we have Vog) ~ Xq.

Proof. We sketch the proof and leave the details to reader (Exe3cks8). Let
P={me Mg | (mug) > ar for all facetsF < P}

be the facet presentation Bf The facets oP containingQ also contain the origin,
so thatag = O for these facets. This implies that

o5 = Spar(Q),
and therN(oq) is dual to SpafQ) N M. Note also thaN(oq)r = Nr/Sparioq).

To keep track of which polytope we are using, we will write ttane (3.2.9)
associated to a fac®@ < P asog p. ThenXp andXq are given by the normal fans

Yp={oqpSNe|Q <P}
Yq={0g,q S N(ogp)r | Q <Q}.
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By Proposition 3.2.7, the toric varieW(oq) =V (0qp) is determined by the fan
Stafogp) ={7 | ocgp <0 € Lp}
={oqrlogp<oqpepr}={ogpr|Q =Q}
Then the proposition follows once one proves 6@lp = oo o. O

Final Comments The technique of using limit points of one-parameter subgso
to study a group action is also a major tool in Geometric liavdarTheory as in
[209, where the main problem is to construct varieties (or gagsnore general
objects) representing orbit spaces for the actions of adgelgroups on varieties.
We will apply ideas from group actions and orbit spaces tcsthedy of toric vari-
eties in Chapters 5 and 14.

We also note the observation made in part (d) of Theorem that@orus orbits
have the same closure in the classical and Zariski topdogier arbitrary subsets
of a variety, these closures may differ. A torus orbit is aaregle of aconstructible
subset and we will see in 83.4 that constructible subsets havedhe<lassical
and Zariski closures since we are working o{er

Exercises for §3.2
3.2.1. In this exercise, you will verify the claims made in Exampl2.2 and the following
discussion.

(a) Show that the remaining limits of one-parameter subgs®? are as claimed in the
example.

(b) Show that théC*)2-orbits inP? are as claimed in the example.

(c) Show that the limit point equals the distinguished peinbf the corresponding cone
in each case.

3.2.2. Let 0 C Nr be a strongly convex rational polyhedral cone. This exeraigl con-

sider lim_ f(t), wheref : C* — Ty is an arbitrary function.

(a) Prove that lim.,o f(t) exists inU, if and only if lim;_ox™(f(t)) exists inC for all
me S,. Hint: Consider a finite set of charactesésuch thaS, = N7

(b) When lim_ f(t) exists inU,, prove that the limit is given by the semigroup homo-
morphism that mapsi € S, to limg_o x™(f(t)).

3.2.3. Consider the situation of Example 3.2.3.
(a) Show that the conesin (3.2.1) and (3.2.4) are dual.

(b) Identify the limits of all one-parameter subgroups iis texample, and describe the
Orbit-Cone Correspondence in this case.

(c) Show that the matrix
11 -1
A= 10 O
-1 0 1

defines an automorphism hf~ Z2 and the corresponding linear mapg maps the
cones too.



124 Chapter 3. Normal Toric Varieties

(d) Deduce that the affine toric varietids andU,v are isomorphic. Hint: Use Proposi-
tion 1.3.15.

3.2.4. Prove Lemma 3.2.4.

3.2.5.Let O’ be as defined in the proof of Lemma 3.2.5. In this exercisewibgomplete
the proof thatD' is aTy-orbitin U,,.

(a) Show thatify € O, theny : 0-NM — C* is a group homomorphism.

(b) Deduce tha®' has the structure of a group.

(c) Verify carefully that we have an isomorphism of gro@s~ Homg (o "M, C*).

3.2.6. This exercise is concerned with the proof of Theorem 3.2.6.

(a) Lety:S, — C be a semigroup homomorphism giving a pointlf. Prove that
{meS, |v(m)#0} =T'NM for some facd” < 5"

(b) ShowO(r) is invariant under the action dy.

(c) Prove thaO(7)NU,. is the variety of the idedl defined in (3.2.7).

3.2.7. Let7 be a cone in a fai, and let Stafr) be as defined in (3.2.8).
(a) Show that Stdr) is a fan inN(7)g.
(b) Prove Proposition 3.2.7.

3.2.8. Supply the details omitted in the proof of Proposition 3.2.9

3.2.9. Consider the action ofy on the affine toric variety),. Use parts (c) and (d) of
Theorem 3.2.6 to show th&X(o) is the unique closed orbit @k acting onU,.

3.2.10.In Proposition 1.3.16, we saw thatifis a face of the strongly convex rational poly-
hedral coner in Ng thenU,. = Spe¢C|[S,]) is an affine open subset 0f, = Spe¢C|S,)).

In this exercise, you will prove the converse, i.e., that if ¢ and the induced map of
affine toric varieties) : U, — U, is an open immersion, then=< ¢, i.e.,7 is a face of.

(a) Letu,u’ € Nno, and assume+ U’ € 7. Show that

i YUY i AU
tIlﬂW()A (1) tIQWOA (t) e U,.

(b) Show that lin_o \“(t) and lim_,o AV (t) are each itJ,.. Hint: Use the description of
points as semigroup homomorphisms.

(c) Deduce that, U’ € 7, soT is a face ofs.

3.2.11.In this exercise, you will use Proposition 3.2.2 and TheoBer6 to deduce Corol-

lary 3.1.8 from Theorem 3.1.7.

(a) By Theorem 3.1.7, and the results of Chapter 1, a sephi@te variety has an open
cover consisting of affine toric varietiels = U,,, for some collection of cones. Show
that for alli, j, UiNU; is also affine. Hint: Use the fact thAtis separated.

(b) Show thatJ; NUj is the affine toric variety corresponding to the cane- o N oj.
Hint: Exercise 3.2.2 will be useful.

(c) If 7 =0yN0j, then show that is a face of botty; ando;. Hint: Use Exercise 3.2.10.
(d) Deduce thaK ~ Xy, for the fan consisting of the; and all their faces.
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§3.3. Toric Morphisms

Recall from §3.0 that i andY are varieties with affine open covexs= J U,
andY = |J;Uj, then a morphismg : X — Y is a Zariski-continuous mapping such
that the restrictions

. -1 I /
¢\uam¢—1(ué) U Ng " (Ug) — Ug

are morphisms in the sense of Definition 3.0.3 foralB.

In 81.3 we definedoric morphismsetween affine toric varieties and studied
their properties. When applied to arbitrary normal torideties, these results yield
a class of morphisms whose construction comes directly thencombinatorics of
the associated fans. The goal of this section is to studgthgscial morphisms.

Definition 3.3.1. Let Ny, NZPe two lattices with:; a fan in(Np)r andX; a fan in
(N2)r. A Z-linear mappingp : Ny — Ny is compatiblewith the fansX; and, if
for every coner; € 31, there exists a cong, € X, such thatpy (01) C o.

Example 3.3.2.Let N; = Z? with basise;, e and letY, be the fan from Figure 4
in 83.1. By Example 3.1.16Xy, is the Hirzebruch surfacg?;. Also letN, = Z
and consider the faR giving P*:

o

01 00

as in Example 3.1.11. The mapping
$2N1—>N2, ae1+be2»—>a

is compatible with the fans,; andX since each cone af; maps onto a cone af.
If r #£0, on the other hand, the mapping

Y:Ni— Ny,  ae+be—b
is not compatible with these fans singgc ¥, does not map into acone df ¢

The Definition of Toric Morphism In 81.3, we defined a toric morphism in the
affine case and gave an equivalent condition in PropositiBril4. For general

toric varieties, it more convenient to take the result ofgesition 1.3.14 as the

definitionof toric morphism.

Definition 3.3.3. Let X5, X5, be normal toric varieties, witki; a fan in(Np)r
andX; a fan in(N2)g. A morphisme : X, — Xy, is toric if ¢ maps the torus
Tn, € Xy, into Ty, € Xy, andqﬁ\TN is a group homomorphism.

1
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The proof of part (b) of Proposition 1.3.14 generalizeslgasishow that any
toric morphism¢ : Xy, — Xy, is anequivariant mappindgor the Ty,- and Ty,-
actions. That is, we have a commutative diagram

T|\|1 X le _— le

(3.3.1) mx% lqﬁ
T|\|2 X XZZ —_— XZZ

where the horizontal maps give the torus actions.

Our first result shows that toric morphisms Xy, — Xy, correspond tdZ-
linear mappings : Ny — Ny that are compatible with the fang, and>,.

Theorem 3.3.4.Let N, N, be lattices and leE; be a fan in(N)g, i = 1,2.

(@) If ¢ : Ny — N, is aZ-linear map that is compatible with; and,, then there
IS a toric morphismp : Xy, — Xy, such that¢|TN is the map
1

¢®R1: Ny ®7C* — Na®7C*.

(b) Conversely, ity : X5, — Xy, is a toric morphism, thew induces aZ-linear
mapé¢ : N; — N, that is compatible with the fars; and .

Proof. To prove part (a), let;1 be a cone i;. Sinceg is compatible with>l1
andX,, there is a cone, € ¥, with ¢ (01) C o2. Then Proposition 1.3.15 shows
that ¢ induces a toric morphism,, : U,, — U,,. Using the general criterion for
gluing morphisms from Exercise 3.3.1, you will show in Exsec3.3.2 that the
¢o, glue together to give a morphisg: Xy, — Xx,. Moreover, ¢ is toric be-
cause takingr, = {0} givesg¢qy : Ty, — Tn,, Which is easily seen to be the group
homomorphism induced by ti&linear mapp : Ny — Na.

_ For part (b), we show first that the toric morphisfrinduces &-linear map
¢ : N1 — Np. This follows since¢|TN is a group homomorphism. Hence, given
1

u € Ni, the one-parameter subgrodp: C* — Ty, can be composed with|. to
1
give the one-parameter subgrouiprN oAY: C*" — Ty,. This defines an element
1

o(u) € Np. Itis straightforward to show that: N; — N is Z-linear.

It remains to show thap is compatible with®; and¥,. Takeo; € ¥1. By
the Orbit-Cone Correspondence (Theorem 3.2.6), this givedy,-orbit O; =
O(o1) C Xy,. Because of the equivariance (3.3.1), there Taorbit O, C X,
with ¢(O1) C O,. Using Theorem 3.2.6 again, we hag= O(o,) for some cone
o2 € 3. Thus¢(O(01)) C O(o2). Furthermore, ifr; < o1 is a face, then by the
same reasoning, there is some cepe X, such that(O(71)) C O(72).

We claim that in this situation, must be a face of,. This follows since
O(01) € O(m1) by part (d) of Theorem 3.2.6. Singeis continuous in the Zariski

topology,® <0(71)> C O(72). But the only orbits contained in the closure@fr,)
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are the orbits corresponding to cones which havas a face. Sa, is a face ofr».
It follows from part (c) of Theorem 3.2.6 thdtalso maps the affine open subset
Uy, € Xy, intoU,, C Xy, i€,

(3.3.2) $(Usy) CU,,.

Henceg induces a toric morphistd,, — U,,, which by Proposition 1.3.15 implies
thatgp (01) C o2. Henceg is compatible with the fans; and>;. O

First Examples Here are some examples of toric morphisms defined by mappings
compatible with the corresponding fans.

Example 3.3.5.LetN; = Z2 andN, = Z, and let
EZNl—)N& ael_{_bez}_)aa

be the first mapping in Example 3.3.2. We saw thas compatible with the fans
¥, of the Hirzebruch surfaceZ and¥ of P1. Theorem 3.3.4 implies that there is
a corresponding toric morphist: 7% — P. We will see later in the section that
this mapping gives# the structure of @-bundle oveiP?. O

Example 3.3.6.Let N = Z" andX be a fan inNg. For/ € Z- o, the multiplication
map
¢p:N— N, a—/-a

is compatible withx. By Theorem 3.3.4, there is a corresponding toric morphism
¢ : Xy — Xs; whose restriction tdy C Xy, is the group endomorphism

el (tr, . tn) = (tf,....t5).

For a concrete example, [Etbe the fan ilNg = R? from Figure 2 and také = 2.
Then we obtain the morphismy, : P? — P2 defined in homogeneous coordinates
by ¢2(Xo,X1,X2) = (X3,X2,x2). We will useg, in Chapter 9. O

Sublattices of Finite Index We get an interesting toric morphism when a lattice
N’ has finite index in a larger lattidd. If X is a fan inNg, then we can viewt as

a fan either ifNg or in Ng, and the inclusioiN’ — N is compatible with the faiX

in Np andNg. As in Chapter 1, we obtain toric varieti&s; - andXs; v depending
on which lattice we consider, and the inclusidh— N induces a toric morphism

¢ : Xe N — XsN-

Proposition 3.3.7. Let N’ be a sublattice of finite index in N and [Etbe a fan in
Nr = Ng. Let G=N/N’. Then

¢ : Xgn — XN

induced by the inclusion N— N presents X \ as the quotient X/ /G.
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Proof. SinceN’ has finite index ilN, Proposition 1.3.18 shows that the finite group
G = N/N'is the kernel ofTyy — Ty. It follows thatG acts onXy, y+. This ac-
tion is compatible with the inclusiob, n+ C Xy, v for each coner € X. Using
Proposition 1.3.18 again, we see thity /G ~ U, N, which easily implies that
XE,N’/G ~ XE7|\|. Il

We will revisit Proposition 3.3.7 in Chapter 5, where we vgliow that the
map¢ : Xy nv — XN IS @ageometric quotient

Example 3.3.8.Let N = Z2, andX. be the fan shown in Figure 5, $& N gives
the weighted projective spad&1,1,2). Let N’ be the sublattice oN given by
N’={(a,b) e N|b=0mod 2, soN’ has index 2 irN. Note that\’ is generated
by u; = ey, up = 2& and that

Up=—€—28=—U;—UyeN.

Let ¢ : N’ — N be the inclusion map. It is not difficult to see that with resipie
the latticeN’, Xs; » ~ P2 (Exercise 3.3.3). By Theorem 3.3.4, thdinear maps
induces a toric morphism : P? — P(1,1,2), and by Proposition 3.3.7, it follows
thatP(1,1,2) ~ P?/Gfor G=N/N' ~ Z /27Z.

Figure 8. The semigroupsy NM andoy NM’

The coneo, from Figure 5 has the dual cong/ shown in Figure 8. It is
instructive to consider howy interacts with the lattic&’ dual toN’. One checks
thatM’ ~ {(a,b/2) : a,b € Z} ando} = Cong2e; — e;,—€,). In Figure 8, the
points inoy N M are shown in white, and the points ¢ "M’ not in oy NM
are shown in black. Note that the pictured N M is the same (up to a change
of coordinates in G[2,7Z)) as Figure 10 from Chapter 1. This shows again that
[P(1,1,2) contains the affine open subd#f, n isomorphic to the rational normal
coneéz. On the other hant,, N ~ C? is smooth. The other affine open subsets
corresponding te; andog are isomorphic t€? in bothP? and inP(1,1,2). ¢
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Torus Factors A toric variety Xy has atorus factorif it is equivariantly isomor-
phic to the product of a nontrivial torus and a toric varietgmaller dimension.

Proposition 3.3.9. Let Xz be the toric variety of the fak. Then the following are
equivalent:

(a) Xy has a torus factor.

(b) There is a nonconstant morphisng X- C*.

(c) The y, p € ¥(1), do not span .

Recall that>(1) consists of the 1-dimensional conesXfi.e., its rays, and
thatu, is the minimal generator of a raye ¥(1).

Proof. If Xy ~ X5 x (C*)" for r > 0 and some toric varietis, then a nontrivial
character of C*)" gives a nonconstant morphisgg, — (C*)" — C*.

If ¢: Xy — C* is a nonconstant morphism, then Exercise 3.3.4 implies that
Py, = cx™wherec € C* andme M\ {0}. Multiplying by ¢, we may assume
thate|.. = x™. Theng is a toric morphism coming from a nonzero homomorphism

¢:N— Z. SinceC* comes from the trivial fangr maps all cones ofF to the
origin. Henceu,, € ker(¢y) for all p € 3(1), so theu, do not sparNg.

Finally, suppose that the,, p € >(1) span a proper subspaceMyf. ThenN’ =
Spariu, | p € 3(1)) NN is proper sublattice dfl such thalN/N’ is torsion-free, so
N’ has a complemert” with N = N’ x N”. Furthermore}. can be regarded as a
fan ¥’ in Ng, and thenX is the product fart = ¥’ x 3", whereX" is the trivial
fan inNg. Then Proposition 3.1.14 gives an isomorphism

XE ~ XZ’,N’ X TNH ~ Xzf’Nf X ((C*)nik,

where dimNg = nand dimN;, = k. O

In later chapters, toric varietiegithout torus factors will play an important
role. Hence we state the following corollary of Proposit8.9.

Corollary 3.3.10. Let X, be the toric variety of the fal. Then the following are
equivalent:

(a) Xx has no torus factors.

(b) Every morphism X — C* is constant, i.eI'(Xs, Ox,,)* = C*.

(c) They, p € (1), span M. O

We can also think about torus factors from the point of viewuflattices.

Proposition 3.3.11.Let N C N be a sublattice witldim Ng = n, dim Ny, = k. Let
¥ be a fan in N, which we can regard as a fan ingNThen:

(a) If N” is spanned by a subset of a basis of N, then we have an isoraorphi
¢ XN = X X Ty = X X (CF)"K.
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(b) In general, a basis for Ncan be extended to a basis of a sublatticedNN of
finite index. Then X is isomorphic to the quotient of

n—k
XE,NN ~ XE,N/ X TNH/N/ ~ XE,N/ X ((C*)

by the finite abelian group NN”.

Proof. Part (a) follows from the proof of Proposition 3.3.9, andtpa) follows
from part (a) and Proposition 3.3.7. O

Refinements of Fans and BlowupsGiven a fanX in Ng, a fan’ refinesX if
every cone o’ is contained in a cone af and|X’| = |X|. Hence every cone &t
is a union of cones of’. WhenX' refinesy, the identity mapping oiN is clearly
compatible with¥’ andX. This yields a toric morphism : X5 — Xs..

Example 3.3.12.Consider the fart’ in N ~ Z?2 pictured in Figure 1 from §3.1.
This is a refinement of the fakl consisting of Congey,e;) and its faces. The
corresponding toric varieties axg; ~ C2 andXs; ~W =V (xpy — X1X) C P! x C?,
the blowup ofC? at the origin (see Example 3.1.15). The identity mapNdnduces
a toric morphismp : W — C2. This “blowdown” morphism mapB? x {0} CW to
0 e C? and is injective outside dF* x {0} in W. O

We can generalize this example and Example 3.1.5 as follows.

Definition 3.3.13. Let X be a fan inNg ~ R". Let o0 = Con€uy,...,u,) be a
smooth cone i, so thatu,..., Uy is a basis folN. Letug =u; +--- +u, and let
¥'(o) be the set of all cones generated by subsetfugf...,u,} not containing
{ug,...,up}. Then

(o) = (S\ {0}) UT(0)

is a fan inNg called thestar subdivisionof ¥ alongo.

Example 3.3.14.Let o = Conguy, Uz, u3) C Ng ~ R3 be a smooth cone. Figure 9
on the next page shows the star subdivision aito three cones

Con€up,us, U2), Congup, uz,uz), Condug, Uy, U3).
The fanX*(o) consists of these cones, together with their faces. O
Proposition 3.3.15. X% (o) is a refinement of, and the induced toric morphism
¢ Xsx (o) — Xs

makes X-(, the blowup of X at the distinguished poin, corresponding to the
coneo.

Proof. SinceX andX*(o) are the same outside the canewithout loss of gener-
ality, we may reduce to the case thais the fan consisting af and all of its faces,
andXs is the affine toric variety),, ~ C".
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Figure 9. The star subdivisio®* (o) in Example 3.3.14

Under the Orbit-Cone Correspondence (Theorem 3.2.6prresponds to the
distinguished pointy,, the origin (the unique fixed point of the torus action). By
Theorem 3.3.4, the identity map dhinduces a toric morphism

gb : XZ*(O') — Uo >~ (Cn.

Itis easy to check that the affine open sets coveXifng,, are the same as for the
blowup of C" at the origin from Exercise 3.0.8, and they are glued togéaththe
same way by Exercise 3.1.5. O

The blowupXs; at~, is sometimes denoted Bl(Xx). In this notation, the
blowup of C" at the origin is written Bj(C").

The point blown up in Proposition 3.3.15 is a fixed point of theus action.
In some cases, torus-invariant subvarieties of larger déoa have equally nice
blowups. We begin with the affine case. The standard lmsis. , e, of Z" gives
o = Condey,...,e,) with U, = C", and the face = Condey,...,& ), 2<r <n,
gives the orbit closure

V(r)=0(r) = {0} x C"".
To construct the blowup of (7), letup = ug + - - - + U, and consider the fan
(3.3.3) Y*(r) ={Con€A) | AC {ug,...,Un}, {u1,...,u } ZA}.

Example 3.3.16.Let 0 = Conder, e,63) C Ng ~ R® andr = Condey, ). The
star subdivision relative te subdividess into the cones

Condey, ey, e3), Congey, ,€3),

as shown in Figure 10 on the next page. TheXa(r) consists of these two cones,
together with their faces. O
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Figure 10. The star subdivisiox* (7) in Example 3.3.16

For the fan (3.3.3), the toric varied:- (- is the blowup of{ 0} x C"™" C C".
To see why, observe that*(7) is a product fan. Namely" = Z' x Z"~", and

E*(T) = 21 X 22,
whereY; is the fan for B§(C") (coming from a refinement of Cof@,...,ur))
andX:; is the fan forC"~" (coming from Conéu; 1 1,...,uy)). It follows that
XZ*(T) = BIO(Cr) X (Cnir.

Since Bb(C") is built by replacing 0= C" with P™1, it follows that Xy« () =
Blo(C") x C"" is built by replacing{0} x C"" C C" with P'~1 x C"". The
intuitive idea is that BJ(C") separates directions through the originGh, while
the blowup B}, , cn-r(C") = X5+ () separatesormaldirections to{0} x C"" in
C". One can also study %chfr(cn) by working on affine pieces given by the
maximal cones oE*(7)—see P18 Prop. 1.26].

We generalize (3.3.3) as follows.

Definition 3.3.17. Let X be a fan inNg ~ R" and assume € X has the property
that all cones oE containingr are smooth. Leti, =) u, and for each cone
o € X containingr, set

Yo(r) ={CondA) |AC {u;}Uc(1), (1) £ A}
Then thestar subdivisionof X relative tor is the fan

D) ={ceX|r goyu ] i)

7Co

peT(1)

The fanX*(7) is a refinement of and hence induces a toric morphism

(b : XE*(T) — Xz.
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Under the mapp, Xs-(-) becomes the blowup |, (Xs) of Xs along the orbit
closureV (7).

In Chapters 10 and 11 we will use toric morphisms coming frayereralized
version of star subdivision to resolve the singularitiesooic varieties.

Exact Sequences and FibrationdNext, we consider a class of toric morphisms
that have a nice local structure. To begin, consider a giwgeZ-linear mapping
¢:N—-N.
If 32 in Ng andX in N, are compatible withp, then we have a corresponding toric
morphism
qZS : XE — XEI.

Now letNp = ker(¢), so that we have an exact sequence

(3.3.4) 0— No — N 25 N — 0.
It is easy to check that
20:{U€E|UQ(N0)R}
is a subfan o> whose cones lie itiNg)r € Ng. By Proposition 3.3.11,
(3.3.5) Xs0,N 22 Xso,Ng X T

sinceN/No ~ N'. Furthermore is compatible withg in Ng and the trivial fan
{0} in Ng. This gives the toric morphism

¢|X207N : Xso,N — T
In fact, by the reasoning to prove Proposition 3.3.4,
(336) ¢_1(TN’) = XEO,N >~ X207N0 X TN’-

In other words, the part ofy, lying over Ty: C Xy is identified with the product
of Ty and the toric varietys, n,. We say this subset ofy; is afiber bundleover
Tne with fiber Xs N -

When the fan has a suitable structure relative gowe can make a similar
statement for every torus-invariant affine open subset-of

Definition 3.3.18. In the situation of (3.3.4), we sa&y is split byY’ andXg if there

exists a subfal C X such that:

(a) ¢ maps each cone ¢ 5 bijectively to a coner’ € ¥’ such thatp(c NN) =
o' NN’. Furthermore, the map — o' defines a bijectiolt = '

(b) Given cones € 5 andog € Yo, the sumo + o lies in X, and every cone of
Y arises this way.
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Theorem 3.3.19.1f ¥ is split by X’ and Xg as in Definition 3.3.18, thenyXis a
locally trival fiber bundle over X with fiber X, n,, i.€., X' has a cover by affine
open subsets U satisfying

(bil(U) ~ XEO,NO xU.
In particular, all fibers of X — Xy are isomorphic to X, n,-
Proof. Fix ¢’ in ¥’ and letS(0’) = {0 € | ¢(c) C o’}. Then

(VED S

It remains to show thaXs,,/) ~ Xs;, N, X Uy, SinceX(o”) is split by Yo N3¥(o’)

and>n Y (0’"), we may assumyy = U, . In other words, we are reduced to the
case whert’ consists ob’ and its proper faces.

A Z-linear mapw : N’ — N splitsthe exact sequence (3.3.4) providged7 is
the identity onN’. A splitting induces an isomorphism
No x N’ ~ N.
By Definition 3.3.18, there is a coriee ¥ such thaip(s NN) = ¢/ "N’ and ¢
mapso bijectively too’. Usinga, one can find a splitting with the property that
7r mapst’ to 7 for all 7 € X (Exercise 3.3.5). Using Definition 3.3.18 again, we
see that
(NO)R X Nﬁg ~ NR
carries the product fafXo, (No)r) % (X,Ng) to the fan(X,Ng). By Proposi-
tion 3.1.14, we conclude that
XE ~ XEO,NO X XE/ ~ XEO,NO X UU/,
and the theorem is proved. O
Example 3.3.20.To complete the discussion begun in Examples 3.3.2 and,3.3.5
consider the toric morphism : .7 — P! induced by the mapping
¢ 72 —17, ae +be, — a.
The fan¥; of 2% is split by the fan ofP! andXo = {0 € % | ¢r(c) = {0}}
because of the subfan of X, consisting of the cones
Cong—e; +rey),{0},Congey).

These cones are mapped bijectively to the coné¥ imdergg. Note also thakg
consists of the cones

Condey),{0},Cong—ey).
The fans¥ andX( are shown in Figure 11 on the next page.

As we vary over alb € 5 andog € X, the sums + o give all cones of#;.
Hence Theorem 3.3.19 shows th#t is a locally trivial fibration oveiP!, with
fibers isomorphic to

XEO,NO ~ Pl,
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)
Mo

Figure 11. The Splitting of the Faix;
whereNg = ker(¢) gives the vertical axis in Figure 11. This fibration is notigtly
trivial whenr > 0, i.e., it is not true thap# ~ P x P1. There is some “twisting”
on the fibers involved when we try to glue together the'(U, ) ~ U, x P to
obtainz7. O

We will give another, more precise, description of theserfinadles and the
“twisting” mentioned above using the language of sheav&hiapter 7.

The definition of splitting fan in Definition 3.3.18 requiréisat ¢(G N N) =
o' NN’ when € £ maps too’ € ¥'. Exercise 3.3.6 will give an example of how
Theorem 3.3.19 can fail if this condition is not met, and Eiar 3.3.7 will explore
how to modify the theorem when this happens.

Images of Distinguished PointsEach orbitO(o) in a toric varietyXs, contains
a distinguished point,,, and each orbit closuré(o) is a toric variety in its own
right. These structures are compatible with toric morpkiss follows.

Lemma 3.3.21.Let ¢ : X5, — X5y be the toric morphism coming from a map
N — N’ that is compa_tible witlE andY’. Giveno € X, leto’ € ¥’ be the minimal
cone ofY’ containingeg (o). Then:

(@) ¢(75) =, Wherey, € O(0) and~, € O(o’) are the distinguished points.
(b) $(O(e)) C O(o") andg (V (o)) V(o).
(c) The induced map|y, ) :V(o) — V(o) is a toric morphism.
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Proof. First observe that if},0, € ¥’ containgg (o), then so does their intersec-
tion. Hencex’ has a minimal cone containingg (o).

To prove part (a), picki € Relint(c) and observe thag(u) € Relint(c”) by the
minimality of o’. Then

$(70) = B (lim__o AU (1)) = lime_op(AU()) = lime_o APV (t) = 7,
where the first and last equalities use Proposition 3.2.2.

The first assertion of part (b) follows immediately from p@} by the equiv-
ariance, and the second assertion follows by continuitygasl, we get the same
closure in the classical and Zariski topologies).

For (c), observe thaj;yo(o) : O(0) — O(0’) is a morphism that is also a group
homomorphism—this follows easily from equivariance. ®irlce orbit closures
are toric varieties by Proposition 3.2.7, the mgp :V(o) = V(d') is a toric
morphism according to Definition 3.3.3. O

Exercises for §3.3

3.3.1. Let X be a variety with an affine open covd; }, and letY be a second variety. Let
¢i : Ui — Y be a collection of morphisms. We say that a morphisnX — Y is obtained
by gluing theg; if Ply, = éi for alli. Show that there exists suchpa X — Y if and only if
for every pain, j,

¢i |UiﬂUj = ¢J |UiﬁUj :

3.3.2. Let Ny, N, be lattices, and IeE; in (Np)g, X2 in (N2)g be fans. Lets: N; — N, be

a Z-linear mapping that is compatible with the correspondargst Using Exercise 3.3.1
above, show that the toric morphisms, : U,, — U,, constructed in the proof of Theo-
rem 3.3.4 glue together to form a morphismXs, — Xs,.

3.3.3. This exercise asks you to verify some of the claims made inripta 3.3.8.
(a) Verify thatXy, yr ~ IP? with respect to the lattichl’.

(b) Verify carefully that the affine open subgét, n ~ Cy, whereG, is the rational normal
coneCy with d = 2.

3.3.4. A charactery™, me M, gives a morphisniy — C*. Here you will determinell

morphismshy — C*.

(a) Explain why morphism$%y — C* correspond to invertible elements in the coordinate
ring of Ty.

(b) Letc e C* anda € Z". Prove thact® is invertible inC[t;**, ... tF!] and that all
invertible elements of [t ... Y] are of this form.

(c) Use part (a) to show that all morphisifis— C* onTy are of the forncy™force C*
andme M.

3.35. Let¢:N— N be a surjectiveZ-linear mapping and lef ando’ be cones ifNg
andN, respectively with the property that, mapso bijectively ontoo’. Prove that) has
a splittingZ : N’ — N such that mapso’ to 7.
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3.3.6. Let X be the fan inR? with minimal generators; = (0,—1), u, = (2,1) anduz =
(0,1) and maximal cones Cof&, up) and Conéu,, u). Let¢ : Z? — Z be projection onto
the first factor and leEy be the subfan oE defined in the discussion following (3.3.4).
Also letX’ be the fan iR with maximal coner’ = R>o.

(a) Prove thak is not split byX" andXg. Hint: Show tha¥Xs, n, andXy are smooth and
then show that Theorem 3.3.19 must fail.

(b) LetS be the subfan of with maximal cones = Congus,). Show that this satisfies all
parts of Definition 3.3.18 except for the requirement i@ N Z?) = o’ N Z. Draw a
picture similar to Figure 11 in Example 3.3.20.

3.3.7. In the situation of Definition 3.3.18, we say thais weakly split by’ and¥o if )
satisfies Definition 3.3.18 except that we no longer regaffe 1 N) = o' NN'.

(a) Explain why Exercise 3.3.6 is an example of a weak spijtthat is not a splitting.

(b) In the situation of a weak splitting, prove that all fibefg) : X5, — X5 are isomorphic
to Xs;.n,- Hint: First assumésy = U,/. Prove that there is a sublattice Nf' C N
of finite index such thak splits when we use the latticé®’ andN”. Then show that
there is a commutative diagram

XZO,NO X UO”,N” e XE

L

Uy v ——— U,

such thalXs, n, x U, N~ IS the fiber producKs Xu,_, U, n as defined in (3.0.5).
Thus, while Theorem 3.3.19 may fail for a weak splitting,estdt part remains true.
3.3.8. Let X’ be the fan obtained from the fanfor P? in Example 3.1.9 by the following
process. Subdivide the come into two new conesr,; and oy by inserting an edge
Cond —ey).

(a) Show that the resulting toric varieg: is smooth.

(b) Show thatXy; is the blowup ofP? at the poinV (o).

(c) Show thaiXs; is isomorphic to the Hirzebruch surfagé.

3.3.9. Let X5, be the toric variety obtained frof®? by blowing up the point¥ (o) and

V(o2) (see Figure 2 in Example 3.1.9). Show tb@t is isomorphic to the blowup of
P! x P! at the poin/ (o11) (see Figure 3 in Example 3.1.12).

3.3.10. Let ¥’ be the fan obtained from the fahfor P(1,1,2) in Example 3.1.17 by the
following process. Subdivide the cong into two new cones,; ando,; by inserting an
edge Cong-uy).

(a) Show that the resulting toric varie¥ is smooth.

(b) Construct a morphism : X5y — Xy and determine the fiber over the unique singular
point of Xs.

(c) One of our smooth examples is isomorphi&te. Which one is it?

3.3.11. Consider the action of the group= {(¢,¢3) | ¢® = 1} C (C*)2 on C?. We will
study the quotien(Ez/G and its resolution of singularities using toric morphisms.
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(@) LetN’=7Z?andN = {(a/5,b/5)|a,be Z, b=3amod 5. Also let(s = €™/5. Prove
that the mapN — (C*)? defined by(a/5,b/5) — (¢&,¢P) induces an exact sequence

0—N —N—5G—0.

(b) Leto = Condey,er) C N, = Ng = R2. The inclusionN’ — N induces a toric mor-
phismU, v — U, . Prove that this is the quotient m&l§ — C?/G for the above
action ofG on C2.

(c) Find the Hilbert basis (i.e., the set of irreducible edgnts) of the semigroup N N.
Hint: The Hilbert basis has four elements.

(d) Use the Hilbert basis from part (c) to subdivi@e This gives a fart with || = o.

Prove that: is smooth relative ttN and that the resulting toric morphism
Xsn — Uy n=C?/G

is a resolution of singularities. See Chapter 10 for moraitiet

(e) The grougG gives the finite seG C (C*)2 C C? with ideal | (G) = (x> — 1,y —x3).
Read about th&rdbner fanin [70, Ch. 8, 84] and compute the Grdbner fanl (B).
The answer will be identical to the fan described in part (this is no accident, as
shown in the paperlpq (see also §10.3). There is a lot of interesting mathematics

going on here, including the §Kay correspondence and tkeHilbert scheme. See
also R0g for the higher dimensional case.

3.3.12. Consider the fart in R® shown in Figure 12. This fan has five 1-dimensional

/

Figure 12. The fanX for Exercise 3.3.12

cones with four “upward” ray generatofs-1,0,1),(0,4+1,1) and one “downward” gen-
erator(0,0,—1). There are also nine 2-dimensional cones. Figure 12 shoeofithe
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2-dimensional cones; the remaining four are generated &ygdmbining the downward
generator with the four upward generators.

(a) Show that projection onto thyeaxis induces a toric morphisixy, — P2,

(b) Show thatXs; — P is a locally trivial fiber bundle oveP* with fiberP(1,1,2). Hint:
Theorem 3.3.19 an(,0,1) + (—1,0,1) + 2(0,0,—1) = 0. See Example 3.1.17.

(c) Explain how you can see the splitting (in the sense of M&fin3.3.18) in Figure 12.
Also explain why the figure makes it clear that the fibdP(4, 1,2).
3.3.13. Consider the faix in R? with ray generators
Up=6€ +E, U =¢6,W=86 Uz3=—6
and 1-dimensional cones Cdug, u;), Con€up, Uz), Conguy, us).
(a) Draw a picture o and prove thaXs is the blowup ofP! x C at one point.

(b) Show that the mape; + be, — b induces a toric morphisng : Xy, — C such that
() =P fora € C* andp~1(0) is a union of two copies dP* meeting at a point.
Hint: Once you understangt=1(0), show that the fan foXs, \ ¢~1(0) givesP! x C*.

(c) To get a better picture ofs;, consider the mag : (C*)? — P23 x C defined by
D(st) = ((8%,8,st,t2),1).

Let X = &((C*)2) C P® x C be the closure of the image. Prove that- X5, and
that the restriction of the projectid® x C — C to X gives the toric morphisnp of
part (b).

(d) Letx,y,zw be coordinates oR®. Prove thaX C P2 x C is defined by the equations
yw— 72 =0, xz—ty? = 0, xw—tyz=0.

Also use these equations to describe the fiperga) for o € C, and explain how this
relates to part (b). Hint: The twisted cubic is relevant.

This is asemi-stable degeneration of toric varieti€ee 14§ for more details.

83.4. Complete and Proper

The Compactness CriterianWe begin by proving part (c) of Theorem 3.1.19.

Theorem 3.4.1.Let X be a toric variety. Then the following are equivalent:
(a) Xy is compact in the classical topology.

(b) The limitlim_oAY(t) exists in X% for all u € N.

(c) X is complete, i.e[X| = J, 50 = Nr.

Proof. First observe that sincéy, is separated (Theorem 3.1.5), it is Hausdorff in
the classical topology (Theorem 3.0.17). In fact, sincedlassical topology on
each affine open sét, is a metric topologyXs; is compact if and only if every
sequence of points Ky has a convergent subsequence.

For (a)= (b), assume thaXy, is compact and fixu € N. Given a sequence
ty € C* converging to 0, we get the sequencgty) € Xs,. By compactness, this se-
guence has a convergent subsequence. Passing to thisisitsggve can assume
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that limg_.c A\Y(tx) = v € Xy. BecauseXy, is the union of the affine open subsets
U, for o € 3, we may assume € U,. Now takeme oV N M. The charactex™ is
a regular function otJ, and hence is continuous in the classical topology. Thus

X™(y) = lim x™(A\(t) = lim ™,

k—o0 k—o0

Sincety — 0, the exponent must be nonnegative, i®u) > 0 forallme oY NM.
This implies (m,u) > 0 for all me ¢V, so thatu € (¢¥)¥ = 0. Then Proposi-
tion 3.2.2 implies that lin, o AY(t) exists inU, and hence irXs,.

To prove (b)= (c), takeu € N and consider the limit ligy,o A\“(t). This lies
in some affine opeb,,, which impliesu € o "N by Proposition 3.2.2. Thus every
lattice point ofNg is contained in a cone af. It follows thatX is complete.

We will prove (c)=- (a) by induction om = dimNg. In the casen = 1, the
only complete fark is the fan inR pictured in Example 3.1.11. The corresponding
toric variety isXs; = P. This is homeomorphic t&?, the 2-dimensional sphere,
and hence is compact.

Now assume the statement is true for all complete fans of mbina strictly
less tham, and consider a complete fahin Ng ~ R". Let~x € X5 be a sequence.
We will show thaty has a convergent subsequence.

Since Xy, is the union of finitely many orbit©(7), we may assume the se-
quencey lies entirely within an orbiO(7). If 7 # {0}, then the closure dd(7) in
Xs: is the toric variety (1) = Xstarr) Of dimension< n— 1 by Proposition 3.2.7.
SinceX is complete, it is easy to check that the fan Gtaiis complete ilN(7)gr
(Exercise 3.4.1). Then the induction hypothesis implied there is a convergent
subsequence M(7). Hence, without loss of generality again, we may assume that
our sequence lies entirely in the torfig C Xs.

Recall from the discussion following Lemma 3.2.5 that
Tn ~ Homg (M, C™).

Moreover, when we regargde Ty as a group homomorphism: M — C*, then for
anyo € 3, restriction yields a semigroup homomorphisthn M — C and hence
a pointy in U,.

A key ingredient of the proof will be the logarithm mép Ty — Ng defined
as follows. Given a poiny : M — C* of Ty, consider the maM — R defined by
the formula

me— |Og"’y(m)’.
This is a homomorphism and hence gives an elerhént € Homz (M, R) ~ Ng.
For more properties of this mapping, see Exercise 3.4.2\belo

For us, the most important property lofs the following. Suppose that a point
v € Ty satisfied (v) € —o for somes € 3. If me 0¥ NM, then the definition of
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L implies that

(3.4.1) log~y(m)| = (m,L(7)),
which is < 0 sinceme ¢" andL(y) € —o. Hence|y(m)| < 1. Thus we have
proved that

(3.4.2) L(y) € —0c = |y(m)| <lforallmeo’NM.

Now applyL to our sequence, which gives a sequebtg) € Ng. SinceX is
complete, the same is true for the fan consisting of the cenrefor o € 3. Hence,
by passing to a subsequence, we may assume that thereissuch that

L(w) € —o

for all k. By (3.4.2), we conclude thatyx(m)| < 1 for all me oY N M. It follows
that they, are a sequence of mappings to the closed unit di§k iBince the closed
unit disk is compact, there is a subsequetgavhich converges to a pointe U,,.
You will check the details of this final assertion in Exercssé.3. O

Complete Varieties The compactness criterion proved in Theorem 3.4.1 uses the
classical topology. It is natural to ask for an algebraicsiaer of this theorem that
uses only the Zariski topology. The crucial idea is the motbcompleteness

To motivate the definition of completeness, we first refoertae topological
notion of compactness. You will prove the following in Exer3.4.4.
Proposition 3.4.2. Let X be a locally compact Hausdorff topological space. Then
the following are equivalent:
(a) X is compact.

(b) For every topological space Z, the projection map: X x Z — Z is closed,
i.e.,mz(W) C Z is closed for all closed subsets WX x Z. O

We now define the algebraic analog of compactness.

Definition 3.4.3. A variety X is completeif for every varietyZ, the projection map
w7z : X x Z — Zis a closed mapping in the Zariski topology.

Here are two examples to illustrate this definition.

Example 3.4.4. Consider the affine variet{f. We claim thatC is not complete.
To see this, consider the projection map: C x C = C? — C. The closed subset
V(xy— 1) C C? does not map to a Zariski-closed subseCaiinderr,. Hencer,
is not a closed mapping, so thatis not complete. %

Example 3.4.5.The Projective extension theore®®] Thm. 6 of Ch. 8, 85] shows
that forX = P", the mapping

mem : P"x CM— CM
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is closed in the Zariski topology for ath. It follows that if V C C™ is any affine
variety, the projection

myP'"xV -V

is a closed mapping in the Zariski topology. Then the gluingstruction shows
thatrz : P"x Z — Z is closed for any variety, soP" is a complete variety. In fact,
one can think of®" as the prototypical complete variety. Moreover, any pribjec
variety is complete (Exercise 3.4.5). However, there arepiete varieties that are
not projective—we will give a toric example in Chapter 6. O

Completeness is the algebraic version of compactness,tamah ibe shown
that a variety is complete if and only if it is compact in thasgical topology. This
is proved in Serre’s famous pap@eonetrie algebrique et @onétrie analytique
called GAGA for short. See2@8, Prop. 6, p. 12]. As a consequence, we get the
following improved version of Theorem 3.4.1.

Theorem 3.4.6.Let Xz be a toric variety. Then the following are equivalent:
(a) Xy is compact in the classical topology.

(b) Xs is complete.

(c) The limitlim{_oAY(t) exists in X for allu € N.

(d) ¥ is complete, i.e|¥| = J,c50 = Nr. O

Proper Mappings In algebraic geometry, many concepts that apply to vasetie
have relative versions that apply to morphisms. To see hmwtbrks for complete
varieties, we will begin in the topological category withethelative version of
compactness.

Definition 3.4.7. A continuous mapping : X — Y is properif the inverse image
f=1(T) is compact inX for every compact subs@tC Y.

It is immediate thaiX is compact if and only if the constant mapping frotm
to the spac& = {pt} consisting of a single point is proper. This relative vemsio
of compactness may also be reformulated, for reasonabdytopmlogical spaces,
in the following way.

Proposition 3.4.8.Let f: X — Y be a continuous mapping of locally compact first
countable Hausdorff spaces. Then the following are eqeintal

(@) f is proper.
(b) f is a closed mapping, i.e.,(W) CY is closed for all closed subsets WX,
and all fibers f1(y), ye Y, are compact.

(c) Exery sequencegoe X such that fxc) € Y converges in Y has a subsequence
Xk, that converges in X.
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Proof. A proof of (a) < (b) can be found in]22 Ch. 9, 84]. See Exercise 3.4.6
for (a) < (c). O

Before we can give a definition of properness that works forpthisms, we
first need to reformulate the topological notion of propemeRecall from §3.0
that morphismsf : X — Sandg:Y — S give the fiber producX xsY. Fiber
products can also be defined for continuous maps betweelotppal spaces. You
will prove in Exercise 3.4.6 that properness can be desttnifséng fiber products
as follows.

Proposition 3.4.9. Let f: X — Y be a continuous map between locally compact
Hausdorff spaces. Then f is proper if and only if uisiversally closegdmeaning
that for all spaces Z and all continuous mappings£— Y, the projectionr;
defined by the commutative diagram

X xyZ —25 X

J Jf

Z———Y
is a closed mapping. a

In algebraic geometry, we will use the following definitiohpyoperness for
morphisms between varieties.

Definition 3.4.10. A morphism of varietieg) : X — Y is properif it is universally
closed in the sense that for all varieti@dsand morphisms : Z — Y, the projection
w7 defined by the commutative diagram

X xyZ X5 X

=| qu

is a closed mapping in the Zariski topology.

Itis easy to see that a varie¥yis complete if and only if the constant morphism
¢ : X — {pt} is proper. Furthermore, K is complete, then the projection map

7 XXZ—Z

is proper for any variety. You will prove these assertions in Exercise 3.4.7.

The Properness Criterion Theorem 3.4.6 can be understood as a special case of
the following statement for toric morphisms.
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Theorem 3.4.11.Let ¢ : X5 — Xy be the toric morphism corresponding to a
homomorphismp : N — N’ that is compatible with fan& in Nr and X’ in Ng.
Then the following are equivalent:

(@) ¢ : X — Xy is proper in the classical topologipefinition 3.4.7.
(b) ¢ : Xs — Xy is a proper morphisngDefinition 3.4.10.
() If u e N andlim;_oA?({ (t) exists in X, thenlim;_.o AU(t) exists in X%.

() dg () = [=I.

Proof. The proof of (a)= (b) uses two fundamental results in algebraic geometry.

First, given any morphism of varieties: X — Y and a Zariski closed subset
W C X, a theorem of Chevalley tells us that the im&d&/) C Y is constructible
meaning that it can be written as a finite unibfw) = |J;(Vi \W), whereV,; and
W are Zariski closed ifY. A proof appears in]31, Ex. 11.3.19].

Second, given any constructible subSetf a varietyY, its closure inY in the
classical topology equals its closure in the Zariski toggldoNVhenC is open in the
Zariski topology, a proof is given ir2D7, Thm. (2.33)], and whef is the image
of a morphism, a proof can be found in GAG248, Prop. 7, p. 12].

Now suppose thad : Xss — Xy is proper in the classical topology and let
1 : Z — Xsy be a morphism. This gives the commutative diagram

Xs Xxg L —— X

| |

Z—— X

LetY C Xs. xx,,, Z be Zariski closed. We need to prove thatY) is Zariski closed
in Z. First observe thaY is also closed in the classical topology, so thatY)

is closed inZ in the classical topology by Proposition 3.4.9. However(Y) is
constructible by Chevalley’s theorem, and then, beingsatafly closed, it is also
Zariski closed by GAGA. Hencey is a closed map in the Zariski topology for any
morphism) : Z — Xsy. It follows that¢ is a proper morphism.

To prove (b)=> (c), letu € N and assume that = lim;_,o A% (t) exists inXy.
We first prove lim_o AY(t) exists inXs, under the extra assumption thgu) # 0.
This means that®¥ is a nontrivial one-parameter subgroupXg .

Let AY(C*) C Xy, be the closure ofY(C*) C Xs. in the classical topology.
Our earlier remarks imply that this equals the Zariski ctesuSince¢ is proper,
it is closed in the Zariski topology, so that()\U(C*)) is closed inXs in both
topologies. It follows that

Xo)(C*) C 6 (W(T).
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Hence there is € A\Y(C*) mapping toy’. Thus there is a sequence of poitats C*
such that\Y(tx) — ~. Then

7 =0(7) = lim oA () = fim A (k).
This, together withy = lim;_o A®"(t) andé(u) # 0, imply thatt, — 0. From
here, the arguments used to prove=£a)b) = (c) of Theorem 3.4.1 easily imply
that lim_o AY(t) exists inXy.

For the general case when we no longer assufg # 0, consider the map
(¢,1c) : Xy x C — Xy x C. This is proper since is proper (Exercise 3.4.8).
Furthermore Xy, x C and Xs;y x C are toric varieties by Proposition 3.1.14, and
the corresponding map on lattices(is 17) : N x Z — N’ x Z. Then applying the
above argument tu,1) € N x Z shows that lir_oAY(t) exists inXsy. We leave
the details to the reader (Exercise 3.4.8).

For (c)= (d), first observe that the inclusion
J— _l /
1% S or " (12])

is automatic sincep is compatible with® and ¥’. For the opposite inclusion,
takeu € Eﬂgl(\z'\) NN. Theng(u) € ||, which by Proposition 3.2.2 implies that
lim_o M (t) exists inXsy. By assumption, lim.oAY(t) exists inXy. Using
Proposition 3.2.2, we conclude thate o "N for someo € X. Because all the
cones are rational, this immediately implﬁq@lﬂm) C X

Finally, we prove (d)= (a). We begin with two special cases.

Special Case 1Suppose that a toric morphisin: Xy, — Ty satisfies (d) and

has the additional property that: N — N’ is onto. The fan offy: consists of the
trivial cone {0}, so that (d) implies

__1 —_

(3.4.3) X[ = ¢ (0) = ker(¢p).

When we think of as a fan:"” in ker(¢g) C Ng, (3.3.5) implies that
Xy ~ XE” X TN"

Theng corresponds to the projectiofy» x Ty — Ty The fanX” is complete in
ker(¢p) by (3.4.3), so thaKy~ is compact by Theorem 3.4.1. This» — {pt} is
proper, which easily implies that.» x Ty: — T is proper. We conclude thatis
proper in the classical topology.

Special Case 2.Suppose that a homomorphism of teri Ty — Ty has the
additional property thap : N — N’ is injective. Then (d) is obviously satisfied. An
elementary proof thap is proper is given in Exercise 3.4.9.

Now consider a general toric morphism Xs; — Xs satisfying (d). We will
prove thaty is proper in the classical topology using part (¢) of Propmsi3.4.8.



146 Chapter 3. Normal Toric Varieties

Thus assume thag € Xy, is a sequence such thatyk) converges irXsy. We need
to prove that a subsequence~fconverges irXs.

SinceXy, has only finitely manyly-orbits, we may assume that the sequence
lies in an orbitO(s). As in Lemma 3.3.21, let’ be the minimal cone ot
containinggy (o). The restriction

¢‘V(o) V(o) = V(o)

is a toric morphism by Lemma 3.3.21, and the fan¥ @f) andV (¢’) are given by
Star(o) in N(o)r and Stafo’) in N’(o”)r respectively. Furthermore, one can check
that sinceX andy’ satisfy (d), the same is true for the fans $tgrand Stafo’)
(Exercise 3.4.10). Hence we may assume that Ty and¢(k) € Ty for all k.

The limit+y’ = limg_, o, ¢(7x) lies in an orbitO(7’) for somer’ € ¥'. Thus the
sequence (k) and its limit+’ all lie in U,». Note that{oc € ¥ | ¢(c) C 7'} is the
fan giving¢—1(U,). Since (d) implies that

)= | o

Pp(0)CT’

we can assume thasy =U,., i.e.,¢: Xy — U, andg (') = |3,
If 7' = {0}, thenO(7") = U, = Ty,. If we write ¢ as the composition

N = B(N) — N/,
then¢ : Xy, — Ty factors asXy, — TE(N) — Tn. Special Cases 1 and 2 imply that

these maps are proper, and since the composition of propes imgroper, we
conclude that is proper.

It remains to consider the case wheZ {0}. When we think ofy’ e U, as a
semigroup homomorphisw : (/)Y "M — C, Lemma 3.2.5 tells us that

7' (M) =0 forallm e (7')VNM’\ (') M.
Since thep(k) : M — C* converge toy’ in U,-, we see that
Jim () () =0 foralln € ()M ()M’

Since(7’)Y NM’ is finitely generated, it follows that we may pass to a subsecel
and assume that

(3.4.4) |p() (M| < 1 forallkand allm e (7)Y NM’\ (7)) NM'".
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The logarithm map from the proof of Theorem 3.4.1 gives mapsTy — Ng
andLy : Ty' — N linked by a commutative diagram:

Tn — Ng

w

Tv —— Ng.
Ly

Let$ : M’ — M be dual tap : N — N’. Thennt € (7)Y NnM’\ (/)X NM’ implies
that for allk, we have
(@ (), L () = (M, dr(Ln( )

= (M, Ly (é())) = log|e () (nT)| < O,

where the first equality is standard, the second follows fitterabove commutative
diagram, the third follows from (3.4.1), and the final inelifyauses (3.4.4).

Now consider the following equivalences:

(3.4.5)

-1, - /
UE ¢p (1) <= or(u)er
<= (M, pr(u)) >0 forallm e (') NM’
— (¢"(m),u) >0 forallm e (') NM’,
where the first and third equivalences are obvious and tlendacses”’ = (7/)""

and the rationality of’. But we also know that’ # {0}, which means thatr’)"
is a cone whose maximal subspdeé)* is a proper subset. This implies that

UeEdp () <= (@ (m),u) >0 forallnf € (7)Y "M\ (') N M’

(Exercise 3.4.11). Using (3.4.5), we conclude thaiy(yx) € E[gl(r’) for all k.
But, as noted above, (d) meaﬁél(T’) = |X|. It follows that

—Ln() € 2]
for all k. Passing to a subsequence, we may assume that theredssuch that
Ln(k) € —o

for all k. From here, the proof of (¢} (a) in Theorem 3.4.1 implies that there is
a subsequenceg,, which converges to a point € U, C Xsx. This proves thab is
proper in the classical topology. The proof of the theoremois complete. [

We noted earlier that a variety is complete if and only if ic@mpact. In a
similar way, a morphisnf : X — Y of varieties is a proper morphism if and only if
it is proper in the classical topology. This is proved12§, Prop. 3.2 of Exp. XI].
Thus the equivalence (&) (b) of Theorem 3.4.11 is a special case of this result.
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Theorems 3.4.6 and 3.4.11 show that properness and comgdstean be
tested using one-parameter subgroups. In the case of ciemeés, we can for-
mulate this as follows. Given € N, the one-parameter subgroup gives a map
AU C\ {0} — Ty C Xy, and saying that lim.o AY(t) exists inXy; means thaf\!
extends to a morphismy : C — Xsx;. In other words, whenever we have a commu-
tative diagram with solid arrows

C\{0} == Xs

|l

C——{pt},
AGW
the dashed arrowg exists so that the diagram remains commutative. The existen
of \j tells us that the variet)s, is not missing any points, which is where the
term “complete” comes from. In a similar way, the propernesi®rion given in
part (c) of Theorem 3.4.11 can be formulated as saying thehederu € N gives
a commutative diagram,

C\{0} = X

il - /)\8 l(b

C—— Xy,
)\3’(“)

the dashed arrowg exists so that the diagram remains commutative.

For general varieties, there are similar criteria for cortgrhess and properness
that replace\" : C\ {0} — Xy and\g : C — Xs with maps coming frondiscrete
valuation rings to be discussed in Chapter 4. An example of a discrete vatuat
ring is the ring of formal power serig’ = C[[t]], whose field of fractions is the
field of formal Laurent serield = C((t)). By replacingC with Spe¢R) andC \ {0}
with Spe¢K) in the above diagrams, whelRds now an arbitrary discrete valuation
ring, one gets thealuative criterion for propernessee 131, Ex. 11.4.11 and Thm.
[1.4.7]). This requires the full power of scheme theory sif8pe¢R) and SpeX)
are not varieties as defined in this book. Using the valuatierion of properness,
one can give a direct, purely algebraic proof of £d)(b) in Theorem 3.4.11 and
Corollary 3.4.6 (seell05, Sec. 2.4] or218, Sec. 1.5]).

Example 3.4.12.An important class of proper morphisms are the toric morphkis
¢ : Xz — Xy induced by a refinement’ of 3. Condition (d) of Theorem 3.4.11 is
obviously fulfilled sincep : N — N is the identity and every cone &f is a union
of cones ofY'. In particular, the blowups

(b . XE*(U) — XZ

studied in Proposition 3.3.15 are always proper. O
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Exercises for §3.4

3.4.1. Let X be a complete fan ifNg and letr be a cone irE. Show that the fan Stér)
defined in (3.2.8) is a complete fan\N{(7)x.

3.4.2. In this exercise, you will develop some additional properf the logarithm map-
pingL : Ty — Ng defined in the proof of Theorem 3.4.1.
(@) LetS' be the unit circle in the complex plane, a subgroup of the iplidative group
C*. Show that there is an isomorphism of groups
$:C*—S'xR
z+— (|2).log|2]),
where the operation in the second factor on the right is afdit

(b) Show that the compact realdimensional torugS')" can be viewed as a subgroup of
Ty and thatl : Ty — Ng induces an isomorphisify /(SH)" ~ Ng. Hint: Use® from
part (a).

(c) LetY be a faninN. Show that the action of the compact real tof89" C Ty on Ty
extends to an action on the toric variety and that the quotient space

(Xs)/(SH" = [ JN(0)E,

where2 denotes homeomorphism of topological spaces, and the usiower all
cones in the fan. Hint: Use the Orbit-Cone Correspondeniediiem 3.2.6).

(d) Let Y in R? be the fan from Example 3.1.9, so thé&t ~ P2, Show that under the
action of(S')2 C (C*)? as in part (c)P?/(S')? = A, the 2-dimensional simplex.
We will say more about the topology of toric varieties in Ctead.2.

3.4.3. This exercise will complete the proof of Theorem 3.4.1. Lentflc¥ NM,C) be
the set of semigroup homomorphismsNM — C. Assume thatyx € Hom(c¥ NM,C) is

a sequence such thigk(m)| < 1 forallme ¢¥ NM and allk. We want to show that there
is a subsequencg, that converges to a pointe Hom(a¥ NM, C).

(a) The semigroups, = ¢V NM is generated by a finite sétmy,...,ms}. Use this fact
and the compactness §f € C | |z] < 1} to show that there exists a subsequenge
such that the sequenceg(m;) converge inC for all j.

(b) Deduce that the subsequengeconverges to g € Hom(a¥ NM, C).

3.4.4. Prove Proposition 3.4.2. Hint: For (b} (a), letZ be the one-point compactification
of X and consider the projection & = {(x,x) | x € X} C X x Z.

3.4.5. Show that any projective variety is complete according téiriiteon 3.4.10.

3.4.6. Here you will prove some characterizations of propernesedtin the text.
(a) Prove (a)= (c) from Proposition 3.4.8.

(b) Prove Proposition 3.4.9. Hint: First show thaf iis proper, thensoisz : X xyZ — Z
for any morphismZz — Y. Then use (a)> (b) of Proposition 3.4.8, which does not
require first countable. If : X — Y is universally closed, then prove thiat*(y) — {y}
is universally closed for any € Y. Then use Proposition 3.4.2 and (&) (b) of
Proposition 3.4.8.
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3.4.7. Prove thaiX is complete if and onl)X — {pt} is proper, and that iX is complete,
thennz : X x Z — Z is proper for any variety.

3.4.8. Complete the proof of (b} (c) of Theorem 3.4.11 begun in the text.

3.4.9. Let ¢ : Ty — Ty be a map of tori corresponding to an injective homomorphism
%:N—N. Alsoleté : M — M be the dual map. Finally, lek € Ty be a sequence such
that¢(x) converges to a point Ay .

(a) Provethatinip') C M has finite index. Hence we can pick an inteder 0 such that
dM Cim(3)).

(b) Show thaty™(yx) converges for alin ¢ im(a*). Conclude thag™(vd) converges for
allme M, whered is as in part (a).

(c) Pick a basis oM so thatTy ~ (C*)" and writey = (y1k,---,7nk) € (C*)". Show
that(y{\,...,7%,) converges to a poir(f, ..., 3n) € (C*)".

(d) Show that thelth rootsﬁil/d can be chosen so that a subsequence of the sequence
Y= (71 ---5Ynk) CONVerges to a point = (ii/d, e ﬁ%/d) € n.

(e) Explain why this implies thaly — Ty is proper in the classical topology.

3.4.10. To finish the proof of (d)= (a) of Theorem 3.4.11, suppose we have a toric mor-

phism¢ : Xs: — X5y and a cone € X. Leto’ € ¥/ be the smallest cone containing (o).

(@) Prove thap induces a homomorphisa), : N(a) — N(c”).

(b) Assume further thag, (|2']) = |S|. Prove that', )z *(|Starc’)|) = |Star(a)|.

3.4.11.Let 7’ # {0} be a strongly convex polyhedral coneNfy. Prove that

Uer < (mu)>0 forallm e (7')VnM\ (7)) NM

and then apply this to’ = ¢ (u) to complete the argument in the text. Hint: To prove
«, first show that the right hand side of the equivalence inspiiet(n',u’) > 0 for all

m € () NMg )\ ()t NMg. Then show that’ # {0} implies that any element of
(/)Y NM is a limit of elements i)V NMg \ (7')* NMg.

3.4.12. Give a second argument for the implication
X5, compact=- ¥ complete

from part (c) of Theorem 3.1.19 using induction on the dini@ma of N. Hint: If X is not
complete anah > 1, then there is a 1-dimensional con@ the boundary of the support of
3. Consider the fan Star) and the corresponding toric subvarietyaf.

3.4.13. Let X', X be fans inNg compatible with the identity map — N. Prove that the
toric morphismgp : X5,y — Xs is proper if and only if2’ is a refinement oE.

Appendix: Nonnormal Toric Varieties

In this appendix, we discuss toric varieties that are noesgarily normal. We begin with
an example to show that Sumihiro’s theorem (Theorem 3.IhThe existence of a torus-
invariant affine open cover can fail in the nonnormal case.



Appendix: Nonnormal Toric Varieties 151

Example 3.A.1. Consider the nodal cubi¢ C P? defined byy?z = x?(x+z). The only
singularity ofC is p = (0,0,1). We claim thatC is a toric variety withC\ {p} ~ C* as
torus. Assuming this for the moment, consider a torus-iavdmeighborhood of. It
containsp and the torus and hence is the whole curve! We concludepthas no torus-
invariant affine open neighborhood. Thus Sumihiro’s theofails forC.

To see thaC is a toric variety, we begin with the standard parametrizatibtained
by intersecting liney = tx with the affine curvey? = x2(x+ 1). This easily leads to the
parametrization

x=t2—-1, y=t({t*-1).
The valueg = +1 map to the singular poimi. To get a parametrization that looks more
like a torus, we replacewith :’_L—} to obtain

4t 4(t+1)

T YT
Thent = 0,00 map top andt € C* maps bijectively taC\ {p}.

Using this parametrization, we gét* C C, and the action o™ on itself given by
multiplication extends to an action db by makingp a fixed point of the action. With
some work, one can show that this action is algebraic andehgines a toric variety. (For
readers familiar with elliptic curves, the basic idea ig tha& description of the group law
in terms of lines connecting points on the curve reduces thipfioation in C* C C for
our curveC.) %

In contrast, the projective toric varieties constructe€hmapter 2 satisfy Sumihiro’s
theorem by Proposition 2.1.8. Since these nonnormal t@ieties have a good local
structure, it is reasonable to expect that they share sontieeofiice properties of nor-
mal toric varieties. In particular, they satisfy a versidrile Orbit-Cone Correspondence
(Theorem 3.2.6).

We begin with the affine case. Givéh and a finite subset/ = {my,...,ms} C M,
we get the affine toric variety,, C C* whose torus has character gro#ip7 (Proposi-
tion 1.1.8). AssuméM = Z.« and letc C Ng be dual to Cong#) C Mg. By Proposi-
tion 1.3.8, the normalization of,, is the map

U, — Yy
induced by the inclusion of semigroup algebras
C|N&] C C[e¥ NM].
Recall thatC[s¥ N M] is the integral closure of [N.«/] in its field of fractions. We now
apply standard results in commutative algebra and algebezimetry:

e Since the integral closur€[c" N M] is a finitely generate@-algebra, it is a finitely
generated module ové{N.¢/] (see [LO, Cor. 5.8]).

e Thus the corresponding morphidsy — Y., is finite as defined in131, p. 84].
o A finite morphism is proper with finite fibers (se&d1, Ex. 11.3.5 and 11.4.1]).

SinceU, — Y, is the identity on the torus, the image of the normalizatgorariski dense
inY,,. Butthe image is also closed since the normalization magisgy. This proves that
the normalization map is onto.

Here is an example of how the normalization map can fail toreto-one.
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Example 3.A.2. The setZ = {ey, &1 + &, 26,} C 7 gives the parametrizatioh,, (s,t) =
(s,st,t2), and one can check that
Yo =V(y>—x%2) C C3.
Furthermore/Z</ = 7? ando = Cond.«/)Y = Conde;,e). It follows easily that the
normalization is given by
Cc?— Y.
(1) — (sstt?).
This map is one-to-one on the torus (the toruggfis normal and hence is unchanged

under normalization) but not on theaxis, since here the map(i8,t) — (0,0,t?). We will
soon see the intrinsic reason why this happens. %

We now determine the orbit structure\af .
Theorem 3.A.3. Let Y., be an affine toric variety with M= Z« and letc C Nk be as
above. Then:
(a) There is a bijective correspondence

{facesr of 0} «—— {Ty-orbitsinY,}

such that a face of of dimension k corresponds to an orbit of dimenglm Y., — k.

(b) If O’ C Y, is the orbit corresponding to a face of o, then O is the torus with
character grougZ(r+ N .«7).

(c) The normalization | — Y., induces a bijection
{Tn-orbits inU, } «—— {Ty-orbits inY,,}

such that if OC U, and O C Y, are the orbits corresponding to a faceof o, then the
induced map OG- O’ is the map of tori corresponding to the inclusidifr- N <) C
71 NM of character groups.

Proof. We will sketch the main ideas and leave the details for thdeealhe proof uses
the Orbit-Cone Correspondence (Theorem 3.2.6). We regandsofU,, andY,, as semi-
group homomorphisms, so that oV NM — C in U, maps toy|y,, : NoZ — Cin Y.
Note also thal, — Y, is equivariant with respect to the actionTyf.

By Lemma 3.2.5, the orbi®(7) C U, corresponding to a face of ¢ is the torus
consisting of homomorphisms: 7- "M — C*. Thus7+ NM is the character group of
O(7). The normalization maps this orbit onto an or®it{r) C Y./, where a pointy of
O(7) maps to its restriction t®l.e/. Since

(TP NIM)NZA = 7-NZet = Z(r- N,

it follows thatZ(7+ N .«7) is the character group & (7). This proves part (b), and the
final assertion of part (c) follows easily.

Sinces¥ NM is the saturation oN.«Z, it follows that there is an integet > 0 such
thatde¥ NM C N It follows easily thaZ(r+ N <) has finite index in- N M, so that

dimO'(7) =dimO(7) = dimU, — dim 7 = dimY,, —dim,

proving the final assertion of part (a).
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Finally, every orbit inY,, comes from an orbit itJ, sinceU, — Y,y is onto. If orbits
O(71),0(2) map to the same orbit &, then

Z(risNe) =Z(r5 N).

This impliesti- = 755, so thatr; = 7. The bijections in parts (a) and (c) now follow.(J

We leave it to the reader to work out other aspects of the @bite Correspondence
(specifically, the analogs of parts (c) and (d) of TheoremG3 frY,,.

Let us apply Theorem 3.A.3 to our previous example.

Example 3.A.4. Let & = {e;,€, + &,268,} C Z? as in Example 3.A.2. The cone=
Cond.«7)" = Condey, &) has a face such that-- = Sparfe,). Thus

Z(rt No) = 7(2e)
™ NM = Ze,.

It follows thatZ(7+ N .<7) has index 2 inr- NM, which explains why the normalization
map is two-to-one on the orbit correspondingto %

We now turn to the projective case. Herg,= {my,...,ms} C M gives the projective
toric varietyX,, C PS~! whose torus has character grdffpy (Proposition 2.1.6). Recall
thatZ'e/ = {3°7 jam | & € Z, 327 ja = 0}.

One observation is that translating by m € M leaves the corresponding projective
variety unchanged. In other word§y, ., = X (See part (a) of Exercise 2.1.6). Thus, by
translating an element o to the origin, we may assumed.«/. Note that the torus of
Xz has character latticé’ss = Z.o/ when 0c 7.

We defined the normalization of an affine variety in §1.0. dsirgluing construction,
one can define the normalization of any variety (k4] Ex. 11.3.8]). We can describe the
normalization of a projective toric variely,, as follows.

Theorem 3.A.5. Let X, be a projective toric variety wheré € &/ and M= Z.«o/. If
P = ConV &) C Mg, then the normalization of X is the toric variety %, of the normal
fan of P with respect to the lattice N Hom; (M, Z).

Proof. Again, we sketch the proof and leave the details to the reddleruse the local
description ofX,, given in Propositions 2.1.8 and 2.1.9. There, we saw Xyathas an
affine open covering given by the affine toric varietigs = Spe¢N.<%, ), wherev € & is
avertex ofP = ConM &) and#, = &/ —v={m—v|me «/}.

For the moment, assume thais very ample. Then Theorem 2.3.1 implies tKathas
an affine open cover given by the affine toric varietigs = Spe¢s NM), wherev € &7
is a vertex ofP ando = CongPNM —v). One can check that’ "M is the saturation of
N.f,, so thatl,, is the normalization of,,,. The gluings are also compatible by equations
(2.1.6), (2.1.7) and Proposition 2.3.13. It follows thatget a natural majs, — X., that
is the normalization oKX, .

In the general case, we note thgP is very ample for some integép > 1 and that
P andkgP have the same normal fan. Singgis a maximal cone of the normal fan, the
above argument now applies in general, and the theoremyggro O
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Combining this result with the Orbit-Cone Correspondemuzt Bheorem 3.A.3 gives
the following immediate corollary.
Corollary 3.A.6. With the same hypotheses as Theorem 3.A.5, we have:
(a) There is a bijective correspondence
{conesr of Xp} «— {Ty-orbits inX. }
such that a cone of dimension k corresponds to an orbit of dimengiim X, — k.

(b) If O’ C X, is the orbit corresponding to a coneof Yp, then O is the torus with
character grougZ(r+ N .«7).

(c) The normalization ¥, — X, induces a bijection
{Tn-orbits inXs, } «— {Ty-orbits inX,,}

such that if OC X5, and G C X,, are the orbits corresponding te € ¥p, then the
induced map O- O’ is the map of tori corresponding to the inclusidifr- N.<7) C
71 NM of character groups.

We leave it to the reader to work out other aspects of the @bite Correspondence
for X.,. A different approach to the study #f, appearsin]13 Ch. 5].



Chapter 4

Divisors on Toric Varieties

84.0. Background: Valuations, Divisors and Sheaves

Divisors are defined in terms of irreducible codimension sulevarieties. In this
chapter, we will consideieil divisorsandCartier divisors These classes coincide
on a smooth variety, but for a normal variety, the situatiombre complicated. We
will also studydivisor classeswhich are defined using the order of vanishing of
a rational function on an irreducible divisor. We will seattmormal varieties are
the natural setting to develop a theory of divisors and dividasses.

First, we give a simple motivational example.

Example 4.0.1.1f f(x) € C(x) is nonzero, then there is a unigne= Z such that
f(x) = x”%, whereg(x), h(x) € C[x] are not divisible by. This works because
C[x] is a UFD. The integen describes the behavior dfx) at 0: if n > 0, f(x)
vanishes to ordemat 0, and ifn < O, f(x) has a pole of ordegn| at 0. Furthermore,
the map from the multiplicative grou@(x)* to the additive groufZ defined by
f(x) — nis easily seen to be a group homomorphism. This works in thne seay

if we replace 0 with any point of. %

Discrete Valuation Rings The simple construction given in Example 4.0.1 applies
in far greater generality. We begin by reviewing the algEbmaachinery we will
need.

Definition 4.0.2. A discrete valuatioron a fieldK is a group homomorphism
v:K*—7Z

that is onto and satisfiegx+y) > min(v(x), v(y)) whenx,y,x+y € K* = K\ {0}.
Note also that/(xy) = v(x) + v(y). The correspondingdiscrete valuation rindgs

R={xe K" |v(x) > 0}uU{0}.

155
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One can check that a DVR is indeed a ring. Here are some piepeftDVRS.

Proposition 4.0.3. Let R be a DVR with valuation : K* — Z. Then:
(@) xe Ris invertible in R if and only i#(x) = 0.

(b) Ris alocal ring with maximal ideah = {x € R| v(x) > 0} U {0}.
(c) Ris normal.

(d) Ris a principal ideal domaiPID).

(e) R is Noetherian.

(f) The only proper prime ideals of R af®} andm.

Proof. First observe that sinceis a homomorphism, we have
(4.0.1) v(x 1) = —v(x)

for all x e K*. If x € Ris a unit, thenv(x), v(x 1) > 0 sincex, x " € R Thus
v(x) = 0 by (4.0.1). Conversely, if(x) = 0, thenv(x~t) = 0 by (4.0.1), so that
x~1 € R. This proves part (a).

For part (b), note thatn = {x € R| v(x) > 0} U{0} is an ideal ofR (this
follows directly from Definition 4.0.2). Then part (a) easiinplies thatR is local
with maximal idealm (Exercise 4.0.1).

To prove part (c), supposec K* = K\ {0} satisfies
X" 4 rn,]_anl—{— <o 4+rg=0,

with ri € R If x € R, we are done, so suppoget R. Thenn > 1 andv(x) < 0.
Using (4.0.1) again, we see that! ¢ R. Sox!~" = (x"1)"~! ¢ Rand hence

xi=n. (Xn + rn_lxn—l R ro) =0,

showing thatk = —(rp_1 +ry_ox 1+ +roxt=") e R

Let 7 € Rsatisfyv(m) = 1 and letl # {0} be an ideal oR. Pickx € I\ {0}
with k = v(x) minimal. Theny = xr X € K satisfies/(y) = v(x) —kv(r) = 0, S0
thaty is invertible inR. From here, one proves without difficulty thiat= (7X).
This proves part (d), and part (e) follows immediately.

For part (f), it is obvious thaf0} and the maximal ideah are prime. Note
also thatm = (7). Now let P # {0} be a proper prime ideal. By the previous
paragraphP = (7*) for somek > 0. If k > 1, thenz - 7k~1 € P and 7,7k~ ¢ P
give a contradiction. O

This shows that every DVR is a Noetherian local domain of disn@n one.
In general, thelimensiondim R of a Noetherian ringr is one less than the length
of the longest chaiy C --- C Py of proper prime ideals contained R Among
Noetherian local domains of dimension one, DVRs are charized as follows.
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Theorem 4.0.4.1f (R,m) is a Noetherian local domain of dimension one, then the
following are equivalent:

(@) RisaDVR.

(b) R is normal.

(c) mis principal.

(d) (R,m) is aregular local ring.

Proof. The implications (a}= (b) and (a)= (c) follow from Proposition 4.0.3, and
the equivalence (¢} (d) is covered in Exercise 4.0.2. The remaining implication
can be found in10, Prop. 9.2]. d

DVRs and Prime Divisors DVRs have a natural geometric interpretation. Ket
be an irreducible variety. Arime divisor DC X is an irreducible subvariety of
codimension one, meaning that diin= dim X — 1. Recall from 83.0 thaX has
a field of rational functionsC(X). Our goal is to define a ring’x p with field
of fractions C(X) such thatdx p is a DVR whenX is normal. This will give
a valuationvp : C(X)* — Z such that forf € C(X)*, vp(f) gives the order of
vanishing off alongD.

Definition 4.0.5. For a variety X and prime divisdd C X, Ox p is the subring of
C(X) defined by

Ox.p = {¢ € C(X) | ¢ is defined orJ C X open withU ND # (}}.

We will see below thaOx p is a ring. Intuitively, this ring is built from rational
functions onX that are defined somewhere Pr(and hence defined on mostDf
sinceD is irreducible).

Since X is irreducible, Exercise 3.0.4 implies th&{(X) = C(U) whenever
U C X is open and nonempty. If we further assume thatD is nonempty, then
(4.0.2) Oxp = Ouurp

follows easily (Exercise 4.0.3).

Hence we can reduce to the affine case- Spe¢R) for an integral domain
R. The codimensionof a prime idealp, also called itsheight is defined to be
codimp = dimR—dimV(p). It follows easily that — V(p) induces a bijection

{codimension one prime ideals B} ~ {prime divisors ofX}.

Given a prime divisoD = V(p), we can interpreUx p in terms ofR as follows.
The field of rational function§(X) is the field of fraction&K of R, and a rational
functiong = f /g€ K, f,g€R, is defined somewhere @= V (p) precisely when
g¢ (D) = p. It follows that

ﬁX,D:{f/geK‘ fvgeRvg¢p}7
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which is the localizatiorR, of R at the multiplicative subseR\ p (note thatR\ p
is closed under multiplication becausés prime). This localization is a local ring
with maximal ideabR,, (Exercise 4.0.3). It follows that

(4.0.3) Oxp =R,
whenX = Spe¢R) andp is a codimension one prime ideal Bf

Example 4.0.6.1n Example 4.0.1, we constructed a discrete valuatio® o1 by
sendingf (x) € C(x)* ton € Z, provided
X
09 =x"Zod. 9. h) € CIX. 9(0) 0. h(0) 0.
The corresponding DVR is the localizati@hx| , . It follows that the prime divisor
{0} =V(x) C C = Spe¢C|x]) has the local ring
Oc,10y = CX(x)
which is a DVR. O

More generally, a normal ring or variety gives a DVR as fokow

Proposition 4.0.7.

(a) Let R be a normal domain andC R be a codimension one prime ideal. Then
the localization R is a DVR.

(b) Let X be anormal variety and D X a prime divisor. Then the local ringx p
is a DVR.

Proof. By Proposition 3.0.12, part (b) follows immediately fronrip@) together
with (4.0.2) and (4.0.3).

It remains to prove part (a). The maximal idealRy is the idealm, = pR,
generated by in R,. The localization of a Noetherian ring is Noetherian (Exer-
cise 4.0.4), and the same is true for normality by Exerci®er11t follows that the
local domain(R,,, m,) is Noetherian and normal.

We compute the dimension &, as follows. Since dinX = dimR (see B9,
Ex. 17 and 18 of Ch. 9, 84]), our hypothesisBr= V(p) implies that there are no
prime ideals strictly betweef0} andp in R. By [10, Prop. 3.11], the same is true
for {0} andm, in R,. It follows thatR, has dimension one. ThdR), is a DVR by
Theorem 4.0.4. O

WhenD is a prime divisor on a normal variety, the DVR &x p means that
we have a discrete valuation
vp: C(X)" — Z,
wheredx p consists of 0 and those nonzero rational functions satigiyt (f) > 0.

Givenf € Oxp\ {0}, we callvp(f) theorder of vanishingof f along the divisor
D. Thus the maximal ideahx p C O p consists of 0 and those rational functions
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that vanish orD. When f € C(X)* satisfiesvp(f) = ¢ < 0, we say thatf has a
poleof order|¢| alongD.

Weil Divisors Recall that a prime divisor on an irreducible variétyis an irre-
ducible subvariety of codimension one.

Definition 4.0.8. Div(X) is the free abelian group generated by the prime divisors
on X. A Weil divisoris an element of Di@X).

Thus a Weil divisoD € Div(X) is a finite sunD =) _; & D; € Div(X) of prime
divisorsD; with g € Z for all i. The divisorD is effective written D > 0, if the g;
are all nonnegative. Theupportof D is the union of the prime divisors appearing
in D:

SuppD) = | Di.

a#0

The Divisor of a Rational Function An important class of Weil divisors comes
from rational functions. X is normal, any prime divisob on X corresponds to a
DVR 0x p with valuationyp : C(X)* — Z. Given f € C(X)*, the integersp(f)
tell us howf behaves on the prime divisors ¥f Here is an important property of
these integers.

Lemma 4.0.9.1f X is normal and fe C(X)*, thenvp(f) is zero for all but a finite
number of prime divisors & X.

Proof. If f is constant, then it is a nonzero constant sifice C(X)*. It follows
thatvp(f) = 0 for all D. On the other hand, if is nonconstant, then we can find
a nonempty open subsetC X such thatf : U — C is a nonconstant morphism.
ThenV = f~1(C*) is a nonempty open subset Xfsuch thatf ly:V —C*. The
complementX \ V is Zariski closed and hence is a union of irreducible compo-
nents of dimensior< n. Denote the irreducible components of codimension one
byDl,...,DS.

Now let D be prime divisor inX. If VND = (}, thenD C X\V, so thatD is
contained in an irreducible componentXf V sinceD is irreducible. Dimension
considerations imply thdd = D; for somei. On the other hand, W N D # (), then
f is an invertible element afx p = Oy vnp, which implies thatp(f) = 0. O

Definition 4.0.10. Let X be a normal variety.
(@) Thedivisor of f € C(X)* is
div(f) = up(f)D,
D

where the sum is over all prime divisdpsC X.

(b) div(f) is called aprincipal divisor, and the set of all principal divisors is de-
noted Divy(X).
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(c) DivisorsD andE arelinearly equivalent written D ~ E, if their difference is
a principal divisor, i.e.p — E = div(f) € Divg(X) for somef € C(X)*.

Lemma 4.0.9 implies that dif) € Div(X). If f,ge C(X)*, then di\fg) =
div(f) +div(g) and div f~1) = —div(f) since valuations are group homomor-
phisms onC(X)*. It follows that Div(X) is a subgroup of DigX).

Example 4.0.11.Let f =c(x—ag)™--- (x—a )™ € C[x] be a polynomial of de-
greem> 0, wherec € C* anday,...,a € C are distinct. Then:

e WhenX =C, div(f)=>_ m{a}.
e WhenX = P! =Cu{oo}, div(f) =>_;m {a} —m{co}. O

The divisor off € C(X)* can be written diyf) = divg(f) — div, (), where
divo(f) = Y wp(f)D

vp(f)>0

divee(f) = Y —up(f)D.
vp(f)<0

We call divp(f) the divisor of zerosof f and div,(f) the divisor of polesof f.
Note that these are effective divisors.

Cartier Divisors If D= )", g D; is a Weil divisor onX andU C X is a nonempty
open subset, then

Dly= Y aunD
UND;i#0
is a Weil divisor orlJ called therestrictionof D toU.
We now define a special class of Weil divisors.

Definition 4.0.12. A Weil divisor D on a normal varietX is Cartier if it is locally
principal, meaning thaX has an open coveJ; }i¢; such tha1D|Ui is principal in
Ui for everyi € I. If D, = div(fi)|, fori eI, then we cal{(U;, fi) }ic thelocal
datafor D.

A principal divisor is obviously locally principal. Thuswif) is Cartier for all
f € C(X)*. One can also show thatlif andE are Cartier divisors, theD + E and
—D are Cartier (Exercise 4.0.5). It follows that the Cartierigbirs onX form a
group CDiyX) satisfying

Divp(X) C CDiv(X) C Div(X).

Divisor Classes For Weil and Cartier divisors, linear equivalence classesifthe
following important groups.
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Definition 4.0.13. Let X be a normal variety. Itslass groupis
ClI(X) = Div(X)/Divg(X),
and itsPicard groupis
Pic(X) = CDiv(X)/Divg(X).

We will give a more sophisticated definition of PX¢) in Chapter 6. Note that
since CDiVX) is a subgroup of Di¢X), we get a canonical injection

Pic(X) — CI(X).
In [131, 11.6], Hartshorne writes “The divisor class group of a guleeis a very

interesting invariant. In general it is not easy to calaifatFortunately, divisor
class groups of normal toric varieties are easy to descbeje will see in §4.1.

More Algebra Before we can derive further properties of divisors, we nted
learn more about normal domains. Equation (3.0.2) showsftia= Spe¢R) is
irreducible, then

R - ﬂ ﬁx7p.

peX
If a point p € X corresponds to a maximal idealC R, then the local ringlx p is
the localizationR,,,. Hence the above equality can be written

R= () Rm
m maximal

WhenR is normal, we get a similar result using codimension one giiteals.

Theorem 4.0.14.If R is a Noetherian normal domain, then

R= (] R

codimp=1

Proof. LetK be the field of fractions oR and assume that/b € K, a,b € R, lies
in R, for all codimension one prime ideajs It suffices to prove tha € (b). This
is obviously true whet is invertible inR, so we may assume thét) is a proper
ideal of R. Then we have a primary decomposition (s&& [Ch. 4, 87])

(4.0.4) (b)y =q1n---Ngs,

and each prime ideg} = ,/q; is of the formp; = (b) : ¢; for somec; € R. In the
terminology of L95, p. 38], thep; are theprime divisorsof (b).

SinceRis Noetherian and normal, the Krull principal ideal theorstates that
every prime divisor ofb) has codimension one (sek9b, Thm. 11.5] for a proof).
This implies that in the primary decomposition (4.0.4), inene divisorsp; have
codimension one and hence are distinct.
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Note thata/b € Ry, for all i by our assumption oa/b. This impliesa € bR,,.
Since(qj)p = Ry for j # i (Exercise 4.0.6), localizing (4.0.4) gtshows that for
all i, we have

acbR, =qiR,.
SinceqiR, NR= q; (Exercise 4.0.6), we obtame _; qi = (b). O

This result has the following useful corollary.

Corollary 4.0.15. Let X be a normal variety and let :flU — C be a morphism
defined on an open setd X. If X\ U has codimensiom> 2 in X, then f extends
to a morphism defined on all of X.

Proof. SinceX has an affine open cover, we can assumeXhatSpec¢R), where
Ris a Noetherian normal domain. If C X is a prime divisor, thetd ND # () for
dimension reasons. It follows thite Oy y~p = Ox,p, SO that

(4.0.5) fe ﬂ ﬁU,UﬂD = ﬂ ﬁX,D = ﬂ Rp =R,
D D codimp=1
where the final equality is Theorem 4.0.14. O

These results enable us to determine when the divisor ofam&hffunction is
effective.

Proposition 4.0.16. Let X be a normal variety. If € C(X)*, then:
(@) div(f) > 0ifand only if f: X — C is a morphism, i.e., € Ox(X).
(b) div(f) =0ifand only if f: X — C* is a morphism, i.e., € 0% (X).

In general &5, is the sheaf oiX defined by
0% (U) = {invertible elements ofx (U)}.

This is a sheaf of abelian groups under multiplication.

Proof. If f : X — Cis amorphism, theri € O p for every prime divisoD, which

in turn impliesyp(f) > 0. Hence diyf) > 0. Going the other way, suppose that
div(f) > 0. This remains true when we restrict to an affine open subsete may
assume thaX is affine. Then diyf) > 0 implies

fe ﬂ ﬁva,
D

where the intersection is over all prime divisors. By (4)0vie conclude thaf is
defined everywhere. This proves part (a), and part (b) fadlowmediately since
div(f) = 0if and only if div(f) > 0 and diy f~1) > 0. O
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Singularities and Normality The set of singular points of a varie¥is denoted
Sing(X) C X.

We call SingX) the singular locusof X. One can show that Si(¥) is a proper
closed subvariety oX (see [L31, Thm. 1.5.3]). WherX is normal, things are even
nicer.

Proposition 4.0.17.Let X be a normal variety. Then:
(@) SingX) has codimensiog» 2in X.
(b) If X is a curve, then X is smooth.

Proof. You will prove part (b) in Exercise 4.0.7. A proof of part (agrcbe found
in [245, Vol. 2, Thm. 3 of §lI1.5]. O

Computing Divisor ClassesThere are two results, one algebraic and one geomet-
ric, that enable us to compute class groups in some cases.

We begin with the algebraic result.

Theorem 4.0.18.Let R be a UFD and set X% Spe¢R). Then:
(a) R is normal and every codimension one prime ideal is priricipa
(b) CI(X)=0.

Proof. For part (a), we know that a UFD is normal by Exercise 1.0.5 pllee a
codimension one prime ideal &and picka € p \ {0}. SinceRis a UFD,

S
a=c[]n?,
i—1

with the p; prime andc is invertible inR. Because is prime, this means some
pi € p, and since codimp = 1, this forcep = (p;).

Turning to part (b), leD C X be a prime divisor. Thep = (D) is a codi-
mension one prime ideal and hence is principal,jsay(f). Thenf generates the
maximal ideal of the DVRR;,, which impliesvp(f) =1 (see the proof of Propo-
sition 4.0.3). It follows easily that djf) = D. Then C[X) = 0 since all prime
divisors are linearly equivalent to 0. a

In fact, more is true: a normal Noetherian domain is a UFD if anly if every
codimension one prime ideal is principal (Exercise 4.0.8).

Example 4.0.19.C[xy, ..., X,] is a UFD, so CIC") = 0 by Theorem 4.0.18. ¢

Before stating the geometric result, note that if£ X is open and nonempty,
then restriction of divisor® — D|, induces a well-defined map &) — CI(U)
(Exercise 4.0.9).
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Theorem 4.0.20.Let U be a nonempty open subset of a normal variety X and let
Dy,...,Ds be the irreducible components of\XJ that are prime divisors. Then
the sequence

ESBZDJ- . CI(X) — CI(U) —0
j=1

is exact, where the first map senﬁ}f:laj D;j to its divisor class irCI(X) and the
second is induced by restriction to U.

Proof. LetD’ =), & Dj € Div(U) with D; a prime divisor inJ. Then the Zariski
closureD] of D] in X is a prime divisor inX, andD = ;D] satisfiesD|, = D’.
Hence C{X) — CI(U) is surjective.

Since eaclD; restricts to 0 in DiyU), the composition of the two maps is
trivial. To finish the proof of exactness, suppose fiidte CI(X) restricts to 0 in
Cl(U). This means thdD|, is the divisor of somd € C(U)*. SinceC(U) = C(X)
and the divisor off in Div(X) restricts to the divisor of in Div(U ), it follows that
we havef € C(X)* such that

D|,, = div(f)],-

This implies that the differenc® — div(f) is supported orX \ U, which means
thatD —div(f) € @;_, ZDj by the definition of theD;. O

Example 4.0.21.Write P! = CU{oc} and note thafoo} is a prime divisor orPL.
Then Theorem 4.0.20 and Example 4.0.19 give the exact seguen

Z{c0} — CI(P') — CI(C) = 0.
Hence the magZ — CI(P') defined bya+— [a{cc}] is surjective. This map is
injective sincea{oo} = div(f) implies di(f)|. =0, so thatf € I'(C, 0¢)* = C*

by Proposition 4.0.16. Henckis constant, which forcea = 0. If follows that
CI(PY) ~ 7. O

Later in the chapter we will use similar methods to compugedhss group of
an arbitrary normal toric variety.

Comparing Weil and Cartier Divisors Once we understand Cartier divisors on
normal toric varieties, it will be easy to give examples ofiMi@visors that are not
Cartier. On the other hand, there are varieties wgessyWeil divisor is Catrtier.

Theorem 4.0.22.Let X be a normal variety. Then:

(a) If the local ring O p is a UFD for every pe X, then every Weil divisor on X
is Cartier.

(b) If X is smooth, then every Weil divisor on X is Cartier.
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Proof. If X is smooth, therx p, is a regular local ring for alp € X. Since every
regular local ring is a UFD (see 81.0), part (b) follows froarty(a).

For part (a), it suffices to show that prime divisors are llycptincipal. This
condition is obviously local oiX, so we may assume th&t= SpeqR) is affine.
Let D = V(p) be a prime divisor orX, wherep C Ris a codimension one prime
ideal. Note thaD is obviously principal olJ = X\ D sinceD|;, = 0. It remains
to show thaD is locally principal in a neighborhood of a poipte D.

The pointp corresponds to a maximal idealC R. Thusp € D impliesp C m.
Sincep C Rhas codimension one, it follows that the prime ideRl, C R, also has
codimension one (this follows fronl, Prop. 3.11]). Then Theorem 4.0.18 im-
plies thatpR,, is principal sinceR, is a UFD by hypothesis. ThyfRR,, = (a/b)R,
wherea,b € Randb ¢ m. Sinceb is invertible inR,, we in fact havgR,, = aR,.

Now suppose = (a,...,as) C R. Thena € pR, = aR,,, so thatg; = (gi /hi)a,
whereg;,h; € Randh; ¢ m, i.e.,hi(p) # 0. If we seth=h; -- - hs, thenpR, = aR,
follows easily. TherJ = Spec¢R;) is a neighborhood op, and from here, it is
straightforward to see th&é = div(a) onU. O

Example 4.0.23.SinceP? is smooth, Theorem 4.0.22 and Example 4.0.21 imply
that Pi¢P!) = CI(P') ~ Z. O

Sheaves oVx-modules Weil and Cartier divisors oiX lead to some important
sheaves oX. Hence we need a brief excursion into sheaf theory (we witlegper
into the subject in Chapter 6). The shed{ was defined in 83.0. The definition
of asheaf.# of &x-modulesis similar: for each open subset C X, there is an
Ox(U)-module.Z (U) with the following properties:

e WhenU’ C U, there is a restriction map
puu :FU)— FU)
such thatpy y is the identity ancby: y~ o py u’ = pu .y whenU” CU" CU.
Furthermorepy y- is compatible with the restriction magk (U) — Ox(U’).
e If {U,} is an open cover df C X, then the sequence

0— ZU) — [[FUs) =][#UanUp)
[e% a,

is exact, where the second arrow is defined by the restrefgny, and the
double arrow is defined byy, u,nu, andpu,u.nu,- Exactness means the
same as in §3.0.

WhenU — .7 (U) satisfies just the first bullet, we say th@tis apresheaf
Given a sheaf otx-modules.#, elements of# (U) are calledsections of#
over U. The module of sections oF overU C X is expressed in several ways:

FU)=T(U,Z)=HU,%).
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We will useT in this chapter and switch tBl® in later chapters. Traditionally,
I'(X,.#) is called the module aflobal section®f .%.

Example 4.0.24.Let f : X — Y be a morphism of varieties and &% be a sheaf
of Ox-modules orX. Thedirect image sheaf .f# onY is defined by
U— Z(f71U))

forU CY open. Thenf,.# is a sheaf oftyy-modules. Foii : Y — X, the direct
imagei, 0y was mentioned in 83.0. O

If # and¥ are sheaves ofx-modules, then daomomorphism of sheaves
¢ F — ¢ consists 0fUx (U)-module homomorphisms

ou:FU)—9YU),

such that the diagram

F(U) 2 20)

lpu Y J/pu v
Pv

FN)— Y V)

commutes whenev&f C U. It should be clear what it means for sheay8s? of
Ox-modules to be isomorphic, writteff ~ <.

Example 4.0.25.Let f : X — Y be a morphism of varieties. f CY is open, then
composition withf induces a natural map

Oy(U) — Ox(f71(U)) = f.0x(U).
This defines a sheaf homomorphigim — f, 0. O

Over an affine variet)X = Spe¢R), there is a standard way to get sheaves of
Ox-modules. Recall that a nonzero elemént R gives the localizatioRs such
thatXs = Spe¢Ry) is the open subset\ V(f). Given anR-moduleM, we get the
Ri-moduleM; = M ®grR¢. Then there is a unique sheldlf of &x-modules such
that

M(X) = My
for every nonzerd € R(see [L31, Prop. 11.5.1]). This globalizes as follows.

Definition 4.0.26. Let .# be a sheaf o&x-modules on a variet¥.

(@) LetU C X be open. Then theestriction 7|, is the sheaf of,-modules
defined by.# |, (V) = # (V) for V C U open.

(b) .7 is quasicoherenif X has an affine open cov¢t, },U, = §pec§Ra), such
that for each, there is arR,-moduleM,, satisfying.7 |, =~ M.

(c) If in addition eachM,, is a finitely generated®,-module, then we say tha¥
is coherent
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The Sheaf of a Weil Divisar Let D be a Weil divisor on a normal variety. We

will show thatD determines a sheafx (D) of &x-modules onX. Recall that if
U C X is open, therox (U) consists of all morphismd — C. Proposition 4.0.16
tells us that an arbitrary elemeifite C(X)* is a morphism orJ if and only if

div(f)|, > 0. It follows that the sheaf’ is defined by

Ur— Ox(U) = {f € C(X)" |div(f)|, >0}u{0}.
In a similar way, we define the sheéak (D) by
(4.0.6) U+— Ox(D)(U) = {f € C(X)" | (div(f)+D)|, >0} uU{0}.

Proposition 4.0.27.Let D be a Weil divisor on a normal variety X. Then the sheaf
Ox (D) defined in(4.0.6)is a coherent sheaf afx-modules on X.

Proof. In Exercise 4.0.10 you will show thatx (D) is a sheaf of¢’x-modules.
The proof is a nice application of the properties of valuagio

To show thatx (D) is coherent, we may assume tikat Spec¢R). LetK be
the field of fractions oR. It suffices to prove the following two assertions:

e M =TI(X,0x(D)) ={f e K| div(f)+ D > 0} U {0} is a finitely generated

R-module.

e I'(Xs, O0x(D)) = Ms for all nonzerof € R.

For the first bullet, we will prove the existence of an elenteatR\ {0} such
thathT'(X, 0x(D)) C R. This will imply thathI'(X, ©x (D)) is an ideal ofR and
hence has a finite basis sinBeis Noetherian. It will follow immediately that
I'(X, 0x(D)) is a finitely generate&-module.

Write D =7 ;& D;. Since supfD) is a proper subvariety of, we can find
g € R\ {0} that vanishes on eadh. Thenwvp,(g) > 0O for everyi, so there isnc N
with mvp, (g) > &; for all i. Since dig) > 0, it follows thatmdiv(g) — D > 0. Now
let f e I'(X,0x(D)). Thendiv f)+ D > 0, so that

div(g™f) = mdiv(g) +div(f) = mdiv(g) — D +div(f)+D >0
since a sum of effective divisors is effective. By Propasitd.0.16, we conclude
thatg™f € Ox(X) = R. Henceh = g™ € R has the desired property.

To prove the second bullet, observe thatC K and f € R\ 0 imply that

My = {% |gET(X,0x(D)), m>0}.

It is also easy to see thit; C I'(Xs, Ox (D)). For the opposite inclusion, |& =
S>> ,a D and write{1,...,s} =1 UJ whereD; N Xs # () fori € | andDj C V(f)
for j € J. Givenh € I'(Xs, 0x (D)), (div(h) +D)]|y, > 0 implies thatp, (h) > —a
fori € 1. There is no constraint an, (h) for j € J, but f vanishes o for j € J,
so thatvp, (f) > 0. Hence we can pickn € N sufficiently large such that

mup, (f)+vp;(h) >0 forjecJ.
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Since di(f) > 0, it follows easily that diyf "h) +D > 0 onX. Thusg= f™h e
I'(X, 0x (D)), and therh = g/ f™ has the desired form. 0

The sheave®x (D) are more than just coherent; they have the additional prop-
erty of beingreflexive Furthermore, whed is Cartier,0x (D) is invertible The
definitions of invertible and reflexive will be given in Chapt 6 and 8 respectively.

For now, we give two results about the sheawggD). Here is the first.
Proposition 4.0.28. Distinct prime divisors b,...,Dson a normal variety X give

the divisor D= Dj + --- + Ds and the subvariety ¥= SupdD) = DU ---UDs.
ThenOx(—D) is the ideal sheaf#y of Y, i.e.,

I'(U,0x(—D)) ={f € 6x(U) | f vanishes oY}
for all open subsets L X.

Proof. Since sheaves are local, we may assumeXhatSpe¢R). Then note that
f eT'(X,0x(—D)) implies divf) —D >0, so diy f) > D > 0 sinceD is effective.
Thusf € Rby Proposition 4.0.16 and hentéX, 0x(—D)) is an ideal ofR,
Letp; = 1(Dj) C Rbe the prime ideal db;. Then, forf € R, we have
vp,(f) >0 <= fepR, < feyp,

where the last equivalence uses the easy equaRy R =p;. Hence diyf) > D
if and only if f vanishes o4,...,Ds, and the proposition follows. O

Linear equivalence of divisors tells us the following imsting fact about the
associated sheaves.

Proposition 4.0.29.1f D ~ E are linearly equivalent Weil divisors, thefix (D)
and 0x (E) are isomorphic as sheaves @%-modules.

Proof. By assumption, we have = E + div(g) for someg € C(X)*. Then
fe'(X,0x(D)) < div(f)+D>0
<= div(f)+E+div(g) >0
< div(fg)+E >0
< fgeI'(X,0x(E)).
Thus multiplication byg induces an isomorphisfi(X, 0x (D)) ~ I'(X, Ox (E))
which is clearly an isomorphism &f(X, ©x )-modules.

The same argument works over any Zariski operJsetnd the isomorphisms
are easily seen to be compatible with the restriction maps. a

The converse of Proposition 4.0.29 is also true, i.e.ggAmodule isomor-
phism 0x (D) ~ Ox(E) implies thatD ~ E. The proof requires knowing more
about the sheavegy (D) and hence will be postponed until Chapter 8.
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Exercises for 84.0
4.0.1. Complete the proof of part (b) of Proposition 4.0.3.

4.0.2. Prove (c)< (d) in Theorem 4.0.4. Hint: Let be the maximal ideal dR. SinceR
has dimension one, it is regular if and onlynif/m? has dimension one as a vector space
overR/m. For (d)= (c), use Nakayama’'s Lemma (sdé)[ Props. 2.6 and 2.8]).

4.0.3. This exercise will study the ring8x p andR,.

(a) Prove (4.0.2).

(b) Letp be a prime ideal of a rin® and letR, denote the localization d® with respect
to the multiplicative subseR\ p. Prove thaRR, is a local ring and that its maximal
ideal is the ideapR, C R, generated by.

4.0.4. Let Sbe a multiplicative subset of a Noetherian riRgProve that the localization
Rs is Noetherian.

4.0.5. Let D andE be Weil divisors on a normal variety.

(a) If D andE are Cartier, show thda + E and—D are also Cartier.

(b) If D ~ E, show thaD is Catrtier if and only ifE is Cartier.

4.0.6. Complete the proof of Theorem 4.0.14.
4.0.7. Prove that a normal curve is smooth.

4.0.8. Let R be a Noetherian normal domain. Prove that the following grévalent:

(a) Ris a UFD.

(b) Cl(Spec¢R)) =0.

(c) Every codimension one prime idealRfs principal.

Hint: For (b) = (c), assume thab = div(f) corresponds tp. Use Theorem 4.0.14 to
show f € Rand use the Krull principal ideal theorem to shofy is primary inR. Then
pR, = fR, and [LO, Prop. 4.8] implyp = (f). For (c)= (a), leta € R be noninvertible
and letD1, ..., Ds be the codimension one irreducible component@). If | (Di) = (&),
compare the divisors afand[];_, aiyDi @ using Proposition 4.0.16.

4.0.9. Prove that the restriction map — D|, induces a well-defined homomorphism
CI(X) — Cl(U).

4.0.10. Let D be a Weil divisor on a normal variety. Prove that (4.0.6) defines a sheaf
Ox (D) of Ox-modules.

4.0.11.For each of the following ringR, give a careful description of the field of fractions
K and show that the ring is a DVR by constructing an appropdaserete valuation oK.

(@) R={a/beQ|abeZ,b+#0,gcdb,p) =1}, wherepis a fixed prime number.
(b) R=C{{z}}, the ring consisting of all power seriesamwith coefficients inC that have
a positive radius of convergence.

4.0.12. The plane curvé&/(x3 —y?) C C? has coordinate rinR = C[x,y]/ (x> —y?). As
noted in Example 1.1.15, this is the coordinate ring of tHmaftoric variety given by
the affine semigroup = {0,2,3,...}. This semigroup is not saturated, which means that
R~ C[S] = CJt?,t%] is not normal by Theorem 1.3.5. It follows thRtis not a DVR by
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Theorem 4.0.4. Give a direct proof of this fact using onlydeénition of DVR. Hint: The
field of fractions ofC[t2,t%] is C(t). If C[t?,t%] comes from the discrete valuatiopwhat
isv(t)?

4.0.13. Let X be a normal variety. Use Proposition 4.0.16 to prove thaktieean exact
sequence
1— O0x(X)* — C(X)* — Div(X) — CI(X) — 0,
where the maf(X)* — Div(X) is f — div(f) and DiMX) — CI(X) is D — [D]. Similarly,
prove that there is an exact sequence
1— Ox(X)* — C(X)* — CDiv(X) — Pi¢(X) — 0.

4.0.14.LetD =}, 4imp—1 8 Dy be a Weil divisor on a normal affine variety= Spe¢R).

As usual, letK be the field of fractions oR. Here you give an algebraic description of

(X, 0x(D)) in terms of the prime ideals.

(a) Letp be a codimension one prime Bf so thatR, is a DVR. Hence the maximal ideal
pRy is principal. Use this to defing®R, C K for allac Z.

(b) Prove that
I'(X,0x(D)= (] P >R,
codimp=1
(c) Now assume thdd is effective, i.e.a, > 0 for all p. Prove thal'(X, Ox(—D)) is the
ideal ofR given by

T(X,0x(-D)= [] »*Re.
codimp=1
4.0.15. Let R be an integral domain with field of fractio§. A finitely generatedRr-
submodule oK is called afractional ideal If Ris normal andD is a Weil divisor on
X = Spe¢R), explain whyl'(X, &x (D)) C K is a fractional ideal.

84.1. Weil Divisors on Toric Varieties

Let X5, be the toric variety of a fal in Ng with dim Ng = n. ThenXy, is hormal
of dimensionn. We will use torus-invariant prime divisors and charactergive a
lovely description of the class group 4.

The Divisor of a Character The order of vanishing of a character along a torus-
invariant prime divisor is determined by the polyhedralmetry of the fan.

By the Orbit-Cone Correspondence (Theorem 3.X&}imensional cones
of ¥ correspond tdn — k)-dimensionalTy-orbits in Xy,. As in Chapter 3X(1)
is the set of 1-dimensional cones (i.e., the raysfofThusp € ¥(1) gives the

codimension 1 orbiO(p) whose closuré(p) is a Ty-invariant prime divisor on

Xs:. To emphasize thd(p) is a divisor we will denote it by, rather tharV/(p).
ThenD, = O(p) gives the DVROx, p, with valuation

I/p = VDP . (C(Xz)* — 7.
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Recall that the ray € ¥(1) has a minimal generatar, € pN. Also note that
whenme M, the charactex™ : Ty — C* is a rational function irC(Xx)* sinceTy
is Zariski open inXs..

Proposition 4.1.1. Let X be the toric variety of a fai. If the rayp € 3(1) has
minimal generator pandx™ is character corresponding to M, then

vp(X™) = (M, u,).

Proof. Sinceu, € N is primitive, we can extend, to a basise; = u,,€,...,e, of
N, then we can assuni¢ = Z" andp = Conge;) C R". By Example 1.2.21, the
corresponding affine toric variety is

U, = SpedC[x, %57, ... . xF1]) = C x (C*)" 1
andD,NU, is defined byx; = 0. It follows easily that the DVR is
Oxs.,p, = Ou,U,nD, = (C[xl,...,xn]<xl>.
Similar to Example 4.0.6f € C(xq,...,%))* has valuation/,(f) = ¢ € Z when

f =Xf%, g.h e Clxe,..., %] \ (x0).

To relate this tas,(x™), note thatxy, ..., X, are the characters of the dual basis
ofe; =u,,e,...,6 € N. It follows that given anyn e M, we have

P xim’el>x§m’ez> .. .Xr<_|m790> = X:<Lm,up>xém,e2> . Xémvaﬁ‘
Comparing this to the previous equation implies thaty™) = (m,u,). O

We next compute the divisor of a character. As above, aray:(1) gives:
e A minimal generatou, € pNN.

e A prime Ty-invariant divisorD, = O(p) on Xs..
We will use this notation for the remainder of the chapter.
Proposition 4.1.2. For me M, the charactery™ is a rational function on X, and
its divisor is given by
div(x™ = ) (mu,)D,.

peX(1)

Proof. The Orbit-Cone Correspondence (Theorem 3.2.6) implietsthieeD, are
the irreducible components &\ Ty. Sincex™ is defined and nonzero oFy, it
follows that div(x™) is supported ol ;1) D,. Hence

div(x™) = > vp,(x™D,.
peEX(1)

Then we are done sineg, (x™) = (m,u,) by Proposition 4.1.1. O
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Computing the Class GroupDivisors of the formzpez(l) a, D, are precisely the
divisors invariant under the torus action ¥5 (Exercise 4.1.1). Thus

Divry(Xs) = @D ZD, C Div(Xs)
peX(1)
is the group ofTy-invariant Weil divisors orXs;. Here is the main result of this
section.

Theorem 4.1.3.We have the exact sequence
M— DiVTN (Xz) — Cl(XE) — O,

where the first map is m div(x™) and the second sends g-invariant divisor to
its divisor class inCl(Xy). Furthermore, we have a short exact sequence

0— M — Divy(Xy) — Cl(Xy) — 0

if and only if{u, | p € £(1)} spans N, i.e., %; has no torus factors.

Proof. Since theD,, are the irreducible components Xf \ Ty, Theorem 4.0.20
implies that we have an exact sequence

Div, (Xs) — Cl(Xs;) — CI(Ty) — O.

SinceC|xy,. .., %] is a UFD, the same is true f@[x;%, ..., x+1]. This is the co-
ordinate ring of the toru¢C*)", which is isomorphic to the coordinate ridM|
of the torusTy. HenceC[M] is also a UFD, which implies CTy) = 0 by Theo-
rem 4.0.18. We conclude that Gi( Xs,) — Cl(Xy) is surjective.

The compositiorM — Divy,, (X)) — Cl(Xsx;) is obviously zero since the first
map ism+— div(x™). Now suppose thdd € Divy, (X)) maps to 0 in QIXx). Then
D =div(f) for somef € C(Xy)*. Since the support dd missesTy, this implies
that div( f) restricts to O only. When regarded as an element@fTy)*, f has
zero divisor onTy, so thatf € C[M|* by Proposition 4.0.16. Thu§ = cx™ for
somec € C* andme M (Exercise 3.3.4). It follows that oXs,,

D = div(f) = div(cx™) = div(x™),

which proves exactness at Qi Xs).

Finally, suppose tham € M with div(x™) = 3_ ,c54)(M,U,) D, is the zero
divisor. Then(m,u,,) = 0 for all p € £(1), which forcesm= 0 when theu, span
Ng. This gives the desired exact sequence. Conversely, ifdheence is exact,
then one easily sees that thg spanNg, which by Corollary 3.3.10 is equivalent
to Xs; having no torus factors. O

In particular, we see that Cfy) is a finitely generated abelian group.
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Examples It is easy to compute examples of class groups of toric vasetin
practice, one usually picks a basis. . ., e, of M, so thatM ~ Z" and (via the dual
basis)N ~ Z". Then the pairingm,u) becomes dot product. We list the rays of
Y aspa,...,pr With corresponding ray generataug,...,u, € Z". We will think

of u; as the column vectof(er,u;),..., (e, u))T, where the superscript denotes
transpose.

With this setup, the mapl — Divy, (Xs) in Theorem 4.1.3 is the map
AZ"—17'

represented by the matrix whose rows are the ray genenators,u;. In other
words,A = (ug,...,u)T. By Theorem 4.1.3, the class groupXf is the cokernel
of this map, which is easily computed from the Smith normatfof A.

When we want to think in terms of divisors, we Btbe theTy-invariant prime
divisor corresponding tp; € X(1).

Example 4.1.4. The affine toric surface described in Example 1.2.22 conuems fr
the cones = Condde, — e;,€). Ford = 3, o is shown in Figure 1. The resulting

Figure 1. The coner whend = 3

toric varietyU,, is the rational normal conéy. Using the ray generatong =
de; — e = (d,—1) andu; = & = (0,1), we get the mag¥? — Z?2 given by the

matrix
d -1
A ().

This makes it easy to compute that

~

Cl(Cy) ~ Z/dZ.

We can also see this in terms of divisors as follows. The amsap CI(Cy) is
generated by the classes of the divisbisD, corresponding te1, p2, subject to
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the relations coming from the exact sequence of Theorer:4.1.
0~ div(x®) = (e1,u;) D1+ (e1,u) D, = d Dy
0~ div(x®) = (e,u1) D1+ (e2,Uz) D2 = —D; + Do.
Thus CICy) is generated byD1] with d[D;] = 0, giving CKCy) ~ Z/dZ. O

Example 4.1.5.1n Example 3.1.4, we saw that the blowup®f at the origin is
the toric variety B§(C?) given by the fart shown in Figure 2.

Figure 2. The fan for the blowup of? at the origin

The ray generators atg = e;,U; = €,Ug = €1 + & corresponding to divisors
D1,D5,Dg. By Theorem 4.1.3, the class group is generated by the slatseeD;
subject to the relations

0~ div(x®)=D1+Dg

0~ diV(Xez) = Dy + Do.
Thus C[Blo(C?)) ~ Z with generatoD;] = [D2] = —[Dg]. This calculation can
also be done using matrices as in the previous example. O

Example 4.1.6.The fan ofP" has ray generators given by= —e; —--- — e, and
Ui = €1,...,Uy = &,. Thus the map/ — Divy, (P") can be written as

Zn_>Zn+l
(al7---7an) — (_al_"'_an7al7"'7an)-
Using the map

Zn+l -7

(bo,...,bn) = bo+- -+ bn,
one gets the exact sequence

0—2Z"—7z™ 7 0,
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which proves that GP") ~ Z, generalizing Example 4.0.21. It is easy to redo this
calculation using divisors as in the previous example. O

Example 4.1.7.The class group CP" x P™) is isomorphic tdZ2. More generally,
Cl(XEl X XEZ) ~ Cl(XZl) ® Cl(XZz)
You will prove this in Exercise 4.1.2. O

Example 4.1.8. The Hirzebruch surfaces# are described in Example 3.1.16.
The fan for.s#] appears in Figure 3, along with the ray generatars:- —e; + rey,
U =€, U3 = €1, Uy = — €.

Figure 3. A fan X, with X5, ~ 4

The class group is generated by the classd3,0D,, D3, D4, with relations
0~div(x®)=—-D1+D3
0~ div(x®)=rD;+ Dy —Da.
It follows that Cl7%) is the free abelian group generated[By] and[D,]. Thus
Cl(s4) ~ 72,

In particular,r = 0 gives C(.%) = CI(P! x P1) ~ 7?2, which is a special case of
Example 4.1.7. O

Exercises for §4.1

4.1.1. This exercise will determine which divisors are invariandar theTy-action on
Xs. Givent € Ty and p € Xs, the Ty-action givest - p € Xs. If D is a prime divisor,
the Ty-action gives the prime divisdr- D. For an arbitrary Weil divisoD = )", a Dj,

t-D=>"a(t-Di). ThenD is Ty-invariantif t-D =D for all't € Ty.

(@) Showthab_ .y, a,D, is Tn-invariant.

(b) Conversely, show that afly-invariant Weil divisor can be written as in part (a). Hint:
Consider SupfD) and use the Orbit-Cone Correspondence.
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4.1.2. Given fansX; in (N;)g andX; in (N2)g, we get the product fan
Y1 x ¥y ={o1 %X 02| 0i € %i},
which by Proposition 3.1.14 is the fan of the toric vari&y, x Xs,. Prove that
Cl(Xs, X Xg,) ~ Cl(Xs,) @ Cl(Xsg,).
Hint: The product fan has rays x {0} and{0} x p, for p; € ¥1(1) andp, € 32(1).

4.1.3. Redo the divisor class group calculation given in Examplexusing matrices, and
redo the calculation given in Example 4.1.6 using divisors.

4.1.4. The blowup ofC" at the origin is the toric variety B{C") of the fanX: described in
Example 3.1.15. Prove that @lo(C")) ~ Z.

4.1.5. The weighted projective spa&&q, . ..,qn), gcddo, - - .,0qn) = 1, is built from a fan
inN = Z"1/7Z(qo, ...,qn). The dual lattice is

M:{(ao,..-,an)GZn+l|aoq0+...+anqn:0}'

Letuo,...,un € N denote the images of the standard basis. ., e, € Z"*1. Theu; are the
ray generators of the fan giviriqo, . ..,qn). Define maps

M — Z™ me— (M Ug), ..., (M up))
ZMY — 7 (ao,...,an) — 800+ - + @nlhn.
Show that these maps give an exact sequence
0—M-—2z" ——7-—0

and conclude that CP(qp,...,0n)) ~ Z.

84.2. Cartier Divisors on Toric Varieties

Let X, be the toric variety of a fall. We will use the same notation as in 4.1,
where eachp € (1) gives a minimal ray generatar, and aTy-invariant prime
divisor D, C Xs. In what follows, we writezp for a summation over the rays
p € (1) when there is no danger of confusion.

Computing the Picard Group A Catrtier divisorD on Xy, is also a Weil divisor
and hence
D~) a,D, ac¢€Z,
p
by Theorem 4.1.3. Thep ,a,D, is Cartier sinceD is (Exercise 4.0.5). Let

CDiVTN (XE) - DiVTN (XE)

denote the subgroup of Diy(Xsx:) consisting ofTy-invariant Cartier divisors. Since
div(x™) € CDivy,(Xs) for allme M, we get the following immediate corollary of
Theorem 4.1.3.
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Theorem 4.2.1.We have an exact sequence
M — CDivy(Xy) — Pic(Xg) — 0,

where the first map is defined above and the second sengéadriant divisor to
its divisor class inPic(Xy). Furthermore, we have a short exact sequence

0—M— CDiVTN (Xz) — PIC(XE) —0
if and only if{u, | p € £(1)} spans M. O

Our next task is to determine the structure of GR{Xsx). In other words,
which Ty-invariant divisors are Cartier? We begin with the affineecas
Proposition 4.2.2. Leto C Ng be a strongly convex polyhedral cone. Then:
(a) Every N-invariant Cartier divisor on | is the divisor of a character.

(b) PiqU,)=0.

Proof. Let R= C[o¥ NM]. First suppose thdd = >_,3 D, is an effectiveTy-
invariant Cartier divisor. Using Proposition 4.0.16 as I fproof of Proposi-
tion 4.0.28, we see that
I'U,, 0y, (-D))={feK|f=0orf#0anddif)>D}
is an ideall C R. Furthermore] is Ty-invariant sinceD is. Hence
xmel div(x™>D

by Lemma 1.1.16.

Under the Orbit-Cone Correspondence (Theorem 3.2.6), a gay (1) gives

an inclusionO(o) € O(p) = D,,. Thus
O(0) €[ )D,.
p

Now fix a pointp € O(o). SinceD is Cartier, itis locally principal, and in particular
is principal in a neighborhood of p. ShrinkingU if necessary, we may assume
thatU = (U, )n = Spe€R;), whereh € R satisfiesh(p) # 0.

ThusD|, = div(f)|, for somef € C(U,)*. SinceD is effective, f € R, by
Proposition 4.0.16, and sintes invertible onU, we may assumé € R. Then

(4.2.2) div(f) = vp, (F)D,+ > ve(f)E=D wp,(f)D, =D.

p E#Dy p
Here,} ¢ .p, denotes the sum over all prime divisors different from Ehe The
first equality is the definition of divf ), the second inequality follows sindec R,
and the final equality follows fron|, = div(f)|, sincepcUND, for all p €
o(1). Thenf €1 since di\ f) > D by (4.2.2).
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Using (4.2.1), we can writd = > ;& x™ with & € C* and di\x™) > D.
Restricting tdJ, this becomes diw™ )|, > div(f)]|,, which implies thaty™ / f is
a morphism otJ by Proposition 4.0.16. Then

_ZiaiXm_ _Xm
== _zi:a'f

andp e U imply that(x™/f)(p) # 0 for somei. Hencex™ /f is nonvanishing in
some open s&t with peV CU. It follows that

div(x™)|, = div(f)}, = Dl

Since divx™) andD have support contained i, D, and everyD, meetsV (this
follows fromp eV ND,), we have diyxy™) = D.

To finish the proof of (a), leDb be an arbitraryly-invariant Cartier divisor on
U,. Since dimr" = dim Mg (o is strongly convex), we can fint € ¥ N'M such
that(m,u,,) > O for all p € o(1). Thus di\x") is a positive linear combination of
theD,, which implies thaD’ =D +div(x*™M) > 0 for k € N sufficiently large. The
above argument implies thBt is the divisor of a character, so that the same is true
for D. This completes the proof of part (a), and part (b) followsiediately using
Theorem 4.2.1. O

Example 4.2.3. The rational normal con&y is the affine toric variety of the cone
o = Condde, — &,6) C R% We saw in Example 4.1.4 that @©l,) ~ Z/dZ.
The edges, p2 of o give prime divisorsD1, D, on Cy, and the computations of
Example 4.1.4 show thgD;] = [D;] generates QU,;). Since Pi¢U,) = 0 by
Proposition 4.2.2, it follows that the Weil divisoBs, D, are not Cartier il > 1.

Next consider the faiy consisting of the conesy, p2, {0}. This is a subfan of
the fanX giving Cq, and the corresponding toric varietyXs, ~ Cy \ {7}, where
v, IS the distinguished point that is the unique fixed point & Ty-action on
Cqy. The varietyXs;, is smooth since every cone Yty is smooth (Theorem 3.1.19).
SinceX g andX have the same 1-dimensional cones, they have the sameags g
by Theorem 4.1.3. Thus

Pic(Xs,) = Cl(Xx,) = Cl(Xs) = CI(Cq) ~ Z/dZ.
It follows thatXs,, is a smooth toric surface whose Picard group has torsionp
Example 4.2.4.0ne of our favorite examples ¥= V (xy—zw) C C*, which is the

toric variety of the cone = Coneey, e, €, +€3,€,+e3) C R3. The ray generators
are

Up=¢€, =6, U3==e1+€3 Ug=¢er+Es.
Note thatu; + us = up + uz. Let D; C X be the divisor corresponding 1. In
Exercise 4.2.1 you will verify that

a1D1+aDy+azD3+a4Dyis Cartier <= aj+ay=ax+a3
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and that C{X) ~ Z. Since Pi¢X) = 0, we see that th®; are not Cartier, and in
fact no positive multiple oD; is Cartier. O

Example 4.2.3 shows that the Picard group of a normal torietyacan have
torsion. However, if we assume thdthas a cone of maximal dimension, then the
torsion goes away. Here is the precise result.

Proposition 4.2.5. Let X5, be the toric variety of a fal in Ng ~ R". If X contains
a cone of dimension n, thd?ic(Xy,) is a free abelian group.

Proof. By the exact sequence in Theorem 4.2.1, it suffices to showiftiiais a
Tn-invariant Cartier divisor an#&D is the divisor of a character for sonke> 0,
then the same is true f@. To prove this, writeD = > a,D, and assume that
kD =div(x™), me M.

Let o have dimensiom. SinceD is Cartier, its restriction ttJ,, is also Cartier.
Using the Orbit-Cone Correspondence, we have

Dly, = Y_ 8D,
peo(l)

This is principal onU, by Proposition 4.2.2, so that therens € M such that
DJy, = div(x™)]y, . This implies that

a, = (m,u,) forallpeo(l).
On the other hand D = div(x™) implies that
ka, = (m,u,) forallpe>(1).
Together, these equations imply
(km,u,) =ka, = (mu,) forallpeco(l).
Theu, spanNg since dimo = n. Then the above equation forcks’ = m, and

D = div(x™) follows easily. 0

This proposition does not contradict the torsion Picardigrio Example 4.2.3
since the fartg in that example has no maximal cone.

Comparing Weil and Cartier Divisors Here is an application of Proposition 4.2.2.
Proposition 4.2.6. Let X be the toric variety of the fak. Then the following are
equivalent:

(a) Every Weil divisor on X is Cartier.

(b) PigXs) = Cl(Xs).

(c) Xs is smooth.
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Proof. (a) < (b) is obvious, and (cy (a) follows from Theorem 4.0.22. For
the converse, suppose that every Weil divisoXgris Cartier and le, C Xy, be
the affine open subset correspondingste . Since C(Xyx) — CI(U,) is onto
by Theorem 4.0.20, it follows that every Weil divisor &l is Cartier. Using
Pic(U,) = 0 from Proposition 4.2.2 and the exact sequence from Thedr&r8,
we conclude thatn+— div(x™) induces a surjective map

M — Divy, (Uy) = €D ZD,.
pea(l)
Writing (1) = {p1,...,ps}, this map becomes
M — Z°

(4.2.3) me— ((MU,,),..., (M U,)).

Now define® : Z% — N by ®(ay,...,as) = Y _;_; & U,. The dual map
®* : M = Homy(N,Z) — Homy(Z3 Z) = 7°
is easily seen to be (4.2.3). In Exercise 4.2.2 you will shioat t

* is surjective < @ is injective and\/®(Z°) is torsion-free.

4.2.4 ,
( ) <= Uy,,-.., U, Can be extended to a basishf

The first part of the proof shows thét is surjective. Then (4.2.4) implies that the
u, for p € o(1) can be extended to a basisMf which implies thatr is smooth.
ThenXy is smooth by Theorem 3.1.19. O

Proposition 4.2.6 has a simplicial analog. Recall thatis simplicial when
everyo € ¥ is simplicial, meaning that the minimal generatorsooéire linearly
independent oveR. You will prove the following result in Exercise 4.2.2.

Proposition 4.2.7. Let X be the toric variety of the fak. Then the following are
equivalent:

(a) Every Weil divisor on X has a positive integer multiple that is Cartier.
(b) PigXsx) has finite index irCI(Xs,).
(c) Xy is simplicial. a

In the literature, a Weil divisor is calle@-Cartier if some positive integer mul-
tiple is Cartier. Thus Proposition 4.2.7 characterizeséhmormal toric varieties for
which all Weil divisors are)-Cartier.

Describing Cartier Divisors We can use Proposition 4.2.2 to characteflze
invariant Cartier divisors as follows. L&l C ¥ be the set of maximal cones
of X, meaning cones il that are not proper subsets of another cong.in
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Theorem 4.2.8. Let X be the toric variety of the fai and let D=3_ a,D,.
Then the following are equivalent:

(a) D is Cartier.

(b) D is principal on the affine open subset br all o € X.

(c) For eacho € X, there is g € M with (m;,u,) = —a, for all p € o(1).
(d) For eacho € max there is g € M with (m,,u,) = —a, for all p € o(1).
Furthermore, if D is Cartier andm, },¢x is as in part(c), then:

(1) m, is unique modulo N) = o N M.

(2) If 7 is a face ofr, then m = m; modM(r).

Proof. SinceD|UU = Zpeg(l) a,D,, the equivalences (& (b) < (c) follow im-
mediately from Proposition 4.2.2. The implication €)(d) is clear, and (d) (c)
follows because every cone M is a face of some € Yo and if m, € Xmax
works foro, it also works for all faces aof.

For (1), suppose that, € M satisfies(m,u,) = —a, for all p € o(1). Then,
givenn, € M, we have
(m,u,) = —a,forall peo(l) <= (M, —m,,u,) =0 forallpeo(l)
< (M —m,,uy=0forallueos
= m -m,€oNM=M(0).
It follows thatm, is unique moduldV (o). Sincem, works for any facer of o,
uniqueness implies that, = m; modM(7), and (2) follows. O

Them, of part (c) of the theorem satisfy|, = div(X*””v)\Ucr forallo € X.
Thus{(U,,x ™ )},cx is local data forD in the sense of Definition 4.0.12. We
call {m, },¢x the Cartier dataof D.

The minus signs in parts (c) and (d) of the theorem are relat¢de minus
signs in the facet presentation of a lattice polytope givef2i2.2), namely

P={me Mg | (mug) > —ag for all facetsF of P}.
We will say more about this below. The minus signs are alsatedltosupport
functions to be discussed later in the section.

WhenX is a complete fan itNg ~ R", part (d) of Theorem 4.2.8 can be recast
as follows. LetZ(n) = {0 € ¥ | dimo = n}. In Exercise 4.2.3 you will show that
a Weil divisorD =} a,D,, is Cartier if and only if:

(dY For eacho € X(n), there is g € M with (m,u,,) = —a,, for all p € o(1).
Part (1) of Theorem 4.2.8 shows that thesgs are uniquely determined.
In general, eacim, in Theorem 4.2.8 is only unique moduld(s). Hence we

can regardn, as a uniquely determined element\dfM (o). Furthermore, ifr is
a face ofo, then the canonical magd/M(o) — M/M(7) sendam, tom,.



182 Chapter 4. Divisors on Toric Varieties

There are two ways to turn these observations into a comgéeription of

CDivy, (Xy). For the first, write

Ymax = {Ulv---aUr}
and consider the map

PM/M(ei) — PM/M(oinay)
i i<j

(My)i — (M — i

In Exercise 4.2.4 you will prove the following.

Proposition 4.2.9. There is a natural isomorphism
CDiVTN(XZ)Zker(@iM/M(O'i)—>@i<j|\/|/|\/|(0'iﬂ0'j)). O

For readers who know inverse limits (sekd[p. 103]), a more sophisticated
description of CDiy, (X5;) comes from the directed sgf, <), where= is the face
relation. We get an inverse system where o givesM /M(o) — M/M(7), and
the inverse limit gives an isomorphism
(4.2.5) CDiv, (Xg) =~ lim M/M(o).

ceEY

The Toric Variety of a Polytope In Chapter 2, we constructed the toric variety
Xp of a full dimensional lattice polytop® C Mg. If Mg ~ R", this means that
dim P = n. As noted above? has a canonical presentation

(4.2.6) P={me Mg | (mug) > —a¢ for all facetsF of P},

wherear € Z andug € N is the inward-pointing facet normal that is the minimal
generator of the rapr = Condur). The normal fanXp consists of conesqg
indexed by face® < P, where

oq = Condur | F containsQ).

Proposition 2.3.8 implies that the faip is complete. Furthermore, the vertices of
P correspond to the maximal cones¥ip(n), and the facets d? correspond to the
rays in¥p(1).

The ray generators of the normal falp are the facet normalg=. The corre-
sponding prime divisors iXp will be denotedDg. Everything is now indexed by
the facetd= of P. The normal fan tells us the facet normajsin (4.2.6), butXp
cannot give us the integeag in (4.2.6). For these, we need the divisor

(4.2.7) Dp =) aDr.

F
As we will see in later chapters, this divisor plays a centodd in the study of
projective toric varieties. For now, we give the followingaful result.

Proposition 4.2.10.Dp is a Cartier divisor on % and D £ 0.
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Proof. A vertexv € P corresponds to a maximal cong, and a raye liesino, (1)
if and only if v e F. Butv € F implies that(v,ur) = —ar. Note also that € M
sinceP is a lattice polytope. Thus we have= M such that{v,ur) = —ag for all
pF € 0y(1), so thatDp is Cartier by Theorem 4.2.8. You will prove thap ¢ 0 in
Exercise 4.2.5. O

In the notation of Theorem 4.2.8y,, is the vertex.. Thus the Cartier data of
the Cartier divisoDp is the set

(4.2.8) {My, }oesom) = {v | v is a vertex ofP}.
This is very satisfying and explains why the minus signs i2.@) correspond to

the minus signs in Theorem 4.2.8.

The divisor clas$Dp| € Pic(Xp) also has a nice interpretation.Df~ Dp, then
D = Dp +div(x™) for somem e M. In Proposition 2.3.9 we saw th&and its
translateP — m have the same normal fan and hence give the same toric variety
i.e.,Xp = Xmyp- We also have

D= Dp+diV(Xm) =Dp_m

(Exercise 4.2.5), so that the divisor clas®gf gives all translates d?.

The divisorDp has many more wonderful properties. We will get a glimpse
of this in 84.3 and learn the full power @fp in Chapter 6 when we study ample
divisors on toric varieties.

Support Functions The Cartier data{m, },cx that describes a torus-invariant
Cartier divisor can be cumbersome to work with. Here we thice a more ef-
ficient computational tool. Recall that has support| = (J,c5 0 € Ng.

Definition 4.2.11. Let ¥ be a fan inNg.

(@) Asupport functionis a functiony : |¥| — R that is linear on each cone B&f
The set of all support functions is denoted(Sk

(b) A support functiony is integral with respect to the lattic®\ if
e(I%]NN) C Z.
The set of all such support functions is denotedXSN).

LetD =3}, a,D, be Cartier and lefm, },cx. be the Cartier data db as in
Theorem 4.2.8. Thus

(4.2.9) (my,u,) = —a, forall pco(l).

We now describe Cartier divisors in terms of support fumio
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Theorem 4.2.12.LetX be afan in M. Then:
(a) Given D=} a,D, with Cartier data{m, },<x, the function
¢p:|E[—R
u— pp(u) = (M,,u) when ue o
is a well-defined support function that is integral with respto N.
(b) ¢p(u,) = —a, forall p € ¥(1), so that

D=- Z@D(Up) DP'
p

(c) The map D— ¢p induces an isomorphism
CDiVTN (Xz) ~ SF(E, N)

Proof. Theorem 4.2.8 tells us that eaofy, is unique modulos N M and that
m, = m,, mod (¢ No’)- NM. It follows easily thatpp is well-defined. Alsop
is linear on eachr sinceyp |, (u) = (M,,u) for u € o, and it is integral with respect
to N sincem, € M. This proves part (a), and part (b) follows from the defimitaf
pp and (4.2.9).

It remains to prove part (c). First note thay € SKX,N) by part (a). Since

D,E € CDivy, (Xs) andk € Z imply that
PD+E = ¢¥D t+ PE
¢k = Kyp,
the map CDiy, (X5) — SKX,N) is a homomorphism, and injectivity follows from
part (b). To prove surjectivity, take € SHX,N). Fix o € 3. Sincey is integral
with respect td, it defines aN-linear mapy|, - : "N — Z, which extends to
N-linear mapy, : N, — Z, whereN,, = Sparic) NN. Since
Homy(N,,Z) ~M/M(o),

it follows that there ism, € M such thatp|_(u) = (m,,u) for u € o. ThenD =
—>_,%p(U,) D, is a Cartier divisor that maps to. O

In terms of support functions, the exact sequence of Thedr@rth becomes
(4.2.10) M — SHX,N) — Pig(Xg) — 0,
wherem € M maps to the linear support function defined by~ —(m,u) and
¢ € SHX,N) maps to the divisor class-3_ ¢ (u,)D,] € Pic(Xs). Be sure you
understand the minus signs.

Here is an example of how to compute with support functions.
Example 4.2.13.The eight pointste; 4 e, + €3 are the vertices of a cube R®.

Taking the cones over the six faces gives a complete f&¥irModify this fan by
replacinge; + e, + e3 with e; + 2e, + 3e3. The resulting fark has the surprising
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property that PitXs;) = 0. In other wordsXs; is a complete toric variety whose
Catrtier divisors are all principal.

We will prove Pig¢Xs) = 0 by showing that all support functions far are
linear. Label the ray generators as follows, using cootdsé&r compactness:
u=(1,23), u,=(1,-1,1), u3 =(1,1,-1), us = (-1,1,1)
us=(1,—-1,-1), uyg= (—1,—-1,1), uy = (-1,1,-1), ug = (—1,—1,-1).
The ray generators are shown in Figure 4. The figure alsodeslthree maximal
cones ofy:
o1 = Con€ug, Uy, Ug, Us)
o2 = Con€ug, U, Us, Uy)
o3 = Con€ug, Uz, Us, Ug).
The shading in Figure 4 indicates Noy,01 No3,02No3. Besidessq,o07,03, the

fan X has three other maximal cones, which we ¢, down, andback. Thus
the condeft has ray generatois, us, Us, Ug, and similarly for the other two.

Figure 4. A fan X with Pic(Xs) =0

Takep € SKX,Z3). We show thaty is linear as follows. Since|, is linear,
there ismy € Z2 such thatp(u) = (my, u) for u € o1. Hence the support function

Ur— (U) = (Mg, u)

vanishes identically os1. Replacingy with this support function, we may assume
thatapyg1 = 0. Once we prover = 0 everywhere, it will follow that all support
functions are linear, and then P¥6;) = 0 by (4.2.10).

Sinceug, Uz, U3, Us € o1 and ¢ vanishes orvi, we havep(u;
¢(us) = ¢(us) = 0. It suffices to provep(us) = ¢(Us) = ¢ (U7) = (

) = ¢(U) =
ug) =0.

o)
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To do this, we use the fact that each maximal cone has fourggens, which
must satisfy a linear relation. Here are the cones and thegmwnding relations:

cone relation
o1 | 2u1 +5uU5 = 4up + 3us
o2 2u1 + 4u7 = 3uz + 5uy
03 | 2U1 + 3Ug = 4Up + 5uy
left Uz + Ug = Us + Ug
down Uz -+ Ug = Us+ Uy
back Ug + Ug = Ug + Uy

Sincey is linear on each cone agdu; ) = ¢(U2) = p(uz) = p(us) = 0, the second,
third, fourth and fifth relations imply

4p(U7) = 5p(Ua)
3o(Us) = 5 (Ua
¢(Ug) = ¢ (Us)
p(Ug) = p(u7).
(

The last two equations give(us) = ¢ (U7), and substituting these into the first two
shows thatp(us) = ¢(us) = ¢(u7) = p(ug) = 0. O

Since the toric variety of a polytop has the non-principal Cartier divisor
Dp, its follows that the far® of Example 4.2.13 is not the normal fan arfy 3-
dimensional lattice polytope. As we will see later, this limp thatXy, is complete
but not projective.

A full dimensional lattice polytopd® C Mg leads to an interesting support
function on the normal faixp.

Proposition 4.2.14. Assume RC My is a full dimensional lattice polytope with
normal fanXp. Then the functiorpp : Ng — R defined by

ep(U) =min({m,u) | me P)
has the following properties:

(a) ¢p is a support function fokp and is integral with respect to N.
(b) The divisor corresponding t@p is the divisor [ defined in(4.2.7)

Proof. First note that minimum used in the definition gf exists becaus® is
compact. Now write

P={me Mg | (mug) > —ag for all facetsF of P}.

ThenDp = ) ar Dr is Cartier by Proposition 4.2.10, and Theorem 4.2.12 shows
that the corresponding support function mapgo —ar.
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It remains to show thatp(u) € SHXp) andpp(ur ) = —ag. Recall that maxi-
mal cones obp correspond to vertices &f, where the vertex gives the maximal
coneo, = Condur |v € F). Takeu= ) - ArUr € o,, whereAg > 0. Then
m e P implies

(4.2.11) (Mu)=> Ae(MUp) > =) Aeae.
veF veF

Thusep(u) > —>" . AF @ . Since equality occurs in (4.2.11) when= v, we
obtain

pp(U) == Arar = (v,u).

veF
This shows thatop € SHXp,N). Furthermore, wher € F, we havepp(ug) =
(v,ug) = —ag, as desired. O

We will return to support functions in Chapter 6, where wel wde them to
give elegant criteria for a divisor to be ample or generatedsglobal sections.

Exercises for §4.2
4.2.1. Prove the assertions made in Example 4.2.4.
4.2.2. Prove (4.2.4) and Proposition 4.2.7.

4.2.3. WhenX is complete, prove thdd = > a,D, is Cartier if and only if it satisfies
condition (d} stated in the discussion following Theorem 4.2.8.

4.2.4. Prove Proposition 4.2.9.

4.2.5. A lattice polytopeP gives the toric varietp and the divisoDp from (4.2.7).
(a) Prove thabp+div(x™) = Dp_mforanyme M.

(b) Prove thaDp £ 0. Hint: The normal fan oP is complete.

4.2.6. Let D be aTy-invariant Cartier divisor oiXy. By Theorem 4.2.8D is determined
by its Cartier datgdm, },cx. Given anyme M, show thatD + div(x™) has Cartier data
{m, —m},cx. Be sure to explain where the minus sign comes from.

4.2.7. Let X5 be the toric variety of the fak. Prove the following consequences of the
Orbit-Cone Correspondence (Theorem 3.2.6).

(a) O(U) = ﬂpeo’(l) DP'
(b) Raysu,,,...,u, € X(1) lieina cone oft ifand only if D, N---ND,, # 0.
4.2.8. LetX be a fan ilNg ~ R" and assume that has a cone of dimensian
(a) Fix a coner € X of dimensiom. Prove that

Pic(Xs) ~ {¢ € SHE,N) | ¢|, = 0}.
(b) Explain how part (a) relates to Example 4.2.13.
(c) Use part (a) to give a different proof of Proposition 8.2.
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4.2.9. Leto be as in Example 4.2.4, but instead of using the lattice geeéibye;, e, es,
instead ust\ =Z- e, +7Z- te, + Z- 1e3+ Z- % (€1 + €, + e3), wherea, b are relatively
prime positive integers with > 1. Prove that no multiple dd; + D, + D3+ D4 is Cartier.
Hint: The first step will be to find the minimal generators étele toN) of the edges of.
4.2.10. Let Xp be the toric variety of the octahedrén= Conv+e;, +-&, +e3) C R3.

(@) Show that QIXp) ~ Z°® (Z/27)2.

(b) Use support functions and the strategy of Example 4. 5Bow that PitXp) ~ Z.

4.2.11. In Exercise 4.1.5, you showed that the weighted projectreedP(q, . . .,q,) has
class group GIP(qo, .. .,0n)) ~ Z. Prove that Pig?(dp,...,aqn)) € CI(P(qo,...,0n)) Maps
to the subgroupZ C Z, wherem= lcm(qp, . .. ,qgn). Hint: Show thatzi“:0 b;D; generates
the class group, wherEi”ZObiqi = 1. Also note thatm € Mg lies in M if and only if
(m,u;) € Z for all i, where they; are from Exercise 4.1.5.

4.2.12.Let X5, be a smooth toric variety and lete ¥ have dimension> 2. This gives the

orbit closureV (1) = O(7) C Xs. In 83.3 we defined the blowup &l (Xs). Prove that
Pic(Bly(r)(Xs)) ~ Pic(Xs) & Z.

4.2.13. A nonzero polynomiaf =3 . CnX™ € C[xq, ..., %] hasNewton polytope
P(f) =Convm| ¢y # 0) C R".

When P(f) has dimensiom, Proposition 4.2.14 tells us that the functigp(u) =

min((m,u) | me P(f)) is the support function of a divisor oXs(1). Here we interpret
vp(t) as thetropicalizationof f.

Thetropical semiring(R, @, ®) has operations

a®b=min(a,b) (tropical addition

aGb=a+b (tropical multiplicatior).
A tropical polynomialin real variables, . . ., X, is a finite tropical sum

F=qoxX"0 0" @ & o' o--oxa"
wherec; € R andx?2 = x ®--- ©@X (atimes). For a more compact representation, define
a tropical monomial to bg™ = x{* © --- © x& for m= (a,...,an) € N". Then, using the
tropical analog of summation notation, the tropical polyral F is
F :®{:1Ci®xm7 m = (ai,lv"'aai,n)-

(a) Show thaF = miny<i<(Ci+a 1% + - + & n%n).
(b) Thetropicalizationof our original polynomialf is the tropical polynomial

F = @cm;éOOQ x™M.
Prove thatFt = ¢p(r). (The O is explained as follows. In tropical geometry, one
often works in a larger ring where the coefficientsfofire Puiseux series, and the
tropicalization uses the order of vanishing of the coeffitse Here, we use a smaller
ring where the coefficients df are nonzero constants, with order of vanishing 0.)

(c) Thetropical varietyof a tropical polynomiaF is the set of points ifR" whereF is
not linear. Forf = x+ 2y + 3x% — xy? + 4x?y, compute the tropical variety ¢ and
show that it consists of the rays in the normal farP¢f).

A nice introduction to tropical algebraic geometry can bafd in [240.
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84.3. The Sheaf of a Torus-Invariant Divisor

If D=>",a,D, is aTy-invariant divisor on the normal toric varieXs:, we get the
sheafdx, (D) defined in §4.0. We will study these sheaves in detail in Glrad
and 8. In this section we will focus primarily on global secs.

We begin with a classic example of the shéaf. (D).

Example 4.3.1.ForP", the divisorsDy,. .., Dy correspond to the ray generators of
the usual fan fo®". The computation GP") ~ Z from Example 4.1.6 shows that
Dg ~ Dy ~ --- ~ Dp. These linear equivalences give isomorphisms

ﬁpn(Do) ~ ﬁpn(Dl) e ™ ﬁ]pn(Dn)

by Proposition 4.0.29. These sheaves are den@te(l), and simiarly the sheaves
Opn(kDy), k € Z, are denotedipn(k). We will see the intrinsic reason for this
notation in Example 5.3.8. O

Global Sections Let D be aTy-invariant divisor on a toric varietiXs,. We will
give two descriptions of the global sectiofiéXs;, Ox.. (D)). Here is the first.

Proposition 4.3.2. If D is a Ty-invariant Weil divisor on X, then

T'(Xs,0x:(D)= P C-x™
div(x™)+D>0

Proof. If f € I'(Xs;, Ox.,(D)), then di(f) + D > 0 implies div(f)|; > O since
D|, = 0. SinceC[M] is the coordinate ring ofy, Proposition 4.0.16 implies
f € C[M]. Thus

F(sz ﬁxz(D)) - C[M]
Furthermore'(Xs, Ox,, (D)) is invariant under thdy-action onC[M] sinceD is
Tn-invariant. By Lemma 1.1.16, we obtain

I'(Xs, Ox,. (D)) = $ C-x™
XmEF(XE,[/xE(D))

Sincex™ € I'(Xs, Ox,, (D)) if and only if div(x™) + D > 0, we are done. O
The Polyhedron of a Divisar ForD =3_ a,D, andme M, div(x™) +D > 0is
equivalent to

(m,u,)+a,>0 forallpe X(1),
which can be rewritten as
(4.3.1) (m,u,) > —a, forall pe X(1).
This explains the minus signs! To emphasize the underlyaaetry, we define
(4.3.2) Po={meMg|(mu,) > —a,forall pc 3(1)}.
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We say that, is apolyhedronsince it is an intersection of finitely many closed
half spaces. This looks very similar to the canonical priedEm of a polytope
(see (4.2.6), for example). However, the reader should lzeathatF, need not
be a polytope, and even when it is a polytope, it need not bitieelgpolytope. All
of this will be explained in the examples given below.

For now, we simply note that (4.3.1) is equivalentae Pb N M. This gives
our second description of the global sections.

Proposition 4.3.3.1f D is a Ty-invariant Weil divisor on X, then

F(XZ76)XE(D)): @ C'Xm>
mePoNM

where B C My is the polyhedron defined {@#.3.2) O

As noted above, a polyhedron is an intersection of finitelynynelosed half
spaces. A polytope is a bounded polyhedron.

Examples Here are some examples to illustrate the kinds of polyhduxadan
occur in Proposition 4.3.3.

Example 4.3.4. The fanX for the blowup B(C?) of C2 at the origin has ray
generatorsiy = €1 + €, U; = €, Up = & and corresponding diviso3y, D1, D».
For the divisorD = Do+ D1 + Dy, a pointm = (x,y) lies in By if and only if

(Mmug) > -1 <= x+y>-—-1
(mu) > -1 < x>-1
muy) > -1 «— y>-1

[ ] [ ] [ )
Uz
[ ] [ ] [ )
Ug €
> P S
Up D e
p—— o —o

Figure 5. The fanX and the polyhedrof,

The fanX and the polyhedroi, are shown in Figure 5. Note thg is not
bounded. By Proposition 4.3.3, the lattice point$ef(the dots in Figure 5) give
characters that form a basisfBlo(C?), Ogiy(c2) (D). O
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Example 4.3.5. The fan >, for the Hirzebruch surface?s has ray generators
U =—e+26e, U =6, U3 =€, Uy = —e. The corresponding divisors are
D1, Dy, D3, D4, and Example 4.1.8 implies that the classe®PefandD, are a
basis of C{.73) ~ 7Z2.

Consider the divisoaD; + D», a € Z, and letP, C R? be the corresponding
polyhedron, which is a polytope in this case. A paimt= (x,y) lies in Py if and
only if

(Mmuy) > —a < y>3x—3

(Mup) > -1 = y>-1
(mug) >0 < x>0.
(Mmug) >0 < y<0.

Figure 6 shows:,, together with shaded areas marl&edB, C. These are related

Figure 6. The fanX; and the polyhedr&,

to the polygond>, for a= 1,2, 3 by the equations

P=A
P, =AUB
P; = AUBUC.

Notice that as we increase the liney = %x— ¢ corresponding tai;, moves to the
right and makes the polytope bigger. In fact, you can seethid the normal fan
of the lattice polytopd>, for anya > 3. Fora= 2, we get a lattice polytope,, but

its normal fan is nob;—you can see how the “facet” with inward normal vector
u, collapses to a point d%,. Fora= 1, P; is not a lattice polytope since%ez is a
vertex. O

Chapters 6 and 7 will explain how the geometry of the polybe@, relates to
the properties of the divisd. In particular, we will see that the divisarD; + D,
from Example 4.3.5 immpleif and only if a > 3 since these are the ondys for
which X5 is the normal farP;.
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Example 4.3.6. By Example 4.3.1, the shedfpn (k) can be writtengpn(k Do),
where the divisoDg corresponds to the ray generatgrfrom Example 4.1.6. Itis
straightforward to show that the polyhedrond& k Dy is

0 k<O
P =
kA, k>0,
whereAp, C R" is the standara-simplex. We can think of characters as Laurent
monomialg™ =t .. .t&, wherem= (a,...,a,). It follows that
L(P", Opn(k)) ~ {f € Clty,...,tn] | ded f) < k}.
Thehomogenizatiomf such a polynomial is

F =X f(X1/Xo, -, ¥n/%0) € C[Xo, ..., Xn].
In this way, we get an isomorphism
['(P", Opn(k)) ~{f € C|xo,...,X] | f is homogeneous with dé§) = k}.
The toric interpretation of homogenization will be disasn Chapter 5. O

Example 4.3.7. Let Xp be the toric variety of a full dimensional lattice polytope
P C Mg. The facet presentation 8fgives the Cartier divisobp defined in (4.2.7),
and one checks easily that the polyhedRep is the polytopeP that we began with
(Exercise 4.3.1). It follows from Proposition 4.3.3 that

(Xp,ﬁxp Dp @ C- X
mePNM

Recall from Chapter 2 that the charactar8 for me PN M give the projective
toric varietyXpnv. The divisork Dp gives the polytop&P (Exercise 4.3.2), so that

I'(Xp, O%-(kDp)) @ C-x™
me (kP)NM

In Chapter 2 we proved th&P is very ample fok sufficiently large, in which case
Xp)nm IS the toric varietyXp. So the characterg™ that realizeXp as a projective
variety come from global sections 6. (kDp). In Chapter 6, we will pursue these
ideas when we studgmpleandvery ampleCartier divisors.

Note also that dini’(Xp, O, (k Dp)) gives number of lattice points in multiples
of P. This will have important consequences in later chapters. O

The operation sending &-invariant Weil divisorD C Xy, to the polyhedron
P> € Mg defined in (4.3.2) has the following properties:

e Bip =kR for k> 0.
i PDerIV =P -m

e hHh+F g Po+E.
You will prove these in Exercise 4.3.2. The multit€, and Minkowski sum
P> + P= are defined in §2.2, arfd— mis translation.
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Complete Fans When the fanX is complete, we have the following finiteness
result that you will prove in Exercise 4.3.3.

Proposition 4.3.8. Let Xs; be the toric variety of a complete fanin Ng. Then:
(@) I'(Xy, Ox,,) = C, so the only morphismsyX— C are the constant ones.
(b) Py is a polytope for any J-invariant Weil divisor D on X.

(c) I'(Xs, Ox,, (D)) has finite dimension as a vector space o{efor any Weil
divisor on X%..

The assertions of parts (a) and (c) are true in greater ddgyera X is any
complete variety, theil' (X, 0x) = C, and if & is any coherent sheaf oK, then
dimI'(X,.%#) < oo (see R45 Vol. 2, §VI.1.1 and §VI1.3.4)).

Exercises for §4.3
4.3.1. Prove the assertiof,, = P made in Example 4.3.7.
4.3.2. Prove the properties & — Py listed above.

4.3.3. Prove Proposition 4.3.8. Hint: For part (a), use completerie show thatn = 0
when (m,u,) > 0 for all p. For part (b), assumblz = R" and supposen € B satisfy
|Im|| — oo. Then consider the pointgz: on the spher&@ -1 C R".

4.3.4. Let X be a fan inNg with convex support. ThefE| C Ng is a convex polyhedral
cone with dualX|¥ C Mg.

(a) Prove that>|Y is the polyhedron associated to the diviBoe 0 onXs.

(b) Conclude thal'(Xs:, Oxs) = Bmesyvm € - x™

(c) Use part (b) to prove part (a) of Proposition 4.3.8.

4.3.5. Example 4.3.5 studied divisors on the Hirzebruch surfa€e This exercise will

consider the divisor® = D4 andD’ =D + D, = D, + Da.

(a) Show thab gives the same polygon &%, i.e.,Po = Py.

(b) Since.7% is smooth,D andD’ are Cartier. Compute their respective Cartier data
{Ms}oes,2) and{n, }oes,2)-

(c) Show thaP = Convm, | o € ¥2(2)) and thatP # Conv(m, | o € ¥5(2)).

ThusD andD’ give the same polygon but differ in how their Cartier datates to the
polygon. In Chapter 6 we will use this to prove tldj,; (D) is generated by global sections
while &4 (D’) hasbase points






Chapter 5

Homogeneous Coordinates
on Toric Varieties

85.0. Background: Quotients in Algebraic Geometry
Projective spac®" is usually defined as the quotient
P = (C™\ {0})/C,
whereC* acts onC™?! by scalar multiplication, i.e.,
A-(ag,...,a)) = (Aag, ..., A\an).

The above representation defifi€sas aset makingP" into a variety requires
the notion of abstract variety introduced in Chapter 3. Tlérgoal of this chapter
is to prove that every toric variety has a similar quotienstauction as a variety.

Group Actions Let G be a group acting on a variel. We always assume that
for everyg € G, the map¢y(x) = g- x defines a morphismpg : X — X. When
X = Spec¢R) is affine,¢g : X — X comes from a homomorphisgy, : R— R. We
define thenduced actiorof G on R by

g- f=gg-a(f)
for f € R. In other words(g- f)(x) = f(g~1-x) for all x € X. You will check in
Exercise 5.0.1 this gives an action®fon R. Thus we have two objects:
e The setG-orbitsX /G = {G-x| x € X}.
e The ring of invariant®R® = {f ¢ R|g- f = f forallg € G}.

To makeX /G into an affine variety, we need to define its coordinate rireg, e
need to determine the “polynomial” functions BiG. A key observation is that if

195
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f € RC, then

f(G-x) = f(x)
gives a well-defined functiorf : X/G — C. Hence elements d& give obvious
polynomial functions orX /G, which suggests that

as an affine varietyX /G = Spe¢R®).
As shown by the following examples, this works in some casgédils in others.
Example 5.0.1. Let up = {#+1} act onC? = Spe¢C|s t]), where—1 € uy acts

by multiplication by—1. Note that every orbit consists of two elements, with the
exception of the orbit of the origin, which is the unique fixmmint of the action.

The ring of invariant<C|s, t]*2 = C[s?, st, t?] is the coordinate ring of the affine
toric varietyV (xz— y?). Hence we get a map

® : C?/pup — Spe¢CJst]*?) = V(xz—y?) C C3
where the orbif; - (a,b) maps to(a?,ab, b?). This is easily seen to be a bijection,
so that Spe(C|[s, t]*2) is the perfect way to mak&?/u, into an affine variety.
This is actually an example of the toric morphism induced bgnging the

lattice—see Examples 1.3.17 and 1.3.19. O
Example 5.0.2.Let C* act onC* = SpedC[xy, X2, X3, X4 ), Wherel € C* acts via

\-(ag,a2,83,a4) = (Mag, Aag, A\~ tag, A\ 1ay).
In this case, the ring of invariants is

ClX1,%2, X3, %] = C[X1X3, X2Xa, X1 X4, X2X3]
which gives the map

$ : C*/C* — SpedC[xy, X2, %3,%4)C ) = V(xy—zw) C C*
where the orbitC* - (a1, a2, a3,a4) maps to(a;as, axas, a1a84,a283). Then we have
(Exercise 5.0.2):
e ® is surjective.

e If pe V(xy—zw) )\ {0}, then®~1(p) consists of a singl&€*-orbit which is
closed inC*.

e ®1(0) consists of allC*-orbits contained irC2 x {(0,0)} U {(0,0)} x C2.
Thus®~1(0) consists of infinitely many*-orbits.

This looks bad until we notice one further fact (Exercise .0

e The fixed point 0= C* gives the unique closed orbit mapping to 0 under
If (a,b) # (0,0), then an example of a non-closed orbit is given by

C*-(a,b,0,0) = {(Aa,Ab,0,0) | A e C*}
since limy_o(A\a, Ab,0,0) = 0. However, restricting to closed orbits gives
{closedC*-orbits} ~ V (xy— zw).
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We will see that this is the best we can do for this group action O

Example 5.0.3.Let C* act onC""! = SpecC|[x, ..., Xn]) by scalar multiplication.
Then the ring of invariants consists of polynomials saisdy

f(AX0,..., A1) = f(X0,...,%n)
for all A € C*. Such polynomials must be constant, so that
Clxo,..., %" =C.

It follows that the “quotient” is Spg€), which is just a point. The reason for this
is that the only closed orbit is the orbit of the fixed poirt @™, O

Examples 5.0.2 and 5.0.3 show what happens when there aemoogh in-
variant functions to separa@-orbits.

The Ring of Invariants WhenG acts on an affine variet{ = Spe¢R), a natural
guestion concerns the structure of the ring of invariante doordinate ringris a
finitely generatedC-algebra without nilpotents. Is the same true RS It clearly
has no nilpotents sindg® C R. But is R® finitely generated as @-algebra? This
is related to Hilbert's Fourteenth Problem, which was sdttly a famous example
of Nagata thaR® need notbe a finitely generate@-algebra! An exposition of
Hilbert’s problem and Nagata’s example can be foun®B) Ch. 4].

If we assume thaRC is finitely generated, then Sp@®) is an affine variety
that is the “best” candidate for a quotient in the followirense.

Lemma 5.0.4. Let G act on X= SpecR) such that R is a finitely generated-
algebra, and letr : X — Y = Spe¢R®) be the morphism of affine varieties induced
by the inclusion R C R. Then:

(a) Given any diagram

where¢ is a morphism of affine varieties such thiig- x) = ¢(x) forge G
and x< X, there is a unique morphisg making the diagram commute, i.e.,

Gor =0,
(b) If X isirreducible, then Y is irreducible.
(c) If X is normal, then'Y is normal.

Proof. Suppose thaZ = SpedS) and that¢ is induced by¢* : S— R. Then
#*(S) C RC follows easily from¢(g-x) = ¢(x) for g € G,x € X. Thus¢* fac-
tors uniquely as

SR LR



198 Chapter 5. Homogeneous Coordinates on Toric Varieties

The induced map : Y — Z clearly has the desired properties.

Part (b) is immediate sind&® is a subring oR. For part (c), leK be the field
of fractions ofRC. If a € K is integral overR®, then it is also integral oveR and
hence lies iR sinceRis normal. It follows that € RN K, which obviously equals
RC sinceG acts trivially onK. ThusR® is normal. O

This shows that¥ = Spe¢R®) has some good properties whifi is finitely
generated, but there are still some unanswered questigisas:

e Is7: X — Y surjective?

e DoesY have the right topology? Ideally, we would liké C Y to be open if
and only if7~1(U) C X is open. (Exercise 5.0.3 explores how this works for
group actions on topological spaces.)

e WhileY is the best affine approximation of the quoti&tG, could there be a
non-affine variety that is a better approximation?

We will see that the answers to these questions are all “ya&s8 e work with the
correct type of group action.

Good Categorical Quotientsin order to get the best properties of a quotient map,
we consider the general situation whé&ds a group acting on a varietf and

m: X — Y is a morphism that is constant @iorbits. Then we have the following
definition.

Definition 5.0.5. Let G act onX and letr : X — Y be a morphism that is constant
on G-orbits. Thenr is agood categorical quotienit:
(@) If U C Y is open, then the natural magy(U) — Ox(7—1(U)) induces an
isomorphism
ﬁy(U ) ~ Ox (ﬂfl(U ))G
(b) If W C X is closed andz-invariant, thenr (W) C Y is closed.
(c) If Wi,W, are closed, disjoint, an@-invariant inX, then7 (W) andn (W) are
disjointinY.
We often write a good categorical quotientasX — X //G. Here are some
properties of good categorical quotients.
Theorem 5.0.6.Let7 : X — X //G be a good categorical quotient. Then:
(a) Given any diagram

X »Z
.6

where¢ is a morphism such thai(g-x) = ¢(x) for g€ G and x€ X, there is
a unigue morphism making the diagram commute, i.é.0 ™ = ¢.
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(b) 7 is surjective.

(c) A subset UC X //G is open if and only ifr~1(U) C X is open.

(d) If U C X//G is open and nonempty, themﬂ,l(u) ;7 1(U) — U is a good
categorical quotient.

(e) Given points xy € X, we have

7(X) =7(y) <= G-xNG-y# 0.

Proof. The proof of part (a) can be found i83, Prop. 6.2]. The proofs of the
remaining parts are left to the reader (Exercise 5.0.4). O

Algebraic Actions So far, we have allowe® to be an arbitrary group acting on
X, assuming only that for everyc G, the mapx— g-xis a morphismpg : X — X.
We now make the further assumption tliatis an affine variety. To define this
carefully, we first note that the group GIC) of nx n invertible matrices with
entries inC is the affine variety

GLn(C) = {AeC™"=C" | det(A) # 0}.
A subgroupG C GL,(C) is anaffine algebraic groupf it is also a subvariety of
GLn(C). Examples include GI(C), SL,(C), (C*)", and finite groups.

If Gis an affine algebraic group, then the connected componehe adentity,
denotedG°®, has the following properties (se&g2, 7.3)):

e G°is a normal subgroup of finite index (B.
e G°is an irreducible affine algebraic group.
An affine algebraic groufs acts algebraicallyon a varietyX if the G-action
(9,x) — g-x defines a morphism
GxX—X.
Examples of algebraic actions include toric varieties eitiee torusTy C X acts
algebraically onX. Examples 5.0.1, 5.0.2 and 5.0.3 are also algebraic actions
Algebraic actions have the property thatorbits are constructible sets K.
This has the following nice consequence for good catedagisatients.
Proposition 5.0.7. Let an affine algebraic group G act algebraically on a variety
X, and assume that a good categorical quotientX — X //G exists. Then:
(@) If p € X//G, thenr~1(p) contains a unique closed G-orbit.
(b) 7 induces a bijection

{closedG-orbits inX} ~ X//G.

Proof. For part (a), first note that uniqueness follows immediafeyn part (e) of
Theorem 5.0.6. To prove the existence of a closed orbitih(p), let G° C G be
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the connected component of the identity. Thert(p) is stable unde6°, so we
can pick an orbiG°-x C 7—1(p) such thaiGe - x has minimal dimension.

Note thatGe - x is irreducible sinces® is irreducible, and sinc&° - x is con-
structible, there is a nonempty Zariski open suhsef G° - x such that) C G°-x.
If G°-xis not closed, thefs® - x contains an orbiG° -y # G°-x. Thus

G°y C G°-x\G°-x C G°-x\U.

However,G° - x is irreducible, so that
dim (G°-x\U) <dimGe° -x.

HenceGe -y has strictly smaller dimension, a contradiction. TI&fs x is closed.
If g1,...,0 are coset representatives®@fG°, then

t
G-X:UgiG"-x
i—1

shows thatG - x is also closed. This proves part (a) of the proposition, aartl ()
follows immediately from part (a) and the surjectivity of O

For the rest of the section, we will always assume @& an affine algebraic
group acting algebraically on a varieXy

Geometric Quotients The best quotients are those where points are orbits. For
good categorical quotients, this condition is captured dguiring that orbits be
closed. Here is the precise result.

Proposition 5.0.8. Let 7 : X — X//G be a good categorical quotient. Then the
following are equivalent:
(a) All G-orbits are closed in X.
(b) Given points xy € X, we have
m(X) = 7(y) <= x andy lie in the same G-orbit
(c) = induces a bijection
{G-orbits inX} ~ X //G.

(d) The image of the morphismxGX — X x X defined byg,x) — (g-x,X) is the
fiber product Xxx ;6 X.

Proof. This follows easily from Theorem 5.0.6 and Proposition B.0/Ne leave
the details to the reader (Exercise 5.0.5). O

In general, a good categorical quotient is calledemmetric quotientf it
satisfies the condtions of Proposition 5.0.8. We write a ggdmquotient as
7 : X — X/G since points inX /G correspond bijectively t&-orbits in X.
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We have yet to give an example of a good categorical or geanmgiptient.
For instance, it is not clear that Examples 5.0.1, 5.0.2 afB5atisfy Defini-
tion 5.0.5. Fortunately, once we restrict to the right kifidigebraic group, exam-
ples become abundant.

Reductive Groups An affine algebraic groufs is calledreductiveif its maximal
connected solvable subgroup is a torus. Examples of regugtoups include finite
groups, tori, and semisimple groups such ag(8l).

For us, actions by reductive groups have the following kepprties.
Proposition 5.0.9. Let G be a reductive group acting algebraically on an affine
variety X= Spe¢R). Then:

(a) RC is a finitely generated-algebra.

(b) The morphismr : X — Spe¢R®) induced by R C R is a good categorical
quotient.

Proof. See B3, Prop. 3.1] for part (a) andB, Thm. 6.1] for part (b). d

In the situation of Proposition 5.0.9, we can write S{R¢/G = Spe¢R®).
Examples 5.0.1, 5.0.2 and 5.0.3 involve reductive groupiagon affine varieties.
Hence these are good categorical quotients that have dlegfroperties listed in
Theorem 5.0.6 and Proposition 5.0.7. Furthermore, Exa®mld (the action of
o onC?) is a geometric quotient. This last example generalizeslss.

Example 5.0.10.Given a strongly convex rational polyhedral can& Nx and
a sublatticeN’ C N of finite index, part (b) of Proposition 1.3.18 implies thhét
finite groupG = N /N’ acts orlJ,, n such that the induced map on coordinate rings
is given by

CleY NM] = CleV nM]® C CleV NM).
It follows that ¢ : U, n — U, n is @ good categorical quotient. In faat,is a
geometric quotient since thg-orbits are finite and hence closed. This completes
the proof of part (c) of Proposition 1.3.18. O

Almost Geometric QuotientsLet us examine Examples 5.0.2 and 5.0.3 more
closely. As noted above, both give good categorical quittiddowever:

e (Example 5.0.3) Here we have the quotient
C™1//C* = SpedC|xo, ..., %" ) = SpedC) = {pt}.
So the “good” categorical quotiefit™* — C™1//C* = {pt} is really bad.
e (Example 5.0.2) In this case, the quotient is
7:C*— C*//C* =V (xy—2zw).

LetU =V (xy—2zw)\ {0} andUp =7~ *(U). Thenx|,, :Uo— U is a good cat-
egorical quotient by Theorem 5.0.6, and by Example 5.0#t00of elements
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in Ug are closed irC%. Then7r|UO is a geometric quotient by Proposition 5.0.8,
so thatC*//C* = V(xy— zw) is a geometric quotient outside of the origin.

The difference between these two examples is that the sésordy close to being
a geometric quotient. Here is a result that describes tléaqinenon in general.

Proposition 5.0.11.Let 7 : X — X //G be a good categorical quotient. Then the

following are equivalent:

() X has a G-invariant Zariski dense open subsgsuch that Gx is closed in X
for all x € Ug.

(b) X//G has a Zariski dense open subset U such that, ), : 1 U)—Uis
a geometric quotient.

Proof. GivenUy satisfying (a), thetw = X\ Ug is closed ands-invariant. For
x € Up, the orbitG-x c Up is also closed ané-invariant. These are disjoint,
which impliesw(x) ¢ = (W) sincer is a good categorical quotient. Sincés onto,
we see thaX //G = 7(Ug) Un(W) is a disjoint union. If we set) = 7(Up), then
Uo = 7—1(U). Note also that) is open sincer(W) is closed and Zariski dense
sincel is Zariski dense irX. Thenqﬁ\uo :Up — U is a good categorical quotient
by Theorem 5.0.6, and by assumption, orbits of elementsiare closed irC*
and hence itJy. It follows that¢|uo is a geometric quotient by Proposition 5.0.8.

The proof going the other way is similar and is omitted (Eisx&.0.6). O

In general, a good categorical quotient is callechhnost geometric quotient
if it satisfies the conditions of Proposition 5.0.11. Exampl0.2 is an almost
geometric quotient while Example 5.0.3 is not.

Constructing Quotients Now that we can handle affine quotients in the reductive
case, the next step is to handle more general quotients.islaneseful result.

Proposition 5.0.12.Let G act on X and let : X — Y be a morphism of varieties
that is constant on G-orbits. If Y has an open covetYJ V. such that

7T’ﬂ_—1(va) :ﬂfl(Va) —V,

is a good categorical quotient for evety, thenn : X — Y is a good categorical
guotient.

Proof. The key point is that the properties listed in Definition 5.6an be checked
locally. We leave the details to the reader (Exercise 5.0.7) a

Example 5.0.13.Consider a latticéN and a sublattic&’ C N of finite index, and
let ¥ be a fan inN; = Ng. This gives a toric morphism

¢ : Xo N — XoN-



§5.0. Background: Quotients in Algebraic Geometry 203

By Proposition 1.3.18, the finite grop= N /N’ is the kernel offy, — Ty, so that
G acts onXy, \'. Since

¢ (Uon) =Usne
for o € 3, Example 5.0.10 and Proposition 5.0.12 imply thais a geometric
quotient. This strengthens the result proved in PropasBi8.7. O

It is sometimes possible to construct the quotienXdby G by taking rings
of invariants for a suitable affine open cover. If the locabtignts patch together
to form a separated variety, then the resulting morphism : X — Y is a good
categorical quotient by Proposition 5.0.12. Here are twemges that illustrate
this strategy.

Example 5.0.14.Let C* act onC?)\ {0} by scalar multiplication, wher€? =
Sped¢Clxg,x1]). ThenC?\ {0} =UyUU3, where

Uo = C?\ V(x0) = Spe¢Cx; ™, xl)
Uy = C?\ V(x1) = Spe¢C|xo, X))
UoNU1 = C*\V(xox1) = Spe¢Cxg ™, %))
The rings of invariants are
Clxg %] = Clxa/%o]
Clxo.x™ " = Clxo/x]
Cho txq 1" = Cl(xa/%0) ™.

It follows that theV;, = U;//C* glue together in the usual way to credte Since
C*-orbits are closed ift?\ {0}, it follows that

Pt =(C*\{0})/C*
is a geometric quotient. O
This example generalizes to show that
P" = (C"1\{0})/C"

is a good geometric quotient whéli acts onC™! by scalar multiplication. At
the beginning of the section, we wrote this quotient as areiretic construction.
It is now an algebro-geometric construction.

Our second example shows the importance of being separated.

Example 5.0.15.Let C* act onC?\ {0} by A(a,b) = (Aa, A\~'b). ThenC?\ {0} =
UoUU;, whereUp, U; andUgNU; are as in Example 5.0.14. Here, the rings of
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invariants are
I©

Clxy % Clxoxa]
Clxo, ™" = Clxoxa]
Cho %" = Cl(xoxa) ™.

Gluing togetheV; = U;//C* alongUpNU;//C* gives the variety obtained from
two copies ofC by identifying all nonzero points. This is the non-sepatatariety
constructed in Example 3.0.15.

In Exercise 5.0.8 you will draw a picture of tli& -orbits that explains why the
guotient cannot be separated in this example. O

In this book, we usually use the word “variety” to mean “seged variety”.
For example, when we say that X — Y is a good categorical or geometric quo-
tient, we always assume thdtandY are separated. So Example 5.0.15d¢ a
good categorical quotient. In algebraic geometry, mostaijms on varieties pre-
serve separatedness. Quotient constructions are one f#whexceptions where
care has to be taken to check that the resulting variety isratg.

Exercises for §5.0
5.0.1. Let G act on an affine variet{ = Spe¢R) such thatyy(x) = g-x is a morphism for
allge G.

(@) Show thag- f = qS;,l(f) defines an action b on R. Be sure you understand why
the inverse is necessary.

(b) Theevaluation map F X — C is defined by(f,x) — f(x). Show that this map is
invariant under the action @ onR x X given byg- (f,x) = (g- f,g-x).
5.0.2. Prove the claims made in Example 5.0.2.

5.0.3. Let G be a group acting on a Hausdorff topological space, and |& be the set of

G-orbits. Definer : X — X/G by w(x) = G-x. Thequotient topologyn X /G is defined

by saying that) C X /G is open if and only ifr=*(U) C X is open.

(a) Prove thatifX/G is Hausdorff, then th&-orbits are closed subsetsXf

(b) Prove that v C X is closed and-invariant, thenr(W) C X /G is closed.

(c) Prove that ifWg, W, are closed, disjoint, an@-invariant inX, thenw (W) andx (W)
are disjoint inX /G.

5.0.4. Prove parts (b), (c), (d) and (e) of Theorem 5.0.6. Hint fat fi&): Part (a) of Def-
inition 5.0.5 implies that’x (V) injects intoOx (7 ~*(U)) for all open set&) C X//G.
Use this to prove that(X) is Zariski dense iXX //G. Then use part (b) of Definition 5.0.5.

5.0.5. Prove Proposition 5.0.8.

5.0.6. Complete the proof of Proposition 5.0.11.

5.0.7. Prove Proposition 5.0.12.

5.0.8. Consider theC* action onC?\ {0} described in Example 5.0.15.
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(a) Show that with two exceptions, tfi&-orbits are the hyperbolasx, = a, a# 0. Also
describe the two remaining*-orbits.

(b) Give an intuitive explanation, with picture, to showtttize “limit” of the orbitsx;x; =
aasa — 0 consists of two distinct orbits.

(c) Explain how part (b) relates to the non-separated gobtienstructed in the example.

5.0.9. Give an example of a reductiv@-action on an affine varietX such thatX has
a nonemptyG-invariant affine open sdf C X with the property that the induced map
U//G— X//Gis not an inclusion.

5.0.10. Let a finite groupG act onX. Then a good categorical quotient X — X //G
exists since finite groups are reductive. Explain whg a geometric quotient.

85.1. Quotient Constructions of Toric Varieties
Let Xs; be the toric variety of a fal in Ng. The goal of this section is to construct
Xs; as an almost geometric quotient
Xy~ (C"\2)//G
for an appropriate choice of affine spack exceptional seZ C C", and reductive

groupG. We will use our standard notation, where each ¥:(1) gives a minimal
generatou, € pN N and aTy-invariant prime divisoD, C Xs.

No Torus Factors Toric varieties with no torus factors have the nicest qunbtie
constructions. Recall from Proposition 3.3.9 thathas no torus factors whe¥k
is spanned by, p € ¥(1), and when this happens, Theorem 4.1.3 gives the short
exact sequence

0—M-—,ZD, — Cl(Xg) — 0,

wherem € M maps to divx™) = > ,(mu,)D, and C[Xs) is the class group
defined in §4.0. We use the convention that in expressiorts asg ,, >, and
[1,. the indexp ranges over alp € X(1).

We write the above sequence more compactly as
(5.1.1) 0— M — 7z — CI(X5) — 0.
Applying Homy,(—,C*) gives

1 — Homy(Cl(Xs), C*) — Homy (2 C*) — Homy (M, C*) — 1,

which remains a short exact sequence since #emC*) is left exact andC* is
divisible. We have natural isomorphisms

Homy (ZEW,C*) ~ (C*)=®
Homg(M,C*) ~ Ty,
and we define the group by
G = Homy(Cl(Xx),C™).
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This gives the short exact sequence of affine algebraic group

(5.1.2) 1—G— (C*)E(l) — In— 1.

The Group G The groupG defined above will appear in the quotient construction
of the toric varietyXs,. For the time being, we assume tbat has no torus factors.

The following result describes the structure®find gives explicit equations
for G as a subgroup of the torg€*)>®.
Lemma5.1.1. Let GC (C*)*@ be as in(5.1.2) Then:
(@) Cl(Xy) is the character group of G.

(b) Gisisomarphic to a product of a torus and a finite abelian groln particular,
G is reductive.

(c) Given abasisg...,e, of M, we have
G={(t,) € (C*)*D| Hptém’“”> =1forallme M}
= {(t,) € (C)=V | [ 4\** =1for 1<i<n}.

Proof. Since C(Xx) is a finitely generated abelian group(&4) ~ Z* x H, where
H is a finite abelian group. Then

G = Homy (CI(Xs),C*) ~ Homy(Z* x H,C*) ~ (C*)* x Homyg(H,C*).

This proves part (b) since HofH, C*) is a finite abelian group. For part (a), note
thata € Cl(Xy) gives the map that sends G = Homy (Cl(Xy),C*) tog(a) € C*.
Thus elements of CKy,) give characters o, and the above isomorphisms make
it easy to see that all characters@®#trise this way.

For part (c), the first description & follows from (5.1.2) sinceM — Z>(®
is defined byme M+ ((m,u,)) € Z*(), and the second description is an easy
consequence of the first. O

Example 5.1.2. The ray generators of the fan f&" areup = — > ;&,u; =
€1,...,Un = &, By Lemma5.1.1(ty,...,ty) € (C*)™lies inGif and only if

témﬁ&f---*%“im’eﬁ ._.tr(]m,en> -1
for all me M = Z". Takingmequal toey, ..., €, we see thaG is defined by
b= =tg'ta=1

Thus
G={(\...,\) | AxeC"}~C",

which is the action of£* on C™* given by scalar multiplication. O
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Example 5.1.3. The fan forP! x P! has ray generatons; = e;,u = —€y,Us =
&,Us = —€ in N =Z2 By Lemma 5.1.1{t3,ts,t3,t) € (C*)* lies in G if and
only if

t]<-m791> t§m7_el> tém7e2> t§m7_92> =1

for all me M = Z2. Takingm equal toe;, &>, we obtain
it ' =ttt =1

Thus

G = {(1 ;) | p, A € C*} = (C)2 0
ExamPIe 5.1.4.Leto = Condde — ezfz) C R?, which gives the rational normal
coneCy. Example 4.1.4 shows that @) ~ Z/dZ, so that

G =Homy(Z/dZ,C*) ~ ug,
whereuq C C* is the group ofdth roots of unity. To see how acts onC?, one
uses the ray generatans = de; — e, andu, = & to compute that

G={(¢.¢) ¢ =1} ~ pg

(Exercise 5.1.1). This shows th@tcan have torsion. %

The Exceptional Set For the quotient representation X§, we have the grouf®
and the affine spacg™™. All that is missing is the exceptional s2tC C*™ that
we remove fromC>() before taking the quotient b@.

One useful observation is th&tandC> depend only or(1). In order to
getXs;, we need something that encodes the rest of th&fave will do this using
a monomial ideal in the coordinate ring 6. Introduce a variable, for each
p € X(1) and let

S=Clx, | p € S(1)].

Then Spe(S) = C*M. We callSthetotal coordinate ringof Xs.

For each cone € X, define the monomial

= 1] %
p¢o(1)
Thusx? is the product of the variables corresponding to rays net ifihen define
theirrelevant ideal
BX)=(X]oceX)CS

A useful observation is tha is a multiple ofx® wheneverr < o. Hence, if¥max
is the set of maximal cones &f, then

B(X) = (X% | 0 € Zmax)-

Furthermore, one sees easily that the minimal generatd@gXof are precisely the
x? for o € ¥max. Hence, once we hawg(1), B(X) determinesS uniquely.
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Now define
Z(x)=V(B(x)) cC*W.
The variety of a monomial ideal is a union of coordinate sabspg. FoB(X), the

coordinate subspaces can be described in terrpamoftive collections which are
defined as follows.

Definition 5.1.5. A subsetC C ¥(1) is aprimitive collectionif:
@ CZo(1) forall o€ X.
(b) For every proper subs€t C C, there iso € ¥ withC' C o(1).

Proposition 5.1.6. The ZX) as a union of irreducible components is given by

2(%)=JVx [ p€0)
C

where the union is over all primitive collectionsCX(1).

Proof. It suffices to determine the maximal coordinate subspaceticed in
Z(X). Suppose thaV(X,,,...,X,) € Z(X) is such a subspace and takes X.
Sincex? vanishes orZ(X) and (X, ,. .., X,s) is prime, the Nullstellensatz implies
X% is divisible by somex,, i.e., pi ¢ o(1). It follows thatC = {p1,...,ps} sat-
isfies condition (a) of Definition 5.1.5, and condition (b)ldavs easily from the
maximality ofV (x,,,...,X,). HenceC is a primitive collection.

Conversely, every primitive collectio@ gives a maximal coordinate subspace
V (X, | p € C) contained inZ(%), and the proposition follows. O

In Exercise 5.1.2 you will show that the algebraic analog r@jpBsition 5.1.6
is the primary decomposition

B(S) =% [ p€C).

c
Here are some easy examples.

Example 5.1.7. The fan forP" consists of cones generated by proper subsets of
{uo,...,Un}, whereup,...,u, are as in Example 5.1.2. Laetgeneratey, 0<i <n,
and letx be the corresponding variable in the total coordinate rinvg. compute
Z(¥) in two ways:
e The maximal cones of the fan are givendyy= Con€uy, ..., U;,...,uy). Then
X% = x;, s0 thatB(X) = (Xo,...,%n). Hencez (%) = {0}.
e The only primitive collection ig{po,...,pn}, SOZ(X) = V(xo,...,%) = {0}
by Proposition 5.1.6. O

Example 5.1.8. The fan forP! x P! has ray generatong = ej,Up = —€;,Uz =
e&,Us = —€. See Example 3.1.12 for a picture of this fan. Eachives a rayp;
and a variables. We computeZ(X) in two ways:
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e The maximal cone Cortes, us) gives the monomiakyxs, and similarly the
other maximal cones give the monomi&{gy, X1 X3, XoX3. Thus
B(X) = (XoXa, X1 X4, X1%3, X2X3)
and one checks that(3) = {0} x C2UC? x {0}.
e The only primitive collections arép1,p2} and{ps, pa}, so that
Z(¥) = V(x1,%) UV (X3, %) = {0} x C>2UC? x {0}
by Proposition 5.1.6. Note also thB(>) = (x1,X%2) N (X3,X4). O

A final observation is thatC*)>() acts onC*™® by diagonal matrices and
hence induces an action @™ \ Z(¥). It follows thatG C (C*)*(® also acts on
C*M\ Z(x2). We are now ready to take the quotient.

The Quotient Construction To represeniXs, as a quotient, we first construct a
toric morphismC*® \ Z(%) — Xs. Let{e, | p € ¥(1)} be the standard basis of
the latticeZ>(. For eachr € ¥, define the cone

& =Conde, | p € 0(1)) CR*D,
It is easy to see that these cones and their faces form a fan

> = {r |7 =5 for somes € ¥}
n (z*M)g = R*D), This fan has the following nice properties.

Proposition 5.1.9. LetY be the fan defined above. Then:
(a) C*M\ Z(%) is the toric variety of the fai.
(b) The map g+ u, defines a map of lattice&>") — N that is compatible with
the fansy in R and ¥ in Ng.
(c) The resulting toric morphism
7:C¥M\ Z(8) — X5

is constant on G-orbits.

Proof. For part (a), let, be the fan consisting of Cof®, | p € (1)) and its
faces. Note thak is a subfan objo SlnceEo is the fan ofC*®, we get the
toric variety ofE by takingC*® and then removing the orbits corresponding to
all cones mEo\E By the Orbit-Cone Correspondence (Theorem 3.2.6), this is
equivalent to removing the orbit closures of the minimahetats ofEO\E. But
these minimal elements are precisely the primitive cabbestC C >(1). Since the
corresponding orbit closure ¥(x, | p € C), removing these orbit closures means
removing

= Vx| peC).
C
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For part (b), definer : Z*M — N by 7(e,) = u,. Since the minimal generators
of o € ¥ are given by, p € (1), we haverr(c) = o by the definition ofc.
HenceT is compatible with respect to the falisand .

The map of tori induced by is the map(C*)* — Ty from the exact se-
quence (5.1.2) (you will check this in Exercise 5.1.3). Hgritg € G C (C*)>(
andx e C*M\ z(%), then

m(9-X) =m(g) - m(X) = m(x),
where the first equality holds by equivariance and the seboldb sinceG is the
kernel of(C*)*(® — Ty. This proves part (c) of the proposition. O

In Exercise 5.1.4 you will prove the following lemma, whiclillvbe used in
the proof of the quotient construction.

Lemma 5.1.10. Assume that V is an affine toric variety, not necessarily @abrm
with torus T. Given a poinp €V, there is a point g¢ T and a one-parameter
subgroup) : C* — T such thatp = lim;_g A(t)q. O

We can now give the quotient construction6f.

Theorem 5.1.11.Let X be a toric variety without torus factors and consider the
toric morphismr : ¥\ Z(2) — Xs; from Proposition 5.1.9. Then:

(a) 7 is an almost geometric quotient for the action of GGnY \Z(%). Thus
X5 ~ (C*D\ (%)) //G.

(b) 7 is a geometric quotient if and only i is simplicial.

Proof. We begin by studying the map
(5.1.3) a1, : 7 HUy) — U,

for o € X. First observe that if,o € X, then7g (7) C o is equivalent tor < o.
It follows thatw=1(U,,) is the toric variety; of & = Conde, | p € o(1)). This
shows that (5.1.3) is the toric morphism

e Uz — Uy,

where for simplicity we writer,, instead ofnyﬂ_l(ua).

Our first task is to show that, is a good categorical quotient. SinGeis
reductive, Proposition 5.0.9 reduces this to showing tmattapr on coordinate
rings induces an isomorphism

(5.1.4) C[U,] ~ C|U;]®.

The mapr can be described as follows:
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e ForUs;, the coner gives the semigroup
5Nz = {(a,) € Z*Y |a, > 0 forall p € o(1)}.
Hence the coordinate ring tf; is the semigroup algebra
C[Us] =C[I1,%’ |a, > 0forallp € o(1)] =S,

whereS, is the localizatiorS= C[x, | p € %(1)] atx” = [] 1) Xo-
e ForU,, the coordinate ring is the usual semigroup algebia’ N M|.
e The map7 : Z*(M — N dualizes to the map — Z>1 sendingme M to

((mu,)) € Z=). It follows thatr}: : Clo¥ NM] — S is given by

me (™ =TT, %™

Note that(m,u,) > 0 for all p € o (1), so that the expression on the right really
liesinSs.

Thusr* can be writtenr* : C[oc¥ NM] — S.s, and sincer, is constant oiG-orbits,

m factors as

CleYNM] — (SX&)G CSe.
The mapr, has Zariski dense image t, sincer,((C*)>®) = Ty by the

exact sequence (5.1.2). It follows tha} is injective. To show that its image is
(S+)C, takef € S.» and write it as

f= anxa
a

where eachx® =[], x,” satisfiesa, > 0 for all p € o(1). Thenf is G-invariant if
and only if for allt = (t,) € G, we have

Z CaX? = Z Cat®a.
a a

Thus f is G-invariant if and only ift2 = 1 for all t € G wheneverc, # 0. The
mapt — t? is a character oiG and hence is an element of its character group
Cl(Xx) (Lemma 5.1.1). This character is trivial whep+# 0, so that by (5.1.1), the
exponent vectoa = (a,) must come from an elemente M, i.e.,a, = (m,u,) for

all p € ¥(1). Butx® € Si5, which implies that

(mu,) =a,>0 forallpeo(l).

Henceme oV NM, which implies thatf is in the image ofr*. This proves (5.1.4).
We conclude that, is a good categorical quotient.

We next follow ideas from§3, Prop. 12.1] to prove that

(5.1.5) . : Us — U, is a geometric quotient=> ¢ is simplicial.
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First suppose that is simplicial. By Proposition 5.0.8, it suffices to show that
G-orbits are closed ib;. Let G° C G be the connected component of the identity.
SinceG° has finite index irG, it suffices to show thaB°-orbits are closed ib;.

Take p € U; andp € G° - p, where the closure is taken ;. Note that
Ge°- p is an affine toric variety, possibly nonnormal, with torlis~ G°/Gg. By
Lemma 5.1.10, there at€ : C* — T andq € T such thafp = lim{_o\' (t)q - p.
Lifting these toG° gives a one-parameter subgroupC* — G° and a poinfj e G°
such that

(5.1.6) b:tlin% A(t)g- p.

Using G° C (C*)*®, we can write\(t) = (t%) for exponents, € Z. Since\ is
a one-parameter subgroup®fwe have
(5.1.7) >3, =0.
This follows easily from Lemma 5.1.1 (Exercise 5.1.5). Wpt= (p,), p= (P,),
andg = (q,). Then (5.1.6) implies

P, = !mtapqp. Pp-

Sincep,p € Uz andq € G°, their pth coordinates are nonzero fprz o(1). Then
the above limit implies, = O for thesep’s, so that (5.1.7) becomes

2 peo(1) @y = 0.

But ¢ is simplicial, which means that the,, p € (1), are linearly independent.
Hencea, = 0 for all p, so that) is the trivial one-parameter subgroup. Then (5.1.6)
impliesp=g- p € G°- p. We conclude tha° - pis closed inJs;.

For the other implication of (5.1.5), suppose that 3 is non-simplicial. Then
there is arelatior) _ (1) &, U, = 0 wherea, € Z anda, > 0 for at least one. If
we seta, = 0 for p ¢ o(1), then the one-parameter subgroup

At) = (t%) € (C7)"

is a one-parameter subgroup®by Exercise 5.1.5. Definp= (p,) € Uz by

1l a,>0
P, =
0 a,<0

and consider lim_oA(t) - p. The limit exists inC>® sincep, = 0 for a, < 0.
Furthermore, ifp ¢ (1), thepth coordinate of\(t) - pis 1 for allt, so that the limit
P=Ilimi_oA(t)- pliesinUz. Since there igg € (1) with a,, > 0, we have:

¢ Since thepgth coordinate of is nonzero, the same is true for all@f p.

e Sincea,, > 0, thepoth coordinate of = lim;_g A(t) - p is zero.

ThenG- pis not closed ifJ; since its Zariski closure contaifisc Uz \ G- p. This
shows thatr,, is not a geometric quotient and completes the proof of (5.1.5
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We can now prove the theorem. Since the maps (5.1.3) are gedarical
quotients, the same is true far: C*() \ Z(X) — Xs. by Proposition 5.0.12. To
prove part (), leE’ C X be the subfan of simplicial cones Bf ThenXs: is open
in Xs, and sincex’(1) = ¥(1), Xy and Xy, have the same total coordinate riSg
and same grouf®. In Exercise 5.1.5, you will show that

(5.1.8) 7 (Xg) =C¥IN\Z() = [ ] Uz

oey’
As above,r| 1y ) :mH(Xs) — Xy is a good categorical quotient, ang is
a geometric quotient for eache Y’ by (5.1.5). It follows easily thaﬁ'lﬂ—l(le)
is a geometric quotient, and then Proposition 5.0.11 impiat7 is an almost
geometric quotient. This argument also implies thais a geometric quotient

when X is simplicial, which proves half of part (b). The other haffmart (b)
follows from (5.1.5). The proof of the theorem is now comelet a

One nice feature of the quotieXt = (C*M\ Z(X))//Gis that it is compatible
with the tori, meaning that we have a commutative diagram

Xg = (C*N\Z(%))//G
1 1
W~ (CH*V/G

where the isomorphism on the bottom comes from (5.1.2) amdéhtical arrows
are inclusions.

Examples Here are some examples of the quotient construction.

Example 5.1.12.By Examples 5.1.2 and 5.1.IP"" has quotient representation
P"= (C™\{0})/C,

whereC* acts by scalar multiplication. This is a geometric quotiginice Y. is

smooth and hence simplicial. O

Example 5.1.13.By Examples 5.1.3 and 5.1.B! x P! has quotient representation
P! x Pt = (C*\ ({0} x C2UC? x {0})) /(C*)?,

where(C*)? acts via(i1, \) - (a, b, ¢,d) = (ua, ub, Ac, Ad). This is again a geometric
guotient. O

Example 5.1.14.Fix positive integersyo,...,q, with gcd(qp, ...,q,) = 1 and let
N be the latticeZ"1/Z(qp, . ..,qn). The images of the standard basigZi* give
primitive elementsly, . .., Uy € N satisfyinggoup + - - - + gnun = 0. Let X be the fan
consisting of all cones generated by proper subse{sof. ., u,}.

As in Example 3.1.17, the corresponding toric variety isadedP(dp, ... ,0n).
Using the quotient construction, we can now explain why ihisalled a weighted
projective space.
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We haveC*( = C™1 sinceX: hasn+ 1 rays, an& (%) = {0} by the argument
used in Example 5.1.7. It remains to compGte (C*)™2. In Exercise 4.1.5, you
showed that the maps € M — ((m,up),...,(m,un)) € Z™?! and (ay,...,a,) €
ZMY s aggg + - - - + angn € Z give the short exact sequence

(5.1.9) 0—M—z" 70

This shows that the class groupZs Note also thag € Z"1 maps tog € Z. In
Exercise 5.1.6 you will compute that

G={({t%, ... t"|teC*} ~C*
This is the action of* on C™** given by
t-(Uo,...,Un) = (t%up,...,t%up).

SinceX is simplicial (every proper subset @i, . .., un} is linearly independent in
Ngr), we get the geometric quotient

P(Cp,.--,an) = (C"H\ {0})/C".
This gives the set-theoretic definition Bfqp, . ..,qs) from §2.0 and also gives its
structure as a variety since we have a geometric quotient. O

Example 5.1.15.Consider the cone = Condey, e, e + €3, +e3) C R3. To
find the quotient representation @, we label the ray generators as

U =86, Ug=6+€3 U3=€, Uy =€ +6€3.
ThenC*W = C* andZ(%) = 0 sincex’ = 1. To determine the grou C (C*)%,
note that the exact sequence (5.1.1) becomes
0—7Z°—7*—7—0,
where(ay,ap,a3,a4) € Z* — a1 +ap — ag — a4 € Z. This makes it straightforward
to show that
G={X2 I AxhH|rec ~cCn
Hence we get the quotient presentation
U, = C*//C*.

In Example 5.0.2, we gave a naive argument that the quotiaatfxy — zw). We
now see that the intrinsic meaning of Example 5.0.2 is theieoibconstruction of
U, given by Theorem 5.1.11. This example is not a geometriciguiosinces is
not simplicial. O

Example 5.1.16.Let Blo(C?) be the blowup ofC? at the origin, whose falt is
shown in Figure 1 on the next page. By Example 4.1.5BG(C?)) ~ Z with
generatofD4] = [D2] = —[Dg|. HenceG = C* and the irrelevant ideal B(X) =
(x,y). This gives the geometric quotient

Blo(C?) ~ (C*\ (C x {0,0})) /C*,
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Py Po

Figure 1. The fanX for the blowup ofC? at the origin

where theC*-action is given by\ - (t,x,y) = (A7, Ax, \y).
We also haveC[t,x,y]®" = C|tx,ty]. Then the inclusion
c3\(Ccx{o,0}) cc?
induces the map on guotients
¢ : Blo(C?) ~ (C%\ (C x{0,0})) /C* — C*//C* ~C?,
where the final isomorphism uses
C3//C* = SpedClt,x,y|C") = SpecCltx,ty]).
In terms of homogeneous coordinatest,x,y) = (tx,ty). This map is the toric
morphism B(C?) — C2? induced by the refinement of Cofug, uy) given by..

The quotient representation makes it easy to see wiyCB) is the blowup of
C? at the origin. Given a point of B{C?) with homogeneous coordinatésx, y),
there are two possibilities:

e t #£ 0, in which casd - (t,x,y) = (1,tx,ty). This maps totx,ty) € C? and
is nonzero since,y cannot both be zero. It follows that the part ob&L?)
wheret # 0 looks likeC?\ {0,0}.

e t =0, in which casg0,x,y) maps to the origin irC2. Since\ - (0,x,y) =
(Ax, \y) andx,y cannot both be zero, it follows that the part of &) where
t = 0 looks likeP?.

This shows that B(C?) is a built fromC? by replacing the origin with a copy
of P1, which is called theexceptional locus E SinceE = ¢~1(0,0), we see that
& : Xs; — C? induces an isomorphism

Blo(C?)\ E ~ C?\ {(0,0)}.
Note also thak is the divisorDg corresponding to the ray. You should be able
to look at Figure 1 and see instantly tiizf ~ P2.

We can also check that lines through the origin behave pipp@onsider the
line L defined byax+ by = 0, where(a,b) # (0,0). When we pull this back to
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Blo(C?), we get the subvariety defined by
a(tx) + b(ty) = 0.

This is thetotal transformof L. It factors ag(ax+ by) = 0. Note that = 0 defines
the exceptional locus, so that once we remove this, we getuhe in Bh(C?)
defined byax+ by = 0. This is theproper transformof L, which meets the excep-
tional locusE at the point with homogeneous coordinat@s-b,a), corresponding
to (—b,a) € PL. In this way, we see how blowing up separates tangent diresti
through the origin. O

The General CaseSo far, we have assumed th&t has no torus factors. When
torus factors are presendy, still has a quotient construction, though it is no longer
canonical.

Let Xy, be a toric variety with a torus factor. By Proposition 3.318 ray
generatorsl,, p € 3(1), span a proper subspaceNyf. Let N’ be the intersection
of this subspace withl, and pick a complememt” so thatN = N'®N”. The cones
of ¥ all lie in N and hence give a fax’ in N. As in the proof of Proposition 3.3.9.
we obtain

Xy = Xsv v X (C*)f
whereN” ~ Z'. Theorem 5.1.11 applies ¥ ' sinceu,, p € ¥'(1) = 3(1), span
N by construction. Note also th&(>') = B(X) andZ(X') = Z(X). Hence
X = (C¥WN\Z(2))//G.
It follows that
X~ Xsr % (CF)f
(5.1.10) ~ ((C¥W\Z(%))//G) x (C*)'
~ (€D x (€ (Z(E) % (C))) /G,

In the last line, we use the trivial action & on (C*)". You will verify the last
isomorphism in Exercise 5.1.7.

We can rewrite (5.1.10) as follows. Usifi@*)" = C" \ V(x3--- X ), we obtain
(C™W > €N\ (Z(E) x (C)) = CHIHN\Z' (),

where C*W+" = ¢ % C" and Z/(2) = (Z(X) x C) U (CZD x V(x--- % )).
Hence the quotient presentationXf is the almost geometric quotient
(5.1.11) Xs; =~ (C¥DH\ Z'(%2)) //G.

This differs from Theorem 5.1.11 in two ways:

e The representation (5.1.11) is non-canonical since itniépen the choice of
the complemeni”.
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e Z/(X) containsV(x; ---% ) x C*Y and hence has codimension 1GF M+,
In constrastZ(X) always has codimensior 2 in c=® (this follows from
Proposition 5.1.6 since every primitive collection haseaist two elements).

In practice, (5.1.11) is rarely used, while Theorem 5.1s14 ¢ommon tool in toric
geometry.

Exercises for §5.1
5.1.1. In Example 5.1.4, verify carefully th& = {(¢,{) | ¢ € pa}-

5.1.2. Prove thaB(X) = (X, | p € C), where the intersection ranges over all primitive
collectionsC C £(1).

5.1.3. In Proposition 5.1.9, we defingd: Z>® — N, and in the proof we use the map of
tori (C*)>® — Ty induced byr. Show that this is the map appearing in (5.1.2).

5.1.4. This exercise will prove Lemma 5.1.10. In parts (a) and (l8,consider a normal
affine toric varietyd, and a poinp € U,. By Theorem 3.2.6, there is a face< o such
thatp € O(r) CU, CU,. Also takeu € Relint(m) N N.

(&) Prove lim_oAY(t) = v,, wherevy, € O(7) is the distinguished point defined in §3.2.
Hint: Proposition 3.2.2.

(b) Findg e Ty such that lin_,o AY(t)g = P. Hint: Ty acts transitively oiO(7).

(c) Prove Lemma 5.1.10. Hint: Léi, — V be the normalization map. Then apply
Theorem 3.A.3.

5.1.5. This exercise is concerned with the proof of Theorem 5.1.11.

(a) Prove that a one-parameter subgra(p = (t%) € (C*)>@ takes values i if and
only if Zp a,u, = 0. Hint: Use Lemma 5.1.1. You can give a more conceptual proof
by taking the dual of (5.1.1).

(b) Prove (5.1.8) and conclude that the quotient constyoaf Xy is the mapr| -1y
P}
77 1(Xsy) — X used in the proof of Theorem 5.1.11.
5.1.6. Show that the groufs in Example 5.1.14 is given b§ = {(t%,... t%) |t € C*}.
Hint: Pick integersy such thaf " big = 1. Given(to,...,t,) € G, sett = [[[_,t*. Also
note that ifey, ..., €, is the standard basis @2, thenqgie; — gje € Z"*! maps to 0= Z
in (5.1.9).

5.1.7. Let X be a variety with trivialG action. Prove thatX x Uz)//G ~ X x U, and use
this to verify the final line of (5.1.10).
5.1.8. Consider the usual faxi for P2 with the latticeN = {(a,b) € Z2 | a+ b= 0 modd},
whered is a positive integer.
(a) Prove that the ray generators age= (d,0), u, = (0,d) and
_ J(=d,—d) d odd
] (=d/2,—d/2) deven
(b) Prove that the dual lattice M = {(a/d,b/d) | a,b € Z, a— b= 0 modd}.
(c) Prove that GiXs;) = Z & Z/dZ (d odd) orZ & Z/3Z (d even).

R
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(d) Compute the quotient representatiorXef
5.1.9. Find the quotient representation of the Hirzeburch surf&gén Example 3.1.16.

5.1.10. Prove thaG acts freely orC >V \ Z(%) when the fark is smooth. Hint: Letr € .
and suppose that= (t,) € G fixesu = (u,) € Us. Show that, =1 for p ¢ o and then
use Lemma 5.1.1 to show thigt= 1 for all p.

5.1.11. Prove thaG acts with finite isotropy subgroups @™ \ Z(3) when the fart is
simplicial. Hint: Adapt the argument used in Exercise 51.1

5.1.12. Prove that < codimZ(X)) < |X(1)|. WhenX is a complete simplicial fan, a
stronger result states that either
(@) 2<codimZ(x)) < [3dimXs | +1, or
(b) |2(1)] =dim Xy +1 andZ(X) = {0}.
This is proved in 19, Prop. 2.8]. See the next exercise for more on part (b).
5.1.13. Let ¥ be a complete fan such thgi(1)| = n+ 1, wheren = dim Xs. Prove that
there is a weighted projective spaB&y,...,qn) and a finite abelian groud acting on
P(qp, .- .,0n) such that

Xs: ~ P(qp,...,0n)/H.
These are calletbke weighted projective spacis[60] and [167. Also prove that the
following are equivalent:
(a) Xy is a weighted projective space.
(b) Cl(Xs) ~Z.
(c) Nis generated by, p € £(1).
Hint: Label the ray generators,...,u,. First show that: is simplicial and that there
are positive integersp,...,0n satisfyingzi”:oqi u = 0 and gcdap,...,q,) = 1. Then
consider the sublattice & generated by the; and use Example 5.1.14. You will also
need Proposition 3.3.7. If you get stuck, s&8,[Lem. 2.11].

5.1.14. In the proof of Theorem 5.1.11, we showed that a non-simgllwbne leads to a
non-closedG-orbit. Show that the non-close@-orbit exhibited in Example 5.0.2 is an
example of this construction. See also Example 5.1.15.

5.1.15. Example 5.1.16 gave the quotient construction of the blowfuppe C2 and used
the quotient construction to describe the properties obtbeup. Give a similar treatment
for the blowup ofC" C C" using the star subdivision described in §3.3.

85.2. The Total Coordinate Ring

In this section we assume thét is a toric variety without torus factors. lItstal
coordinate ring

S=CIx, | p € 2(1)]
was defined in §5.1. This ring gives™(") = Spe¢S) and contains the irrelevant
ideal

B(X)=(x’|ocex)
used in the quotient construction ¥f;. In this section we will explore how this
ring relates to the algebra and geometrygf
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The Grading An important feature of the total coordinate riSgs its grading by
the class group CKx). We have the exact sequence (5.1.1)

0—M— 27" — CI(Xs) — 0,

wherea = (a,) € Z=() maps to the divisor clasgy ,a,D,] € Cl(Xs). Given a
monomialx® = [, € S, define its degree to be

degx?®) = [3-,a,D,] € Cl(Xs).
For 3 € Cl(Xy), we letS; denote the corresponding graded piec&.of

The grading orBis closely related to the group = Homy(Cl(Xx),C*). Re-
call that C[Xy,) is the character group @, where as usuak € Cl(Xy) gives the
charactery” : G — C*. The action ofG on C*® induces an action o8with the
property that giverf € S we have
52.0) feS; « g-f=x (g ) fforallge G

o — f(g-X) =x?(g) f(x) forallge G, xe C=®
(Exercise 5.2.1). Thus the graded pieceSafe the eigenspaces of the action of
GonS We say thaff € Sz is homogeneousf degrees.

Example 5.2.1.The total coordinate ring df" is C|xo, . ..,Xs]. By Example 4.1.6,
the mapZ™?! — Z = CI(P") is (ag,...,a8n) — @+ -+ an. This gives the grad-
ing on C|xg,...,X)] where each variablg has degree 1, so that “homogeneous
polynomial” has the usual meaning.

In Exercise 5.2.2 you will generalize this by showing that thtal coordi-
nate ring of the weighted projective spae@p,...,0n) is C[xo,...,Xn|, where the
variablex; now has degreg;. Here, “homogeneous polynomial” means weighted
homogeneous polynomial. O

Example 5.2.2. The fan forP" x P™ is the product of the fans &" andP™, and
by Example 4.1.7, the class group is

CI(P" x P™) ~ CI(P") x CI(P™) ~ Z2.
The total coordinate ring i€[xo, ..., %n, Yo, - - - , Ym|, Where
degx) = (1,0) degy;)=(0,1)

(Exercise 5.2.3). For this ring, “homogeneous polynommé€ans bihomogeneous
polynomial. O

Example 5.2.3. Example 5.1.16 gave the quotient representation of the ugow
Blo(C?) of C2 at the origin. The fart of Blo(C?) is shown in Example 5.1.16 and
has ray generators, u;, Up, corresponding to variablésx, y in the total coordinate
ring S= C[t,x,y]. Since C[Blo(C?)) ~ Z, one can check that the grading 8is
given by

degt) = —1 and de@x) =deqy) =1
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(Exercise 5.2.4). Thus total coordinate rings can have selsraents of positive
degree and other elements of negative degree. O

The Toric Ideal-Variety CorrespondenceFor n-dimensional projective spad@®’,
a homogeneous ideblC C[xo,...,X,| defines a projective variety () C P". This
generalizes to more general toric varietigsas follows.

We first assume that is simplicial, so that we have a geometric quotient
7:C*M\ Z(%) — Xy

by Theorem 5.1.11. Givep € Xx, we say a poink € 7—(p) giveshomogeneous
coordinatesfor p. Sincer is a geometric quotient, we hawe '(p) = G-x. Thus
all homogeneous coordinates foare of the forng- x for someg € G.

Now let Sbe the total coordinate ring o and letf € Sbe homogeneous for
the CI(Xx;)-grading onS, sayf € S;. Then

f(g-x) = x"(g) f(x)

by (5.2.1), so thatf (x) = 0 for onechoice of homogeneous coordinatespaf Xs;
if and only if f(x) = O for all homogeneous coordinates pf It follows that the
equationf = 0 is well-defined inXs;. We can use this to define subvarietiesef
as follows.

Proposition 5.2.4. Let S be the total coordinate ring of the simplicial toric ity
Xs.. Then:

(@) If I € Sis ahomogeneous ideal, then
V() ={r(X) e Xs | f(x) =0forall f €1}
is a closed subvariety ofsX
(b) All closed subvarieties ofXarise this way.

Proof. Givenl C Sas in part (a), notice that
W= {xeC*W\z(2)| f(x)=0forall f 1}

is a closedz-invariant subset of > \ (). By part (b) of the definition of good
categorical quotient (Definition 5.0.5),(1) = (W) is closed inXs.

Conversely, given a closed sub¥ef Xy, its inverse image

YY) cCc*W\ z(n)
is closed ands-invariant. Then the same is true for the Zariski closure
1Y) CPO,

It follows without difficulty thatl = 1(7—1(Y)) C Sis a homogeneous ideal satis-
fyingV(l) =Y. O
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Example 5.2.5. The equationx, = 0 defines thely-invariant closed subvariety
V(X,) C Xs; which is easily seen to be the prime dividdg. This shows thab,
always has a global equation, though it fails to have locahtigns wherD,, is not
Cartier (see Example 4.2.3). O

Classically, the Weak Nullstellensatz gives a necessatsafficient condition
for the variety of an ideal to be empty. This appliesbandP" as follows:

e ForC": Given anideal C C[xy,...,Xn),
VIH=0inC" < 1€l.
e ForP": Given a homogeneous iddal- C[Xo, ..., Xn),
V() =0inP" <= (xo,...,%)" C | for somel > 0.
For a toric version of the weak Nullstellensatz, we use tredévant ideaB(X) =
(x?|oeX)CS

Proposition 5.2.6(The Toric Weak Nullstellensatz) et X be a simplicial toric
variety with total coordinate ring S and irrelevant idea(B) C S. If ICSis a
homogeneous ideal, then

V(1) =0inXy < B(X)" C I for somel > 0.

Proof. LetV4(1) € C*W denote the affine variety defined b S. Then:
V(1) =0inXs <= Va(l)N (CED\Z(2)) =0
< Va(l) CZ(X) = Va(B(X))
— B(X)" C | for somel >0,

where the last equivalence uses the Nullstellensa€zi . O

For C" andP", the irrelevant ideal ig1) C C[xq,...,X,] and (Xo,...,%n) C
C[xo,--.,Xn] respectively. ForC", the grading orC[x,...,%,] by CI(C") = {0}
is trivial, so that every ideal is homogeneous. Thus the twdak Nullstellensatz
implies the classical version of the weak NullstellensatzbiothC" andP".

The relation between ideals and varieties is not perfeaum different ideals
can define the same subvariety@handP", we avoid this by using radical ideals:

e ForC": There is a bijective correspondence
{closed subvarieties @t"} «—— {radical ideald C C|[x,...,Xn]}.
e ForP": There is a bijective correspondence

(closed subvarieties &} «— { radical homogeneous |deal?

I € (Xo,-.,%) € Clxo,...,Xn]
Here is the toric version of this correspondence.
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Proposition 5.2.7(The Toric Ideal-Variety Correspondencd)et X, be a simpli-
cial toric variety. Then there is a bijective correspondenc

{closed subvarieties ofs.} —— { radical homogeneou}

idealsl CB(X)CS

Proof. Given a closed subvariely C Xy, we can find a homogeneous idéal S
with V(1) = Y by Proposition 5.2.4. Theg/l is also homogeneous and satisfies
V(1) =V(I) =Y, so we may assume thiis radical. Since

Va(INB(X)) = Va(l) UVa(B(X)) = Va(l) UZ(X)
in C*®, we see that NB(X) C B(X) is a radical homogeneous ideal satisfying
V(INB(X)) =Y. This proves surjectivity.

To prove injectivity, suppose thatJ C B(X) are radical homogeneous ideals

with V(1) =V(J) in Xs. Then

Va(1) N (CEPN\ Z(2)) = Vo) N (CED\ Z()).
However,l,J C B(X) implies thatZ(X) is contained inv4(l) andV4(J). Hence
the above equality implies

Va(l) =Va(J),

so thatl = J by the Nullstellensatz sindeandJ are radical. O

For general ideals, another way to recover injectivity isvtrk with closed
subschemes rather than closed subvarieties. We will sag atmout this in the
appendix to Chapter 6.

When Xy, is not simplicial, there is still a relation between ideaighe total
coordinate ring and closed subvarietieXgf
Proposition 5.2.8. Let S be the total coordinate ring of the toric variety. XThen:
(@) If I C Sis a homogeneous ideal, then

V(I) = {p € Xz | there is xc 7~ *(p) with f(x) =0 forall f €1}

is a closed subvariety ofsX
(b) All closed subvarieties ofsXarise this way.

Proof. The proof is identical to the proof of Proposition 5.2.4. O

The main difference between Propositions 5.2.4 and 5.2t&igphrase “there
isx € 7~%(p)”. In the simplicial case, all suckare related by the group, while
this may fail in the non-simplicial case. One consequendkasthe ideal-variety
correspondence of Proposition 5.2.7 breaks down in theimgtisial case. Here
is a simple example.
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Example 5.2.9.In Example 5.1.15 we described the quotient representation
U, = (C4//C* for the cones = Condey, e, €1 + 3,6 + €3) C R3, and in Exam-
ple 5.0.2 we saw that the quotient map

7m:C* —U, =V(xy—2zw) C C*

is given byr (a1, ap,83,a4) = (ay83, &y, 2184, 8283). Note that the irrelevant ideal
is B(X) = C[xq, X2, X3, Xa].

Theideald; = (x1,X2) andl, = (x3,X4) are distinct radical homogeneous ideals
contained irB(X) that give the same subvarietylily :

V(1) = 7(Va(l1)) = 7(C?x {0}) = {0} € U,
V(l2) = m(Va(l2)) = ({0} x C?) = {0} € U,.
Thus Proposition 5.2.7 fails to hold for this toric variety. O

Local Coordinates Let Xsx; be ann-dimensional toric variety. WheR contains a
smooth cone of dimensionn, we get an affine open set

U, C Xs; with U, ~ c"

The usual coordinates f@" are compatible with the homogeneous coordinates
for X, in the following sense. The conegives the map, : C°® — C*W that
sends(a, ) ,cq(1) to the point(b,) ,cx1) defined by

m:{% pea(l)

1 otherwise

Proposition 5.2.10.Leto € X be a smooth cone of dimensioa=dim Xy, and let
do : C7 — C*W pe defined as above. Then we have a commutative diagram

CoE D\ Z(5)

|

U,— Xs,

where the vertical maps are the quotient maps from Theor&rB. Furthermore,
the vertical map on the left is an isomorphism.

Proof. We first show commutativity. In the proof of Theorem 5.1.11 sa&v that
771(U,) = Ug. Since the image af, lies inUz, we are reduced to the diagram

\/
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Since everything is affine, we can consider the correspgndiagram of coordi-
nate rings

*

Cl, | p € o (1) 2 Clx, | p € Z(D)e

CloY NM],

wherea”(x™) = [T, X" and 8% (™) = sy ™) for me oV AM. It

is clear that} o 3* = o*, and commutativity follows.

For the final assertion, note that is an isomorphism since the, p € o(1),
form a basis oN by our assumption oa. This completes the proof. O

It follows that if a closed subvariety C Xy, is defined by an ideal C S
then the affine piec¥ NU, C U, ~ W is defined by the dehomogenized ideal
I CC[x, | p € o(1)] obtained by setting, = 1, p ¢ o(1), in all polynomials ofi.
We will give examples of this below, and in 85.4, we will exdhe corresponding
notion of homogenization.

Proposition 5.2.10 can be generalized to any cereX satisfying dino =
dim Xs; (Exercise 5.2.5).

Example 5.2.11.In Example 5.1.16 we described the quotient constructidhef
blowup of C2 at the origin. This variety can be expressed as the unigf(B) =
U,, UU,,, Whereoy, 02 € 3 are as in Example 5.1.16.

The map B$(C?) — C?is given by(t,x,y) — (tx,ty) in homogeneous coordi-
nates. Combining this with the local coordinate maps froopBsition 5.2.10, we
obtain

Uy, € Xz — C2: (1,X) — (t,%,1) — (txt)
Uy, € X — C2: (1Y) = (1Y) — (t,ty).
Consider the curvé (x,y) = 0 in the planeC?, wheref (x,y) = x3 —y?. We study
this on the blowup BJ(C?) using local coordinates as follows:
e OnU,,, we getf(txt) =0, i.e, (tx)® —t? =t?(tx3 -~ 1) = 0. Sincet =0
defines the exceptional locus, we get the proper transfe?m 1 = 0.
e OnU,,, we getf(t,ty) =0, i.e.,t* — (ty)? = t?(t — y?) = 0, with proper trans-
formt —y2=0.
Hence the proper transform is a smooth curve ig{(8F). This method of studying

the blowup of a curve is explained in many elementary tex@lgabraic geometry,
such as236, p. 100].

We relate this to the homogeneous coordinates gf@) as follows. Using
the above mapXs, — C?, we get the curve iy, defined byf(tx,ty) = 0, i.e.,
(tx)3 — (ty)? = t2(tx3 —y?) = 0. Hence the proper transformtis’ —y? = 0. Then:



85.2. The Total Coordinate Ring 225

e Settingy = 1 gives the proper transfortw® — 1= 0 onU,, .
e Settingx = 1 gives the proper transfortn-y? = 0 onU,,,.

Hence the “local” proper transforms computed above ardrddarom the homo-
geneous proper transform by setting appropriate coorlnequal to 1. O

Exercises for 85.2
5.2.1. Prove (5.2.1).

5.2.2. Show that the total coordinate ring of the weighted proyecsipace?(qo, - . . ,qn) IS
Clxo,- - -, %] where de@x) = g;. Hint: See Example 5.1.14.

5.2.3. Prove the claims made about the total coordinate ring of thdyctP" x P™ made
in Example 5.2.2.

5.2.4. Prove the claims made about the class group and the totadlioate ring of the
blowup of P? at the origin made in Example 5.2.3.

5.2.5. Let Xy be the toric variety of the fal and assume as usual thgt has no torus

factors. A subfart’ C X isfull if ¥’ = {c € ¥ | (1) C ¥’(1)}. Consider a full subfan

¥’ C ¥ with the property thaKs has no torus factors.

(a) Define the maps : C*' @ — C>® by sending(a,),cs (1) to the point(b,) ez )
given by

b _ aP pezl(]-)
711 otherwise

Prove that there is a commutative diagram

C¥ 0z €20\ 2(x))

! ]
Xy s X,

where the vertical maps are the quotient maps from Theorgérhb.
(b) Explain how part (a) generalizes Proposition 5.2.10.
(c) Use part (a) to give a version of Proposition 5.2.10 thgtlias to any cone € X
satisfying dimo = dim Xs.
5.2.6. The quinticy? = x° in C? has a unique singular point at the origin. We will resolve
the singularity using successive blowups.

(a) Show that the proper transform of this curve ip(B1°) is defined byy? —t3x> = 0.
This uses the homogeneous coordinatrs/ from Example 5.2.3.

(b) Show that the proper transform is smoothuby but singular orJ,,,.

(c) Subdivides; to obtain a smooth fal’. The toric varietyXy has variablesi,t,x,y,
whereu corresponds to the ray that subdivides Show that ClXy, ) ~ Z? with

dequ) = (Oa _1)7 deqt) = (_15 O)a deqX) = (15 1)) de@(y) = (17 2)
(d) Show that(u,t,x,y) — (utx uty) defines a toric morphisiéy, — C? and use this to
show that the proper transform of the quintidif is defined byy? — ut3x® = 0.
(e) Show that the proper transform is smooth by inspectingldcal coordinates.



226 Chapter 5. Homogeneous Coordinates on Toric Varieties

5.2.7. Adapt the method Exercise 5.2.6 to desingulayze- x"*1, n > 1 an integer.
5.2.8. Given an ideal in a commutative rind, its Rees algebrés the graded ring
R[] = éliti C R{t],
i=0
wheret is a new variable ant? = R. There is also thextended Rees algebra
RILt =PIt cRtt 1,
i€z

wherel' = Rfori < 0. These rings are graded by letting @&g- 1, so that elements &t
have degree 0. Seb§, 4.4] and §811.3 for more about Rees algebras.

(@) Whenl = (x,y) C R= C[x,y], prove that the extended Rees algeRfat~1] is the
polynomial ringC[xt, yt,t —%]

(b) Prove that the ring of part (a) is isomorphic to the totadrclinate ring of the blowup
of C2 at the origin.

(c) Generalize parts (a) and (b) to the caséef(x1,...,Xn) CR=C[Xq,...,%n).

85.3. Sheaves on Toric Varieties

Given a toric varietyXs;, we show that graded modules over the total coordinate
ring S=C[x, | p € £(1)] give quasicoherent sheavesXy We continue to assume
that Xy, has no torus factors.

Graded Modules The grading orSgives a direct sum decomposition
s= @D s
a€eCl(Xs))
such thats, - S3 € S,4 5 for all o, 5 € CI(Xy).

Definition 5.3.1. An SmoduleM is gradedif it has a decompaosition
M= @ M.
CMECl(XZ)
suchthats,-Mg C M, s forall o, 3 € Cl(Xyx). Givena € Cl(Xy), theshift M(«)
is the gradeds-module satisfying
M(a)ﬁ = Moz-i—ﬁ
for all 5 € Cl(Xy).

The passage from a grad&dmodule to a quasicoherent sheafXn requires
some tools from the proof of Theorem 5.1.11. A cene X gives the monomial
X7 = [1,e01)% € S and by (5.1.4), the map™ — x™ = ]_[pxﬁ,m’“”> induces an
isomorphism

75 CloY NM] == (S )® C S,
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whereS,; is the localization oSatx’. Since monomials are homogeneo8s, is
also graded by @Ky), and its elements of degree 0 are preciselyGHsvariants
(Exercise 5.3.1), i.e(Si)o = (S )®. Hence the above isomorphism becomes

(5.3.1) 75 CleY NM] — (S )o-

g
These isomorphisms glue together just as we would hope.

Lemma 5.3.2. LetT = o Nm*- be a face ofr. Then(S;+)o = (S )0) s (m)» and
there is a commutative diagram of isomorphisms

(Seo)o — ((&¢#)0) 7z (xxm)

! |

Cle¥Y NM] — C[7¥ N M]ym.

Proof. Sincer =onm*, we have{m,u,) =0whenp € 7(1) and(m,u,) > 0 when
p€o(1)\7(1). Thismeans thd: = (S ).« (,m. Taking elements of degree zero
commutes with localization, hend&+)o = ((S)o)rz(ym- The vertical maps
in the diagram come from (5.3.1), and the horizontal mapdaralization. In
Exercise 5.3.2 you will chase the diagram to show that it cobesh OJ

From Modules to SheavesWe now construct the sheaf of a graded module.

Proposition 5.3.3. Let M be a graded S-module. Then there is a quasicoherent
sheafM on X such that for every € X, the sections dfl over U, C Xx, are

LUy, M) = (Mys)o.

Proof. SinceM is a gradedS-module, it is immediate thail,, is a gradedS; -
module. HencgM,; )o is an (S )o-module, which induces a sheéfl,;)o on
U, = Sped¢C|[osY NM]) = Spe¢(S)o). The argument of Lemma 5.3.2 applies
verbatim to show that

(My#)o = ((fo’)o)w;(xm)'
Thus the sheavedvl,s )o patch to give a shedfl on Xs; which is guasicoherent by
construction. O

Example 5.3.4. The total coordinate ring dP" is S= C[xo, ..., X] with the stan-
dard grading where every variable has degree 1. The quasamthsheaf oP"
associated to a gradedimodule was first described by Serre in his foundational
paperFaisceaux algbriques cobrents[247), called FAC for short. O

An important special case is whéhis a finitely generated gradegimodule.
We will need the following finiteness result to understanel sheai\.

Lemma 5.3.5. (S5 ), is finitely generated as &S, )o-module for allo € ¥ and
[ AS Cl(XE).
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Proof. Write a = [3_ a,D,] and consider the rational polyhedral cone
g={(MX) eMr xR|A>0, (mu,) > —Aa, forall p} C Mg xR.

By Gordan’s Lemmag N (M x Z) is a finitely generated semigroup. Let the gen-

erators with last coordinate equal to 1 (e, 1),...,(my,1). Then you will prove

in Exercise 5.3.3 that the monomiq@pxﬁm’“"Haﬂ i=1,...,r, generatgSs ),
as a(Ss )o-module. O

Here are some coherent sheaves<gn

Proposition 5.3.6. The sheaM on % is coherent wheiM is a finitely generated
graded S-module.

Proof. BecauseM is graded, we may assume its generators are homogeneous of
degreesys,...,ar. Giveno € %, it follows immediately that,s is finitely gen-
erated ovelS with generators in the same degrees. However, we need to be
careful when taking elements of degree 0. Multiply a gemeraf degreen; by

the (S5 Jo-module generators d5s)_,, (finitely many by the previous lemma).
Doing this for alli gives finitely many elements ifM,: )o that generatéM, )o as

an (S, Jo-module (Exercise 5.3.3). It follows théd is coherent. O

Given a € Cl(Xy), the shiftedSmodule S(«) gives a coherent sheaf ofy;
denoteddx, («). This is a sheaf we already know.

Proposition 5.3.7. Fix a € Cl(Xy). Then:

(a) There is a natural isomorphism,S= I'(Xs,, Ox, (@)).
(b) IfD = Zp a, D, is a Weil divisor satisfyingr = [D], then

0. (D) =~ O, (a).
Proof. By definition, the sections afx. («) overU, are

P(Um ﬁxz (a)) = (S(O‘)Xﬁ)o = (S@)a
for o € ¥. Since the open covelU, },cx of Xy satisfiesU, NU, = U,n,, the
sheaf axiom gives the exact sequence

0— P(XXH ﬁxz (a)) - H(S(&)Oé - (%ﬂ)a'

The localization(Ss ), has a basis consisting of all Laurent monomﬁl;xﬁ” of
degreex such thato, > 0 for all p € o(1). Then the exact sequence implies that
I'(Xs;, Ox,, (o)) has a basis consisting of all Laurent monom]é[l;xgp of degreex
such thab, > 0 for all p € £(1). These are precisely the monomialsSiof degree
«, which gives the desired isomorphisty ~ I'(Xs;, Ox,, (@)).

We turn to part (b). Given a Weil divis®d = a,D,, with o = [D], we need
to construct a sheaf isomorphisfix,, (D) ~ Ox,. («). By the above description of
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the sections oved,,, it suffices to prove that for every € X, we have isomor-
phisms

(5-3-2) F(UOaﬁXZ(D)) = (S@)a'

compatible with inclusiont) C U, induced byr <o in .
To construct this isomorphism, we apply Proposition 4.8.3 1 to obtain

I'(U,, Ox. (D)) = &y C-x™
meM
<m7uﬁ>27aﬁvp€0'(l)

A lattice pointm e M gives the Laurent monomial

(5.3.3) Xm0) — T xim) .
p

When(m,u,) > —a, for p € o(1), this lies inSs, and in facx™P ¢ (S5 ), since
degx™P) = [¥° ((m.u,) +a,)D,] = [div(x™) + D] = [D] = a.

We claim that map ™ — x™P) induces the desired isomorphism (5.3.2).
Suppose thag™, x™ map to the same monomial. Thém, Up) = (', u,)
for all p. This impliesm = ' since Xy, has no torus factors. Furthermore, if
xP = ]_[pxgp € (Se)as then[3" b,D,] = a = [} ,a,D,], so that there isne M
such thath, = (m,u,) +a, for all p. Sincex® is a monomial inSe, b, > 0 for
p € o(1), hence(mu,) > —a, for p € o(1). Theny™ e I'(U,, Ox,, (D)) maps to
xP. This defines an isomorphism (5.3.2) which is easily seer twampatible with
the inclusion of faces. O

Example 5.3.8. For P" we haveS = C|x,...,X,] with the standard grading by
Z = CI(P"). Then&pn(K) is the sheaf associated k) for k € Z. The classes of
the toric divisordDg ~ - -- ~ Dy, correspond to & Z, so that

ﬁ}pn(k) ~ ﬁpn(kDQ) e ﬁpn(an).

Thus Opn (K) is a canonical model for the she&bn (kD;). This justifies what we
did in Example 4.3.1.

Also note that whek > 0, we have
L(P", Opn(K)) = S

Hence global sections ofpn(k) are homogeneous polynomials Xg, ..., X, of
degreek, which agrees with what we computed in Example 4.3.6. O
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Sheaves versus Module#\n important result is thaall quasicoherent sheaves on
Xs: come from graded modules.

Proposition 5.3.9. Let.% be a quasicoherent sheaf og XThen:
(a) There is a graded S-modubd such thatM ~ .%.
(b) If # is coherent, the can be chosen to be finitely generated over S.

The proof will be given in the appendix to Chapter 6 since\blaes tensor
products of sheaves from §6.0.

Although the mapM — M is surjective (up to isomorphism), it is far from
injective. In particular, there are nontrivial graded mieduthat give the trivial
sheaf. This phenomenon is well-known %, where a finitely generated graded
moduleM overS= C|xg,...,Xn] gives the trivial sheaf of" if and only if M, =0
for £ > 0 (see 131, Ex. I1.5.9]). This is equivalent to

(- %) M =0

for £ >> 0 (Exercise 5.3.4). Sincé&,...,X,) is the irrelevant ideal foP", this
suggests a toric generalization. In the smooth case, wethavellowing result.

Proposition 5.3.10.Let B(X) C S be the irrelevant ideal of S forg smooth toric
variety X, and letM be a finitely generated graded S-module. Theg: 0 if and
only if B(X)*M = 0 for £>> 0.

Proof. First observe thatl = 0 if and only if it vanishes on each affine open subset
U, C Xs. But on an affine variety, the correspondence between cpleesient
sheaves and modules is bijective (s&8]] Cor. 11.5.5]). HenceM = 0 if and only

if (Mys)o=0forallo € X.

Next suppose thd&(X)*M = 0 for some/ > 0. Then(x?)*M = 0, which easily
implies thatM, = 0. ThenM = 0 follows from the previous paragraph. This part
of the argument works for any toric variety.

For the converse, we hay®l,s )o =0 for all o € ¥. Givenh € M, we will
show that(x?)*h = 0 for some > 0, which will imply B(X)* M = 0 for £ >> 0 since
M is finitely generated. Let = [D], whereD =3 a,D,. Sinceo is smoothD is
Cartier, so there is, € M such thatm,,u,) = —a, for all p € o(1) (this is part
of the Cartier data foD). ReplacingD with D + div(x™ ), we may assume that
D=3, ¢0(1) 8D, Now setk =max(0,a, | p ¢ (1)) and observe that

=) I »*= ] x» *es
pdo(1) pdo(1)

Furthermorex®h/(x?)k € M, has degree 0. Heno#h/(x? )k = 0 in M,s, which
by the definition of localization implies that theress> 0 with

(x?)S-x’Ph=01in M.
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Sincex® involves onlyx, for p ¢ o(1), we can findx® € Ssuch thatx®-x° is a
power ofx?. Hence multiplying the above equation k¥ implies (x?)‘h = 0 for
some? > 0, as desired. O

Unfortunately, the situation is more complicated wb&nis not smooth. Here
is an example to show what can go wrong wbenis simplicial.

Example 5.3.11. The weighted projective spad®(1,1,2) has total coordinate
ring S= C[x,y,7], wherex,y have degree 1 and has degree 2, and the irrele-
vant ideal isB(X) = (x,y,2). The gradedS-moduleM = S(1)/(xS1) +yS1))
has only elements of odd degree. THa#f,)o = O sincez has degree 2, and it is
clear that(My)o = (My)o = 0. It follows thatM = 0, yet one easily checks that
B(X)'M = z‘M £ 0 for all ¢ > 0. Thus Proposition 5.3.10 fails fé(1,1,2). ¢

Exercise 5.3.5 explores a version of Proposition 5.3.10dpplies to simpli-
cial toric varieties. The condition th&(>)*M = 0 is replaced with the weaker
condition thatB(22)*M,, = 0 for all « € Pic(Xs,).

We will say more about the relation between quasicoheraravas and graded
Smodules in the appendix to Chapter 6.

Exercises for 85.3

5.3.1. As described in §5.0, the action 6fon C*® induces an action o& on the total
coordinate rings. Also recall thag € G is a homomorphismg : Cl(Xs;) — C*.

(@) Givenx? € Sandg € G, show thaig-x2 = g~1(a)x3, wherea = degx?).

(b) Show thats® = S and that a similar result holds for the localizatig.

5.3.2. Complete the proof of Lemma 5.3.2.
5.3.3. Complete the proofs of Lemma 5.3.5 and Proposition 5.3.6.

5.3.4. Let S= C[Xo,. .., %) Where degx;) = 1 for all i, and letM be a finitely generated
gradedS-module. Show thaltl, = 0 for £ >> 0 if and only if (X, ..., %,)*M = 0 for £ >> 0.

5.3.5. Let X5, be a simplicial toric variety and lé¥l be a finitely generated grade
module. Prove thavl = 0 if and only if B(X)*M,, = 0 for all £ >> 0 anda € Pic(Xs).

5.3.6. Let X5 be a smooth toric variety. State and prove a version of Pip0n$.3.10
that applies to arbitrary gradesimodulesM. Also explain what happens whef;. is
simplicial, as in Exercise 5.3.5.

85.4. Homogenization and Polytopes

The final section of the chapter will explore the relationvien torus-invariant
divisors on a toric varietXy, and its total coordinate ring. We will also see that
whenXs; comes from a polytop®, the quotient construction ofs; relates nicely
to the definition of projective toric variety given in Chapg
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Homogenization When working with affine and projective space, one often aeed
to homogenize polynomials. This process generalizesynicethe toric context.
The full story involves characters, polyhedra, divisoteaves, and graded pieces
of the total coordinate ring.

A Weil divisorD =3 a,D, onXs, gives the polyhedron
Po={meMg|(mu,) > —a,forall pc 3(1)}.

Proposition 4.3.3 tells us that the global sections of treabtix,, (D) are spanned
by characters coming from lattice pointsk, i.e.,

I(Xs,0%,(D)) = €D C-x™
mePbNM

This relates to the total coordinate rigg= C[x, | p € £(1)] as follows. Given
m e P N M, theD-homogenizatiomf y™ is the monomial

(mD) _ Hxém’“”Ha”
P

defined in (5.3.3). The inequalities definiRg guarantee that™P) lies inS. Here
are the basic properties of these monomials.

Proposition 5.4.1. Assume that X has no torus factors. If D anddPare as above
anda = [D] € Cl(Xy) is the divisor class of D, then:

(a) For each me Po N M, the monomial ¥*P) lies in S,.

(b) The map sending the charactef™ of me PbNM to the monomial %*P)
induces an isomorphism

I'(Xs, Ox,, (D)) ~ S,.

Proof. Part (a) follows from the proof of Proposition 5.3.7. As farp(b), we use
the same proposition to conclude that

I'(Xs, Ox,, (D)) ~T'(Xg, Ox,, () ~ S,.

One easily sees that this isomorphism is givenBy— xMP) O

Here are some examples of homogenization.

Example 5.4.2.The fan forP" has ray generatony = — > ; & andu; = g for
i =1,...,n. This gives variables; and divisorsD; fori =0,...,n. SinceM = Z",
the character afn= (by,...,bn) € Z" is the Laurent monomial™ = ]_[i”:ltib‘.
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For a positive integed, the divisorD = d Dy has polyhedro®y = dA,,, where

Ay is the standard-simplex. Giverm= (by,...,by) € dA,, its homogenization is
mD) _ Xém,uO>+dX§m,ul>+0 - -x,ﬂm’“”HO

_ y—byi—-—bp+d by b
= n Xy Xnn

:xg%)bl...(%)b”,

which is the usual way to homogeniiZ® = ]_[inzltibi with respect tok.

This monomial has degree= [dDg| € CI(P") = Z, in agreement with Proposi-
tion 5.4.1. The proposition also implies the standard faat monomials of degree
din Xg,...,X, correspond to lattice points ohA,. O

X

Example 5.4.3. For P! x P!, we have ray generatons; = e;,uy = —€;,U3 =
&, Uy = —& with corresponding variables and divisorsD;. Given nonnegative
integersk, £, we get the divisoD = kD, + ¢D4. The polyhedror®, is the rectan-
gle with vertices(0,0), (k,0), (0,¢), (k,£), and given(a,b) € Po N Z?, the Laurent
monomialt?? homogenizes to
ak—aybyf—b _ k0 ( X1\ 3/ X3\P

X1Xo X%y —X2X4(X—2) <Z) ;
which is the usual way of turning a two-variable monomiabir& bihomoge-
neous monomial of degred, /) (remember that dég;) = degx;) = (1,0) and
degx3) = degx4) = (0,1)). Thus monomials of degrgé, /) correspond to lattice
points in the rectanglBp. O

Example 5.4.4. The fan for Bp(C?) is shown in Example 5.1.16, and its total
coordinate rindgS= C[t,x,y] is described in Example 5.2.3. If we pi€k= 0, then
the polyhedrorPy  R? is defined by the inequalities

(mu) >0, i=0,12
Sinceuy, u, form a basis oN = Z2 andug = u + Uy, P is the first quadrant iiR2.
Givenm= (a,b) € Pb N Z?, the monomiat3t? homogenizes to
t(m,u())X(m,ul)y(m,uz) — ta+bxayb — (tx)a(ty)b.
where the ray generatous, Uz, U, correspond to the variablésx,y.

For example, the singular cubig —t2 = 0 homogenizes tétx)3 — (ty)2 =0,
which is the equation enountered in Example 5.2.11 whenviegathe singularity
of this curve. O

One thing to keep in mind when doing toric homogenizatior# tharacters
x™ (in general) or Laurent monomiat§' (in specific examples) are intrinsically
defined on the toru$y or (C*)". The homogenization process produces a “global
object” xXMP) relative to a divisoD that lives in the total coordinate ring or, via
Proposition 5.4.1, in the global sections®@f,, (D).
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We next study the isomorphisnss ~ I'(Xs;, Ox,, (D)) from Proposition 5.4.1.
We will see that they are compatible with linear equivaleard multiplication.

First suppose thdd andE are linearly equivalent torus-invariant divisors. This
means thaD = E + div(x™) for somem e M. Proposition 4.0.29 implies that
f — fx™induces an isomorphism

(541) P(Xz,ﬁxE(D)) EF(XE,ﬁXE(E))
Turning to the associated polyhedra, we proed= B> + min Exercise 4.3.2. An
easy calculation shows thatrif € Py, then

(m',D) (m +m,E)

X =X

(Exercise 5.4.1). Hence (5.4.1) fits into a commutative diagof isomorphisms

F(sz ﬁxz (D)) — F(XE7 ﬁxz (E))

(5.4.2) Sy . =

Here,a = [D] = [E] € Cl(Xx) and the “diagonal” maps are the isomorphisms from
Proposition 5.4.1. You will verify these claims in Exerck4.1.

It follows thatS, gives a “canonical model” fdr(Xs;, Ox,. (D)), since the latter
depends on the particular choice of divigoiin the classx. It is also possible to
give a “canonical model” for the polyhedrdty (Exercise 5.4.2).

Next consider multiplication. Leb andE be torus-invariant divisors oKy
and setx = [D], # = [E] in CI(Xy). Thenf ® g— fginduces &C-linear map

F(XE> ﬁXE(D)) ®c F(sz ﬁxz (E)) - F(sz ﬁxz (D + E))
such that the isomorphisms of Proposition 5.4.1 give a cotatie diagram
P(XXH ﬁxz (D)) ®c P(XXH ﬁxz (E)) - F(sz ﬁxz (D + E))

(5.4.3) l l
S ®c Ss S+

where the bottom map is multiplication in the total coordénang (Exercise 5.4.3).
Thus homogenization turns multiplication of sections iatdinary multiplication.

Polytopes A full dimensional lattice polytopd® C Mg gives a toric varietyXp.
Recall thatXp can be constructed in two ways:

e As the toric varietyXs,, of the normal farkp of P (Chapter 3).

e As the projective toric variet¥p v Of the set of characterkP) "M for
k> 0 (Chapter 2).

We will see that both descriptions relate nicely to homogesecoordinates and
the total coordinate ring.
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Given P as above, sat = dim P and letP(i) denote the set afdimensional
faces ofP. ThusP(0) consists of vertices arfé(n— 1) consists of facets. The facet
presentation oP given in equation (2.2.2) can be written as

(5.4.4) P={meMg|(mug)>—ac forallF e P(n—1)}.
In terms of the normal fakp, we have bijections

P(0) «—— Xp(n) (vertices—— maximal cones)
P(n—1) «—— ¥p(1) (facets—— rays)

When dealing with polytopes we index everything by facetisemathan rays. Thus
each faceF € P(n—1) gives:

e The facet normalir, which is the ray generator of the corresponding cone.

e The torus-invariant prime divisdg C Xp.

e The variablexg in the total coordinate rin@. We callxs afacet variable
We also have the divisor

DP:ZaFDF
F

from (4.2.7). The polytopéy, of this divisor is the polytopd> we began with
(Exercise 4.3.1). Hence, if we set= [Dp] € CI(Xp), then we get isomorphisms

Sy T (Xp, Ox.(Dp)) ~ € C-x™

mePNM

In this situation, we write th®p-homogenization of™ as

x(mP) _ Hxém,UF>+aF.
F

We callx™P) a P-monomial

The exponent of the variable: in xX{™P) gives thelattice distancefrom m
to the facetF. To see this, note that lies in the supporting hyperplane defined
by (mug) +ar = 0. If the exponent okg is a > 0, then to get from the sup-
porting hyperplane ta, we must pass through tlaeparallel hyperplanes, namely
(mug)+ar=jfor j=1,...,a Hereis an example.

Example 5.4.5.Consider the toric varietyp of the polygonP  R? with vertices
(1,1),(-1,1),(-1,0),(0,—1),(1,—1), shown in Figure 2 on the next page. In
terms of (5.4.4), we have; = --- = as = 1, where the indices correspond to the
facet variables«, ..., xs indicated in Figure 2. The 8 points &N Z? give the
P-monomials

XoXSXZ  XDEXEXs  X2X3X3

XaX2X5  X1XoXaXaXs  XTXSX3Xs

XXX XX,
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X5

X1 X4

X2

X3

Figure 2. A polygon with facets labeled by variables

where the position of each-monomialx™P) corresponds to the position of the
lattice pointm € PN Z2. The exponents are easy to understand if you think in
terms of lattice distances to facets. O

The lattice-distance interpretation of the exponents'T? shows that lattice
points in the interior intP) of P correspond to thosB-monomials divisible by
[ I . For example, the onl-monomial in Example 5.4.5 divisible by - - - x5
corresponds to the unique interior lattice point.

We next relate the constructions of toric varieties giverChmapter 2 and in
85.1. In Chapter 2, we wrote the lattice pointsPoAsPNM = {my,...,ms} and
considered the map

(5.4.5) & Ty — P te— (x™(),...,x™(t)).
The projective (possibly non-normal) toric varietg is the Zariski closure of
the image ofb.

On the other hand, we have the quotient constructiaxeof

Xp = (C"\Z(%p)) //G,

where we writeC" = C¥(), Also, the exceptional s&(3p) can be described in
terms of theP-monomials coming from the vertices of the polytope.
Lemma 5.4.6. Thevertex monomialsx:P), v a vertex of P, have the following
properties:

(@) /(xVP) | veP(0)) =B(Zp), where BXp) = (x? | o € ¥(n)) is the irrelevant
ideal of S.

(b) Z(2p) = V(xVP) | v € P(0)).

Proof. We saw above that verticess P(0) correspond bijectively to cones, =
Condur | v € F) € ©p(n). Then the lattice-distance interpretationx®f” shows
the facet variablesr appearing inx:"’ are precisely the variables appearing in
x%. This implies part (a), and part (b) follows immediately. O
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If we seta = [Dp] as above, then the-monomialsx(™") i =1,... s form a
basis ofS, and give a map

(5.4.6) U:C'\Z(Zp) — Pt pr— (pMP) .. pMsP)),

wherep(™-F) is the evaluation of the monomiai™ " at the pointp € C"\ Z(Xp).
This map is well-defined since for eaphe C" \ Z(Xp), Lemma 5.4.6 implies that
at least ond>-monomial (in fact, at least one vertex monomial) must bezeon

The maps (5.4.5) and (5.4.6) fit into a diagram

() s €\ Z(Sp)

L]

[P;S—l.

Here, the magC*)" — Ty is from (5.1.2) andr : C" \ Z(Xp) — Xp is the quotient
map. This diagram has the following properties.

Proposition 5.4.7. There is a morphism : Xp — PS5~ represented by the dotted
arrow in the above diagram that makes the entire diagram catant-urthermore,
the image of is precisely the projective toric varietypXu.

Proof. When we regard thee as characters ofC*)" = (C*)**(1), the exact se-
guence (5.1.1) tells us that

(5.4.7) ™= [
F

for me M. Multiplying each side by [ x&, we obtain
([12)n =50
F

Ifweletm=m,i=1,...,sand apply this to a pointip € (C*)", we see tha¥(p)
and®(p) give the same point in projective space since the vectowfqr) equals
[1r p¥ times the vector fol(p). It follows that, ignoringe for the moment, the
rest of the above diagram commutes.

We next show thaf is constant orG-orbits. This holds sinc®-monomials
are homogeneous of the same degree. In more detail, fix poiatdr) € G,

p=(pg) € C"\ Z(Ep) and aP-monomialx™P) = [T x™* "% Then evaluating
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xmD) att - p gives

(t ) p)(m,D> _ H(tF D )<m,U|:>+aF
F

(L) (I o2 = (1] o™

where the last equality follows from the description®fgiven in Lemma 5.1.1.
Arguing as in the previous paragraph, it follows thaft - p) and ¥(p) give the
same point inPS~1. This proves the existence ofsincer is a good categorical
guotient, and this choice @f makes the entire diagram commute.

The final step is to show that the image¢of Xp — PS~1 is the Zariski closure
Xprm Of the image ofP : Ty — PS~1. First observe that

o(Xp) = ¢(Tn) € ¢(Tn) = D(Tn) = Xprm

sinceg is continuous in the Zariski topology ardnq:lTN = ® by commutativity of the
diagram. Howeverp(Xp) is Zariski closed ifPS~! sinceXp is projective. You will
give two proofs of this in Exercise 5.4.4, one topologicalifig constructible sets
and compactness) and one algebraic (using completenegg@rerness). Once
we know thatp(Xp) is Zariski closed®(Ty) C ¢(Xp) implies

Xeam = ©(Tn) € o(Xp),

and¢(Xp) = Xpnm follows. O

In Chapter 2, we used the mdy constructed from characters, to parametrize
a big chunk of the projective toric varieXp~\. In contrast, Proposition 5.4.7 uses
the map¥, constructed fronfP-monomials, to parametrizal of Xpqv.

If the lattice polytopeP is very ample, then the results of Chapter 2 imply that
Xpnm is the toric varietyXp. So in the very ample case, tRemonomials give an
explicit construction of the quotier{tC" \ Z(Zp)) //G by mappingC" \ Z(Zp) to
projective space via the-monomials. It follows that we have two ways to take the
quotient ofC" by G:

e At the beginning of the chapter, we to@invariant polynomials—elements
of S—to construct an affine quotient.

e Here, we usd®>-monomials—elements &&,—to construct a projective quo-
tient, after removing a set(>p) of “bad” points.

TheP-monomials are ndB-invariant but instead transform tkameway underG.
This is why we map to projective space rather than affine spatewill explore
these ideas further in Chapter 14 when we disgessnetric invariant theory
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WhenP is very ample, we have a projective embeddigC PS1 given by
the P-monomials inS,. If y1,...,ys are homogeneous coordinatesBsf2, then
thehomogeneous coordinate rimg Xp C PS5t is

CXp] =Clys, ... ys|/1(Xp)
asin 82.0. We aIsAo have the affine cogeC CS of Xp, andC[Xp] is the ordinary
coordinate ring o¥p, i.e.,
C[Xp] = C[Xp].
Recall thatC[Xp] is anN-graded ring sincé(Xp) is a homogeneous ideal.
AnotherN-graded ring isP,~ (S« This relates tdC[Xp] as follows.

Theorem 5.4.8.Let P be a very ample lattice polytope with= [Dp] € CI(Xp).
Then:

(@) B Sk is normal.
(b) There is a natural inclusiofC[Xp] C @, ; Ska such thatP,” ;S is the nor-
malization ofC[Xp].

(c) The following are equivalent:
(1) Xp C PS~1is projectively normal.
(2) P is normal.
(3) DS = C[Xel.
(4) Do S is generated as &-algebra by its elements of degrée

Proof. Consider the cone
C(P) =CongP x {1}) C Mg x R.

This cone is pictured in Figure 4 of 82.2. Recall thé&tis the “slice” of C(P)
at heightk. Since the divisoDyp associated t&P is kDp, homogenization with
respect tkP induces an isomorphism

Ska = T'(Xp, Ox,(KDp)) @ C-x™
me (kP)NM

Now consider the dual cong> = C(P)" C Ng x R. The semigroup algebra
C[C(P)n (M x Z)] is the coordinate ring of the affine toric varidtl,,. Given
(m k) € C(P)N (M x Z), we write the corresponding charactengd&X.

The algebr&C[C(P)N (M x Z)] is graded using the last coordinate, the “height.”
Since(m,k) € C(P)N (M x Z) if and only if m € kP (this is the “slice” observation
made above), we have

CCP)INMxZ)k= E C-x™~

me (kP)NM
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Using (5.4.3), we obtain a gradéttalgebra isomorphism
P S ~CIC(P)N (M x Z)].
k=0

This proves thagp,” ; S« is normal.

We next claim that),, is the normalization of the affine cong. For this,
we lete/ = (PNM) x {1} C M x Z. As noted in the proof of Theorem 2.4.1, the
affine cone ofXp = Xpru is Xp = Y.s. SinceP is very ample, one easily checks
that.es generated x Z, i.e.,Z.o/ = M x 7Z (Exercise 5.4.5). Itis also clear that
generates the cor®P) = 0¥. Hencel,, is the normalization oKp by Proposi-
tion 1.3.8. This immediately implies part (b).

For part (c), we observe that (& (2) follows from Theorem 2.4.1, and (1)
& (3) follows from parts (a) and (b) since the projective nalitpaf Xp C P51
is equivalent to the normality df[Xp]. Also (3) = (4) is obvious sinc&C[Xp] is
generated by the imageswf, ...,Ys, which have degree 1. Finally, you will show
in Exercise 5.4.6 that (4% (2), completing the proof. d

Further Examples We begin with an example of that illustrates how there can be
many different polytopes that give the same toric variety.

Example 5.4.9.The toric surface in Example 5.4.5 was defined using the polyg
shown in Figure 2. In Figure 3 we see four polygedh#AUB,AUC,AUD, all

Figure 3. Four polygonsA, AUB, AUC, AU D with the same normal fan

of which have the same normal fan and hence give the samevamiity. Since
we are in dimension 2, these polygons are very ample (in famtnal), so that
Theorem 5.4.8 applies.

These four polygons give four different projective embeddj each of which
has its own homogeneous coordinate ring as a projectivetyaBy Theorem 5.4.8,
these homogeneous coordinate rings all live in the totaldinate ringS. This ex-
plains the “total” in “total coordinate ring.” O
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Our next example involves torsion in the grading of the totadrdinate ring.

Example 5.4.10.The fanX for P4 has ray generatong = — Zi“zla andu = g
fori=1,...,4in N =Z* and is the normal fan of the standard simplex C R*.
Another polytope with the same normal fan is

P=5A;—(1,1,1,1) C Mg =R*,
so thatXp = P4. We saw thaP is reflexive in Example 2.4.5. One checks that
Dp = Do + --- + D4 has degree & 7Z ~ CI(P4). SinceP is a translate of Ay,

(5.4.2) implies that thé>-monomials form € PN Z#* coincide with the homoge-
nizations coming from A4, which are homogeneous polynomials of degree 5 in

S=CIxo,...,Xd].
SinceP is reflexive, its duaP? is also a lattice polytope. Furthermore,
P° = COHV(UO, e ,U4) CNr = R4

since the ray generators of the normal fafPéfare theverticesof P by duality for
reflexive polytopes (be sure you understand this—Exercé&% The vertices of
Pare

vo=(-1,-1,-1-1), vi =(4,-1,-1,-1), vo,=(-1,4,—-1,-1)

5.4.8
( ) vz3=(—-1,-14-1), va=(-1,-1,-14).

Thev; generate a sublattidd; C M = Z*. In Exercise 5.4.7 you will show that the
mapM — Z° defined by

meM — (M Up),...,(Mmuy)) € Z°
induces an isomorphism
(5.4.9)  M/My~ {(ao,a1,8,8,) € (Z/52)°: 31 y& =0} /(Z/5Z)
whereZ /57 C (Z./57,)° is the diagonal subgroup. ThafyM; ~ (Z/5Z)3, so that
M is a lattice of index 125 .

The dual toric varietyXp. is determined by the normal fagd® of P°. The
ray generators okE° are the vectorsy,...,v4 from (5.4.8). The only possible
complete fan irR* with these ray generators is the fan whose cones are gemerate
by all proper subsets dly,...,va}. Sincevp+ - --+v4 = 0 and thev; generateMy,
the toric variety of° relative toM; is P4, i.e., Xso i, = P4 (Remember that®
is afan in(M1)g = Mg.) SinceM; C M has index 125, Proposition 3.3.7 implies

Xpo = Xpo.m =~ Xpo m, /(M/My) = P4/(M/My).
Hence the dual toric varietyp- is the quotient o?* by a group of order 125.

The total coordinate rin@° is the polynomial ringCl|yo,...,Ya], graded by
Cl(Xp-). The notation is challenging, since by dualityis the character lattice of
the torus ofXp-. Thus (5.1.1) becomes the short exact sequence

0— N — 7% — CI(Xps) — O,
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whereN — Z° is u+— ({vo,U),...,(vaq,u)). If we let Ny = Homg(My,Z), then
M1 C M dualizes tadN C N; of index 125. Now consider the diagram

0

|

0——N——75—Cl(Xpo) — 0

L]

0 N1 7° Z 0

l

Ny/N

|

0

with exact rows and columns. In the middle row, we us<gd y,) = CI(P4) = Z.
By the snake lemma, we obtain the exact sequence

0— N3/N — Cl(Xpo) — Z — 0O,
s0 CXpo) ~ Z & N/Nj. Thus the class group has torsion.

The polytopeP° has only six lattice points iN: the verticesl, ..., us and the
origin (Exercise 5.4.7). When we homogenize these, we gd&tsimonomials

4
vi,0
y<OvD> — Hy} ! >+l ZYO"'Y4
j=0

since(vj, uj) = 56;j — 1 (Exercise 5.4.7). O

The equation
CoYg+ "+ +CaYq +CsYo +Ya=0
defines a hypersurfadeC Xp. since it is built fromP°-monomials. If we want an
irreducible hypersurface, we must hag...,c4 # 0, in which caseY is isomor-
phic (via the torus action) to a hypersurface of the form
Yo+ +Ya+AYo - ya=0.

This is thequintic mirror family, which played a crucial role in the development of
mirror symmetry. Seedg] for an introduction to this astonishing subject.

Exercises for §5.4

5.4.1. Let D, E be linearly equivalent torus-invariant divisors with= div(x™) + E.
(a) If M € PoNM, then prove thag(™:D) — x(m'+mE)

(b) Prove (5.4.2).
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5.4.2. Fix a torus-invariant divisob =} a,D,, and consider its associated polyhedron
Po={me Mg | (mu,) > —a, forall p}. Define

¢p : Mg — R¥D
by ¢o(m) = ((M,u,) +a,) € R¥D.

(a) Prove thatyp embedsMlr as an affine subspace Bf*(Y. Hint: Remember thaXs;
has no torus factors.

(b) Prove thatyp induces a bijection
6plr, : P = dp (M) NRZG.
This realized, as the polyhedron obtained by intersecting the positivlmmigl)

of R*® with an affine subspace.

(c) LetD = div(x™) +E. Prove thatpp(Pb) = ¢&(Pe). Thus the polyhedron iR>(®)
constructed in part (b) depends only on the divisor clad3.of his is the “canonical
model” of Fy.

5.4.3. Prove that the diagram (5.4.3) is commutative.

5.4.4. The proof of Proposition 5.4.7 claimed that the image oXp — PS~! was Zariski
closed. This follows from the general fact thatif X — Y is a morphism of varieties and
X is complete, thew(X) is Zariski closed irY. You will prove this two ways.

(a) Give a topological proof that uses constructible setsampactness. Hint: Remem-
ber that projective space is compact.

(b) Give an algebraic proof that uses completeness and pregefrom §3.4. Hint: Show
thatX x Y — Y is proper and use the graphof

5.4.5. Let P C Mg be a very ample lattice polytope and let= (PNM) x {1} C M x Z.
Prove thaZ.«/ = M x Z. Hint: First show thaZ'«” = M x {0}, whereZ'<7 is defined in
the discussion preceding Proposition 2.1.6.

5.4.6. Prove of (4)=- (2) in part (c) of Theorem 5.4.8. Hint: (4) implies that the pna
So ®c Sca — Sky1)a is Onto for allk > 0.
5.4.7. This exercise is concerned with Example 5.4.10.

(a) Prove that ifP C R" is reflexive, then the vertices &f are the ray generators of the
normal fan ofP°.

(b) Prove (5.4.9).

(c) Prove(vj,u;) =56 — 1, wherevj, u; are defined in Example 5.4.10.

(d) LetG = Homy(CI(Xp-),C*) C (C*)®. Use Proposition 1.3.18 to prove
G={(Ao,.--sA4) |XEC*, € s, (o (=1} ~C*"HM/M;.

(e) Use part (e) and the quotient constructionXef to give another proof thaXp. =

P#/(M/M,). Also give an explicit description of the action iff/M; onP*.
5.4.8. This exercise will give another way to think about homogation. Letey, ..., e,
be a basis oM, so that; = x®,i =1,...,n, are coordinates for the tordg.

(a) Adapt the proof of (5.4.7) to show thiat=[], xfﬁ’up> when we think of thex, as
characters ofC*)>®,
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(b) Givenme P, NM, part (a) tells us that the Laurent mononifalcan be regarded as a
Laurent monomial in the,. Show that we can “clear denominators” by multiplying
by pr,?" to obtain a monomial in the polynomial rir@= C[x, | p € £(1)].

(c) Show that this monomial obtained in part (b) is the honmiggionx(™P) .

5.4.9. Consider the toric varietyp of Example 5.4.5.

(a) Compute GIXp) and find the classes of the four polygons appearing in Figure 3
(b) Show thatX is the blowup ofP! x P! at one point.

5.4.10. Consider the reflexive polytoge= 4A3; — (1,1,1) C R3. Work out the analog of
Example 5.4.10 foP.

5.4.11. Fix an integera > 1 and consider the 3-simpldx= Conv0,ae;,ae,e3) C R3.
In Exercise 2.2.13, we claimed that the toric varietyPds the weighted projective space
P(1,1,1,a). Prove this.
5.4.12.Consider positive integers2go < o < --- < gn with the property that| Z?:Oqj
fori=0,...,n. Setki = (Z?:Oqj)/Qi fori=1,...,nand let

Pp,....qo = Conv0,kier, koey, ... kaen) — (1,...,1) CR".
This lattice polytope is reflexive by Exercise 2.4.6. Prdwat the associated toric variety
is the weighted projective spaB&qo, dp, . . . , On)-



Chapter 6

Line Bundles on
Toric Varieties

86.0. Background: Sheaves and Line Bundles

Sheaves ofVx-modules on a variet)X were introduced in 84.0. Recall that for
an affine varietyv = Spe¢R), an R-moduleM gives a sheaM onV such that

M (Vi) = Ms for all f # 0 in R. Globalizing this leads to quasicoherent sheaves
on X. These include coherent sheaves, which locally come froitelfirgenerated
modules. In this section we develop the language of sheafittand discuss vector

bundles and line bundles.

The Stalk of a Sheaf at a PointSince sheaves are local in nature, we need a
method for inspecting a sheaf at a pop& X. This is provided by the notion of
direct limit over adirected set

Definition 6.0.1. A partially ordered sefl, <) is adirected seff
foralli,j €1, there existk € | such thai <kandj < k.

If {R;} is a family of rings indexed by a directed gét=) such that whenever< |
there is a homomorphism

Wi R — Rj
satisfyinguii = 1g anduj o pji = i, then theR; form adirected systemLet S

be the submodule &P, R generated by the relatioms— ;i (r;), for ri € R; and
i = j. Then thadirect limit is defined as

imR = (PiciR)/S

i€l

245
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For simplicity, we often write the direct limit as liR. Note also that references
such as 10] write yj instead ofuji.

For everyi € |, there is a natural maR; — lim R, such that whenever= j,
the elements € R, andpji (r) € R; have the same image in liR). More generally,
two elements; € R, andr; € R; are identified in linR, if there is a diagram

such thatuki(ri) = ukj(rj).

Example 6.0.2.Given p € X, the definition of sheaf shows that the ringg(U),
indexed by neighborhoods of p, form a directed system under inclusion, so that
the .uji are the restriction maps, y for pe U’ CU. The direct limit is the local
ring Ox p. For a quasicoherent shed, take an affine open subsét= Spe¢R)
containingp so that# (V) = M, whereM is anR-module. Ifmp, =1(p) C Ris the
corresponding maximal ideal, thefx p is the localizatiorRy,,,, and

lim 7 (U) = M,
peuU

whereMmp is the localization oM at the maximal ideak . O

The termsheafhas agrarian origins: farmers harvesting their wheat tiegpa
around a big bundle, and left it standing to dry. Think of thetprint of the bundle
as an open set, so that increasingly smaller neighborhamisma a point on the
ground pick out smaller and smaller bits of the bundle, vairg to a single stalk.

Definition 6.0.3. Thestalk of a sheat7 at a pointp € X is 7, = lim % (U).
peU

Injective and Surjective A homomorphisnmy : % — ¢ of Ox-modules was de-
fined in 84.0. We can also define what it meansddo be injective or surjective.
The definition is a bit unexpected, since we need to take icdount the fact that
sheaves are built to convey local data.

Definition 6.0.4. A sheaf homomorphism
¢ F —9

is injectiveif for any point p € X and open subsé&t C X containingp, there exists
an open subsat C U containingp, with ¢y injective. Also,¢ is surjectiveif for
any pointp and open subsé&t containingp and anyg € ¢(U), there is an open
subset C U containingp andf € .% (V) such thay (f) = pu v(9).
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In Exercise 6.0.1 you will prove that for a sheaf homomomphis: .% — ¢,
Ur—ker(¢y : F(U) =4 (U))

defines a sheaf denoted kg}. You will also show that is injective exactly when
the “naive” idea works, i.e., kép) = 0. On the other hand, surjectivity of a sheaf
homomorphism need not mean that the mapsare surjective for alU. Here is
an example.

Example 6.0.5.0nP! = CU{cc}, consider the Weil divisob = {0} C C C PL.
If we write of P! = UpgUU; with Uy = SpedC|t]) andU; = Spe¢C[t—1]), then
C(PY) =C(t). Since
['(PY, 0p1(D)) = {f € C(t)* | div(f) +D >0} u {0},
it follows easily that we have global sections
1,t7t e (P, 0pu(D)).

For any f € T'(PY, 01 (D)), multiplication by f gives a sheaf homomorphism
Op1(—D) — Op1. Doing this for 1t~1 € I'(PY, 051(D)) gives

ﬁpl(—D) EB ﬁpl(—D) — ﬁpl.

(Direct sums of sheaves will be defined below.) In Exerci€e26you will check
that this sheaf homomorphism is surjective. However, @kilobal sections gives

090 =T (P!, Gps(—D)) BT (P, Op1(—D)) — T'(P}, O ) = C,
which is clearly not surjective. O
There is an additional point to make here. Given# — ¢, the presheaf
Ur—im(gy : #(U) - < (U))

need not be a sheaf. Fortunately, this can be rectified. Giygrsheaf”, there is
an associated she& +, thesheafificatiorof ., which is defined by

FHU)={f:U—T],u-Fp|forall peU, f(p) € #,and there is
p eV, CU andt € .7 (V) with f(x) =t for all x e Vp}.

See [L31, II.1] for a proof thatZ ' is a sheaf with the same stalks.&. Hence
Ur— Im(gbu)

has a natural sheaf associated to it, denote@)jm
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Exactness We define exact sequences of sheaves as follows.

Definition 6.0.6. A sequence of sheaves
yifl ﬂ yi i) yiJrl
is exactat.Z' if there is an equality of sheaves
ker(d') =im(d'~1).

The local nature of sheaves is again highlighted by thevatig result, whose
proof may be found in131, 11.1].

Proposition 6.0.7. The sequence in Definition 6.0.6 is exact if and only if

Coadi-t o di .
-15p yl p lerl
p p

is exact for all pe X. O

It follows from Example 6.0.5 that if

(6.0.1) 0— gt g2 ¥ 23 g

is a short exact sequence of sheaves, the correspondingneecof global sections
may fail to be exact. However, we always have the followingiphexactness,
which you will prove in Exercise 6.0.3.

Proposition 6.0.8. Given a short exact sequence of shegée8.1) taking global
sections gives the exact sequence

d2

¢ 9 rx, 7).

0—TI'(X,ZYH) = I(X,.%?)
In Chapter 9 we will ussheaf cohomologio extend this exact sequence.

Example 6.0.9.For an affine variet¥ = Spe¢R), anR-moduleM gives a quasi-
coherent shedfl onV. This operation preserves exactness, i.e., an exact sgguen
of R-modules

0—M —My,—M3—0

gives an exact sequence of sheaves
O—>M1—>Mz—>M3—>O

(see 131, Prop. 11.5.2]). O

Here is a toric generalization of this example.

Example 6.0.10.Let S= C|[x, | p € 3(1)] be the total coordinate ring of a toric
variety Xs; without torus factors. We saw in 85.3 that a gradeahoduleM gives
the quasicoherent shelslf on X.
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Then an exact sequence-OM; — M, — M3 — 0 of gradedS-modules gives
an exact sequence
0— |\~/|1—>|\~/|2—>|\~/|3—>O
on Xs. To see why, note that far € X, the restriction oﬂ\7|i toU, C Xs: is the
sheaf associated {@M;),s )o, the elements of degree 0 in the localizatiorMfat
x? € S. Localization preserves exactness, as does taking elsrokdégree 0. The
desired exactness then follows from Example 6.0.9. O

Another example is the following exact sequence of sheaoes §3.0.

Example 6.0.11.A closed subvariety: Y — X gives two sheaves:
e The sheaf#, defined by.A (U)={f € ox(U) | f(p)=0forpe YNU}.
e The direct image sheafdy, defined byi.0y(U) = 6y (Y NU).

These are coherent sheavesoand are related by the exact sequence

0— &K — Ox — i, 0y — 0. O

Operations on Quasicoherent Sheaves®@f. Operations on modules over a ring
have natural analogs for quasicoherent sheaves. In gartigiven quasicoherent
sheaves7,¥, itis easy to show thdl — .7 (U) $¥ (U ) defines the quasicoherent
sheafZ ©¥¢. We can also definglomy, (#,%) via

U+ Homg, ) (F(U),¥4(U)).
In Exercise 6.0.4 you will show th&tomg, (.%,%) is a quasicoherent sheaf.

On the other hand) — 7 (U) ® 4, ) ¥ (U) is only a presheaf, so the tensor
product.#Z ® 4, ¢ is defined to be the sheaf associated to this presheaf. Téwd sh
is again quasicoherent and satisfies

U, 7 269) =7 U)Rg,u)9 V)
wheneveld C X is an affine open set (se&d1, Prop. 11.5.2]).

Global Generation For a moduléM over a ring, there is always a surjection from
a free module ont. This is true for a shea# of x-modules whed'(X,.7) is,
in a certain sense, large enough.

Definition 6.0.12. A sheaf.# of &x-modules isgenerated by global sectiorig
there exists a sdis } C I'(X,.#) such that at any poir € X, the images of the
generate the stalk .

Any global sections € I'(X,.%#) gives a sheaf homomorphismx — .7. It
follows that if.# is generated bys }ic|, there is a surjection of sheaves

@ﬁx—naf.

In the next section we will see that wh&nis toric, there is a particularly nice way
of determining when the sheavé (D) are generated by global sections.
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Locally Free Sheaves and Vector BundlegVe begin with locally free sheaves.

Definition 6.0.13. A sheaf.# of Ox-modules islocally free of rank r if there
exists an open covel,, } of X such that for alky, 7|, ~ .

Locally free sheaves are closely related to vector bundles.

Definition 6.0.14. A varietyV is avector bundle of rankr over a varietyX if there
is a morphism
m:V—X
and an open coveiU; } of X such that:
(&) For every, there is an isomorphism

oi 7T_1(Ui) AN Uy xC'
such thatp; followed by projection ontdJ; is wyﬁ,l(ui).
(b) For every pait, j, there isgjj € GL(I'(Ui NUj, Ox)) such that the diagram

UiﬂUj x C"

‘Mﬂl(uy

7T_1(Ui ﬂUj) 1xgij

¢J‘7r*l(UiﬁUj) Ui ﬂUJ % CI’
commutes.

Data{ (Ui, ¢i)} satisfying properties (a) and (b) is calledraialization. The
mapa; : 7 1(Uj) ~ U; x C" gives achart, wherer—1(p) ~ C" for p € U;. We call
7~ 1(p) thefiber over p. See Figure 1 on the next page.

For p € UinUj, the isomorphisms

C' = {p} x C" =7 }(p) = {p} x C" = C'
given by ¢ and ¢; are related by the linear magp; (p). Hence the fibery—1(p)
has a well-defined vector space structure. This shows thattanvbundle really is
a “bundle” of vector spaces.

On a vector bundle, thg; are calledransition functionsand can be regarded
as afamily of transition matrices that vary gs< UjNU; varies. Just as there
is no preferred basis for a vector space, there is no cararficice of basis for
a particular fiber. Note also that the transition functioatisty the compatibility
conditions

Oik = Gij o gjk onU; NU;j NU

(6.0.2) -
gij:gjil onU; NU;j.
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@:10p) Hpix ' @ i(p) B{ppx

Figure 1. Visualizing a vector bundle

Definition 6.0.15. A sectionof a vector bundl&/ overU C X open is a morphism
s:U —V
such thatros)(p) = pforall pe U. A sections: X — V is aglobal section

A sections picks out a poins(p) in each fiberr—(p), as shown in Figure 2.

n(p
g
pas ~_
(¥
X
p

Figure 2. For a sectiors, s(p) € 7 *(p)
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We can describe a vector bundle and its global sectionsypuréérms of the
transition functiongy; as follows.

Proposition 6.0.16.Let X be a variety with an affine open co\&f; }, and assume

that for every jj, we have g € GL,(I'(U; NUj, Ox)) satisfying the compatibility

conditions(6.0.2) Then:

(a) There is a vector bundle : V — X of rank r, unique up to isomorphism, whose
transition functions are the;g

(b) A global section s X — V is uniquely determined by a collection of r-tuples
S € Oy such that for all j j,

S‘UiﬂUj = g'JSJ ‘UiﬂUj :

Proof. One easily checks that th;gl satisfy the gluing conditions from 83.0. It
follows that the affine varietied); x C" glue together to give a variety. Fur-
thermore, the projection mapg x C" — U; glue together to give a morphism
m:V — X. It follows easily that the open set df corresponding tdJ; x C" is
771(U;), which gives an isomorphismy : 771(U;) ~ U; x C". HenceV is a vector
bundle with transition functiong;;.

Given a sectiors: X — V, ¢; os|y, is a section obJ; x C" — U;. Thus

gios|y, (p) = (ps(p)) VUi x C',

wheres € 0x(U;)". By Definition 6.0.14, thes satisfy the desired compatibility
condition, and since every global section arises this wayawe done. O

Let.#(U) denote the set of all sections\éfoverU. One easily sees tha is
a sheaf orX and in fact is a sheaf afx-modules since the fibers are vector spaces.
In fact,.# is an especially nice sheaf.

Proposition 6.0.17. The sheaf of sections of a vector bundle is locally free.

Proof. For a trivial vector bundlé) x C" — U, the proof of Proposition 6.0.16
shows that a section is determined by a morphism- C', i.e., an element of
0y (U)". Thus the sheaf associated to a trivial vector bundle bvisrJ;.

For a general vector bundle: V — X with trivialization {(U;, ¢i)}, eachU;
gives an isomorphism of vector bundles

U| —> U| X (CI'
| —1(u\ /

Since isomorphic vector bundles have |somorphic sheavesgdiions, it follows
that if % is the sheaf of sections af:V — X, thenff|Ui ~ ﬁgi. O
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Line Bundles and Cartier Divisors Since a vector space of dimension one is a
line, a vector bundle of rank 1 is calledime bundle Despite the new terminology,
line bundles are actually familiar objects whens normal.

Theorem 6.0.18.The sheafZ = 0 (D) of a Cartier divisor D on a normal variety
X is the sheaf of sections of a line bundlg V- X.

Proof. Recall from Chapter 4 that a Cartier divisor is locally pipat, so that
X has an affine open covelitie; with D, = div(fi)|,, fi € C(X)*. Thus
{(U;, fi) }iel is local data foD. Note also that
div(fi)|Uimuj =div(fj)
which impliesf; /f; € Ox(UinU;)* by Proposition 4.0.16.
We use this data to construct a line bundle as follows. Since
GLl(Ox(Ui ﬂUj)) = Ox(Ui ﬂUj)*,
the quotients);; = fi/ f; may be regarded as transition functions. These satisfy the
hypotheses of Proposition 6.0.16 and hence give a line bundV» — X.
A global sectionf € I'(X, 0 (D)) satisfies diyf)+ D > 0, so that onJ;,
div(ffi)|y, =div(f)|, +div(fi)|, = (div(f) +D)|, > 0.
This shows thas = fif € Ox(D)(U;). Then
GijSj = fi/fj-fjf = fif =85,
which by part (b) of Proposition 6.0.16 gives a global sectid = : Vo — X.
Conversely, the proposition shows that a global sectionof- X gives functions
S € Ox(D)(Ui) such thatijs; =s. It follows thatf =5/ f; € C(X) is independent
of i. One easily checks thdte I'(X, Ox(D)). The same argument works when we

restrict to any open subset Xf It follows that.Z = 0x (D) is the sheaf of sections
ofm:Vy — X, O

|UiﬁUj’

We will see shortly that this process is reversible, i.eer¢his a one-to-one
correspondence between line bundles and sheaves commgCeastier divisors.
First, we give an important example.

Example 6.0.19.When we regar@®" as the set of lines through the originG@i+1,
each pointp € P" corresponds to a ling, C C"™?1, We assemble these lines into
a line bundle as follows. Lety,...,x, be homogeneous coordinates Bh and
Yo, .- .,Yn be coordinates ofi™1. Define

\V/ C PN % (CnJrl
as the locus where the matrix

(XO Xn)
Yo ==+ Yn
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has rank one. Thug is defined by the vanishing ofy; — x;yi;. Then define the
map~ :V — P" to be projection on the first factor &" x C"?1. To see thav
is a line bundle, consider the open sub8Bt~ U; C P" wherex; is invertible. On
7~1(U;) the equations defining become

Xi o
nyi =y, forall j#i.
Thus(Xo, ..., %, Y0,---,¥n) — (Xo0,---,,%n,Yi) defines an isomorphism
oi 7T71(Ui) AN Ui x C.

In other words)y; is a local coordinate for the lin€ over U;. Switching to the
coordinate system ovélj, we have the local coordinatg, which overU; NUj is
related toy; via

A=
X; Yi =Yi-
Hence the the transition function frddh NU; x C toU;NU; x C is given by
X *
gij = - € Op(UiNUj)™.
i

This bundle is called thtautological bundleon P". In Example 6.0.21 below, we
will describe the sheaf of sections of this bundle. O

Projective spaces are the simplest type of Grassmannianhjuahas in this
example, the construction of the Grassmannian shows tbairies equipped with
a tautological vector bundle. In Exercise 6.0.5 you willadtatine the transition
functions for the Grassmannidi(1, 3).

Invertible Sheaves and the Picard GroupPropositions 6.0.17 and 6.0.18 imply
that the sheatx (D) of a Cartier divisor is locally free of rank 1. In general, a
locally free sheaf of rank 1 is called @mvertible sheaf

The relation between Cartier divisors, line bundles andrititvle sheaves is
described in the following theorem.

Theorem 6.0.20.Let.Z be an invertible sheaf on a normal variety X. Then:
(a) There is a Cartier divisor D on X such th&t ~ 0 (D).
(b) There is a line bundle ¥ — X whose sheaf of sections is isomorphic#o

Proof. The part (b) of the theorem follows from part (a) and Propmsi6.0.18. It
remains to prove part (a).

SinceX is irreducible, any nonempty op&hC X gives a domair’x (U ) with
field of fractionsC(U). By Exercise 3.0.4C(U) = C(X), so thatU — C(U)
defines a constant sheaf ¥ denoted?x. This sheaf is relevant sinagx (D) is
defined as a subsheaf ¢fy.
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First assume tha¥ is a subsheaf of#x. Pick an open covefU;} of X such
that.,2”|Ui ~ Ox|y, for everyi. OverU;, this gives homomorphisms

Ox(Uy) ~ .2(U;) — C(X).

Let £~ € C(X) be the image of & ¢ (U;). One can show without difficulty that
fi/fj € Ox(UinUj)*. Then{(U;, f;)} is local data for a Cartier divisdd on X
satisfying.Z = 0x (D).

For the general case, observe that on an irreducible vaeetyy locally con-
stant sheaf is globally constant (Exercise 6.0.6). Nouw#Adbe any invertible sheaf
on X. On a small enough open 4t ¥ (U) ~ 0x(U), so that

ZU) @gy ) #x(U) = Ox(U) @ gy #x(U) >~ 2% (U) = C(X).
Thus.Z ®g, #x% is locally constant and hence constant. This easily imphas
Z Rg, Hx ~ JHx, and composing this with the inclusion

f B $®ﬁx <%/X

expresses” as a subsheaf ofx. O

We note without proof that the line bundle correspondingnianaertible sheaf
is unique up to isomorphism. Because of this result, algelgeometers tend to
use the termine bundleandinvertible sheafinterchangeably, even though strictly
speaking the latter is the sheaf of sections of the former.

We next discuss some properties of invertible sheaves apifnim Cartier
divisors. A first result is that iD andE are Cartier divisors oiX, then

(6.0.3) Ox (D) ®g,Ox(E) ~ Ox(D+E).
This follows becausd ® g— fginduces a sheaf homomorphism
Ox(D) ®gy Ox(E) — Ox(D+E)

which is clearly an isomorphism on any open set wh@g€D) is trivial.
By standard properties of tensor product, the isomorph&M3) induces an
isomorphism
Ox(E) ~ Homg, (0% (D), Ox (D +E)).
In particular, wherE = —D, we obtain
Ox(D)®g, Ox(—D) ~ Ox and 0Ox(—D)~ 0x(D)",
wheredx (D)"Y = Homg, (Ox (D), Ox) is thedual of Ox (D).

More generally, the tensor product of invertible sheaveg&n invertible, and
if ¢ is invertible, then?V = Homy, (.Z, Ox) is invertible and

$®[/va ~ Ox.

This explains why locally free sheaves of rank 1 are callgdriible.



256 Chapter 6. Line Bundles on Toric Varieties

Example 6.0.21.There is a nice relation between the tautological bundlébn
and the invertible sheafpn(1) introduced in Example 4.3.1. Recall that the-
invariant divisorsDo,...,D, on P" are all linearly equivalent, and so define iso-
morphic sheaves, usually denotégh(1). The local data for the Cartier divis@x
is easily seen to bé(U;, %)}, whereU; C P" is the open set wheng # 0. Thus
the transition functions fot’x (Do) are given by

X

gij = %
Xi

_X
=%
These are the inverses of the transition functions for thtolagical bundle from

Example 6.0.19. It follows that the sheaf of sections of thédlogical bundle is
ﬁpn(l)v = ﬁﬂmn(—l). <>

We can also explain when Cartier divisors give isomorphieiitible sheaves.

Proposition 6.0.22. Two Cartier divisors DE give isomorphic invertible sheaves
Ox (D) ~ Ox(E) ifand only if D~ E.

Proof. By Proposition 4.0.29, linearly equivalent Cartier divisgive isomorphic
sheaves. For the converse, we first prove thatD) = 0x impliesD = 0.

Assumerx (D) = Ox. Then 1€ I'(X, 0x) =T'(X, 0x(D)),soD > 0. If D #0,
then we can pick an irreducible divisby that appears i with positive coeffi-
cient. The local ringdx p, is a DVR, so we can finth € Ox p, with vp,(h) = 1.
SetU = X\ W, whereW is the union of all irreducible divisor®’ # Zy with
vpr(h) # 0. There are only finitely many such divisors, so tbats a nonempty
open subset ok with U NDg # (. Thenh € T'(U, &%), andh~ ¢ T'(U, Ox) since
h vanishes ot N Dg. However,

(D+div(h™)], = (D—div(h))|, = (D—Do)|, >0,

so thath~! € (U, 0% (D)) = I'(U, Ox). This contradiction prove® = 0.

Now suppose that Cartier divisoB, E satisfy 0x(D) ~ Ox(E). Tensoring
each side withox (—E) and applying (6.0.3), we see thé&k (D — E) ~ 0x. If
1eI'(X,0x) maps tog € I'(X, Ox (D — E)) via this isomorphism, then

g0x = Ox(D—E)
as subsheaves of%. Thus
Ok =g L0x(D—E) = 6(D—E+div(g)),
where the last equality follows from the proof of Propositi$.0.29. By the previ-
ous paragraph, we hai&— E + div(g) = 0, which implies thaD ~ E. O
In Chapter 4, the Picard group was defined as the quotient
Pic(X) = CDiv(X)/Divo(X).
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We can interpret this in terms of invertible sheaves asWdloGiven.Z invertible,
Theorem 6.0.20 tells us tha&¥ ~ Ox (D) for some Cartier divisoD, which is
unique up to linear equivalence by Proposition 6.0.22. ideme have a bijection

Pic(X) ~ {isomorphism classes of invertible sheaves<gn

The right-hand side has a group structure coming from tgmsmtuct of invertible
sheaves. By (6.0.3), the above bijection is a group isonismph

In more sophisticated treatments of algebraic geometeyPibard group of an
arbitrary variety is defined using invertible sheaves. AlSartier divisors can be
defined on an irreducible variety in terms of local data, aithassuming normality
(see [L31, 11.6]), though one loses the connection with Weil diviso&nce most
of our applications involve toric varieties coming from $amwe will continue to
assume normality when discussing Cartier divisors.

Stalks, Fibers, and SectionsFrom here on, we will think of a line bundl&’ on
X as the sheaf of sections of a rank 1 vector bundié/» — X. Given a section
se Z(U) andp e U, we get the following:

e SinceVy is a vector bundle of rank 1, we have tfieer 7=1(p) ~ C. Then
s:U — Vg givess(p) € 7~ 1(p).

e Since.Z is a locally free sheaf of rank 1, we have #talk .2, ~ 0x . Then
se Z(U) givess, € %
In Exercise 6.0.7 you will show that these are related visetingvalences

s(p) Z0in7 Y(p) <= sp ¢ mpZ,p

(6.0.4)
<= sp generatesz), as and’x p,-module

A sections vanishest p € X if s(p) =0in7~1(p), i.e., if sp € mp L.
Basepoints It can happen that many sections of a line bundle vanish airé po
This leads to the following definition.

Definition 6.0.23. A subspacaV C I'(X,.Z) has no basepoint®r is basepoint
freeif for every p € X, there iss € W with s(p) # 0.

As noted earlier, a global sectiare I'(X,.%) gives a sheaf homomorphism
Ox — £ . Thus a subspad®/ C I'(X,.Z) gives

WQc Ox — £
defined bys®@ h— hs Then (6.0.4) and Proposition 6.0.7 imply the following.

Proposition 6.0.24. A subspace WC I'(X,.%) has no basepoints if and only if
W®c Ox — £ is surjective. O
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For a line bundleZ = 0x (D) of a Cartier divisoD on a normal variety, the
vanishing locus of a global section has an especially niepnetation. The local
data{(U;, fi)} of D gives the rank 1 vector bundle: V, — X with transition
functionsg;; = fj/f;. Hence we can think of a nonzero global sectio@giD) in
two ways:

e Arational functionf € C(X)* satisfyingD + div(f) > 0.

e A morphisms: X — V¢ whose composition with is the identity onX.
The relation betweesand f is given in the proof of Theorem 6.0.18: ovdy, the
sections looks like (p,s(p)) for s = fif € Ox(U;). It follows thats = 0 exactly
whens = 0. SinceDyUi = div( fi)yui, the divisor ofs onU; is given by

div(fi )|y, = (D+div(f))],.
These patch together in the obvious way, so thatittisor of zeroof sis
divo(s) = D +div(f).

Thus the divisor of zeros of a global section is an effectivésdr that is linearly
equivalent tdD. It is also easy to see thanhy effective divisor linearly equivalent
to D is the divisor of zeros of a global section &% (D) (Exercise 6.0.8).

In terms of Cartier divisors, Proposition 6.0.24 has th#Wing corollary.

Corollary 6.0.25. The following are equivalent for a Cartier divisor D:

(@) Ox(D) is generated by global sections in the sense of Definitior18.0

(b) D is basepoint freemeaning thal' (X, &x (D)) is basepoint free.

(c) For every pe X there is s= I'(X, Ox (D)) with p¢ Supfdivo(s)). O

The Pullback of a Line Bundle Let .Z be a line bundle oiX andVy¢ — X the
associated rank 1 vector bundle. A morphi§mZ — X gives the fibered product
f*Vy =V xx Z from 83.0 that fits into the commutative diagram

f*Vg —)Vg

| b

Z—f>X.

It is easy to see thdt*V ¢ is a rank 1 vector bundle oveér.

Definition 6.0.26. The pullback f*.# of the sheat? is the sheaf of sections of
the rank 1 vector bundlé*V ¢, defined above.

Thus the pullback of a line bundle is again a line bundle. arrhore, there is
a natural map on global sections

*:T(X,.2) — [(Z,1*.2)
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defined as follows. A global sectian X — V¢ gives the commutative diagram:

| b

Z—f>X.

The universal property of fibered products guarantees tiseeece and uniqueness
of the dotted arrowf *(s) : Z — f*V ¢ that makes the diagram commute. It follows
that f*(s) e I'(Z, f*.Z).
Example 6.0.27.Let X C P" be a projective variety. If we write the inclusion as
i : X — P", then the line bundl&pn (1) gives the line bundl& ¢p (1) on X. When
the projective embedding &f is fixed, this line bundle is often denotet (1).

Thus a projective variety always comes equipped with a limelte. However,
itis not unique, since the same variety may have many piegetbeddings. You
will work out an example of this in Exercise 6.0.9. O

In general, given a shea¥ of &x-modules onX and a morphisnf : Z — X,
one gets a shedf.# of &z-modules orZ. The definition is more complicated, so
we refer the reader td.B1, 11.5] for the details.

Line Bundles and Maps to Projective Spac&Ve now reverse Example 6.0.27 by
using a line bundleZ on X to create a map to projective space.

Fix a finite-dimensional subspat¥ C I'(X,.#) with no basepoints and let

WY = Hom¢ (W, C) be its dual. The projective spaceWt’ is
PWY) = (WY \{0})/C".

We define amap.¢ w : X — P(WV) as follows. Fixp € X and pick a nonzero
element, € 7~ 1(p) ~ C, wherer : V& — X is the rank 1 vector bundle associated
to . For eachs € W, there is\s € C such thas(p) = Asvp. Then the map defined
by ¢p(s) = Asis linear and nonzero sin&# has no basepoints. Thédse W, and
sincevp is unique up to an element @f*, the same is true fof,. Then

bz w(p) ={p
defines the desired map,w : X — P(WY).
Lemma 6.0.28.The mapp.yw : X — P(W"Y) is a morphism.

Proof. Lets,...,snbe abasis oWV and letU; = {p € X | s(p) # 0}. These open
sets coveX sinceW has no basepoints. Furthermore, the natural map

UixC— 71U, (p,A)+— As(p)
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is easily seen to be an isomorphism. Since all sectiong efC — C are of the
form p— (p,h(p)) for h e Ox(U;), it follows that for all 0< j < m, we can write
SJ|Ui = hijS|Ui, hij € Ox (Up).

The definition of¢ ¢ w uses a nonzero vectwp € 7~1(p). OverU;, we can
uses(p) € 7 1(p). Thensj(p) = hij(p)s(p) implies £p(s;(p)) = hij(p). Since
£ (£(0),---,¢(sm)) gives an isomorphis®(W") ~ P™, ¢ |, can be written
(6.0.5) U —P™  pr— (hio(p),...,him(p)),
which is a morphism sincl; = 1. O

WhenW has no basepoints aisgl ..., sm spanW, ¢ ¢ is often written

(6.0.6) X—P"  p—(so(p);---,Sm(p)) € P"
with the understanding that this means (6.0.5)on- {p € X | s(p) # 0}.

Furthermore, when? = 0x (D), we can think of the global sectiorss as
rational functiongy, such thaD +div(gi) > 0. Then¢ « w can be written
(6.0.7) X—P"  p—(go(p),---,Gm(p)) € P™
Sinceg;(p) may be undefined, this needs explanation. The local fatga f;)} of
D implies thatfigo,..., fjgm € 0% (Uj). Then (6.0.7) means thaty |y is

U —P™  p—(figo(p),-... figm(p)) € P™.

This is a morphism ol since the global sections correspondingdo .., gm have
no base points.

Exercises for §6.0
6.0.1. For a sheaf homomorphisi: % — ¢, show that
U — ker(éy)
defines a sheaf. Also prove that the following are equivalent
(@) The kernel sheaf is identically zero.
(b) ¢y is injective for every open subsgt
(c) ¢ is injective as defined in Definition 6.0.4.
6.0.2. In Example 6.0.5, prove tha@tp: (—D) & Op:1(—D) — Op1 is surjective.
6.0.3. Prove Proposition 6.0.8.

6.0.4.Let.7,¥ be quasicoherent sheavesXnProve that) — Homg, ) (# (U),% (U))
defines a quasicoherent shé&img, (#,9).

6.0.5. The GrassmanniaB (1, 3) is defined as the space of lineshA, or equivalently, of
2-dimensional subspaces\sf= C*. This exercise will construct theutological bundle
on G(1,3), which assembles these 2-dimensional subspaces into &raeétor bundle
overG(1,3). A point of G(1,3) corresponds to a full rank matrix

_(a)_(ao a1 Q2 ag)
P=\8) "B B B B
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up to left multiplication by elements of GLC). Then define
V CG(1,3) xC*

to consist of all pairg(3),v) such thav € Spar{c, 3).

(@) Apair((3),v) gives the 3x 4 matrix

\' Vo V1 Vo V3
A=|lal]l=|a a1 ar az].
B Bo B1 B2 fa

Prove tha((3),V) is a point ofV if and only if the maximal minors of vanish. This
shows thaV C G(1,3) x C*is a closed subvariety.

(b) Projection onto the first factor gives a morphismV — G(1,3). Explain why the
fiber overp € G(1,3) is the 2-dimensional subspace®t corresponding te.

(c) Given 0<i < j <3, define
Uij ={(5) € G(1,3) | ifj — aj 5 # O}

Prove that)j; ~ C* and that th&J;; give an affine open cover @ (1, 3).
(d) Given 0<i < j <3, pickk < | such that{i, j,k,1} = {0,1,2,3}. Prove that the map

(p,v) — (p,Vk, V) gives an isomorphism

Wﬁl(Uij) AN Uij x 2.

(e) By part (d)V is a vector bundle ove(1,3). Determine its transition functions.
6.0.6. Prove that a locally constant sheaf on an irreducible warsetonstant.
6.0.7. Prove (6.0.4).

6.0.8. Prove that an effective divisor linearly equivalent to at@adivisorD is the divisor
of zeros of a global section @fx (D).

6.0.9. Let 14 : P! — P9 be the Veronese mapping defined in Example 2.3.15. Prove that
I/g; ﬁpd(l) = ﬁpl(d)

6.0.10.Let f : Z — X be a morphism and le¥ be a line bundle oiX that is generated by
global sections. Prove that the pullback line buniieZ is generated by global sections.
6.0.11. Let D be a Cartier divisor on a complete normal varigty

(@) f,geI'(X,0x(D))\ {0} give effective divisordD + div(f),D + div(g) on X. Prove
that these divisors are equal if and onlffi= Ag, A € C*.

(b) Thecomplete linear systewf D is defined to be
|ID| = {E € CDiv(X) | E ~ D, E > 0}.
Thus the complete linear system Bfconsists of all effective Cartier divisors ofi

linearly equivalent toD. Use part (a) to show thdD| can be identified with the
projective space df (X, 0x(D)), i.e., there is a natural bijection

D = P(I'(X, 0x(D))) = (I'(X, 6x(D)) \{0})/C".
(c) Assume thab has no basepoints and 8&t=T'(X, 0x(D)). Then we can identify

P(W") with the set of hyperplanes iIW) = |D|. Prove that the morphisei, o) w :
X — P(WV) is given by

$oxo)w ={E €[D|| pe SupgE)} C [D|.
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86.1. Ample and Basepoint Free Divisors on Complete Toric \féeties

In this section we will study two special classes of Cartigisdrs on complete
toric varieties. We begin with the basepoint free case.

Basepoint Free Divisors Consider the toric varietits; of a fanX in Ng ~ R" and
letD = Zp a,D, be a torus-invariant Cartier divisor 0f:. By Propositions 4.3.3
and 4.3.8, we have the global sections

F(X27ﬁXE(D)) = @ C 'Xm>

mePbNM
wherePy C Mg is the polyhedron defined by
(6.1.1) Po={meMg|(mu,) > —a,forall pc 3(1)}.

SinceD =} ,a,D, is Cartier, there are, € M for o € X such that

(6.1.2) (Mmy,uy) =—-a,, peo(l).

Furthermore, whertnax = 3(n), D is uniquely determined by the Cartier data
{M; },exm)- Then we have the following preliminary result.

Proposition 6.1.1. If ¥yax= X(n), then the following are equivalent:
(@) D has no basepoints, i.e/x,, (D) is generated by global sections.
(b) m, € By for all o € X(n).

Proof. First suppose thab is generated by global sections and take X (n).
The Ty-orbit corresponding t@ is a fixed pointp of the Ty-action, and by the
Orbit-Cone Correspondence,

{p} = ﬂ Dp.
pEa(l)
By Corollary 6.0.25, there is a global sectisrsuch thatp is not in the support
of the divisor of zeros diys) of s. Sincel'(Xy, Ox,, (D)) is spanned by ™ for
m e Pb N M, we can assume thatis given byx™ for someme PbNM. The
discussion preceding Corollary 6.0.25 shows that the @iva§ zeros ofsis

divo(s) = D+div(x™) = > _ (8, + (m.u,))D,.
P
The pointp is not in the support of di(s) yet lies inD,, for everyp € o(1). This
forcesa, + (m,u,) = 0 for p € o(1). Sinceo is n-dimensional, we conclude that
m, =me Pp.

For the converse, take € ¥(n). Sincem, € Py, the charactex™ gives a
global sectiors whose divisor of zeros is diys) = D +div(x™ ). Using (6.1.2),
one sees that the support of glis) missesU,,, so thats is nonvanishing otJ,.
Then we are done since thle coverXs. O
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Here is an example to illustrate Proposition 6.1.1.

Example 6.1.2. The fan for the Hirzebruch surfac#3 is shown in Figure 3. Let

(o)
u = (_113 .

o

u, 1

O3
e —

U

u, o

Figure 3. A fan X2 with Xs, = 7%

D; be the divisor corresponding tp. We will study the divisors
D=D; and D = Dy + Da.

Write the Cartier data fob andD’ with respect tarq,...,04 as{m} and {m{}
respectively. Figure 4 show, and m; (left) and Py and n{ (right) (see also

m. n.
1amz o3 192 o
Po Po
my =my 2 2
4un  u

Figure 4. P> andm (left) andP,, andny (right)

Exercise 4.3.5). This figure and Proposition 6.1.1 makeestrcthatD is basepoint
free whileD’ is not. O

Support Functions and Their GraphsLetD = Zp a,D, be a Cartier divisor on a
toric varietyXs;. As in Chapter 4, itsupport functionpp : |X| — R is determined
by the following properties:

e op is linear on each cone € X..

e op(u,) =—a,forall pc £(1).
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This is where thdm, } ,cx from (6.1.2) appear naturally, since the explicit formula
for ¢p|, is given bypp(u) = (m,,u) forallu e o.

WhenM = Z? and Y is complete, it is easy to visualize the graphygf in
Mg x R = R3: imagine a tent, with centerpole extending fr¢®0,0) down the
z-axis, and tent stakes placed at positiong —a,). Here is an example.

Example 6.1.3. TakeP! x P! and consider the divisdd = D1 + D, + D3 + Da.
This gives the support function wheg (uj) = —1 for the four ray generators
Ug, Uz, Us, Ug Of the fan of P! x PL. The graph ofpp is shown in Figure 5. This

Figure 5. The graph ofpp

should be visualized as an infinite Egyptian pyramid, witkxagt the origin and
edges going througtu;, —1) for 1 <i < 4. O

Convex Functions We now introduce the key concept of convexity.
Definition 6.1.4. Let SC Nr be convex. A functiornp : S— R is convexif

p(tu+ (1-1)v) = to(u) + (1-t)e(v),
for all u,v € Sandt € [0,1].

We caution the reader that some books define convexity wihirthquality
going the other way.

Continuing with the tent analogy, a support functipp is convex exactly if
there are unimpeded lines of sight inside the tent. It israkest for Example 6.1.3,
the support function is convex.
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Full Dimensional Convex Supportt In this chapter, our main focus is on complete
fans. However, the natural setting for convexity is theglaisfansX in Ng which
satisfy the following two conditions:

e |X| C Ng is convex.
e dim|X| = n=dimNg.
We say that: hasconvex support of full dimensioBuch fans satisfy
(6.1.3) 2] =Condu, [ pex(1)= | o
oex(n)
In particular, the maximal cones &f have dimensiom, so that we can focus on
the conesr € X(n), just as in the complete case.

Support Functions and Convexity The following lemma describes when a sup-
port function is convex. Given a fan in Ng ~ R", a coner € ¥(n—1) is called a
wall when it is the intersection of twe-dimensional cones, o’ € X(n), i.e, when

T =o0No’ forms the wall separating ando’. If ¥ is complete, every € 3(n—1)

is a wall.

Lemma6.1.5.Let D be a Cartier divisor on a toric variety whose farhas convex
support of full dimension. Then the following are equivélen

(@) The support functiorpp : |X| — R is convex.

(b) ¢p(u) < (m,,u) forallu e |X]|ando € X(n).

(©) ¢p(u) = mMin,cs ) (M, u) forall u € [3].

(d) For every wallr =ono’, thereis iy € o’ \ o with pp(Ug) < (M, Up).

Proof. Firstassume (a) and fixin the interior ofo € ¥(n). Givenu € |X|, we can
findt € (0,1) with tu+ (1—t)v € 0. By convexity, we have
(Mg, tu+ (1—t)v) = pp(tu+ (1—t)v)
> typp (U) + (1—t)¢pp (V) = tep(u) + (1-t) (M, V).
This easily implies(m,,u) > ¢p(u), proving (b). The implication (b} (c) is
immediate sinceop(u) = (m,,u) for u € o, and (c)= (a) follows because the
minimum of a finite set of linear functions is always convexdEise 6.1.1).

Since (b)=- (d) is obvious, it remains to prove the converse. Assumerd) a
fixawall 7 =onNo’. Theno' lies on one side of the wall. We claim that
(6.1.4) (m,s,u) < (m,,u), whenu,os’ are on the same side of
This is easy. The wall is defined lyn, — m,-,u) = 0. Then (d) implies that the
halfspace containing’ is defined by(m, —m,,,u) > 0, and (6.1.4) follows.

Now takeu € || ando € X(n). Since|X| is convex, we can pick in the
interior of o so that the line segmenvintersects every wall of in a single point,
as shown in Figure 6 on the next page. Using (6.1.4) repgatedlobtain
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wall wall wall
4 ! Loy
. ° ° ° °
O,// O'/ g

Figure 6. Crossing walls fromu to v alonguv

(Mg, U) > (Myr, U) > (M, U) > -
When we arrive at the cone containing the pairing becomesp(u), so that
(M, u) > pp(u). This proves (b). O

In terms of the tent analogy, part (b) of the lemma means thatihave a
convex support function and extend one side of the tent idirdttions, the rest of
the tent lies below the resulting hyperplane. Then part (@ms that it suffices to
check this locally where two sides of the tent meet.

The proof of our main result about convexity will use thedaling lemma that
describes the polyhedron of a Cartier divisor in terms o$ifgport function.
Lemma 6.1.6.LetX be afan and D=} a,D, be a Cartier divisor on X. Then

Po={meMg | ¢p(u) < (mu) forallue |X|}.
Proof. Assumeypp(u) < (m,u) for all u € |X|. Applying this withu = u,, gives
—8, = ¢p(Uy) < (MUy),
so thatm € By by the definition ofy. For the opposite inclusion, take< Py and
ue |X[. Thusue o € X, sothatu=3 . ;) Aoy, Ap = 0. Then
<m7 U> = ZpEo’(l))\p<m7 up> 2 ZpEo’(l))\P(_ap)
=2 pea)Mo¥D(Up) = ¢ (U),
where the inequality follows frorm € Py, and the last two equalities follow from
the defining properties afp. d

We now expand Proposition 6.1.1 to give a more complete ctexization of
when a divisor is basepoint free. Recall tRgtis a polytope wherx is complete.

Theorem 6.1.7.Assuméy:| is convex of full dimension n and lgp be the support
function of a Cartier divisor D on X. Then the following are equivalent:

(a) D is basepoint free.

(b) m, € B for all o € X(n).

() ¢p(U) = min,cxm (M, u) for all u € [X].

(d) ¢p : |X| — Ris convex.

If addition X is complete, thefa)—(d)are equivalent to the following:
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() P =Convym, | o € X(n)).
(f) {m, | o € £(n)} is the set of vertices oP
(9) ¥p(U) = Minmep, (M, ) for all u € Ng.

Proof. The equivalences (& (b) and (c)< (d) were proved in Proposition 6.1.1
and Lemma 6.1.5. Furthermore, Lemmas 6.1.5 and 6.1.6 irhpty t

¢p IS convex <= pp(u) < (m,,u) for all o € £(n), ue |X|
< m, € Bpforallo € X(n).

This proves (d)= (b), so that (a), (b), (c) and (d) are equivalent.
Assume (b) and note th& is a polytope sinc& is complete. Them, € P
andypp (U) = Min,cx, ;) (M, u). Combining these with Lemma 6.1.6, we obtain
< mi < mi =
Po(W) < min(mu) < min (M, ) = ¢o(u),
proving (g). The implication (g} (d) follows since the minimum of a compact
set of linear functions is convex (Exercise 6.1.1). Sofalb) < (c) & (d) < (9).

The implications (fi= (€) = (b) are clear. It remains to prove (8} (f). Take
o € X(n). Letu be in the interior ofc and seta = ¢p(u). By Exercise 6.1.2,
Hua={me Mg | (mu) = a} is a supporting hyperplane 8 and

(6-1-5) Hu,aﬂPD = {ma}

This implies thatm, is a vertex offp. Conversely, leH, ; be a supporting hyper-
plane of a vertex € Py. Thus(m,u) > afor all me Py, with equality if and only if
m=v. Since (b) holds, we also have (c) and (g). By (@){u) = minmecp, (M,u) =
(m,v) = a. Combining this with (c), we obtain

u) = min u=a
Po(W) = min (my.u)

Hence(m,,u) = a must occur for some € X(n), which forcesy = m,. O

Example 6.1.8.In Example 6.1.2 we showed that on the Hirzebruch surfdée

D =D, is basepoint free whil®’ = D, + D4 is not. Theorem 6.1.7 gives a different
proof using support functions. Figure 7 on the next page shibw graph of the
support functionpp. Notice that the portion of the “roof” containing the points
Uy, Up, Uz and the origin lies in the plare= 0, and it is clear that fopp, there are
unimpeded lines of sight within the tent. In other worgs, is convex.

The support functiopp: is shown in Figure 8 on the next page. Here, the line
of sight fromu; to us lies in the plane = 0, yet the ridgeline going from the origin
to the point(uy, —1) on the tent lies below the plaze= 0. Hence this line of sight
does not lie inside the tent, so that is not convex. O
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Figure 7. The graph ofpp = ¢p, in Example 6.1.8

not inside ten

Figure 8. The graph ofpp = ¢p,+p, in Example 6.1.8

WhenD is basepoint free, Theorem 6.1.7 implies that the vertideR,care
the lattice pointan,, o € ¥(n). One caution is that in general, the, need not
be distinct, i.e.o # ¢’ can havem, = m,.. An example is given by the divisor
D = D4 considered in Example 6.1.2—see Figure 4. As we will see, |éhés
behavior illustrates the difference between basepoietdral ample.

It can also happen th& has strictly smaller dimension than the dimension of
Xs. You will work out a simple example of this in Exercise 6.1.3.
Ample Divisors We now introduce the second key concept of this section.

Definition 6.1.9. Let D be a Catrtier divisor on a complete normal varigty As

we noted in 84.3W =T'(X, Ox (D)) is finite-dimensional.

(@) The divisorD and the line bundl&@x (D) arevery amplewhenD has no base-
points andpp = ¢, (D) w : X — P(WV) is a closed embedding.

(b) D andx (D) areamplewhenkD is very ample for some integé&r> 0.
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We will see that support functions give a simple, elegantattarization of
when a torus-invariant Cartier divisor is ample. But firsg @xplore how the very
ample polytopes from Definition 2.2.17 relate to Definitiath.8.

Very Ample PolytopesLet P C Mg ~ R" a full dimensional lattice polytope with
facet presentation

P={me Mg | (mug) > —ag for all facetsF }.
This gives the complete normal faip and the toric varietyp. Write
PAM = {my,...,ms}.
A vertexmy € P corresponds to a maximal cone
(6.1.6) oj = CondPNM—m)" € Zp(n).

Proposition 4.2.10 implies thddp = ) " azDf is Cartier since{m;,ur) = —ar
whenm, € F.

Recall from Definition 2.2.17 tha® is very ampléf for every vertexm; € P,
the semigroupN(PNM — my) is saturated irM. The definition ofXp given in
Chapter 2 used very ample polytopes. This is no accident.

Proposition 6.1.10. Let X and Dp be as above. Then:

(a) Dp is ample and basepoint free.

(b) If n > 2, then k@ is very ample for every k n— 1.

(c) Dp is very ample if and only if P is a very ample polytope.

Proof. First observe that the polytope of the divids is the polytope® we began
with, i.e.,Po, = P. This has two consequences:

e Dp is basepoint free by Proposition 6.1.1, which proves thd &ngertion of
part (a).

o If PNM = {my,...,ms}, then the characterg™ spanW = I'(Xp, Ox,(Dp)).
SinceDp is basepoint free, these global sections give the morphism
$Dp = Do, (D) v — P71
by Lemma 6.0.28. As explained in (6.0.4) can be written
(6.1.7) ¢Dp(P) = (X™(P);--- . x™(P))-
It follows that¢p, factors as
Xp — Xpom C P57,

whereXp~y is the projective toric variety oPNM C M from §2.1. We need to
understand wheKlp — Xpqu is an isomorphism.
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Fix coordinatesxy, ...,xs of PS~1 and letl C {1,...,s} be the set of indices
such thatn is a vertex ofP. Hence eache | gives a vertexn and a corresponding
maximal cones; in the normal fan oP.

If i €1, then{m,ug) = —ag for every facetF containingm. For all other
facetsF, (m,ur) > —ag. Hence, ifs is the global section corresponding x8',
then the support of dig )o = Dp+div(x™) consists of those divisors missing the
affine open toric variety),;, C Xp of o;. It follows thatU,, is the nonvanishing
locus ofs.

Under ¢p,, this nonvanishing locus maps to the affine open subset PS—*
wherex; # 0. SinceXp = (i Us;, andXpam € Ui, Ui by Proposition 2.1.9, it
suffices to study the maps

UO’i — XPﬂM NU;
of affine toric varieties. By Proposition 2.1.8,
Xpam NUi = Spe¢CIN(PNM —my)]).
Sinces = CongPNM —m;) by (6.1.6), we have an inclusion of semigroups
N(PNM-m) C o NM.
This is an equality precisely whéd(PNM —m;) is saturated itM. SinceU,, =
Spe¢C[o;” NM]), we obtain the equivalences:
Dp is very ample<= Xp — Xpnm iS an isomorphism
<= U,, — Xpnm NU; is an isomorphism for all € |
<= CIN(PNM—-m)] — C[¢¥ NM]is an
isomorphism for all € |
<= N(PNM —m;) is saturated for all € |
< Pisvery ample.
This proves part (c) of the proposition. For part (b), re¢hdt if n> 2 andP
is arbitrary, therkP is very ample wherk > n— 1 by Corollary 2.2.19. Hence

kDp = Dyp is very ample. This implies th&p is ample (the case= 1 is trivial),
which completes the proof of part (a). O

Example 6.1.11.In Example 2.2.11, we showed that the simplex
P=Conv(0,e1,€,e1 + &+ 3e3) CR®

is not normal. We show tha® is not very ample as follows. From Chapter 2
we know that the only lattice points &f are its vertices, so thatp, : Xp — P3,
SinceXp is singular (Exercise 6.1.4) of dimension 3, it follows thgt, cannot be

a closed embedding. HenEeandDp are not very ample. HoweverPZand Dp
are very ample by Proposition 6.1.10. O
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Ampleness and Strict ConvexityWe next determine when a Cartier dividor=
Zp a,D, on Xy, is ample. Our criterion will involve the support functig, of D.
Recall that the Cartier daan, },cxn) of D satisfies

(m,,u) = pp(u), foralluco.

Definition 6.1.12. Assume thak has full dimensional convex support. Then the
support functionpp of a Cartier divisoD on Xy, is strictly convexif it is convex
and for every € 3(n) satisfies

(Mm,,u) = pp(U) <= u€co.

The following lemma, which you will prove in Exercise 6.1shows that there
are many ways to think about strict convexity.

Lemma 6.1.13.Let D Cartier divisor on a toric variety whose fan has convex
support of full dimension. Then the following are equivélen

(a) The support functiorpp : || — R is strictly convex.

(b) vp(u) < (m,,u) forallu e |X]\ o ando € X(n).

(c) Forevery wallr = ono’, there is y € o'\ o with pp(Up) < (M, Up).

(d) ¢p is convex and p# m,» wheno # o’ in ¥(n) ando No’ is a wall.

(e) ¢p is convex and g# m,» wheno # o’ in X(n).

() (my,u,) > —a,forall pc ¥(1)\o(1) ando € 3(n).

(9) ¢p(u+V) > ep(u)+¢p(v) for all u,v € |X| not in the same cone &f. O

We now relate strict convexity to ampleness.

Theorem 6.1.14.Assume thapp is the support function of a Cartier divisor B
>_,a,D, on acomplete toric variety X Then

D is ample < ¢p is strictly convex.

Furthermore, if > 2 and D is ample, then kD is very ample for albkn— 1.

Proof. First suppose thadd is very ample. Very ample divisors have no basepoints,
SO pp is convex by Theorem 6.1.7. If strict convexity fails, theanhma 6.1.13
implies that: has a wallr = o N o’ with m, =m,. LetV(7) = O(7) C Xs.

Let P> be the polyhedron oD from (6.1.1), which is a polytope since is
complete. LePobNM = {my,...,ms}, so thatyp : X5 — P51 can be written

op(P) = (x™(P),---,x™(P))

as in (6.1.7). In this enumeratiom, = m,. = mj, for someig. We will study ¢p
on the open subsét, UU, C Xs..
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First considelU,. Theorem 6.1.7 implies that, € Pp, so that the section
corresponding tg¢™ is nonvanishing otJ,, by the proof of Proposition 6.1.1. It
follows that onU,,, ¢p is given by

¢o(p) = (X™ ™ (p),...,.x™ ™ (p)) €U = C*,
whereU;, C PS~1is the open subset whexg # 0.
Sincem, = m,-, the same argument works bly.. This gives a morphism

¢ply, oy, 1Yo Uy — Ujg = C 1.
The onlyn-dimensional cones @t containingr areo, o’ sincer is a wall. Hence
V(r) CU,UU,

by the Orbit-Cone Correspondence. Note al$e) ~ P! sincer is a wall. Since
PLis complete, Proposition 4.3.8 implies that all morphisrosfP? to affine space
are constant. Thugp mapsV (7) to a point, which is impossible sind2 is very
ample. Hencerp is strictly convex wher is very ample.

If D is ample, therkD is very ample fork > 0. Thusykp = kep must be
strictly convex, which implies thapp is strictly convex.

For the converse, assumpg is strictly convex. Le{m, },cxn be the Cartier
data ofD. Sinceyp is convex, Theorem 6.1.7 shows that thg are the vertices of
P>. HenceR; is a lattice polytope.

If Py is not full dimensional, then there ate# 0 in Ng andk € R such that
(m,,u) =kfor all o € 3(n). Then Theorem 6.1.7 implies
po(U) = (m,,u) =k
for all o € ¥(n). Using strict convexity and Definition 6.1.12, we conclutatt

u e o for all o € ¥(n). Henceu = 0 sinceX is complete. This contradicts+ 0
and proves tha®, is full dimensional.

HencePs gives the toric variety<p, with normal fanXp,. FurthermoreXg,
has the ample divisdDp, from Proposition 6.1.10. We studied the support function
of this divisor in Proposition 4.2.14, where we showed that ihe function

o (U) = min (m.u).
However, this is preciselyp by Theorem 6.1.7. Hencen, = pp IS strictly convex
with respect ta: (by hypothesis) an&lp, (by the first part of the proof).

Definition 6.1.13 implies that the maximal cones of the fam twe maximal
subsets oNg on which a strictly convex support function is linear. Thismbined
with the previous paragraph, implies that= Xp,. Thus

(6.1.8) Xy = Xp,.-
Furthermore, we also have
(6.1.9) D =Dp,



§6.1. Ample and Basepoint Free Divisors on Complete ToriteYas 273

since the divisors have the same support function. Sihgeis an ample divisor
by Proposition 6.1.10, it follows thd is also ample.

The final assertion of the theorem follows from Propositioh 5. O

The relation between polytopes and ample divisors giverbliy&) and (6.1.9)
will be explored in §6.2. These facts also give the followimge result.

Theorem 6.1.15.0n a smooth complete toric variety;Xa divisor D is ample if
and only if it is very ample.

Proof. If D is ample, therXy, is the toric variety off; by (6.1.8). SinceXy; is
smooth,P; is very ample by Theorem 2.4.3 and Proposition 2.4.4. Sihcethe
divisor of Py by (6.1.9),D is very ample by Proposition 6.1.10. O

Computing Ample Divisors Given a wallr € ¥(n— 1), write 7 = 0 N o’ and pick
p € 0’(1)\ o(1). Then a Cartier divisob = | a,D,, gives thewall inequality

(6.1.10) (My,uy) > —a,.
Lemma 6.1.13 and Theorem 6.1.14 imply tBais ample if and only if it satisfies

the wall inequality (6.1.10) for every wall af.

In terms of divisor classes, recall the map CHXsx.) — Pic(Xs) whose kernel
consists of divisors of characters. If we fiy € ¥(n), then we have an isomor-
phism
(6.1.11) {D=3",a,D, € CDivr(Xs)|a,=0forall pc oo(1)} =~ Pic(Xs)
(Exercise 6.1.6). Then (6.1.10) gives inequalities foedwaining when a divisor
class is ample. Here is a classic example.

Example 6.1.16.Let us determine the ample divisors on the Hirzebruch sarfac
J4. The fan forzz is shown in Figure 3 of Example 6.1.2, and this becomes
the fan for.7Z; by redefiningu; to beu; = (—1,r). Hence we have ray generators
Uy, Uz, Uz, Us and maximal cones,, oy, 03,04.

In Examples 4.3.5 and 4.1.8, we udedandD, to give a basis of Pi{c’7) =
Cl(247). Here, it is more convenient to ufls andD,4. More precisely, applying
(6.1.11) for the coney, we obtain

Pic(4) ~ {aD3+bD4 |a,b € Z}.
To determine wheaDs + bD, is ample, we computey = m,, to be
my = (~2,0), mp = (~a,b), my= (b,b), my= (0,0).
Then (6.1.10) gives four wall inequalities which reduceytb > 0. Thus

(6.1.12) aD3+bD, is ample<= a,b > 0.
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For an arbitrary divisob = 5% , a,D;, the relations
0~ div(x®)=—-D1+D3
0~div(x®)=rD;+D2—Dg4

show thatD ~ (a; —raz+ag)D3+ (a2 +a4)D4. Hence

S°* aD;is ample <= a; +ag > rap, a;+a4 > 0.

Sometimes ampleness is easier to check if we think georaliyrio terms of
support functions. FdD = aDs + bDg, look back at Figure 7 and imagine moving
the vertex auz downwards. This gives the graph @f, which is strictly convex
whena,b > 0. O

Here is an example of how to determine ampleness using sufpjpotions.

Example 6.1.17.The fan forP! x P! x P! has the eight orthants & as its maxi-
mal cones, and the ray generators-aeg, e, +e3. Take the positive orthatﬁi"‘zo
and subdivide further by adding the new ray generators

a=(2,11), b=(1,21), c=(11,2), d=(1,1,1).

We obtain a complete fan by filling the first orthant with the cones in Figure 9,
which shows the intersection W’;O with the planex+y-+z= 1. You will check
thatX is smooth in Exercise 6.1.7.

€

Figure 9. Cones ofY lying in R%O

LetD=3" a,D, be a Cartier divisor oiXs. ReplacingD with D +div(x™)
for m= (—ag,, —ae,, —ae,), We can assume thap satisfies

¢p(e1) = ¢p(€2) = ¢p(€3) = 0.

Now observe thag; + b= (2,2,1) = e;+a. Sincee; andb do not lie in a cone of
Y, part (g) of Lemma 6.1.13 implies that

¢p(e1+b) > pp(er) + ¢p(b) = ¢o(b).
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However,e; anda generate a cone af, so that

¢p(a) = ¢p(€2) +¢p(a) = yp(€2+a) = yp(e1+b).
Together, these implyp(a) > ¢p(b). By symmetry, we obtain

¢p(@) > ¢p(b) > ¢p(C) > ¥p(a),

an impossibility. Hencé& has no strictly convex support functions, which shows
that Xy, is a smooth complete nonprojective variety. See also ExaR.2 for a
computational approach using thelyhedra package oflacaulay2[123. ¢

We will say more computing ample divisors later in the chapte

The Toric Chow Lemma Recall from Chapter 3 that a refinemeiitof 3 gives a
proper birational toric morphisiKyy — X5. We will now use the methods of this
section to prove theoric Chow lemmawhich asserts that any complete fan has a
refinement that gives a projective toric variety. Here isptexise result.

Theorem 6.1.18.A complete fart has a refinement’ such that X is projective.

Proof. Supposer is a fan inNg ~ R". Let X’ be obtained front by considering
the complete fan obtained from

lJ sparr).
TeX(n-1)

So for each wall-, we take the entire hyperplane spanned by the wall. Thiglyiel
a subdivisor®’ with the property that

U = U spain)
/€ (n-1) reX(n—1)
i.e., each hyperplane Spar) is a union of walls ofx’, and all walls of%’ arise
this way.
Choosingm, € M so that
{ueNg [ (m,u) = 0} = Sparir),
define the mag : Nr — R by
pW)=— > [(m,u).
TeX(n—1)
Note thaty takes integer values dw and is convex by the triangle inequality (this
explains the minus sign).

Let us show thap is piecewise linear with respect 1. Fix 7 € ¥(n—1) and
note that each cone &f is contained in one of the closed half-spaces bounded by
Sparir). This implies thau — |(m,,u)| is linear on each cone &i’. Hence the
same is true fop.
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Finally, we prove thai is strictly convex. Suppose that= ¢} N5 is a wall
of ¥’. Thent’ C Sparir), 70 € X(n—1). We labels] andc?, so that

S0|o‘1(u) = —<m7'0’u> - ZT#TO in Z(n—l)|<mﬂu>|> uec O-Z/I.
@‘Ué(u) = <mTo7u> - ZT;ATO in E(nfl)’<mr7u>‘7 ue 0/2-

The sumy_, . in sn-1) |(M:, W] is linear ono’y Uo7, soy is represented by dif-
ferent linear functions on each side of the wall Sincey is convex, it is strictly
convex by Lemma 6.1.13. TheX is projective sinced’ = — 3 , (U, )D, is
ample by Theorem 6.1.14. a

Using the results of Chapter 11, one can improve this resutthowing that
Xs» can be chosen to be smooth and projective.

Exercises for §6.1

6.1.1. Let SC My be a compact set and defige: Np — R by ¢(u) = minmes(m, u).
Explain carefully why the minimum exists and prove thds convex.

6.1.2. Let Hy a be as in the proof of (b}> (d) of Theorem 6.1.7. Prove théd, , is a
supporting hyperplane ¢ that satisfies (6.1.5). Hint: Write= " ApUp, Ap > 0.

Then showne R implies(m,u) =3 ;1) Ap(M,U,) = ¢p(U).

p€a(l)

6.1.3. As noted in the text, the polytop of a basepoint free Cartier divisor on a complete
toric varietyXs; can have dimension strictly less than di. Here are some examples.

(a) LetD be one of the four torus-invariant prime divisorsBhx P1. Show that is a
line segment.

(b) Consider(IP*)" and fix an integed with 0 < d < n. Find a basepoint free divis@ on
(P1)" such that dinPs = d. Hint: See Exercise 6.1.9 below.

6.1.4. Show that the toric varietyp of the polytopeP in Example 6.1.11 is singular.

6.1.5. This exercise is devoted to proving that the statement¢dppf Lemma 6.1.13 are

equivalent. Many of the implications use Lemma 6.1.5.

(a) Prove (a)= (b) and (c)< (d).

(b) Prove (b)= (e) and (b)= (f) = (c).

(c) Prove (c)= (b) by adapting the proof of (&> (b) from Lemma 6.1.5.

(d) Prove (b)= (g) and use the obvious implication (&) (d) to complete the proof of
the lemma.

6.1.6. Let X5 be the toric variety of a fal in Ng ~ R" and fixog € ¥(n). Prove that the
natural map CDiy(Xsy) — Pic(Xy) induces an isomorphism

{D=3",a,D, € CDivr(Xs) | a, = 0forall p € o0(1) } ~ Pic(Xs).
6.1.7. Prove that the toric varietfs, of Example 6.1.17 is smooth.

6.1.8. For the following toric varietiexs,, compute PitXs) and describe which torus-
invariant divisors are ample and which are basepoint free.
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() Xy is the toric variety of the smooth complete f&rin R? with
Y(1) = {£e, ter, e+ e}
(b) Xs is the blowup Bj(P") of P" at a fixed pointp of the torus action.
(c) Xy isthe toric variety of the fab from Exercise 3.3.12. See Figure 12 from Chapter 3.

(d) Xy is the toric variety of the fan obtained from the fan of Figigsfrom Chapter 3 by
combining the two upward pointing cones.

6.1.9. The toric variety(P1)" has ray generatotsey, ..., 4. Let Df, ...,DF denote the
corresponding torus-invariant divisors. ConsiBer: 3", (&"D;" +aD;").
(@) Show thaD is basepoint free if and only &" +a;~ > 0 for alli.
(b) Show thaD is ample if and only ifa" + &~ > 0 for alli.
6.1.10.LetD = Zp a,D, be an ample divisor on a complete toric varigty. Define
o =Cond(u,,—a,) | p€ (1)) C Ng xR.
(a) Prove that is strongly convex.
(b) Prove that the boundary efis the graph of the support functign.
(c) Prove that is the set of cones obtained by projecting proper facesaito M.

6.1.11. Let X be the fan from Example 4.2.13. Prove e is not projective.

86.2. Polytopes and Projective Toric Varieties

We begin with the set of polytopes
{P C Mg | Pis afull dimensional lattice polytoge
and the set of pairs
{(Xz, D) | ¥ a complete fan iMNg, D a torus-invariant ample divisor 0(\2}
These sets are related as follows.

Theorem 6.2.1. The maps P— (Xp,Dp) and (Xs,D) — P define bijections be-
tween the above sets that are inverses of each other.

Proof. The mapP — (Xp,Dp) comes from Proposition 6.1.10, where we showed
that Dp is an ample divisor oiXp. Also recall from Proposition 3.1.6 thads is

the toric variety of the normal fakip, which is a fan inNg. For (Xy,D) — Pp,

we showed thaPy C My is a full dimensional lattice polytope in the proof of
Theorem 6.1.14.

It remains to prove that these maps are inverses of each @herdirection is
easy, sincd — (Xp,Dp) — Pp, = P, where the equality is Exercise 4.3.1. Going
the other way, we havgXs;,,D) — Pp — (Xp,,Dp,) = (X5, D), where the equality
follows from (6.1.8) and (6.1.9) in the proof of Theorem @&4L. a

The goal of this section is to look more deeply into the ab@&lationship. In
particular, we are interested in the following questions:
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e SupposeP andQ are full dimensional lattice polytopes witke = Xq. How
areP andQ related?

e Supposd is atorus-invariant Cartier divisor ofp that is basepoint free. How
areP andP, related?

The answers to these questions will involve generalizes, famllbacks of divisors,
and Minkowski sums of polytopes.

Generalized Fans The polytope™, of a basepoint free Cartier divisbris a lattice
polytope by Theorem 6.1.7, but need not be full dimensiosed Exercise 6.1.3).
If we wantPp to have a "normal fan,” we need to allow for more general fatere
is the definition we will use.

Definition 6.2.2. A generalized farnz in Ny is a finite collection of cones C Ng
such that:

(a) Everyo € 3 is arational polyhedral cone.
(b) Forallo € X2, each face of is also inX.
(c) Foralloy,02 € X2, the intersectiorr; N o is a face of each (hence alsodi).

This agrees with the definition of fan given in Definition 2 lexcept that the
cones are no longer required be strongly convex. The defisitof supportand
completeextend to generalized fans in the obvious way. A generaliaed that
is a ordinary fan is calledondegenerateotherwiseX. is degenerate Generalized
fans will play an important role in Chapters 14 and 15.

Let ¥ be a generalized fan. Ther = (1 .y o is the minimal cone irE. It
has no proper faces and hence must be a subspate bBtN = N/(coNN) with
quotient mapr : N — N. You will prove the following in Exercise 6.2.1:

e Y is afan if and only ifog = {0}.
e Foro € ¥, =0/09 C Nr/oog = Ng is a strongly convex rational polyhedral

cone such that = 75 1(7).

e X = {5 |oeX}isafaninNg.

The toric varietyXs. of the generalized faix is defined to be the toric variety of
the usual fark, i.e., X5, = Xs.

The Normal Fan of a Lattice Polytope Some of most interesting generalized fans
come from polyhedra. Lé® C My be a lattice polytope. We do not assume tRat
is full dimensional. A vertex € P gives the cone

C, =CondPNM —v) C M.

Similar to §2.3, the dual cone, = C) C Ny is a rational polyhedral cone, and
these cones give a generalized fan as follows (Exercisg)6.2.
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Proposition 6.2.3. Given a lattice polytope E Mg, the set
Yp={o]|o =<0y, visavertex of B
is a complete generalized fan ingkNFurthermore:
(@) The minimal cone oEp is the dual ofSparim—m' | m;m € PNM) C Mg.
(b) Xpis afan if and only if PC Mg is full dimensional. d

We call Xp the normal fanof P. The toric varietyXp is then defined to be the
toric variety of the generalized faX,, i.e., Xp = X5,

Example 6.2.4.Let P C My be a line segment whose vertices are lattice points.
The coneC, at each vertex is a ray, so that the normal ¥ consists of two
closed half-spaces and the hyperplane where they intefidhg the quotient by
this hyperplane gives the usual fan ¥, so thatXp = P*. O

The Normal Fan of a Basepoint Free Divisorlf 3 is a complete fan itfNg ~ R"
andD = }_ a,D, has no basepoints and Cartier d@te, },cxn), thenPp is a
lattice polytope with then, as vertices. We can describe the normalXay of P,
as follows.

Proposition 6.2.5.Let D=3 a,D, be a basepoint free Cartier divisor onzX
with polytope B. Then:

(@) If v e Py is a vertex, then the corresponding cane= C.’ in the normal fan
Yp, is the union

oy = o.

oex(n)
Mo =v

(b) X is arefinemenkp,.

Proof. Part (b) follows immediately from part (a). Lete Py be a vertex. Since
C, = CongP> N M —v) is strongly convex, its duat, = C, has dimensiom in
Ng. It follows that part (a) is equivalent to the assertion

(6.2.1) for allo € X(n), Int(o) NInt(oy) # 0 impliesm, = v,

where “Int” denotes the interior (Exercise 6.2.3). Alsoathtat anyu € o, satisfies
(m—v,u) >0, forallmeP,NM.

In particular,m, € P for o € ¥(n) sinceD is basepoint free, so that

(6.2.2) (my,u) > (v,u), foralloeX(n).

We now prove (6.2.1). Assume liat) N Int(o,) # () and letu be an element of
the intersection. Since= m,. for somes’ € 3(n), we have

{v,u) = ¢p(U) = (M, U)
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by convexity and part (b) of Lemma 6.1.5. Combining this w@l2.2), we see that
(m,,u) =(v,u), forallucelInt(o)Nint(oy).
Since Info) Nint(oy) is open, this forcem= m,, proving (6.2.1). O

This proposition gives a nice way to think about the normal ¥a,. One
begins with the Cartier datam, },<xn of D and then combines all cones= X(n)
whosem,’s give the same vertex df. These combined cones and their faces
satisfy the conditions for being a fan, except that stronwyegity fails whenP is
not full dimensional. Here is an example of how this works.

Example 6.2.6. For the Hirzebruch surface?s, consider the divisor® = D4 and

D’ = D1. The polytopeP; from Figure 4 of Example 6.1.2 is shown on the left in
Figure 10 on the next page. By Proposition 6.205,—= my tells us to combiner;
andoy, as shown on the right in Figure 10. Thus the normal faRxaf a fan with
three maximal cones.

*3

1¢

m, =m,

Figure 10. B (left) and its normal fan (right)

The polytopePy is the line segment shown on the left in Figure 11. Here, we
combineos; ando; (sincem; = mp) and also combines andoy4 (sincemz = my).
This gives the degenerate normal fan shown on the right inreig@1. Thus the

toric variety ofPy is PL. O
u,=(-1,2% %
PD' ‘\\ 'U2 01
— — O. \
m, =, Lo Mp=my 3 ;
1 U
bu, s,

Figure 11. P,/ (left) and its degenerate normal fan (right)
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Pulling Back via Toric Morphisms In order to understand the full implications of
Proposition 6.2.5, we need the following description oftpatks of torus-invariant
Cartier divisors by toric morphisms.

Proposition 6.2.7. Assume thap : X5, — Xy, is the toric morphism induced by
¢ : Ny — Ny, and let Dy be a torus-invariant Cartier divisor with support function
¢p, : |X2| — R. Then there is a unique torus-invariant Cartier divisog Bn X,
with the following properties:

(8) Ox5(D1) = ¢*Oxs, (D2).
(b) The support functiopp, is the composition

15| -2 15, 2B R,
Proof. Let the local data oD, be {(Uy,,x ™) }sex,, Whereo now refers to an
arbitrary cone ob,. Recall that the minus sign comes frgm,,u,) = —a, when
p € o(1). Then the proof of Theorem 6.0.18 shows tig{, (D2) is the sheaf of
sections of a rank 1 vector bundfe— Xy, with transition functions

Oor = erimg'

Now takeo’ € ¥; and leto € X, be the smallest cone satisfying (') C 0.
Using the dual map " : M, — My, we set
my =6 (my).
Since¢(U, ) C U,, one can show without difficulty that
goJT/ — Xmﬂ"_mc’ = ﬁle(uo,/ ﬂUT/)*,

Then{(U,,x ™)}, ex, is the local data for a Cartier divis@®; on Xs,. Itis
straightforward to verify thab, has the required properties (Exercise 6.2.4).]

In the situation of Proposition 6.2.7, we cé@lh is the pullback of D, via ¢
sinceﬁle(Dl) is the pullback ofﬁxEZ(Dz) via ¢. We denote this b{p; = ¢*Do.

The Structure of Basepoint Free DivisorsProposition 6.2.5 shows thatrefines

the normal fanXp,. Hence we should have a toric morphisy — Xp,. This is
certainly true whertp, is nondegenerate, and as we will see below, it remains
true whenXp, is degenerate. More importanty,is (up to linear equivalence) the
pullback of an ample divisor oKp, via this morphism.

Theorem 6.2.8.Let D be a basepoint free Cartier divisor on a complete tode v
riety, and let X% be the toric variety of the polytopgyZ M. Then the refinement
Y, of ¥p, induces a proper toric morphism

(b : XE I XpD

Furthermore, D is linearly equivalent to the pullback viaf the ample divisor on
Xp, coming from B.
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Proof. The minimal conerq of X, is a subspace dflg. LetN = N/(coNN),
with quotient mapp : N — N. SinceX. refinesXp, andXp, projects to a genuine
fan in N, it follows that¢ induces a toric morphism as claimed. Note also that
is proper sinceXy, andXgp, are complete.

Let M C M be dual tog : N — N. Part (a) of Proposition 6.2.3 implies that
Mg = Spafm—m' | m m’ € PbNM}. TranslatingP, by a lattice point, we may
assume tha®, C Mg. This changes our original divis@ by a linear equivalence.

The polytopeP; gives the ample divisdd = Dp, on Xp,. SinceD is basepoint
free, Theorem 6.1.7 implies that
u) = min{m,u).
o(U) = min(m.u)
Using Py € Mg, one sees thatp factors throughy : N — N, and in fact,
YD = SOBOE]R
(Exercise 6.2.5). By Proposition 6.20,is the pullback oD = Dg, via ¢. O

Theorem 6.2.8 implies that a Cartier divisor without bageigoon a complete
toric variety has a very nice structure: it is linearly egl@nt to the pullback (via
a toric morphism) of an ample divisor on a projective toriciety of possibly
smaller dimension. This will be useful when we study the getim invariant
theory of toric varieties in Chapters 14 and 15.

Here are two examples to illustrate what can happen in Theét2.8.
Example 6.2.9.The toric varietyXs, of Example 6.1.17 has no ample divisors, but
it does have nontrivial basepoint free divisors. The rayegators ofY. are

+ey,tey, +e3,8,b,c.d,
with corresponding toric divisors
Di, D5, D3, Da, Dy, De, Dy.
Then one can show that
D =2D; +2D, +2D3 — Dy — Dp— D¢ — Dy

is basepoint free (Exercise 6.2.6). Thus the support fangip is convex.

Figure 9 in Example 6.1.17 shows that Coseey, d) is a union of three cones
of 3. Usingpp(e1) = pp(e2) = 0 andpp(a) = ¢p(b) = ¢p(d) = 1, one sees that
these three cones all hame, = e3 (Exercise 6.2.6). Hence we should combine
these three cones. The same thing happens in(@gpmeg, d) and Conée,, e3,d).

In the first orthant, the fan ofp, looks like Figure 12 on the next page when
intersected withx +y+z= 1. HenceXp, is the blowup of(P*)3 at the point
corresponding to the first orthant (Exercise 6.2.6). AlsoXs; — Xp, is a proper
birational toric morphism sincE refines the (nondegenerate) normal ag. ¢
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€ €

Figure 12. Combined cones of. lying in R3 ; in Example 6.2.9

Example 6.2.10.Consider the divisoD = 3D;1 + D, — D4 = D1+ div(x®) on
the Hirzebruch surface#z. ThenP, = Con—ey,e; — &) = Conv(0,€e1) — €.
This gives the degenerate normal fan shown in Figure 11 ofripi@6.2.6, and
¢ : X — Xp, = P! is the toric morphism from Example 3.3.5. Thén~ Dy,
which is the pullback of an ample divisor @H. O

N-Minkowski Summands We now return to the questions asked at the beginning
of the section. In terms of normal fans, the answers are eagyé:

e Full dimensional lattice polytopeR andQ in Mg give the same toric variety if
and only if they have the same normal fan.
e If D is a torus-invariant basepoint free Cartier divisorX¢n then the normal
fan of P refines the normal fan d¢% by Proposition 6.2.5.
By rephrasing this in terms of Minkowski sums, we can staté lop these purely
in the language of polytopes. Here is the definition.

Definition 6.2.11. Given lattice polytope® andQ in Mg, Q is anN-Minkowski
summandof P if

Q+Q =kP,
wherek € N is positive andQ’ C My is a lattice polytope.

Example 6.2.12.The rectangl€) = Conv(0, 2e;, &, 2e; + &) is anN-Minkowski
summand of the hexagdh= Conv(0, e1, &, 2e; + €, &1 + 265, 2e; + 267), as shown
by Figure 13. O

Figure 13. Qis anN-Minkowski summand oP sinceQ+ Q' = 2P
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Minkowski sums are related to normal fans as follo@g, [Prop. 1.2].

Proposition 6.2.13.Let P and Q be lattice polytopes ingMThen:
(@) Q is anN-Minkowski summand of P if and only refinesXq.

p.o is the coarsest common refinemen an , i.e., any fan tha
b) ¥piq is th t f t3af and Xq fan that
refines¥p andXq also refinesp, . O

Proposition 6.2.13 does not assume that the lattice pagt®andQ have full
dimension, so the normal fanss andXq in the proposition may be degenerate.
Also note thatip.q is common refinement dfp andXq by part (a). So the point
of part (b) is thatp, g is the most efficient common refinement.

We can now describe when two polytopes give the same torietyar

Corollary 6.2.14. Full dimensional lattice polytopes in pMgive the same toric
variety if and only if each is ai¥-Minkowski summand of the other. OJ

Proof. This follows immediately from Proposition 6.2.13 since tfaas are equal
if and only if each refines the other. O

We also have the following lovely result about basepoirg filvisors.

Corollary 6.2.15. Let P be a full dimensional lattice polytope ingM Then a
polytope QC Mg is anN-Minkowski summand of P if and only if there is a torus-
invariant basepoint free Cartier divisor D orpXuch that Q= Py.

Proof. If D is basepoint free oXp, then Propositions 6.2.5 and 6.2.13 imply that
P> is anN-Minkowski summand oP. For the converse, suppose tiiats anN-
Minkowski summand oP. ThenXp refinesXq. We will write the maximal cones
of Xq aso, for v e Q a vertex. Also leh = dim Xp. We defineD as follows. Each

o € ¥p(n) is contained irv, for some vertex € Q. ThenD is the Cartier divisor
on Xp whose Cartier datém, } ,cs, ) is defined bym, = v wheno C 0.

ThusD = }° 5. (1)8D,, wherea, = —(v,u,) whenu, € o,. To prove that
Pb = Q, takeme Py, so that(m,u,) > —a, for all p € ¥p(1). This implies
(m—v,u,) = (mu,)+a, >0forallu, € o,.
Theseu,’s generater, sinceXp refinestq, so tham—v € 0 =C,. Hence

ME [, is a vertex olQ C +v)=Q,
where the equality follows from Exercise 6.2.7. The opmo#itlusionQ C Py is

straightforward and hence is left to the reader. This pré&es Q, and therD is
basepoint free by Proposition 6.1.1. d

Example 6.2.16.Consider the rectangl® and the hexagoP defined in Exam-
ple 6.2.12. Sinc&) is anN-Minkowski summand oP, it gives a basepoint free
divisor D on Xp. Let the ray generatorg,,...,us of Xp be arranged clockwise
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around the origin, starting with; = e,. Then the recipe fob given in the proof
of Corollary 6.2.15 makes it easy to show that

D = D34 D4+ 2Ds+ D,

whereD; is the toric divisor corresponding tg (Exercise 6.2.8). O

Zonotopes Recall from Example 2.3.10 thatznotopeis a Minkowski sum of
line segments. Here we show that zonotopes have espedidiynarmal fans. A
central hyperplane arrangemeimnt Nr consists of finitely many rational hyper-
planesH C Ng whose intersection is the origin. This determines a faxgwhose
maximal cones are the closures of the connected componktite complement
of the arrangement.

Example 6.2.17.The hexagorP from Example 6.2.12 is a zonotope sinee=
Conv(0,e;) + Conv0,e;) + Conv(0,e; + €;). Figure 14 reproduces Figure 7 from

V5 ,V4

Ve

.V3

V1 V2
Figure 14. A zonotopeP and its normal fartp

Example 2.3.10. As you can see, the normal faR cbmes from an arrangement
of three lines through the origin iR2. O

Proposition 6.2.18.The normal fan of a full dimensional lattice zonotope P comes
from a central hyperplane arrangement.

Proof. First note that a Minkowski sum of parallel line segementagain a line
segment. Thus we can wrike=L; + - - -+ Lgsas a Minkowski sum of line segments
where no two segments are parallel. Each normalXanis determined by the
hyperplane normat; to L;, as explained in Example 6.2.4. By Proposition 6.2.13,
Yp =31, +.+L IS the coarsest common refinementhf,. .. X .. This is clearly
the fan determined by the central hyperplane arrangetdgnt.,Hs. Note that
thatH; N ---NHs = {0} sinceXp is a nondegenerate fan. O

See P81, Thm. 7.16] for a different proof of Proposition 6.2.18 thaes linear
programming.
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Exercises for §6.2

6.2.1. Prove the properties of generalized fans stated in thrdetbtih the discussion
following Definition 6.2.2.

6.2.2. Prove Proposition 6.2.3.

6.2.3. Prove that part (a) of Propostion 6.2.5 follows from (6.2.1)
6.2.4. Complete the proof of Proposition 6.2.7.

6.2.5. Complete the proof of Theorem 6.2.8.

6.2.6. This exercise deals with Example 6.2.9.
(a) LetD =2D; +2D; +2D; — Da— Dy — D¢ — Dg be the divisor from Example 6.2.9.
Prove thaf; is the polytope with 10 vertices
€1,€2,€3, 261, 267, 263, 261 + 26, 261 + 263,26, + 263,261 + 26, + 263
and conclude thdD is basepoint free.

(b) In Example 6.2.9, we asserted that certain maximal coh&must be combined to
get the maximal cones &fp,. Prove that this is correct.

(c) Show thaiXp, is the blowup of(P*)3 at the point corresponding to the first orthant.

6.2.7. This exercise is concerned with the proof of Corollary 652.1

(a) Given a lattice polytop® C Mg, letC, = CondQNM —v) for v € Q a vertex. Prove
thatﬂv is a vertex on(CV + V) =Q.

(b) Complete the proof of the corollary by showiQgC Ps.

6.2.8. In Example 6.2.16, the rectandleis anN-Minkowski summand of the hexagéh
(&) Inthe example, we claimed that= D3+ D4+ 2Ds + Dg. Prove this.

(b) LetQ = Conv0,e;,2e; + 26,26, + 3e2). Prove carefully tha®+ Q' = 2P and com-
pute the basepoint free divisbf determined byQ'.

6.2.9. Suppose that full dimensional lattice polytofe8 C Mg give the same toric variety
Xs. Prove thaP + Q also givesXs.

6.2.10.Let P C Mg be a full dimensional lattice polytope. A fa€e< P determines a cone
og in the normal fan oP. This gives the orbit closuré(og) C Xp, andV (oq) ~ Xq by
Proposition 3.2.9. This gives an inclusibnXq — Xp which is not a toric morphism when
Q < P. Prove that*ﬁxp(Dp) ~ ﬁxQ(DQ).

86.3. The Nef and Mori Cones

In 86.1, we gave some nice criteria for when a Cartier dividas basepoint free
or ample. We now study the structure of the set of basepadetdivisors and the
set of ample divisors inside Ry )r = Pic(Xy) ®z R.

The main concept of this section is that miimerical effectivity Roughly
speaking, the goal is to define a pairing between divisorscamdes, such that
for a Cartier divisorD and complete curv€ on a varietyX, the numbeD -C
counts the number of points 8N C, with appropriate multiplicity.
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Example 6.3.1. SupposeX = P2 with homogeneous coordinatesy,z, and let

D = V(y) andC = V(zy— x?). ThenD andC meet at the single poirmi= (0,0,1),
where they share a common tangent. If we replaagith the linearly equivalent
divisor E = V(y — z), then clearlyE andC meet in two points. This suggests that
the point{p} = DNC should be counted twice, since it is a tangent point. Hence
we should hav® -C = 2. O

Despite this encouraging example, there are several walhmirdles to over-
come in order to make this precise in a general setting. Nhatein C2, two lines
may or may not meet, so to get a reasonable theory, we will wdttk complete
curves Con a normal varietyX. We also need to restrict t@artier divisors Don X.
With these assumptions, the intersection pro@u should possess the following
properties:

e (D+E)-C=D-C+E-C.

e D-C=E-CwhenD ~E.

e LetD be a prime divisor oiX such thaDNCiis finite. Assume eache DNC
is smooth inC, D, X and that the tangent spacggC) C T,(X) andTy(D) C
To(X) meet transversely. Thad-C = |DNC].

Using these properties, one can give a rigorous proof of thepaitationD -C = 2
from Example 6.3.1.

The Degree of a Line Bundle The key tool we will use is the notion of tliegree
of a divisor on an irreducible smooth complete cu@e Such a divisor can be
written as a finite sund = ), g p; whereg; € Z andp; € C.

Definition 6.3.2. LetD = ), & p; be a divisor on an irreducible smooth complete
curveC. Then thedegreeof D is the integer

degD) =) a€Z.

Note the obvious property dég + E) = deg D) + deg E). The following key
result is proved in131, Cor. 11.6.10].

Theorem 6.3.3. Every principal divisor on an irreducible smooth completeve
has degree zero. a

In other words, de@iv(f)) = 0 for all nonzero rational function$ on an
irreducible smooth complete cur@ Thus

degD) = degE) whenD ~ E onC,
and the degree map induces a surjective homomorphism
deg: Pic(C) — Z.

Note that all Weil divisors are Cartier sin€els smooth.
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In §6.0 we showed that RiC) is the set of isomorphism classes of line bundles
onC. Hence we can define the degree @9 of a line bundleZ onC. This leads
immediately to the following result.

Proposition 6.3.4. Let C be an irreducible smooth complete curve. Then a line
bundle.Z has adegreedeq.¥) such that? — ded.Z’) has the following prop-
erties:

(@) ded.Z ® .¢") = deg.¥) + deg.Z").

(b) ded.?) =deq.¢’) when? ~ .¥".

(c) ded.¥) =degD) whenZ ~ 0¢(D). O
The Normalization of a Curve We defined the normalization of an affine variety
in 81.0, and by gluing together the normalizations of affirz@s, one can define

the normalization of any variety (se&31, Ex. 11.3.8]). In particular, an irreducible
curveC has a normalization map

¢:C—C,
whereC is an normal variety. Here are the key propetie€ of

Proposition 6.3.5. LetC be the normalization of an irreducible curve C. Then:
(a) C is smooth.
(b) C is complete whenever C is complete.

Proof. SinceC is a curve, Proposition 4.0.17 implies tl@ats smooth. Part (b) is
covered by 131, Ex. 11.5.8]. a

One can prove that every irreducible smooth complete carpedjective. See
[131, Ex. 1.5.8].

The Intersection Product We now have the tools needed to define the intersec-
tion product. LetX be a normal variety. Given a Cartier divisbron X and an
irreducible complete curv@ C X, we have

e The line bundledx (D) on X.
e The normalizationy : C — C.
Theng* Ok (D) is a line bundle on the irreducible smooth complete c@ve

Definition 6.3.6. Theintersection producof D andC is D -C = deq ¢* 0% (D)).

Here are some properties of the intersection product.
Proposition 6.3.7. Let C be an irreducible complete curve andBCartier divi-
sors on a normal variety X. Then:
(@ (b+E)-C=D-C+E-C.
(o) D-C=E-CwhenD~E.
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Proof. The pullback of line bundles is compatible with tensor pridiso that
part (a) follows from (6.0.3) and Proposition 6.3.4. PaJtigkan easy consequence
of Propositions 6.0.22 and 6.3.4. a

The intersection product extends@Cartier divisors as follows. Recall from
Chapter 4 that a Weil divisdd is Q-Cartier if /D is Cartier for some integei> 0.
Given an irreducible complete cur@C X, let

(6.3.1) D-C:%(ED)-CGQ.

In Exercise 6.3.1 you will show that this intersection protdis well-defined and
satisfies Propostion 6.3.7.

Intersection Products on Toric Varietiesin the toric casel -C is easy to compute
whenD andC are torus-invariant irXs.. In order forC to be torus-invariant and
complete, we must ha@=V (1) = O(7), wherer = o No’ € £(n—1) is the wall
separating cones, o’ € 3(n), n=dim Xs. We do not assumE is complete.

In this situation, we have the sublattie = Spar{—) "N C N and the quotient
N(7) = N/N,. Leta andd’ be the images of ando’ in N(7)g. Sincer is a wall,
N(7) ~ Z and@, & are rays that correspond to the rays in the usual faf?¥otn
particular,V (7) ~ P! is smooth, so no normalization is needed when computing
the intersection product.

Proposition 6.3.8. Let C= V(1) be the complete torus-invariant curve in; X
coming from the wall- = o N¢’. Let D be a Cartier divisor with Cartier data
m,,m,, € M corresponding tar,o’ € 3(n). Also pick ue o’ NN that maps to the
minimal generator o6’ C N(7)r. Then

D-C={(m,—m,,u) € Z.

Proof. SinceV(r) C U, UU,, we can assum¥y, = U, UU, and X is the fan
consisting ofo, o’ and their faces. We also have

Dy, = div(x_m")|uo, D|U0/ =div(x ™) U
The proof of Proposition 6.2.7 shows that the line burie (D) is determined by
the transition functiomy, , = ™ ~™'. Thus

D-C=dedi*Ox. (D)),
wherei : V(1) — Xy is the inclusion map. The pullback bundle is determined by
the restriction ofy,, to
V(r)NnU,NU, =V (r)NU,; =O(7),

whereO(7) is the Ty-orbit corresponding te. This is also the torus of the toric
varietyV (1) = O(7). In Lemma 3.2.5, we showed that "M is the dual ofN(7)
and that

.
o

O(T) ~ HomZ(M mTJ_,(C*) ~ TN(T)'
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Now comes the key observation: since the linear functiomsrgbym,, m,. agree
on 7, we havem, —m, € 7-NM. Thusi*&x, (D) is the line bundle oV (7)
whose transition function ig, , = x™ ™ form, —m, € 7-NM.

It follows thati* &, (D) ~ Oy (D), whereD is the divisor orV () given by
the Cartier data

rr]E:ov Mz =My — M.

Let p,, p,- be the torus fixed points correspondingst@’. Sinceu € o' NN maps
to the minimal generatar € ' N"N(7), we have

D = (=g, —T) Py + (=M, T) Por = (My — My, U) Py,
where the second equality follows from,, = m,, —m, € 7N M. Hence
D-C=dedi*0x.(D)) =degD) = (m, —m,, u). O
Example 6.3.9. Consider the toric surface whose f&rin R? has ray generators
Up =€, Up =€, Up = 261+ 3&
and maximal cones
o = Congug,Up), o' = Con€uy, Up).

The support ok is the first quadrant and= o N o’ = Congup) gives the complete
torus-invariant curv€ =V (1) C Xs.

If D1,D,,Dq are the divisors corresponding g, uy, Ug, then
D = aD; +bD,+cDg is Cartier <= 2a+3b=cmod 6

When this condition is satisfied, we have

2a—c ~3b-c b

3 €, My = > e —be
Also, u=e; + 26, € ¢’ maps to the minimal generator &f sinceu, ug form a basis
of Z2. (You will check these assertions in Exercise 6.3.2.) Thus

m, = —ae +

2a+3b—c
D-C=(m,—m,,u) -7 &5

by Proposition 6.3.8. Note th&l is Q-Cartier sinceX is simplicial. Then (6.3.1)
shows that the formula fdD - C holds for arbitrary integera, b,c. In particular,
1 1 1
D;-C=2,D,-C=2,Dg-C=—=.
1-C 30 D2 C 5> Do C 6
In the next section we will see that these intersection prtsdiollow directly from
the relation—ug + 2u; + 3u, = 0 and the fact thaZuy = Sparfr) N Z?2. O
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Nef Divisors We now define an important class of Cartier divisors.

Definition 6.3.10. Let X be a normal variety. Then a Cartier dividoron X is nef
(short fornumerically effective if
D-C>0

for every irreducible complete cuné&C X.

A divisor linearly equivalent to a nef divisor is nef. Hereaisother result.

Proposition 6.3.11. Every basepoint free divisor is nef.

Proof. The pullback of a line bundle generated by global sectiomggigerated by
global sections (Exercise 6.0.10). Thus, givenC — C andD basepoint free,
the line bundleZ = ¢*(0x (D)) is generated by global sections. This allows us to
write .# = 0(D’) for a basepoint free divisdd’ onC. A nonzero global section
of 0=(D’) gives an effective divisoE’ linearly equivalent td'. Then

D-C = deg¢*(6x(D))) = deg (D)) = degD') = degE") > 0,

where the last inequality follows sinég is effective. O

In the toric case, nef divisors are especially easy to utaieis

Theorem 6.3.12.Let D be a Cartier divisor on a toric varietysXxwhose fart: has
convex support of full dimension. The following are equdaél

(a) D is basepoint free, i.e¢x (D) is generated by global sections.

(b) D is nef.

(c) D-C > Ofor all torus-invariant irreducible complete curvesCX.

Proof. The first item implies the second by Proposition 6.3.11, dmdsecond
item implies the third by the definition of nef. So supposd thaC > 0 for all
torus-invariant irreducible curved. We can replac® with a linearly equivalent
torus-invariant divisor. Then, by Theorem 6.1.7, it suffice show thatyp is
convex.
Take a wallr = ocNo’ of £ and selC = V(7). If we pickue ¢'NN as in

Proposition 6.3.8, then

<m0—m0’au> = DCZ 07
so that

(Mg, ) > (M, u) = pp(U).
Note thatu ¢ o since the image afi is nonzero ilN(7) = N/(Spar{7) "N). Then
Lemma 6.1.5 implies thatp is convex. O

A variant of the above proof leads to the following amplena#grion, which
you will prove in Exercise 6.3.3.
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Theorem 6.3.13(Toric Kleiman Criterion) Let D be a Cartier divisor on a com-
plete toric variety X. Then D is ample if and only if EZ > Ofor all torus-invariant
irreducible curves GC Xs.. O

Note that one direction of the proof follows from the gendaalt that on any
complete normal variety, an ample dividorsatisfiesD - C > 0 for all irreducible
curvesC C X (Exercise 6.3.4).

Theorems 6.3.12 and 6.3.13 were well-known in the smooth aad proved
more recently (and independently) i85, [197] and [212] in the complete case.

Numerical Equivalence of Divisors The intersection product leads to an impor-
tant equivalence relation on Cartier divisors.
Definition 6.3.14. Let X be a normal variety.

(&) A Cartier divisorD on X is numerically equivalent to zerdf D -C = O for alll
irreducible complete curves C X.

(b) Cartier divisord andE arenumerically equivalentwrittenD =E, if D — E
is numerically equivalent to zero.

What does this say in the toric case?

Proposition 6.3.15.Let D be a Cartier divisor on a toric varietysxwhose fan:
has convex support of full dimension. Ther-M if and only if D= 0.

Proof. Clearly if D is principal thenD is numerically equivalent to zero. For the
converse, assunig@ = 0 and letr = o N o’ be a wall ofY. If we picku € ¢" as in
Proposition 6.3.8, then

0=D-C=(my —m,,u)
for C = V(7). This forcesm, = m,. sincem, —m, € 7+ andu ¢ . From here,
one sees that, = m, for all 0,0’ € ¥(n), and it follows thaD is principal. O

Numerical Equivalence of CurvesWe also get an interesting equivalence relation
on curves. LeZ;(X) be the free abelian group generated by irreducible complete
curvesC C X. An element ofZ;(X) is called gproper 1-cycle

Definition 6.3.16. Let X be a normal variety.

() A proper 1-cycleC on X is numerically equivalent to zerd D -C = 0 for all
Cartier divisorsD on X.

(b) Proper 1-cycle€ andC’ arenumerically equivalentwrittenC=C',ifC—-C’
is numerically equivalent to zero.

The intersection produ¢D,C) — D -C extends naturally to a pairing
CDiv(X) x Z3(X) — Z.
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between Cartier divisors and 1-cycles. In order to get a egaderate pairing, we
work overR and mod out by numerical equivalence.

Definition 6.3.17. For a normal varietyX, define

N(X) = (CDiv(X)/=) ®zR and Ny(X) = (Z1(X)/=) @z R.

It follows easily that we get a well-defined nondegenerdiadar pairing
NL(X) x Ny(X) — R.

A deeper fact is thall(X) andNy(X) have finite dimension ovek. ThusN(X)
andN; (X) are dual vector spaces via intersection product.

The Nef and Mori Cones The vector spaced(X) andN;(X) contain some in-
teresting cones.
Definition 6.3.18. Let X be a normal variety.

(@) Nef(X) is the cone ifN*(X) generated by classes of nef Cartier divisors. We
call Nef(X) thenef cone

(b) NE(X) is the cone inN;(X) generated by classes of irreducible complete
curves.

(c) NE(X) is the closure of NEX) in Ny (X). We callNE(X) the Mori cone.

Here are some easy observations about the nef and Mori cones.

Lemma 6.3.19.

(@) Nef(X) andNE(X) are closed convex cones and are dual to each other, i.e.,
Nef(X) = NE(X)" and NE(X) = Nef(X)".

(b) NE(X) has full dimension in NX).

(c) Nef(X) is strongly convex in N(X).

Proof. Itis obvious that NgfX), NE(X) andNE(X) are convex cones, and N&f)
is closed since it is defined by inequalities of the fddmC > 0. In fact,

Nef(X) = NE(X)"

by the definition of nef. Then NéX) = NE(X)" follows easily. In general, NE)
need not be closed. However, since the closure of a convexisats double dual,
we have

NE(X) = NE(X)"" = Nef(X)".
Note that the cone NEK) has full dimension sincl;(X) is spanned by the classes
of irreducible complete curves. Hence the same is truesaldtsureNE(X). Then
Nef(X) is strongly convex since its the dual has full dimension. O
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Let Xy be a toric variety whose fal has convex support of full dimension
and set PitXs)r = Pic(Xy) ®z R. We have an inclusion
PIC(Xz) C PiC(XE)R
since Pi¢Xy) is torsion-free by Proposition 4.2.5. Thus Pg) is a lattice in the
vector space P{Xy)r. Note also that
(6.3.2) Pi¢Xs)r = N'(Xs)

since numerical and linear equivalence coincide by Prdipos.3.15. In this case,
we will write Pic(Xs g instead ofNY(Xs).

Theorem 6.3.20.Let Xz be a toric variety whose fai has convex support of full
dimension. Then:

(@) Nef(Xy) is a rational polyhedral cone iRic(Xs)r.
(b) NE(Xs) = NE(Xx) is a rational polyhedral cone in NXsx). Furthermore,

NE(Xz) = RsolV(7)],

T awall of X

whereV(7)] € N1(Xs) is the class of V7).

Proof. Part (a) is an immediate consequence of part (b). For partigb]’ =
> s awall of s R>0[V (7)] and note that" is a rational polyhedral cone contained in
NE(Xy). Furthermore, Theorem 6.3.12 easily implies (¥gf) = T'V. Then

E(XZ) = Nef(Xg)V =T =r - NE(XE) - N_E(Xz),
where the third equality follows sindeis polyhedral. a

The formula from part (b) of Theorem 6.3.20, namely

EXs) = Y. RsoV(7)),

T awall of
is called theToric cone theoremAlthough the Mori cone equals NEy) in this
case, we will continue to writBlE(Xy) for consistency with the literature. For the
same reason we wrife>o[V (7)] instead of Con@V (7)]).

The Mori cone of an arbitrary normal variety can have a cooapdid structure.
The cone theorenshows that some parts of the Mori cone are locally polyhedral
See 179 Ch. 3] and 194, Ch. 7] for a discussion of this important result.

Since every irreducible complete cur@C Xy, gives a class ilNE(Xs), we
get the following corollary of the toric cone theorem.

Corollary 6.3.21. Assume the faix has convex support of full dimension. Then
any irreducible complete curve on-Xs numerically equivalent to a non-negative
linear combination of torus-invariant complete curves. O

WhenXs is projective we can say more about the nef and Mori cones.
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Theorem 6.3.22.Let X be a projective toric variety. Then:

(@) Nef(Xsz) and NE(Xs) are dual strongly convex rational polyhedral cones of
full dimension.

(b) A Cartier divisor D is ample if and only if its class Ric(Xs)r lies in the
interior of Nef(Xyx).

Proof. By hypothesisXs. has an ample divisdd. ThenD -C > 0 for every irre-
ducible curve inXy. This easily implies that the class Dflies in the interior of
Nef(Xs). Thus NefXs:) has full dimension and hence its dNE(Xy,) is strongly
convex. When combined with Lemma 6.3.19, part (a) follonslga

The strict inequalityD - C > 0 also shows that every irreducible curve gives a
nonzero class itN1(Xs;). Now suppose that the class Bfis in the interior of the
nef cone. ThenD] defines a supporting hyperplane of the origin of the dual cone
NE(Xy). Since 0+ [C] € NE(Xx) for every irreducible curv€ C Xy, we have
D-C > 0 for all suchC. HenceD is ample by Theorem 6.3.13. a

_Itfollows that NE(Xx) is strongly convex in the projective case. The rays of
NE(Xy) are calledextremal rayswhich by the toric cone theorem are of the form
R>o[V(7)]. The corresponding walls are calledextremal walls

Here is an example of the cones &f) andNE(Xy).

Example 6.3.23.For the Hirzebruch surface?;, we showed in Example 6.1.16
that Pid.7%) = {a|D3] +b[D4] | a,b € Z}. Figure 15 shows Néf# ) andNE(7).

(0,1)9[D,] (-r. 1) V(1) ¢[V(t)]
[DJ V()] = [V(1,)]
(1,0) (1,0)
nef cone Mori cone

Figure 15. The nef and Mori cones of#

Here, = Condu;), so thatD; =V (7). Using both notations helps distinguish
between Nefs7) (built from divisors) andNE(s%) (built from curves).

The description of the nef cone follows from the charactiin of ample
divisors ons7; given in Example 6.1.16. The Mori cone is generated by thesela
of theV (7)) by the toric cone theorem. Using the the basis give®by=V (73),
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D4 =V(74) and the linear equivalences
Dy ~D3, Dz~ —rD3+Dg4

from Example 6.1.16, we get the pictureNE(.7% ) shown in Figure 15. It follows
that [V (m2)] and |V (73)] = [V (71)] generate extremal rays, whilé(74)] does not.
ThusTy, 7, 73 are extremal walls.

The explicit duality between the cones éf) andNE(Xs) in Figure 15 will
be described in the next section.

Theorem 6.3.22 tells us that ample divisors correspondttiocdgpoints in the
interior of Nef(7# ). Thus lattice points on the boundary correspond to divisors
that are basepoint free but not ample. We can see this vibglipoking at the
polytopesh, associated to divisofd whose classes lie in Ne#7).

nef cone

Figure 16. Polytopes®, associated to diviso® in nef cone ot

Figure 16 shows that whdn is in the interior of the nef coné}, is a polygon
whose normal fan is the fan off. On the boundary of the nef cone, however,
things are differentR; is a triangle on the vertical ray and and a line segment on
the horizontal ray. This follows from Figures 10 and 11 in Eyxde 6.2.6. O

The Simplicial Case When Xy, is complete and simplicial, a result to be proved
in 86.4 gives the following criterion faXs, to be projective.

Proposition 6.3.24.A complete simplicial toric variety Xis projective if and only
if its nef coneNef(Xy;) C Pic(Xs)r has full dimension ifPic(Xs k.

Proof. One direction is an immediate consequence of Theorem 6.322 the
converse, suppose that N¥f;) has full dimension. Then we can find a Cartier
divisor D whose class lies in the interior of N&&:). Since NefXs) = NE(Xx)", it
follows thatD -C > 0 for every curveC whose class ilNE(Xs:) is nonzero. Hence,
if we can show that the torus-invariant curéér), = € ¥ a wall, give nonzero
classes iNE(Xy), then Theorem 6.3.13 will imply thd® is ample, proving that
X is projective.
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Awall 7 € X is a facet of some maximal comec X, and sincex is simplicial,
there isp € ¥(1) such thatr(1) = 7(1) U{p}. Then Lemma 6.4.2 implies that
D,-V(7) > 0. Hence the class &f(7) in NE(Xy,) is nonzero. O

Here is a nice application of this result.

Proposition 6.3.25. A complete toric surfaceXis projective.

Proof. Picking a basis oN, we may assumdl = Z2 andNg = R?. LetX(1) =
{p1,...,pr} and picky; € p; with |[z4]| = 1. Then defingy : R? — R such thaty
is linear on the cones a&f and satisfies (1) = —1 for alli. The tent analogy (see
Figure 5 in Example 6.1.3) shows thais strictly convex with respect.

LetD =>"_; —¢(u)Di = >_i_;||ui||Di, wherey; € Z2 is the minimal gen-
erator ofp;. Note that[D] € Pic(Xs)r sinceX is simplicial. Strict convexity and
the proof of Theorem 6.3.12 imply th&t-C > O for every torus-invariant curve
C C Xy, so that[D] € Nef(Xs). The strict inequalities show thfD] is an interior
point, so thalXy, is projective by Proposition 6.3.24. O

When Xy, is not simplicial, the criterion given in Proposition 6.8.2an fail.
Here is an example due to FujindJJ.

Example 6.3.26.Consider the complete fan I&* with six minimal generators
u=(1,0,1), u,=(0,1,1), uz=(-1,-1,1)
us = (1,0,—1), us = (0,1,—1), ug = (—1,—1,—1)
and six maximal cones
Conduy, Uy, u3), Conduy, Uy, Us), Conguy, Us, Us)
Con€ug, Uz, Ug, Ug), Con€usy,us, Us,Us), Condug,Us, Ug).

You will draw a picture of this fan in Exercise 6.3.5 and shdwttthe resulting
complete toric variety satisfies

Pic(Xs) ~{a(D1+D4) |ac 3Z} ~Z.
The conesr = Condug, Uz, Us) ando’ = Conguy, Ug, Us) meet along the wall
T=0No =Conduy,Us).
However, any Cartier divisob = Z?:laiDi satisfiesm, = m,- (Exercise 6.3.5),
so that the irreducible complete cui@e=V () satisfies
D-C=0

by Proposition 6.3.8. This holds for all Cartier divisorsX#, soC = 0. ThenXsy
has no ample divisors by the toric Kleiman criterion, so tais nonprojective.

By Exercise 6.3.5, the nef cone X is the half-line

Nef(Xg) = {a[Dl + D4] ‘ a> 0}
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This has full dimension in P{Xy)r, yet Xy, is not projective. Note also that the
Cartier divisorD = 3(D1 + D4) gives a class in the interior of the nef cone, et
is not ample. Hence part (b) of Theorem 6.3.22 also failearThe failure is due
to the existence of irreducible curvesXs that are numerically equivalent to zero.
This shows that numerical equivalence of curves can be tdiigved in complete
toric varieties that are neither projective nor simplicial O

Exercises for §6.3

6.3.1. Let X be a normal variety. Prove that (6.3.1) gives a well-defingidmg between
Q-Cartier divisors and irreducible complete curves. Alsovslthat this pairing satisfies
Propostion 6.3.7.

6.3.2. Derive the formulas fom, andm,. given in Example 6.3.9.
6.3.3. Prove Theorem 6.3.13.

6.3.4. Prove that on a complete normal variety, an ample dividsatisfiesD -C > O for
all irreducible curve€ C X.

6.3.5. Consider the fai from Example 6.3.26.
(a) Draw a picture of this fan i&>.

(b) Prove that PitXs) ~ {a(D1+ Dg4) | a € 3Z}.
(c) Prove that 8D1 + Dg) is nef.

86.4. The Simplicial Case

Here we assume that is a simplicial fan inNg ~ R". Then Proposition 4.2.7
implies that every Weil divisor i€-Cartier. Since we will be working in P{&s )r,
it follows that we can drop the adjective “Cartier” when dissing divisors.

Relations Among Minimal GeneratorsWe begin our discussion of the simplicial
case with another way to think of elementa\af Xy;). Recall from Theorem 4.1.3
that we have an exact sequence

(6.4.1) M -2 z=® L, Cl(Xs) — 0

wherea(m) = ({(M,u,)),ex(1) and3 sends the standard basis elemene 2=
t0[D,] € Cl(Xs).

Proposition 6.4.1. Let 3 be a simplicial fan in N with convex support of full
dimension. Then there are dual exact sequences

0— Mg % RZ® . pig(Xs)p — 0
and

0— Ny(Xs) 25 RE® 25 N — 0,
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where
a*(e,) =u,, e, a standard basis vector &=
B*([C]) = (D, -C)pex(1), € < Xs anirreducible complete curve

Thus N(Xx) can be interpreted as the space of linear relations amongrtimémal
generators of. Furthermore, given B=3_ a,D, and a relation)_ b,u, =0,
the intersection pairing ofD] € Pic(Xs)r and R= (b,) ,ex(1) € N1(Xs) is

R=Y a,h,
P

Proof. SinceX is simplicial, all Weil divisors ar€)-Cartier. Hence
PiC(Xz)R = PIC(Xz) Rz R = Cl(Xz) Rz R.

Tensoring withR preserves exactness, so exactness of the first sequermasfoll
from (6.4.1). Note also that Ri¥s)r = N'(Xs) by (6.3.2).

The dual of an exact sequence of finite-dimensional vectrespis still exact.
Then the perfect pairings

Mg x Ng — R : (m,u) — (m,u)
Pic(Xs)r x N1(Xs) = R : ([D],[C]) — D-C
easily imply that form € Mg and|C] € N1(Xsx), we have
a(m) = ((MUy))es) = a’(&) =U,
and
(&) =[Dp] = B*([C]) = (Dy-C)pexy)-

Finally, the duality between the two exact sequences redtiacdot product on the
middle termsR*( . This proves the final assertion of the proposition. O

The map3* : Ny (Xs) — R*® in Proposition 6.4.1 implies that an irreducible

complete curve€ C Xy, gives the relation

Zp(Dp C) U, = 0in Ng.
This can be proved directly as follows. First observe that M gives

22 ,(M,Up)D, = div(x™) ~ 0.
Taking the intersection product wi@, we see that
>,(mu,)(D,-C) =0

holds for allm € Mg. Writing this as(m,>" (D, -C)u,) = 0, we obtain
(6.4.2) 3,(D,-C)u, =01in Ng.
This argument shows that (6.4.2) holds &y simplicial toric variety.
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Intersection Products Our next task is to comput®, -C whenC is a torus-
invariant complete curve iXy. This mean< =V(7), wherer € ¥(n—1) is a
wall, i.e., the intersection of two conesX{n). Here, we only assume thatis a
simplicial fan inNg ~ R", with no hypotheses on its support.

We begin with an easy case. Fix a wall
T=0No.
SinceX is simplicial, we can label the minimal generatorssado that
o =Congu,,,U,,,...,U,)
7= Congu,,,...,U,,).
Thus is the facet ofr “opposite” top;. We will compute the intersection prod-
uct D,, -V(7) in terms of themultiplicity (also called thénde® of a simplicial

cone. This is defined as follows. 4fis a simplicial cone with minimal generators
ui,..., Uk, then mulf~y) is the index of the sublattice

Zuy+---+Zuc C Ny = Sparty) "N = (Rug + - - -+ Ru) ON.
Lemma 6.4.2.1f 7, o and p; are as above, then

V() = mult(7)

b - mult(o)”

Proof. Since{u,,,...,u,,} is a basis oNg, we can findn e Mg such that

-1 i=1
<mvupi>: I
0 i=2,...,n

Pick a positive integef such thatm < M. OnU, UU,, /D, is the Cartier divisor
determined byn, = /mandm,. = 0. By (6.3.1) and Proposition 6.3.8,
1 1
T/ T/
whereu € ¢’ maps to a generator af N"N(7). Recall thatN(7) = N/N;.

When we combinel with a basis ofN,, we get a basis dil. Thus there is a

positive integep such that,, = —Bu+v, ve N;. The minus sign appears because
uandu,, lie on opposite sides af. By considering the sublattices

Dpy-V(7) = Z(Dp,) -V(7) = Z(fm,u) = (m,u),

ZUy, + ZUy, + -+ +ZUy, € ZUp, + N, € ZUu+N, =N,
one sees that = mult(o) /mult(). Thus

1 It
u= _B(uﬂl_v) = _%(upl_v)‘
Sincem e 7+, it follows that
[ [
Dy V() = (m1) == :;:8 (M, Upy) = 23&3 ' -
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Corollary 6.4.3. LetX be a simplicial fanin N ~R"andr € ¥(n—1) be a wall.
If p € ¥(1) and 7 generate a smooth cone Bfn), then

D,-V(r)=1 O
Given a wallr € ¥(n— 1), our next task is to computg, -V (7) for the other
raysp € ¥(1). LetT = ono’ and write
o =Congu,,,...,U,)
(6.4.3) o' =CongUu,,,...,U,.,,)
7= Conguy,,...,U,,).
This situation is pictured in Figure 17.

~ O
Upz Upn
T :
Upl
« O

Figure 17. 7 =onNo’

Then+ 1 minimal generators,, , ..., u,, ., are linearly dependent. Hence they
satisfy a linear relation, which we write as

n
(6.4.4) alp, + Y bty + Buy,,, =0.
i=2
We may assume, 3 > 0 sinceu,, andu,, ., lie on opposite sides of the watl
Then (6.4.4) is unique up to multiplication by a positive stamt sinceu,,,, ..., U,
are linearly independent. We call (6.4.4)vall relation.

On the other hand, settig= V() in (6.4.2) gives the linear relation
(6.4.5) > (D, -V(r)u, =0

p

n
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As we now prove, the two relations are the same up to a positimstant.

Proposition 6.4.4. The relationg6.4.4)and (6.4.5)are equal after multiplication
by a positive constant. Furthermore:

(@) D,-V(r)=0 forall p¢ {p1,...,pns1}-

It(r It(r
(b) D, V(1) = mzlzgai and D, ,,-V(7) = r:lzjltt((gl))'
B by mult(7) _ by mult(r)
(C) DPi'V(T) - Osz":(O') - ﬁmult(a./)

fori=2,...,n.

Proof. Part (b) follows immediately from Lemma 6.4.2. Also obsetivat when
p & {p1,...,pn+1}, p @andr never lie in the same cone &f, soD,NV(r) =0 by
the Orbit-Cone Correspondence. This easily imdgsV (1) = 0 (Exercise 6.4.1).
This proves part (a) and implies that (6.4.5) reduces to qoatson

(Dpl'V(T))upl + Z(Dpi'V(T))upi + (Dpn+1'v(7))upn+1 =0.
i=2

The coefficients ofi,, andu,, ,, are positive by part (b), so up to a positive con-
stant, this must be the wall relation (6.4.4). The first agseof the lemma follows.

Since the above relation equals (6.4.4) up to a nonzeroamtnste obtain
bi(Dp, V(7)) = Dy -V(7)),  bi(Dp,,-V (7)) = B(Dp-V (7)),
fori=2,...,n. Thenthe formulas fab,, -V (7) in part (c) follow from part (b). [

For a simplicial toric variety, Proposition 6.4.4 providagerything we need to
computeD -V (7) whenr is a wall of 2.
Example 6.4.5.Consider the fart in R? from Example 6.3.9. We have the wall
7 = Con€up) = o No’ = Congug, Up) N Conguy, Up),
whereu; = 1, U» = & andup = 2e; + 3e,. Computing multiplicities gives
mult(7) = 1, mult(o) = 3, mult(¢’) = 2.
Then part (b) of Proposition 6.4.4 implies
1 1
D1-V(r)==, D2-V(1)==
1 (T) 37 2 (T) 27
and the relation
2-U1—|—(—1)-Uo—|—3-U2 =0
implies
-1.1 -1-1 1
V=353 "32 6
by part (c) of the proposition. Hence we recover the intdige@roducts computed
in Example 6.3.9. O
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WhenXs is smooth, all multiplicities are 1. Hence the wall relat{@m.4) can
be written uniquely as

n
(6.4.6) Up,+ > bit, +u,,, =0, beZ,
i=2
and then the intersection formulas of Proposition 6.4.4cedo

(6.4.7) D,,-V(r)=D,,.,-V(r)=1, D,-V(r)=h,i=2...,n

Pnt+1’
Example 6.4.6.For the Hirzebruch surface?, the four curves coming from walls
are also divisors. Recall that the minimal generators are
U= —€ +I€y Up =€, U3 =©€1,Us = —€y,

arranged clockwise around the origin (see Figure 3 from Epteai®. 1.2 for the case
r = 2). Hence the wall generated hy gives the relation

Up—0-uz+us =0,
which implies

D;-D1=0

by (6.4.7). On the other hand, the wall generatedibgives the relation

U —r-up+uz3=0.
Then (6.4.7) implies

D2 . D2 = —T.
Similarly, one can check that
D3-D3=0, Dg-Dg=r,
and by Corollary 6.4.3 or (6.4.7) we also have
D1:-D;=D2-D3=D3-Dgy=D4-D; =1

These computations give an explicit description of the ilubktween the nef and
Mori cones shown in Figure 15 of Example 6.3.23 (Exercise2§.4 O

In general, &Q-Cartier divisorD on a complete surface haslf-intersection
D-D = D2 Self-intersections will play a prominent role in Chaptérvithen we
study toric surfaces.

Example 6.4.7. Let X5, be a complete toric surface. Wrid(1) = {p1,...,por},
where thep; are arranged clockwise around the origirNia ~ R2. Eachp; gives a
minimal generator; and a toric divisoD;. Note also that PiXs)r ~ R 2

Proposition 6.3.25 tells us thit: is projective, so that its Mori condE(Xx)
is strongly convex of dimension— 2. Hence a minimal generating set has at
leastr — 2 elements. Since theclassegD;] = [V (pi)] generate by the toric cone
theorem, we almost know the minimal generators.
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Now suppose thaKsy, is smooth. Then the wall relation fdd; = V(p;) is
Ui_1+biu + Ui 1 = O by (6.4.6), wherdy; = D? by (6.4.7). Given a divisob =
> '_,aDi, Proposition 6.4.1 implies that

D-Di =ai_1+bia + a1,
so thatD is nef (resp. ample) if and only if
ai—1+biai + a1 > 0 (resp.> 0)
fori=1,...,r. This makes it easy to study nef and ample divisor¥gn O

Primitive Collections In the projective case, there is a beautiful criterion for a
Cartier divisor to be nef or ample in terms of themitive collectionsintroduced
in Definition 5.1.5. Recall that

P={p1,....ok} € X(1)

is a primitive collection ifP is not contained irr(1) for all o € 3 but any proper
subset is. Sinc& is simplicial, primitive means tha& does not generate a cone of
Y but every proper subset does. This is the definition givendtyr8v in [L4].

Example 6.4.8. Consider the complete fan in R3 shown in Figure 18. One can
check that

{p1.p3}, {po,p2,pa}
are the only primitive collections df. O

z

Py
p 1 / p3

P,

Po

Figure 18. A complete fan ifR® with two primitive collections

Here is the promised characterization, due to Batytdyih the smooth case.
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Theorem 6.4.9.Let X be a projective simplicial toric variety. Then:
(a) A Cartier divisor D is nef if and only if its support functias satisfies
@D (Upy + -+ Up) = b (Upy ) + -+ D (Up,)
for all primitive collections P= {p1,...,pk} of .
(b) A Cartier divisor D is ample if and only if its support funatipp satisfies
@D (Upy + -+ Uy ) > b (Upy ) + -+ 9D (Up,)
for all primitive collections P={ps,...,pk} of X.

Before we discuss the proof of Theorem 6.4.9, we need to ghalyelations
that come from primitive collections.

Definition 6.4.10. Let P = {p1,...,px} € X(1) be a primitive collection for the
complete simplicial fart. HenceZik:1 u, lies in the relative interior of a cone
~ € X.. Thus there is a unigue expression

Up1+"'+upk = ZPE’Y(l) Cpup, Cp S Q>0.

Thenu,, +---4+U, — > ) Colp, = 0 is theprimitive relation of P.

pev(1
The coefficient vector of this relation i$P) = (b,) ,cx(1) € R*Y, where
1 peP, pg(1)

1-c, pePn~(1)

—c, pey(Q),pgP
0 otherwise

(6.4.8) b, =

Then} b,u, =0, so thatr(P) gives an element df1(Xs) by Proposition 6.4.1.
In Exercise 6.4.3, you will prove tha}, < 1 whenp € Pn~(1). This means tha®
is determined by the positive entries in the coefficient @ectP).

The Mori cone forXs, has a nice description in terms of primitive relations.

Theorem 6.4.11.1f Xy, is a projective simplicial toric variety, then
NE(Xz) = > Rsor(P),
P
where the sum is over all primitive collections PXf
Proof. Given a Cartier divisoD =} a,D,, Proposition 6.4.1 shows that

k
[D]-r(P) = Zapbp = Za’pi — Z a,Cp.
P i=1

pe(D)
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Since the support function @ satisfiesyp(u,) = —a, and is linear ony, we can
rewrite this as

(64.9)  [D]-1(P) = —¢D(Un) — -+ = 9D (Up) - £D(Uyg + -+ Up).
If D is nef, then it is basepoint free (Theorem 6.3.12)psds convex. It follows
that[D] - r(P) > 0, which proves (P) € NE(Xs). Note also that(P) is nonzero.

To finish the proof, we need to show tHeE(Xyx) is generated by the(P).
In the discussion following the proof of Theorem 6.3.22, vated thatNE(Xx)
is generated by its extremal rays, each of which is of the fyg[V (7)] for an
extremal wallr. It suffices to show thalV ()] is a positive multiple of (P) for
some primitive collectiorP.

We first make a useful observation about nef divisors. Giveorgo ¢ X, we
claim that any nef divisor is linearly equivalent to a divisd the form
(6.4.10) D=>,8D, & =0 peco(l) anda,>0, p¢o(1).

To prove this, first recall that any nef divisor is linearlyudglent to a torus-
invariant nef divisolD = 3 a,D,. Then we haven, € M with (m,,u,) = —a,
for p € o(1). SinceD is nef, it is also basepoint free, so that

(Mo, Up) = ¢p(Uy) = —ay, p€X(l),

by Theorem 6.1.7. Replacirig with D + div(x™ ), we obtain (6.4.10).

Now assume we have an extremal wakind letC =V (7). Consider the set

P={p|D,-C>0}.

We will prove thatP is a primitive collection whose primitive relation is theask
of C, up to a positive constant. Our argument is taken fr@f, which is based on
ideas of Kresch181].

We first prove by contradiction th&Z o (1) for all o € 3. Supposé® C (1)
and take an ample divis@ (remember thaXy, is projective). Then in particuldd

is nef, so we may assume tHais of the form (6.4.10). Sinca, = 0 for p € ¥(1),
we have

D-C=3%,¢,1 @D, C.
However,a, > 0 by (6.4.10), and® C o(1) impliesD,-C <0 for p ¢ o(1). It
follows thatD - C < 0, which is impossible sincB is ample. Thus no cone af
contains all rays irP.

It follows that some subsd) C P is a primitive collection. This gives the
primitive relation with coefficient vector(Q) € Ni(Xx), and we also have the
class|C] € N;(Xy). Let

B =[C] = Ar(Q) € Ny(Xs),
where) > 0. We claim that if\ is sufficiently small, then
(6.4.11) {p1[D,]-8<0}C{p|D,-C<O}.
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To prove this, first observe that the definitionm®implies
Dp'C = )‘[Dp] I’(Q) + [Dp] -B.

SupposéD,|- 3 <0andD,-C > 0. This forcegD,] -r(Q) > 0. Proposition 6.4.1
implies that[D,] - r(Q) is the coefficent ofi, in the primitive relation ofQ, which
by (6.4.8) is positive only whep € Q. ThenQ C P impliesD,-C > 0 by the
definition of P. But we can clearly choosk sufficiently small so that

D,-C>AD,|-r(Q) wheneveD,-C> 0.

This inequality and the above equation imfy,| - 3 > 0, which is a contradiction.
We next claim thap € NE(Xsx). By (6.4.11), we have

{p1[D,)-B <0} C {p|D,-C <0} (1),

where the second inclusion follows fratn= V (7) and Proposition 6.4.4. Now let
D be nef, and by (6.4.10) with = 7, we may assume that

D=>) aD, a=0pecr(l) anda,>0, p¢r(l).
p

Then
[D] B= Z ap[Dp] -B82>0,
p¢T(1)
where the final inequality follows sincg, > 0 and[D,] - 5 < 0 can happen only
whenp € 7(1). This proves that € NE(Xy).
We showed earlier thatQ) € NE(Xx). Thus the equation

Cl=Ar(Q+2

expressedC] as a sum of elements &fE(Xyx). But [C] is extremal, i.e., it lies in
a 1-dimensional face dfiE(Xy). By Lemma 1.2.7, this forcegQ) and 3 to lie
in the face. Since(Q) is nonzero, it generates the face, so fi@tis a positive
multiple of r (Q).

The relation corresponding © has coefficient¢D,, - C) .51y, andP is the
set ofp’s whereD,, -C > 0. But this relation is a positive multiple ofQ), whose
positive entries correspond @ ThusP = Q and the proof is complete. O

It is now straightforward to prove Theorem 6.4.9 using Tleeoi6.4.11 and
(6.4.9) (Exercise 6.4.4). We should also mention that theselts hold more gen-
erally for any projective toric variety (se&1]).

Example 6.4.12.Let > be the fan shown in Figure 18 of Example 6.4.8. The
minimal generators ofy, ..., p4 are

U = (0,0,—1),u3 = (0,—1,1),up = (1,0,1),u3 = (0,1,1),us = (—1,0,1).
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The computations you did for part (c) of Exercise 6.1.8 intpigt Xy is pro-
jective. Since the only primitive collections afes, p3} and{po, p2,pa}, Theo-
rem 6.4.9 implies that a Cartier divisbris nef if and only if

@b (U1 +U3) > ¢p(U1) +¢p(U3)
¢p(Up + U2+ Us) = ¢p(Uo) +¢p(Uz) + ¢p(Ua)

and ample if and only if these inequalities are strict. Onealao check that
Pic(Xy) ~ {a|D1] + b|D,] | a,b € 27}

and aD; + bD;, is nef (resp. ample) if and only & > b > 0 (resp.a > b > 0).
Exercise 6.4.5 will relate this example to the proof of Thkeao16.4.11.

BesidesY, the minimal generatong, ..., us support two other complete fans
in R3: first, the fan¥’ obtained by replacing Cole,uz) with Conguy,u3) in
Figure 18, and second, the fal obtained by removing this wall to create the cone
Congug, Uy, Uz, Us). SinceX (1) = 3'(1) = 3p(1), the toric varietiesXs;, X5, Xs;,
have the same class group, thougk has strictly smaller Picard group since it is
not simplicial. Thus

Pic(Xs,)r C Pic(Xs:)r = Pic(Xs )r =~ R?.

This allows us to draw all three nef cones in the same cofR?ofn Exercise 6.4.5
you show that we get the cones shown in Figure 19. The idedad#fis figure

Nef(Xs,)

Nef(Xs)

Nef(Xs)

Figure 19. The nef cones oKs, X5/, Xs,

will be developed in Chapters 14 and 15 when we study georrieti@riant theory
and the minimal model program for toric varieties. O

Exercises for §6.4

6.4.1. This exercise will describe a situation whéeC is guaranteed to be zero.

(@) LetX be normal and assume thats a complete irreducible curve disjoint from the
support of a Cartier divisdD. Prove thaD -C = 0. Hint: UseU = X\ SupgD).
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(b) Letr be a wall of a far and pickp € X(1) such thaip andr do not lie in the same
cone ofX. Use the Cone-Orbit Correspondence to prove BatV(r) = ), and
conclude thab,-V(7) =0.

6.4.2. As in Example 6.4.2, the classf3s], [D4] give a basis of Pic/# ). Since is a
smooth complete surface, the intersection pro@ueV (7;) is writtenD; - D;j.

(a) Give an explicit formula fofa[D3] 4 b[D4]) - (a[D3] + b[D4]) using the computations
of Example 6.4.2.

(b) Use part (a) to show that the cones shown in Figure 15 imipk&6.3.23 are dual to
each other.

6.4.3. In the primitive relation defined in Definition 6.4.10, progg< 1 whenp € PN
~(1). Hint: If p; € v(1) andc,, > 1, then canceli,, and show thati,,,...,u, € 7.

6.4.4. Prove Theorem 6.4.9 using Theorem 6.4.11 and (6.4.9).

6.4.5. Consider the fark: from Examples 6.4.8 and 6.4.12. Every wall Xfis of the
form 7;; = Condu;, u;) for suitablei < j. Letr(n;) € R® denote the wall relation of;;.
Normalize by a positive constant so that the entrieaf) are integers with gcek 1.

(a) Show the nine walls give the three distinct wall relaiofroz), r (1os),r (724).

(b) Show thatr(7g3) +r(724) = r(702) and conclude thatyz and 4 are extremal walls
whose classes generate the Mori con&of

(c) For each extremal wall of part (b), determine the comesiing primitive collection.
You should be able to read the primitive collection direéthm the wall relation.

(d) Show that the nef cones K, X5, X5, give the cones shown in Figure 19.

6.4.6. Let X5, be the blowup of" at a fixed point of the torus action. Thus Pig;) ~ Z2.

(@) Compute the nef and Mori cones X and draw pictures similar to Figure 15 in
Example 6.3.23.

(b) Determine the primitive relations and extremal wallXegf

6.4.7. Let P be the toric surface obtained by changing theuain the fan of the Hirze-
bruch surface’ from (—1,r) to (—r,1). Assumer > 1.

(a) Prove thaf> is singular. How many singular points are there?

(b) Determine which divisora;D; + a;D, + a3D3+ asD4 are Cartier and compui; - D;
foralli, j.

(c) Determine the primitive relations and extremal wall§7pf

Appendix: Quasicoherent Sheaves on Toric Varieties

Now that we know more about sheaves (specifically, tensayms and exactness), we
can complete the discussion of quasicoherent sheavesiowvanieties begun in §85.3. In
this appendix Xy, will denote a toric variety with no torus factors. The totabedinate
ring of Xy, is S= C[x, | p € £(1)], which is graded by CKs;).

Recall from 85.3 that forx € Cl(Xy), the shiftedSmodule S(«) gives the sheaf
Oxs, (o) satisfyingOx,, (o) ~ Ox, (D) for any Weil divisor witha: = [D]. In §6.0 we con-
structed a sheaf homomorphisfix (D) ® g, Ox(E) — Ox(D + E). In a similar way, one
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can define
(6.A.1) Oxs, (a) ®ﬁxz Oxs, (6) — Oxs, (O‘+6)
for a, 5 € Cl(Xg) such that ifo = [D] and = [E], then the diagram

0% (D)) @oy, Oxs(E)) — Ox,,(D+E))

! |

Oxs. (@) ® oy, Oxs (B) — Oxs, (a + 1)

commutes, where the vertical maps are isomorphisms.

From Sheaves to ModulesThe main construction of 5.3 takes a gradedoduleM and
produces a quasicoherent shisbabn Xs;. We now go in the reverse direction and show that
everyquasicoherent sheaf of; arises in this way. We will use the following construction.

Definition 6.A.1. For a sheaf# of &x,.-modules orXs; anda € Cl(Xy), define
j(a> = ‘gZ@ﬁxE Oxs, (a)
and then set

[(F)= P T, F(a).

a€Cl(Xs)

For examplel'.(0x,,) = Ssincel'(Xs, Ox (a)) ~ S, by Proposition 5.3.7. Using
this and (6.A.1), we see thBL.(.%) is a gradedSmodule.

We want to show tha# is isomorphic to the sheaf associated'td.#) when.# is
guasicoherent. We will need the following lemma due to MigsfalZ. Recall that for
o € ¥, we have the monomial =[] .,y X, € S. Leta, = degx?) € Cl(Xs).

Lemma 6.A.2. Let.# be a quasicoherent sheaf og XThen:
(@) If veI'(U,, %), then there ard > 0 and ue I'(Xs,.# (Yo, )) such that u restricts to

(x)veT(U,,Z (tay)).

(b) Ifu € I'(Xs,.Z) restricts to0 in I'(U,,,.% ), then there ig > 0 such that'x?)‘u=0in

I'Xs, Z (Lay)).

Proof. For part (a), fixr € ¥ and taker e T'(U,,,.%). Givent € 3, letv, be the restriction
ofvtoU,NU,. By (3.1.3), we canfindhe (—¢¥)N7¥ NM such thatl, NU, = (U, ),m =
Spe¢C[rY NM],m). In terms of the total coordinate rir§y we haveC[r" NM] ~ (S )o
by (5.3.1). Hence the coordinate ringf NU, is the localization

((S(”’)O)xm) )
wherex(™ =TJ, x™%) € (S )o sincem e ¥ N M. This enables us to write
Uy MUy = (U )y

Since.% is quasicoherent%UT is determined by its sectiors = I'(U,,.%#), and then
I'U, NU,,.%) is the localizatiorG,m .

It follows thatv, € T'(U,,.#) equalsd, /(x™ )X, wherek > 0 andd, € I'(U,,.%).
Henced, restricts to(x™ kv € T'(U,,.%). Sinceme (—¢"), we see that

(6.A.2) X2 = (x7) (xM)~ke s
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for ¢ > 0. This monomial has degrée,. Thenu, = x20, € I'(U,, # (Y« )) restricts
to (x%)*v, € I'(U, NU,,.Z (fa,)). By making/ sufficiently large, we can find onkthat
works for allT € .

To study whether tha,. patch to give a global section of (¢« ), taker;, 7, € ¥ and
sety =1 N 7. ThusU, =U, NU,,, and

(6.A.3) W=Un|y —Un|y € U, #(a,))

restricts to 0c I'(U, NU,,.# (¢a,)). Arguing as above, this group of sections is the lo-
calizationI'(U.,,.Z (favs ) )xam , Wherem e v¥ N (—o¥) NM such that, NU, = (U,,)ym.
Sincew gives the zero element in this localization, thereis 0 with (xX™ )*w = 0 in
['(U,,.7 (la,)). If we multiply by x? = (x7)¢ (x(™ )~k for ¢/ > 0, we obtain(x? )’ w=0
inT'(U,,.Z((¢ +¢)a,)). Another way to think of this is that if we madein (6.A.2) big
enough to begin with, then in fast= 0 in I'(U,,.Z (Yo, )) for all 7,7’. Given the defini-
tion (6.A.3) ofw, it follows that theu, patch to give a global sectiane I'( X5, % (Ya, )
with the desired properties.

The proof of part (b) is similar and is left to the reader. O

Proposition 6.A.3. Let.# be a quasicoherent sheaf og XThen.# is isomorphic to the
sheaf associated to the graded S-module%).

Proof. LetM =T, (%) and recall from 8§5.3 that for everyc ¥, the restriction oM to
U, is the sheaf associated to t{®s )o-module(M,s )o.

We first construct a sheaf homomorphisin— .%. Elements of M, )o areu/ (x?)"
forue I'(Xs, Z (Lo, )). Since(x?)~* is a section 0¥y, (—fa,,) overU,, the map
I'(Ug, Oxs (—lao)) @c I'(Us, F (05)) — T'(Us, F)
induces a homomorphism @8, )o-modules
(6.A.4) (Mys)o — T'(U,, %).

This gives compatible sheaf homomorphism%d — ﬂ|ud that patch to givd,\~/l — Z.

Since.Z is quasicoherent, it suffices to show that (6.A.4) is an isquinism for every
o € . First suppose that/(x?)* € (Mys)o maps to 0= I'(U,,,.#). It follows easily that
u restricts to zero if'(U,,.# (ka,)). By Lemma 6.A.2 applied to# (ko ), there is¢ > 0
such tha(x?)‘u=0inT'(Xs, Z (({+K)a,)). Then
u (x7)’u

(X&)k = W =0 in (an«)o,

which shows that (6.A.4) is injective. To prove surjectivilakev € T'(U,, %) and apply
Lemma 6.A.2 to find/ > 0 andu € T'(Xs,.Z (¢a,,)) such thatu restricts to(x?)%v. It
follows immediately thati/ (x?)* € (Mys)o maps tov. O

This result proves part (a) of Proposition 5.3.9. We now turnattention to part (b)
of the proposition, which applies to coherent sheaves.

Proposition 6.A.4. Every coherent shea¥ on Xz is isomorphic to the sheaf associated
to a finitely generated graded S-module.
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Proof. On the affine open subsét,, we can find finitely many sectiorfs,, € I'(U,, . %)
which generate” overU,. By Lemma 6.A.2, we can find> 0 such tha(xf’)l fi,- comes
from a global sectiom; , of .%(¢a,). Now consider the grade8moduleM C ', (%)
generated by thg; ,. Proposition 6.A.3 gives an isomorphism

I.(%)~%.
HenceM C T'.(.%) gives a sheaf homomorphisjﬁ\—> % which is injective by the exact-
ness proved in Example 6.0.10. Owgr, we havef; , = gi,/(x?)¢ € (M5 )o, and since

these sections generafe overU,, it follows thatM ~ .%. Then we are done sindé is
clearly finitely generated. O

The proof of Proposition 6.A.4 used a submodulé'of.#) because the full module
need not be finitely generated whénis coherent. Here is an easy example.

Example 6.A.5. A point p € P" gives a subvariety: {p} — P". The sheaf¥ =i.0y
can be thought of as a copy @fsitting over the poinp. The line bundleZgn(a) is free in
a neighborhood op, so that# (a) ~ .% for alla € Z. Thus

I.(F)=EPre".# @) =c.

aczZ aczZ
This module is not finitely generated ov@since it is nonzero in all negative degrees

Subschemes and Homogeneous Idealor readers who know about schemes, we can
apply the above results to describe subschemes of a tor@tywas. with no torus factors.

Letl C Sbe a homogeneous ideal. By Proposition 6.0.10, this giveeafof ideals
J C Ox,, whose quotient is the structure sheaf of a closed subschemeC Xs. This
differs from the subvarieties considered in the rest of theksince the structure sheéf
may have nilpotents.

Proposition 6.A.6. Every subscheme ¥ Xy is defined by a homogeneous ideal 5.

Proof. Given an ideal shea¥ C 0x,,, we get a homomorphism &modules
[(f) —T.(0x)=58

If I C Sis the image of this map, then the map factbrg.#) — | — S, where the first
arrow is surjective and the second injective. By Examplel.@nd Proposition 6.A.3, the
inclusion.¥ C Ox, factors as# — | — 0Oxg,. It follows immediately that? = I. O

In the case oP", it is well-known that different graded ideals can give theng ideal
sheaf. The same happens in the toric situation, and as in &8.8et the best answer in
the smooth case. Not surprisingly, the irrelevant id&@l) C S plays a key role in the
following result from pB5, Cor. 3.8].

Proposition 6.A.7. Homogeneous idealsd C S in the total coordinate of a smooth toric
variety X give the same ideal sheaf 6. if and only if |: B(X)>° = J: B(X)°. O

There is a less elegant version of this result that applisiiplicial toric varieties. See
[69] for a proof and more details about the relation betweenepadodules and sheaves.
See also204 for more on multigraded commutative algebra.



Chapter 7

Projective Toric
Morphisms

87.0. Background: Quasiprojective Varieties and Projectre
Morphisms

Many results of Chapter 6 can be generalized, but in ordeotsal we need to
learn aboutjuasiprojective varietieandprojective morphisms

Quasiprojective Varieties Besides affine and projective varieties, we also have the
following important class of varieties.

Definition 7.0.1. A variety isquasiprojectivef it is isomorphic to an open subset
of a projective variety.

Here are some easy properties of quasiprojective varieties

Proposition 7.0.2.

(a) Affine varieties and projective varieties are quasipradjest

(b) Every closed subvariety of a quasiprojective variety issiju@jective.
(c) A product of quasiprojective varieties is quasiprojective

Proof. You will prove this in Exercise 7.0.1. O

Projective Morphisms In algebraic geometry, concepts that apply to varieties
sometimes have relative versions that apply to morphismsden varieties. For
example, in §3.4, we definembmpletenesandpropernesswhere the former ap-
plies to varieties and the latter applies to morphisms. Siomes we say that the

313
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relative versionof a complete variety is a proper morphism. In the same way, th
relative version of grojective varietyis aprojective morphism

We begin with a special case. Lét: X — Y be a morphism and? a line
bundle onX with a basepoint free finite-dimensional subspate I'(X,.¢). Then
combining f : X — Y with the morphismp.¢ w : X — P(W") from §6.0 gives a
morphismX — Y x P(W") that fits into a commutative diagram

fxdop,
X — M PWY)

(7.0.1) lpl

f
Y.

If fx¢ow is aclosed embeddingmeaning that its imag& C Y x P(WV) is
closed and the induced map— Z is an isomorphism), then you will show in
Exercise 7.0.2 that has the following nice properties:

e fis proper.

e For everyp €Y, the fiber f~1(p) is isomorphic to a closed subvariety of
P(WV) and hence is projective.
The general definition of projective morphism must inclulis special case.
In fact, going from the special case to the general case igabhard.

Definition 7.0.3. A morphismf : X — Y is projectiveif there is a line bundleZ
on X and an affine open covélJ;} of Y with the property that for eadh there is
a basepoint free finite-dimensional subspate I'(f~1(U;),.#) such that

fixozw
_

f=H(U;) U x P(WY)

is a closed embedding, whefe= f|; ., and.Z = £, We say that
f : X — Y is projective with respect t.

The general case has the properties noted above in the |spessa

Proposition 7.0.4. Let f: X — Y be projective. Then:
(@) f is proper.
(b) For every pc Y, the fiber f1(p) is a projective variety. O

Here are some further properties.

Proposition 7.0.5.

(&) The composition of projective morphisms is projective.

(b) A closed embedding is a projective morphism.

(c) Avariety X is projective if and only if X {pt} is a projective morphism.
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Proof. Parts (a) and (b) are proved itd7, (5.5.5)]. For part (c), one direction
follows immediately from the previous proposition. Corsaly, leti : X — P" be
projective, and assume thétis nondegeneratemeaning thak is not contained in
any hyperplane dP". Now let.Z = 0x (1) =i*Opn(1). Then

i*: F(Pn, ﬁpn(l)) — F(X,f)
is injective sinceX is nondegenerate. In Exercise 7.0.3 you will show that
F(Pn, ﬁpn(l)) = Span{xo, - ,Xn)

and that it C I'(X,.Z) is the image of*, then¢ » \ is the embedding we began
with. Hence Definition 7.0.3 is satisfied fér— {pt} and.Z. O

When the domain is quasiprojective, the relation betweepgrand projective
is especially easy to understand.

Proposition 7.0.6.Let f: X — Y be a morphism where X is quasiprojective. Then:

f is proper <= f is projective

Proof. One direction is obvious since projective implies propesr fhe opposite
direction, X is quasiprojective, which implies that there is a morphism

g: X—Z

such thatZ is projective,g(X) C Z is open, andX ~ g(X) via g. Then one can
prove without difficulty that the product map

(7.0.2) fxg:X —YxZ

induces an isomorphisid ~ (f x g)(X).

Sincef : X — Y is proper,f x g: X — Y x Z is also proper (Exercise 7.0.4).
Hence the image of x gis closed inX x Z since proper morphisms are universally
closed. ThuX ~ (f x g)(X) and(f x g)(X) is closed inY x Z. This proves that
(7.0.2) is a closed embedding.

Now take a closed embeddinf— PS. Arguing as above, we get a closed
embedding ofX into Y x PS. From here, it is straightforward to show thhtis
projective (Exercise 7.0.4). a

To complicate matters, there are two definitions of projecthorphism used
in the literature. In 131, 11.4], a projective morphism is defined as the special
case considered in (7.0.1), whilgéZ7, (5.5.2)] and 273 5.3] give a much more
general definition. Theorem 7.A.4 of the appendix to thisptbiashows that the
more general definition is equivalent to Definition 7.0.3.

Projective Bundles Vector bundles give rise to an interesting class of projecti
morphisms.
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Let 7 : V — X be a vector bundle of rank> 1. Recall from 8§6.0 tha¥ has
a trivialization { (U, ¢i)} with ¢; : 7=1(U;) ~ U; x C". Furthermore, the transition
functionsg;; € GLn(I'(Ui NUj, Ox)) make the diagram
UiNUj x cn

1wy
7T_1(Ui ﬂUj)/ 1xgij

¢i|7r—1(uimuj) UiNU; x Cn
commute. Note that & g;; induces an isomorphism

Ix G :UinUjx Pt~ UinUj x P
This gives gluing data for a varief§(V). It is clear thatr induces a morphism
7 :P(V) — X and thatp; induces the trivialization
Ei : fﬁl(Ui) ~ U x Pt

The discussion following Theorem 7.A.4 in the appendix te dhapter shows that
7 :P(V) — X is a projective morphism. We cal(V) the projective bundlef V.

Example 7.0.7. Let W be a finite-dimensional vector space overof positive
dimension. Then, for any variety, the trivial bundleX x W — X gives the trivial
projective bundleX x P(W) — X. O

There is also a version of this construction for locally fedeaves. I is
locally free of rankn, thené’ is the sheaf of sections of a vector bundle— X of
rankn. Whenn = 1, we proved this in Theorem 6.0.20. Then define

(7.0.3) P(&) =P(V,),
whereV,/ is the dual vector bundle &f;. Here are some properties Bf&).

Lemma 7.0.8.
(@) P(¥) = X when? is locally free of rankl.
(b) P(& ®4 L) =P(&) whend is locally free and?Z is a line bundle.

(c) If a homomorphism® — .# of locally free sheaves is surjective, then the in-
duced mafP(#) — P(&) of projective bundles is injective.

Proof. You will prove this in Exercise 7.0.5. The dual in (7.0.3)he treason why
& — F givesP(¥) — P(&). O

The appearance of the dual in (7.0.3) can be explained asvillLet.Z be a
line bundle withw C I'(X,.Z’) basepoint free of finite dimension. As in §6.0, this
gives a morphism

bow: X — PWY).
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Let & =W ®¢ Ox. The corresponding vector bundlevs = X x W, so
(7.0.4) P(&) =P(Vy) =X x P(WY).

By Proposition 6.0.24, the natural mé&p— . is surjective sinc&V has no base-
points. By Lemma 7.0.8, we get an injection of projectivedian

P(¥) — P(&).
The lemma also implieB(.¢") = X. Using this and (7.0.4), we get an injection
X — X x P(WY).

Projection onto the second factor gives a morphdm- P(W"), which is the
morphismg ¢ \ from §6.0 (Exercise 7.0.6).

Proj of a Graded Ring As described ing0, 111.2] and [131, 11.2], a graded ring
s=-Ps
d=0
gives the scheme Pr@) such that for every non-nilpoterite S, d > 0, we have
the affine open subséx, (f) C Proj(S) with

D (f) ~ SpecSy)),
whereS(f) is the homogeneous localization®at f, i.e.,

S Z{%|9€Sed, EGN}«
Furthermore, if homogeneous elemefis .., fs € Ssatisfy

Vit =S =P,

d>0

then the affine open subsdds (f1),...,D4(fs) cover ProfS). Thus we construct
Proj(S) by gluing together the affine varieti€, (f;), just as we construdt" by
gluing together copies dt".

The inclusions, C Sy for all f give a natural morphism Pr&) — Spe¢S).
We have the following important result frorhi31, Prop. 11.7.10].

Theorem 7.0.9. The morphisnProj(S) — SpedS) is projective. O
Example 7.0.10.LetU = Spe¢R) and consider the graded ring
S=R[Xo,...,%n]
such that eack has degree 1. Then
Proj(S) =U x P",
where ProfS) — Spe¢S)) = Spe¢R) = U is projection onto the first factor. ¢
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In [131, I1.7], the projective bundlé?(&’) of a locally free shea®” on X is
constructed via a relative version of the Proj constructiMore generally, one can
define the “projective bundleP(&’) for any coherent sheaf on X.

Exercises for §7.0
7.0.1. Prove Proposition 7.0.2.

7.0.2. Prove Proposition 7.0.4. Hint: First prove the special gigen by (7.0.1). Recall
from §3.4 thaf" is complete, so th&" — {pt} is proper.

7.0.3. Complete the proof of Proposition 7.0.5.

7.04.Leta: X —Y andg:Y — Z be morphisms such thgto o« : X — Z is proper. Prove
thata : X — Y is also proper. Hint: As noted in the comments following Glary 3.4.6,
being proper is equivalent to being topologically propeefibition 3.4.7). Also,T CY
impliesa=1(T) C (Boa)~Y(B(T)).

7.0.5. Prove Lemma 7.0.8. Hint: Work on an open cover where the lasnatle trivial.

7.0.6. In the discussion following (7.0.4), we constructed a masphX — P(WV) using
the surjections’ =W @¢ O0x — . Prove that this coincides with the morphisig .

7.0.7. Show thatC?\ {(0,0)} is quasiprojective but neither affine nor projective.

§87.1. Polyhedra and Toric Varieties

This section and the next will study quasiprojective toristies and projective
toric morphisms. Our starting point is the observation jhat as polytopes give
projective toric varieties, polyhedra give projectiveitanorphisms.

Polyhedra Recall that a polyhedroR C Mg is the intersection of finitely many
closed half-spaces
P={meMg|(mu)>—-a,i=1,...,s}
A basic structure theorem tells us thats a Minkowski sum
P=Q+C,

whereQ is a polytope and is a polyhedral cone (se@8l, Thm. 1.2]). IfP is
presented as above, then the cone paR isf

(7.1.2) C={meMg|(mu)>0,i=1,...,s}.
(Exercise 7.1.1). Following281], we callC therecession conef P.

Similar to polytopes, polyhedra have supporting hypemgsdarfaces, facets,
vertices, edges, etc. One difference is that some polyHemno vertices.

Lemma 7.1.1. Let PC My be a polyhedron with recession cone C.

(@) The set V= {v € P | v is a vertex is finite and is nonempty if and only if C is
strongly convex.

(b) If C is strongly convex, then £ Con\V) +C.
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Proof. You will prove this in Exercises 7.1.2—7.1.5. a

Example 7.1.2. The polyhedrorP = {(ay,...,a,) € R" | & > 0,3 ;& > 1} has
verticesey, ..., €, and recession cor@= Congey,...,&,). O

Lattice Polyhedra We now generalize the notion of lattice polytope.

Definition 7.1.3. A polyhedronP C My is alattice polyhedrornwith respect to the
latticeM C Mg if

(&) The recession cone Bfis a strongly convex rational polyhedral cone.

(b) The vertices oP lie in the latticeM.

A full dimensional lattice polyhedron has a unique facesprdation
(7.1.2) P={me Mg | (mug) > —ag for all facetsF },

whereur € N is a primitive inward pointing facet normal. This was defiriad
Chapter 2 for full dimensional lattice polytopes but applegually well to full
dimensional lattice polyhedra. Then tbene of Pis the coneC(P) C Mr x R by

C(P) ={(m,\) € Mg x R | (m,ug) > —Aa forall F, A > 0}.

WhenP is a polytope, this reduces to the cad@) = CondP x {1}) considered
in 8§2.2.

Example 7.1.4. The blowup ofC? at the origin is given by the fak in R? with
minimal generatorsiy = e; + &, u; = €1, Uy = e; and maximal cones Cof&, u; ),
Con€ug,uy). For the divisorD = Do+ D3 + Dy, we computed in Figure 5 from
Example 4.3.4 that the polyhedr®y is a 2-dimensional lattice polyhedron whose
recession con€ is the first quadrant.

Figure 1 on the next page shows the 3-dimensional €@(fRy) with P at
height 1. Notice how the cor@of By appears naturally at height 0 in Figure 1§

Some of the properties suggested by Figure 1 hold in general.

Lemma 7.1.5. Let P be a full dimensional lattice polyhedron inxMith recession
cone C. Then (P) is a strongly convex cone infvk R and

C(P)N (Mg x {0}) =C.

Proof. The final assertion of the lemma follows from (7.1.1) and te&rgtion of
C(P). For strong convexity, note th&(P) C Mg x R>q implies
C(P)N(—C(P)) € Mg x {0}.

Then we are done sinc€gis strongly convex. O
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Figure 1. The coneC(Py) in Example 7.1.4

We say that a pointm, \) € C(P) hasheight\. Furthermore, when > 0, the
“slice” of C(P) at height) is AP. If we write P = Q+C, whereQ is a polytope,
then for\ > 0,

AP=XQ+C
sinceC is a cone. It follows that as — 0, the polytope shrinks to a point so that at
height 0, only the con€ remains, as in Lemma 7.1.5. You can see how this works
in Figure 1.

The Toric Variety of a Polyhedron In Chapter 2, we constructed the normal fan
of a full dimensional lattice polytope. We now do the sameddull dimensional
lattice polyhedrorP. Given a vertex € P, we get the cone

C, =CondPNM —v) C M.

Note thatv € M sinceP is a lattice polyhedron. It follows easily th@g is a strongly
convex rational polyhedral cone of maximal dimension, st the same is true for
its dual

oy, =C)/ = CondPNM—v)" C Ng.
These cones fit together nicely.

Theorem 7.1.6. Given a full dimensional lattice polyhedron® Mg with reces-
sion cone C, the set

Yp={o|o <oy, visavertex of B

is a fan in N. Furthermore:
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(@) The support okp is |Xp| =CV.
(b) Xp has full dimensional convex support iR N

Proof. The proof that we get a fan is similar to the proof for the pohg case (see
82.3) and hence is omitted. To prove part (a), we need to show

o —c.
vev

whereV is the set of vertices dP. Now takev € V andme CNM. Thenm=

(v+m)—v e PNM —v, which easily implie€ C CondPNM —v). Taking duals,
we obtaino, C CV. For the opposite inclusion, takec CV and pickv € V such
that (v,u) < (w,u) for all w € V. We showu € o, as follows. Anyme PNM can
be writtenm= 3", Aww+m where), >0,> ., Aw =1 andm € C. Then

(Mu) =37 ey Aw(w, U) + (M u) > 57 A (v,U) = (v,u).
Thus{m—v,u) >0 for allm—v € PNM — v, which proves € o,.

Part (b) now follows sinc€" is clearly convex, and has full dimension since
C is strongly convex. O

The fanXp of Theorem 7.1.6 is thaormal fanof P. We defineXp to be the
toric variety Xs,, of Xp. Here is an example.

Example 7.1.7. The polyhedrorP = {(ay,...,a,) € R" | & > 0,31 , & > 1} of
Example 7.1.2 has vertices,...,e,. The facet ofP defined byzi”:lai =1 has
e+ ---+ €, as inward normal. Then the vertexgives the cone

oq =Conde; +---+en,e1,...,8,...,6n).

These cones form the fan of the blowup@f at the origin, soXp = Blg(C"). ¢

Note thatXp is not complete in this example. In general, the normal fan ha
support/3p| = CV. We measure the deviation from completeness as follows.

The support¥p| is a rational polyhedral cone but need not be strongly canvex
Recall thatW = |Xp| N (—|Xp|) is the largest subspace containedp|. Hence
|Xp| gives the following:

e The sublatticdV/ NN C N and the quotient latticBlp = N/(WNN).
e The strongly convex conep = |¥p|/W C Ng /W = (Np)g.
e The affine toric varietyp of op.
The projection map : N — Np is compatible with the fans okp andUp since
¢r(|2p|) = op. Hence we get a toric morphism
¢ : Xp — Up.

Since|Xp| = Eﬂgl(ap) (Exercise 7.1.6), Theorem 3.4.11 implies thas proper.



322 Chapter 7. Projective Toric Morphisms

The key result of this section is that Xp — Up is a projective morphism. We
first give an elementary proof in Theorem 7.1.10. We will aja@® a more sophis-
ticated proof that applies Proj construction from 8§7.0 dkemigroup algebra
(7.1.3) S =C[C(P)Nn(M x Z)].

The character associated tm, k) € C(P) N (M x Z) is written Y™K, and S is

graded by height, i.e, dég™¥) = k. In Proposition 7.1.13 we will prove that
Xp ~ Proj(Sp).

Then standard properties of Proj will imply that Xp — Up is projective.

The Divisor of a Polyhedron Let P be a full dimensional lattice polyhedron in
Mg. As in the polytope case, facets Bfcorrespond to rays in the normal famp,
so that each facdt gives a prime torus-invariant divis@g C Xp. Thus the facet
presentation (7.1.2) d? gives the divisor

(7.1.4) Dp =) rarDr,

where the sum is over all facets Bf Results from Chapter 4 (Proposition 4.2.10
and Example 4.3.7) easily adapt to the polyhedral case to gt Dp is Cartier
(with m,, = v for every vertexv) and the polyhedron obp is P, i.e.,P = Pp,.
Then Proposition 4.3.3 implies that

(7.1.5) I'(Xp, 0% (Dp)) = Bmeprm C-X™

The definition of projective morphism given in §7.0 invohetine bundle?
and a finite-dimensional subspadéof global sections. The line bundle will be
Ox.(kDp) for a suitably chosen integ&r> 1 andW will be determined by certain
carefully chosen lattice points &P. The reason we need a multiple is tRanight
not have enough lattice points.

Normal and Very Ample Polyhedraln Chapter 2, we defined normal and very
ample polytopes, which are different ways of saying thatetege enough lattice
points. For a lattice polyhedrdp, the definitions are the same.

Definition 7.1.8. Let P C Mg be a lattice polyhedron. Then:

(a) P is normal if for all integersk > 1, every lattice point okP is a sum ofk
lattice points ofP.

(b) Pisvery amplaffor every vertexv € P, the semigroupN(PNM —v) generated
by PNM — v is saturated iM.

We have the following result about normal and very ample ipadira.

Proposition 7.1.9. Let PC Mg be a lattice polyhedron. Then:
(@) If P is normal, then P is very ample.
(b) If dimP =n > 2, then kP is normal and hence very ample for alt k— 1.
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Proof. Part (a) follows from the proof of Proposition 2.2.18. Fortpgh), write
P =Q+C, whereQ is a lattice polytope an@ is the recession cone &f Let
C=Condmy,...,ms), m € M. In Exercise 7.1.7 you will show that

(7.1.6) C= [J ConO,sm,...,sm)+m.
meCnM

SinceP = Q+C is a full dimensional polyhedrorQ + Con(0,smy,...,Sns) is
a full dimensional lattice polytope. It follows th& = Q-+ C is a union of full
dimensional lattice polytopes. Then part (b) follows by Igjpg Theorem 2.2.12
to each of these polytopes. O

The Projective Morphism Let P be a full dimensional lattice polyhedron Mg.
AssumeP is very ample and pick a finite set C PN M such that:

e o/ contains the vertices ¢.
e For every vertex € P, & — v generates CofleNM —v)NM = g/ NM.
We can always satsify the first condition, and the secondssiple since® is very
ample. Using (7.1.5), we get the subspace
W = Sparix™ | me &) C T'(Xp, Ox,(Dp)).

We claim thatwW/ has no basepoints sineg contains the vertices d&®. To prove
this, letv be a vertex. Recall th&@p + div(y") is the divisor of zeros of the global
section given byv. One computes that

Dp +div(x") = 2 ¢ (aF + (v,Ur))Dr.

Since (v,ur) = —ar for all facets containing and (v,ug) > —ag for all other
facets, the support ddp + div(x") is the complement of the affine open subset
U,, € Xp, i.e., the nonvanishing set of the section is preci&gly. Then we are
done since th¥,, coverXp.

It follows that we get a morphism
bow: Xp — P(WY)
for £ = Ox.(Dp). Here is our result.
Theorem 7.1.10.Let P be a full dimensional lattice polyhedron. Then:
(a) The toric variety X is quasiprojective.
(b) ¢ : Xp — Up is a projective morphism.
Proof. First suppose thaP is very ample. The proof of part (a) is similar to

the proof of Proposition 6.1.10. L&¥, W and .« be as above and write/ =
{my,...,ms}. Consider the projective toric variety

X, CPSI=PWY).
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Letl C {1,...,s} be the set of indices corresponding to verticeR.0boi € | gives
a vertexmy and a corresponding corg = oy, in Xp. Also letU; C PS~1 be the
affine open subset where tith coordinate is nonzero. By our choice .of, the
proof of Proposition 6.1.10 shows that, \v induces an isomorphism

Uy &~ Xy NU;.
SinceXp is the union of theéJ,, for i €1, it follows that
(7.1.7) ¢$,W : Xp LXLQ{ﬂUiQUi.

SinceX,, is projective, this shows thad is quasiprojective. Part (b) now follows
immediately from Proposition 7.0.6 singe Xp — Up is proper.

WhenP is not very ample, we know that a positive multiid® is. SinceP
and kP have the same normal fan and same recession cone, thepapdJp
andXgp — Ugp are identical. Hence the general case follows immediatelyn the
very ample case. d

Here are two examples to illustrate Theorem 7.1.10.

Example 7.1.11.The polyhedrorP from Example 7.1.7 is very ample (in fact, it
is normal), and the se# used in the proof of Theorem 7.1.10 can be chosen to
be.o = {ey,... e, 26,...,26,} (Exercise 7.1.8). This gives,, C P?"~1, where
P?"~1 has variablesy, . .., X, Wi, ... ,W, corresponding to the elemerds ..., e,
2ey,...,26, of o7, ThenX, C P?-1is defined by the equationgw; = szwi

for 1 <i < j < n (Exercise 7.1.8). Sinc¥p = Blo(C") by Example 7.1.7, the
isomorphism (7.1.7) implies

Blo(C") ~ {(X1, ..., X0, Wi,...,Wn) € P?"" 1| (xq,...,%) # (O,...,0)
andx’w; = xfw; for 1<i < j <n}.

We get a better description of IC") using the vertices# = {ey,...,e,} of P.
This gives a mapXp — P"~1 which, when combined witlp — Up = C", gives
a morphism

d: Xp — P CM.
Let P"~1 andC" have variables, ..., x, andys, ...,y respectively. Them is an
embedding onto the subvariety®f~1 x C" defined byxy; = xjy; for L<i < j<n
(Exercise 7.1.8). Hence

BIO(Cn) = {(X17--~7Xn7Yl7--~aYn) € ]Pn_l X (Cn ‘ Xin :iji71S I < J < n}-

This description of the blowup B{C") can be found in many books on algebraic
geometry and appeared earlier in this book as Exercise.3Nb& also that the
projective morphism of Theorem 7.1.10 is the blowdown mag®!) — C". ¢

Example 7.1.12.Consider the full dimensional lattice polyhedrBrC R? defined
by the inequalities
Xx<2,0<y<2y>x+1
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This polyhedron has vertices = (1,0),v2 = (2,1),v3 = (2,2) shown in Figure 2.
The left side of the figure also shows the recession €baed the decompostion
P = Q+C, whereQ is the convex hull of the vertices.

< < V3
v 01
(o) 1
.V2 <
O3 |
P )
(0,0 Vi
P=Q+C '
= v
3 Gp
Vs
C Q
G —
(0,0) Vi

Figure 2. The polyhedrorP = Q+ C, the normal fartp, and the conep

The normal vectors at each vertexare reassembled on the right to give the
maximal coneg; of the normal far®p. Note also thatYp| is not strictly convex,
so we mod out by its maximal subspace to get the strictly cooemeosp. The
projection map on the right of Figure 2 gives the projectiverpmismXp — Up,
whereUp ~ C is the toric variety obp. O

The Proj Construction We conclude this section by explaining how constiXiet
using Proj. LetP C My be a full dimensional lattice polyhedron. By (7.1.3), the
coneC(P) C Mg x R gives the semigroup algebra

S = C[C(P)N (M x Z)].

We use the height grading defined by @eftk) = k. Then we can relate Pi&)
to Xp as follows.

Theorem 7.1.13.There is a natural isomorphismpX- Proj(Sp).

Proof. LetV be the set of vertices ¢&f. In Exercise 7.1.9 you will prove:
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o VIX't|veV)=(S)+=Dqg>0(S)a.

o If veV, then(S) () = Clo, NM], whereo, = CongPNM —v)".
By the first bullet, PrqjSp) is covered by the affine open subsets &9, ),
and the second shows that S&) ) ) is the affine toric variety of the cong,.
These patch together in the correct way to gfge~ Proj(Sp). O

We can also interpret the morphisim Xp — Up in terms of Proj. The idea is to
compute(Sp)o, the degree 0 part of the graded riig= C[C(P)N (M x Z)]. The
slice of C(P) at height 0 is the recession coB®f P. Recall thaNe = N/(WNN),
whereW C CV is the largest subspace containedCih and thatUp is the affine
toric variety ofop, which is the image oV in (Np)g. Then the inclusioMp C M
dual toN — Np gives

O’|\3/ =C g (MP)R g MR.
It follows that(Sp)o = C[CNM] = C[og NM]. This implies SpedSr)o) = Up, SO
that ProjSs) — Spe¢(Sp)o) becomess : Xp — Up. It follows that¢ is projective
by Proposition 7.0.9. This gives a second proof of Theoreiri .

It is also possible to prove directly that P{8j) — Sped(Sp)o) is projective
without using Proposition 7.0.9. See Exercise 7.1.10.

Exercises for §7.1

7.1.1. Prove (7.1.1). Hint: Fixny € P and take anyn e C. Show thatmy, + Am € P for
A >0, so{mp+ Am,u;) > —a. Then divide by\ and letA — .

7.1.2. LetP = Q+C be a polyhedron iMg whereQ is a polytope an€ is a polyhedral

cone. Definepp(u) = Minmep(m,u) forue CV.

(@) Show thatpp(u) = minmeg(m,u) for u € C¥ and conclude thapp : C¥ — R is well-
defined.

(b) Show thatpp(u) = min,ey,(v,u) for uc CY, whereVg is the set of vertices d.
(c) Show thatP = {me Mg | pp(u) < (m,u) for all u € CV}. Hint: For the non-obvious

direction, represem as the intersection of closed half-spaces coming from stliipgo
hyperplanes.

7.1.3. Let P be a polyhedron itMg with recession con€ and letW = CN (—C) be the
largest subspace containeddn Prove that every face ¢f contains a translate ¥ and
conclude thaP has no vertices whe@ is not strongly convex.

7.1.4. Let P = Q+C be a polyhedron iMg whereQ is a polytope and is a strongly
convex polyhedral cone. L& be the set of vertices @. Assume that there is € Vg

andu in the interior ofCY such that(v,u) < (w,u) for all w # v in V. Prove thav is a
vertex of P. Hint: Show thatH, ,, a = (v,u), is a supporting hyperplane & such that
Hu,aNP = v. Also show ifv andu satisfy the hypothesis of the problem, then sosdmd
u’ for anyu’ sufficiently close tai. Finally, Exercise 7.1.2 will be useful.

7.1.5. Let P = Q+C be a polyhedron itMr whereQ is a polytope and be a strongly
convex polyhedral cone. L& be the set of vertices @ and let

Uo={ueInt(C") | (v,u) # (w,u) whenever # w in Vg }.
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(a) Show thatJg is open and dense 2. Hint: dimCV = dim Ng.

(b) Use Exercise 7.1.4 to show that for everg Up, there is a vertex of P such that
©p(U) = (v,u). Conclude that the s&b of vertices ofP is nonempty and finite.

(c) Show thatpp(u) = minyey, (v,u) forue CV.
(d) Conclude thaP = ConVVp) +C. Hint: The first step is to show that = ¢p/, where
P’ = Con\Vp) +C. Then use part (c) of Exercise 7.1.2.

7.1.6. LetC C Ngr be a polyhedral cone. Sé&t =Cn(—C) and letoc = ~v(C) C Ng /W for
the quotient map : Nz — Ng /W. Show that is strongly convex an@ = y~1(o).

7.1.7. Prove (7.1.6). Hint: Givey ;_; Aim €C, letm=>""_ [ \i|m € CNM.
7.1.8. Prove the claims made in Example 7.1.11.
7.1.9. Supply proofs of the two bullets from the proof of Theorem. 731

7.1.10. Here you will give an elementary proof that Ri®&j) — Sped(Se)o) is projective,
where$s is the graded semigroup algebra from (7.1.3).

(a) Explain why we can assume thits normal.

(b) Showtha€(P)N (M x Z) is generated by its elements of height whenP is normal.

(c) AssumeP is normal and let’Z be a Hilbert basis o€(P) N (M x Z). Thens# =
U s, where elements of4 have height and write77 = {(my,1),...,(ms, 1)}.
Prove thatSs is generated as aff)o-algebra byx™t,...,x™t and conclude that
there is a surjective homomorphism of graded rings

(SP)olx1,--- %] — Sp, X — x Mt
(d) Prove that wheR is normal, there is a commutative diagram
XP #} UP X ]P)S—l
P1
x l
Up
such that is a closed embedding ards a projective morphism.

7.1.11. In this exercise, you will prove a stronger version of pajtgbTheorem 7.1.10.
Let X., andW be as in the proof of the theorem. Prove that there is a contiveitiagram

Xo — 0L L Yo x PAWY)
(7.1.8) lpl
¢

Up
such thaw x ¢ w : Xp — Up x P(WY) is a closed embedding. Hint: Proposition 7.0.6.
7.1.12. Let 0 C Nr be a strongly convex rational polyhedral cone. This givesshmi-
group algebr&[S,] = C[o¥ NM]. Given a monomial ideal = (x™,...,x™) C C[S,],
we get the polyhedron
P=ConymeM | x"M€a),

Prove thaP = Conv(my, ..., m) +oV.
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87.2. Projective Morphisms and Toric Varieties

We begin our study of projective toric morphisms with a tatdgiety Xs; whose fan
> has full dimensional convex support. We construct an affonie variety from
|| as follows. The largest subspace containefins W = |3| N (—|X]|). Similar
to §7.1, we have:

e The sublatticdV NN C N and the quotient lattichly, = N/(WNN).
e The strongly convex coney, = |X|/W C Ng/W = (Ng)g.

e The affine toric varietfJs, = U,..
The projection ma : N — Ny, is compatible with the fans ofy, andUsy; since
or(]X|) = ox. This gives a toric morphism

(7.2.1) ¢ : Xs; — Us..

which as in 87.1 is easily seen to be proper. The differenterdmn here and
87.1 is thatp : Xy — Ux, may fail to be projective. Our first goal is to understand
when this happens. As you might suspect, the answer invplolytiedra, support
functions, and convexity.

The Polyhedron of a Divisar A Weil divisor D = Zp a,D, on Xy, gives the poly-
hedron

Po={me Mg | (mu,) > —a, forall p}.
WhenX is complete, this is a polytope, but in general we have
Po=Q+C,
whereQ is a polytope an€ is the recession cone 6.

Lemma 7.2.1. AssumgX| is convex of full dimension and let®3_ a,D, be a
Weil divisor on X%. If Py # (), then:

(a) The recession cone opfs |X|Y.
(b) The setV={v € By | v is a verte} is nonempty and finite.
(c) Pb =ConuV) +|X]V.

Proof. Combining (7.1.1) with the definition d%, we see that the recession cone
of Bhis

{me Mg | (mu,)>0forallp} =|x|Y
since|X| = Congu, | p € (1)) by (6.1.3). This proves part (a). The recession

cone is strongly convex sin¢E| has full dimension, so that parts (b) and (c) follow
from Lemma 7.1.1. O
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Divisors and Convexity Now that we know about recession cones, the convexity
result proved in Theorem 6.1.7 can be improved as follows.

Theorem 7.2.2.Assumey| is convex of full dimension n and lgp be the support
function of a Catrtier divisor D on X. Then the following are equivalent:

(a) D is basepoint free.

(b) m, € By for all o € X(n).

(©) ¢p(u) = min,cs ) (M, u) forallu € [3].

(d) ¢p : |X| — R is convex.

(e) Pb =Conv(im, | o € £(n)) + |X|V.

(f) {m, | o € £(n)} is the set of vertices opP

(9) ¢p(u) =mingep, (M,u) for all u € |X|.

In particular, B is a lattice polyhedron when D is basepoint free.

Proof. Parts (a)—(d) are equivalent by Theorem 6.1.7. Furthernfbye= (f) and
(b) = (g) follow as in the proof of Theorem 6.1.7, and &) (e) follows from
Lemma 7.2.1. Also, (e} (b) is obvious. Finally, (g}= (d) follows from part (b)
of Exercise 7.1.2. O

Strict Convexity Our next task is to show thét: Xs; — Uy is projective if and only
if Xs has a Cartier divisob with strictly convex support function. We continue
to assume that has full dimensional convex support. As in 864 is strictly
convex if it is convex and for each € ¥(n), the equationpp (u) = (m,,u) holds
only ono. The strict convexity criteria from Lemma 6.1.13 apply testkituation.

Whenp is strictly convex, the polyhedroR, has an especially nice relation
to the fanX.
Proposition 7.2.3. Assume tha>| is convex of full dimension and® 3 a,D,
has a strictly convex support function. Then:
(a) P is a full dimensional lattice polyhedron.
(b) X is the normal fan of p.

Proof. Theorem 7.2.2 and Lemma 6.1.13 imply thatthg o € 3(n), are distinct
and give the vertices of the polyhedron. As in §7.1, a ventexc P, gives the
coneCp,, = CongdPp, "M —m,). We claim that

o= Cryb.
This easily implies thalPy has full dimension and that is the normal fan oPy.

Fix o € 3(n) and letp € o(1). Thenme Pob "M implies

(7-2'2) <m7 up> > ‘PD(UP) = <m<77up>7
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where the inequality holds by Lemma 6.1.6 and the equalitgshsinceu,, € o.
Thus(m—m,,u,) > 0 for allme BobNM, so thatu, € Cy,_forall p € o(1). Hence

o C C,}/b.
Since|X|" is the recession cone 8, the proof of Theorem 7.1.6 implies
Cr¥\o SN UJEE(n) .
Now takeu € Int(Cy, ). Henceu € ¢’ for someo’ € ¥(n). Thenue C;, and
My’ — M, € Cr, imply
<m0" _rnO'7u> Z 07 SO <m0'7u> Z <m07u>'

On the other hand, if we apply (7.2.2) to the casfeand m = m,, we obtain
(My,U,) > (m,,u,). We conclude that

(M, u) = (M, U),
and the same equality holds for all elements of@jf ) N o’. This easily implies
thatm, = m,.. Theno = ¢’ by strict convexity, so that € o. O

Here is the first major result of this section.

Theorem 7.2.4.Let¢ : Xy, — U, be the proper toric morphism where; Us affine.
Then|X| is convex. Furthermore, the following are equivalent:

(a) Xy is quasiprojective.

(b) ¢ is a projective morphism.

(c) Xy has a torus-invariant Cartier divisor with strictly convexpport function.

Proof. Since¢ is proper, Theorem 3.4.11 implies that| = Eﬂgl(o—). Thus|X| is
convex. To prove (ay (b) < (c), first assume thak:| has full dimension.

If (c) is true, thenX: is the normal fan of the full dimensional lattice polyhedron
P> by Proposition 7.2.3. It follows thaXs; = Xp,, which is quasiprojective by
Theorem 7.1.10, proving (a). Furthermore, €a)b) by Proposition 7.0.6.

If (b) is true, we will use the theory of ampleness developedllR7]. The
essential facts we need are summarized in the appendixstahiipter. Since
is projective, there is a line bundl® on Xy, that satisfies Definition 7.0.3. Then,
sinceU,, is affine, Theorem 7.A.4 and Proposition 7.A.6 imply that

o YOK— ¥ oy, Qox. L (k times) is generated by global sections for some
integerk > 0.

¢ The nonvanishing set of a global section®fis an affine open subset %§;.

By §7.0,.Z ~ Ox,, (D) for some Cartier divisor oX, and since linearly equiv-
alent Cartier divisors give isomorphic line bundles, we rasgume thdD is torus-
invariant (this follows from Theorem 4.2.1). Théx, (kD) is generated by global
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sections for somk > 0. This implies thatpxp = kpp is convex by Theorem 7.2.2,
so thatpp is convex as well. We show thab is strictly convex by contradiction.

If strict convexity fails, then Lemma 6.1.13 implies thaeté is a wallr =
oNo’in ¥ with m, =M. Thenm= m, = m, corresponds to a global section
s, which by the proof of Proposition 6.1.1 is nonvanishinglgn(sincem=m,)
and onU,- (sincem= m,). Thus the nonvanishing set contaldgUU,-, which
contains the complete cur¥&r) C U, UU,-. But being affine, the nonvanishing
set cannot contain a complete curve (Exercise 7.2.1). Tmgptetes the proof of
the theorem whef| has full dimension.

Finally, suppose thgt| fails to have full dimension. Lé¥; = Spar{|>|) NN
and pickNp € N such thatN = No @ N;. The cones o lie in (N1)g and hence
give a fanX; in (N)r. If No has rankr, then Proposition 3.3.11 implies that

(723) XE ~ ((C*)r X le.

It follows thatpp : |X| = |21] — R is the support function of a Cartier divisbr
on Xy,. Note also that¥4| is convex of full dimension if{N;)g. Since(C*)" is
guasiprojective, this allows us to reduce to the case ofdmliensional support.
You will supply the omitted details in Exercise 7.2.2. a

f-Ample and f-Very Ample Divisors The definitions of ample and very ample
from 86.1 generalize to the relative setting as follows. &ldmom Definition 7.0.3
that a morphisnt : X — Y is projective with respect to the line bund# when for

a suitable open coveiU;} of Y, we can find global sectiors, ..., s, of £ over
f~1(U;) that give a closed embedding

f71(U;) — U x PK.
Then we have the following definition.

Definition 7.2.5. Let D be a Cartier divisor oX and f : X — Y be proper.

(@) The divisorD and the line bundl&x (D) are f-very ampleif f is projective
with respect to the line bundl&’ = 0x (D).

(b) D andox (D) are f-amplewhenkD is f-very ample for some integdér> 0.

Hencef : X — Y is projective if and only ifX has anf-ample line bundle. In
the toric case, Proposition 7.1.9 and Theorem 7.2.4 givéotleving result.

Theorem 7.2.6.Let ¢ : X5, — U, be a proper toric morphism where,Us affine,
and let D= Zp a,D, be a Cartier divisor on X. Also let n=dim Xs. Then:

(a) D is ¢-ample if and only ifop is strictly convex.
(b) If n > 2 and D is¢-ample, then kD ig-very ample for all k> n. O
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Here is are two examples of Theorem 7.2.6.

Example 7.2.7.Consider the blowdown morphisi: Blo(C") — C". The fan for
Blo(C") has minimal generatong = €; +---+ e, andu; = ¢ for 1 <i <n. Let
Do be the divisor corresponding tg. The support functiop_p, of —Dq is easily
seen to be strictly convex (Exercise 7.2.4). Thidy is g-ample by Theorem 7.2.6.
Note also that the polyhedrd? p, is the polyhedrorP from Example 7.1.7. ¢

Example 7.2.8. The P be a full dimensional lattice polyhedron Mg. The map
¢ : Xp — Up is projective by Theorem 7.1.10. We also have the CartigsaiDp
on Xp defined in (7.1.4). As noted in the discussion following #)1P = Py,
and the vertices d? give the Cartier data dDp, so thatpp, is strictly convex by
Theorem 7.2.2 and Lemma 6.1.13. Hellgeis ¢-ample by Theorem 7.2.6. ¢

Semiprojective Toric VarietiesFollowing [137], we say thalXy, is semiprojective
if the natural mapp : Xy, — SpecI'(Xs, Ox,,)) is projective andXy, has a torus
fixed point. We can characterize semiprojective toric \targeas follows.
Proposition 7.2.9. Given a toric variety X, the following are equivalent:

(a) Xx: is semiprojective.

(b) Xs is quasiprojective and: has full dimensional convex support i N

(c) Xz = Xp is the toric variety of a full dimensional lattice polyhedr® C Mg.

Proof. By the Orbit-Cone Correspondence (Theorem 3.2¢6)has a torus fixed
point if and only if> has a full dimensional cone, which is equivalenttdiaving
full dimensional support. In Exercise 7.2.3 you will shovatlspe¢l’(Xs, Oxs,))
is a normal affine toric variety,. Then (a)= (b) follows from Theorem 7.2.4.

The equivalence (b} (c) follows from Proposition 7.2.3 and Theorem 7.2.4.
This completes the proof. a

A semiprojective toricXs; variety comes equipped with a projective morphism
¢ : Xz — Spe¢I'(Xs, Ox,.)), and a full dimensional lattice polyhedrdhcomes
with a projective morphisna : Xp — Up by Theorem 7.1.10. These maps are the
same by Exercise 7.2.3.

We can also extend the relation between polytopes and arivgerd on com-
plete toric varieties described in 86.2. Consider the spbbfhedra

{P C Mg | Pis afull dimensional lattice polytoge
and the set of pairs
{(XE,D) | ¥ is afan inNg, Xy, is semiprojective, and
D is a torus-invariant-ample divisor ong}.

These sets are related as follows.
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Theorem 7.2.10.The maps P~ (Xp,Dp) and (Xs, D) — Po define bijections be-
tween the above sets that are inverses of each other.

Proof. First note thalXp is semiprojective by Proposition 7.2.9, dbd is ¢p-ample
by Example 7.2.8. Going the other way, suppose ¥ats semiprojective an@®

is p-ample. Then Theorem 7.2.6 and Propaosition 7.2.9 implyEiabas a strictly
convex support function, so th&, is a full dimensional lattice polyhedron by
Proposition 7.2.3.

Using Proposition 7.2.3 anl = Py,,, it is easy to see that the two maps are
inverses of each other. O

Projective Toric Morphisms Suppose we have faisin Nr andX’ in Ng. Recall
from 83.3 that a toric morphism
¢ Xy — Xy
is induced from a map of lattices
¢:N—N
compatible with: andy’, i.e., for eachr € X there iso’ € ¥’ with ¢ (o) C o,

We first determine when a torus-invariant Cartier divisorX@nis ¢-ample.
Since projective morphisms are proper, we can assumebtisgproper, which by
Theorem 3.4.11 is equivalent to

-1
(7.2.4) %] = ér " (IX']).
Here is our result.

Theorem 7.2.11.Let ¢ : Xy — Xy be a proper toric morphism and let B
>_,3,D, be a Cartier divisor on X. Also let n=dim Xs. Then:

(@) D is ¢p-ample if and only if for every’ € 3, ¢p is strictly convex 0@@1(0’).

(b) If n>2and D is¢-ample, then kD ig-very ample for all k> n— 1.

Proof. The idea is to study what happens over the affine open subgets X5
for o’ € ¥'. Observe thap—1(U,) is the toric variety corresponding to the fan
Sy ={0€X|dr(0) Co'}.

Thus¢~1(U,/) = Xs, . Letdy = ¢|¢—1(u ) and consider the diagram

Xs —2 s X

J J

o
¢_1(Uo’) Uo’

o,
XEJ/;)UU’.



334 Chapter 7. Projective Toric Morphisms

Also letD, be the restriction ob to ¢ *(U,/) = X5 ,.
By Proposition 7.A.5D is ¢-ample if and only if the restrictioﬁ)\d),l(U ) is
¢\¢>*1(u /)—ample for allo’ € ¥'. Using the above notation, this becomes

D is ¢p-ample <= D, is ¢,--ample for allo’ € 3'.
However, Theorem 7.2.6 implies that

D is ¢,-ample <= ¢p_, is strictly convex

This completes the proof of the theorem. O

It is now easy to characterize when a toric morphism is ptivjec

Theorem 7.2.12.Let ¢ : Xs; — X5 be a toric morphism. Then the following are

equivalent:

(@) ¢ is projective.

(b) ¢ is proper and X has a torus-invariant Cartier divisor D whose support
functionyp is strictly convex oriﬂgl(o—’) forall o' € ¥'. O

You will prove Theorem 7.2.12 in Exercise 7.2.5. The firstgfrof this theo-
rem was given in172, Thm. 13 of Ch. I]. In Chapter 11 we will use this result to
construct interesting examples of projective toric maospts.

Exercises for §7.2

7.2.1. Prove that an affine variety cannot contain a complete yanigtositive dimension.
Hint: If X is complete and irreducible, théi{X, &x) = C.

7.2.2. This exercise will complete the proof of Theorem 7.2.4. hetXy; — U, satisfy
the hypothesis of the theorem and wiXe as in (7.2.3). We also have the Cartier divisors
D on Xy andD; on Xy, as in the proof of the theorem.

(a) Assume thad is projective. Prove thaXy, is quasiprojective and conclude thé, is
quasiprojective. Now use the first part of the proof to shoat ¢, is strictly convex.
Hint: See Exercise 7.0.1.

(b) Assume thapp is strictly convex. Prove thats, is quasiprojective and conclude that
Xs is quasiprojective. Then use Proposition 7.0.6.

7.2.3. Given a toric varietyXs, letC = {me Mg | (mu,) > 0 forall p € (1)}, and let
o be the strongly convex cone obtained by taking the quotiet'oby its minimal face.
Prove that),, ~ Spe¢I’(Xs;, Oxy))-

7.2.4. Prove that the support functiags_p, in Example 7.2.7 is strictly convex. We will
generalize this result considerably in Chapter 11.

7.2.5. Prove Theorem 7.2.12.
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87.3. Projective Bundles and Toric Varieties

Given a vector bundle or projective bundle over a toric \ugyithe nicest case is
when the bundle is also a toric variety. This will lead to sdoely examples of
toric varieties.

Toric Vector Bundles and Cartier DivisorsA Cartier divisorD =} a,D, on a
toric variety Xy, gives the line bundleZ = 0. (D), which is the sheaf of sections
of the rank 1 vector bundle : V4 — Xs..

We will show thatV ¢ is a toric variety andr is a toric morphism by construct-
ing the fan oV in terms of2 andD. To motivate our construction, recall that for
me M, we have

x" €' (Xs, Ox, (D)) < mePp
< (Mmu) > pp(u) forallu e |3
<= the graph ol — (m,u) lies
abovethe graph ofyp.
The first equivalence follows from Proposition 4.3.3 andgbeond from Propos-

tion 6.1.6. The key word is “above”: it tells us to focus on et of Ng x R that
lies above the graph aofp.

We define the fart x D in Ng x R as follows. Giverv € ¥, set
o= {(U,)\) ’ ueo, AZ> SOD(U)}
= Cond(0,1), (U, ~a,) | p € (1),
where the second equality follows singg(u,) = —a, andyp is linear ons. Note
thato is a strongly convex rational polyhedral coneNg x R. Then letX x D be
the set consisting of the conédor o € ¥ and their faces. This is a fan Mg x R,

and the projectiorr : N x Z — N is clearly compatible witlE x D andX. Hence
we get a toric morphism

7 Xuxp — Xs.
Proposition 7.3.1. 7 : Xs;«xp — Xy is a rank 1 vector bundle whose sheaf of sec-
tions isOx,, (D).

Proof. We first show thatr is a toric fibration as in Theorem 3.3.19. The kernel
of T:NxZ — NisNg= {0} xZ, and the faro = {c € ¥ x D | o0 C (No)r} has
oo = Con€(0,1)) as its unique maximal cone. Also, ferc 3 let

& = Coné{(uy, ~a,) | p € o(1).

This is the face o0& consisting of pointgu, A) wherepp (u) = A. Thuss € ¥ x D
and in facty = {¢ | 0 € ¥} is a subfan of¥ x D. Sinces = 7 + 0p and g
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mapsao bijectively to o, we see thak x D is split by ¥ and X in the sense of
Definition 3.3.18. Sinc&sx, n, = C, Theorem 3.3.19 implies that

7 HU,) ~U, x C.

To see that this gives the desired vector bundle, we studjranesition func-
tions. First note that—1(U, ) = Uz, so that the above isomorphism is

UgZUGX(C,

which by projection induces a mdy — C. It is easy to check that this map is
x "™ wherepp (u) = (m,,u) for u € o (Exercise 7.3.1). Note that

(-my,1) €5V N(MxZ),

follows directly from the definition or. Then, given another cone e X, the
transition map fron,n, x C CU, x CtoU,, x C CU, x Cis given by(u,t) —
(u,g,-(U)t), whereg,, = x™ ™ (Exercise 7.3.1).

We are now done, since the proof of Proposition 6.2.7 shoatsdh, (D) is
the sheaf of sections of a rank 1 vector bundle oemwhose transition functions
areg,, = x™ M. O

This construction is easy but leads to some surprisingly ei@amples.

Example 7.3.2. ConsiderP" with its usual fan and leDg correspond to the min-
imal generatotup = —e; — --- — e,. Recall thatdpn(—Dyg) is denoteddpn(—1).
This gives the rank 1 vector bundle— P" described in Proposition 7.3.1 whose
fan ¥ in R" x R = R™?! has minimal generators

€,...,6ht1,—€1— - — e+ Entr1.

You will check this in Exercise 7.3.2.

We can also describe this vector bundle geometrically &s#sl Consider the
lattice polyhedron iR"+1 given by

P=Conv0,ey,...,e) +Congen, 1,61+ €ny1,...,€n+Ent1).

The normal fan ofP is the fanX (Exercise 7.3.2), so thaf is the above vector
bundleV. Note also thatY:| is dual to the recession cone Bf

It is easy to see thak| is a smooth cone of dimensiaori- 1, so that the pro-
jective toric morphismXp — Up constructed in §7.1 becom&s — C"1. When
combined with the vector bundle m&p =V — P", we get a morphism

Xp — P" x C"1L,

When the coordinates @" andC"*! are ordered correctly, the image is precisely
the variety defined byy; = x;y; (Exercise 7.3.2). In this way, we recover the
description oV — P" given in Example 6.0.19. O
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Proposition 7.3.1 extends easily to decomposable toritovdmindles. Sup-
pose we have Cartier divisorsD; = Zpaipr, i=1,...,r. This gives the locally
free sheaf

(731) ﬁXE(Dl)@"'@ﬁXE(Dr)

of rankr. To construct the fan of the corresponding vector bundle woek in
Nr x R". Letey,...,& be the standard basis Bf and write elements dflr x R’
asu+ A\ie1+---+ Ar&. Then, givers € 33, we get the cone

o={u+ e +---+N&|uco A >pp(ufori=1...r}
= Congu, —ap,e — - —a,& | pco(l)) +Condey,...,&).
One can show without difficulty that the set consisting of thaesc for o € X

and their faces is a fan i x R" such that the toric variety of this fan is the vector
bundle oveiXs; whose sheaf of sections is (7.3.1) (Exercise 7.3.3).

Besides decomposable vector bundles, one can also dedirie @ector bundle
7 :V — Xs. Here, rather than assume tWais a toric variety, one makes the weaker
assumption the torus of; acts orlvV such that the action is linear on the fibers and
7 is equivariant. Toric vector bundles have been classifielIpsichko [178 and
others—seeZ24 for the historical background. Oda noted R1[7, p. 41] that if a
toric vector bundle is a toric variety in its own right, théretbundle is a direct sum
of line bundles, as above. This can be proved using Klyashiesults.

Toric Projective Bundles The decomposable toric vector bundles have associated
toric projective bundles. Cartier divisoBy, . ..,D; give the locally free sheaf

& = Oxy, (Do) ® -+~ @ Ox,(Dy),

of rankr +1. ThenP (&) — Xy, is a projective bundle whose fibers look liRé.

To describe the fan df(&’), we first give a new description of the fanBf. In
R™*1, we use the standard basis. .., . The “first orthant” Conéesy, ..., &) has
r + 1 facets

F =Con€dep,....68,...,&), i=0,....r.

Now setN = Z'+1/Z(ey+ - -- +&). Then the images of g sum to zero ifN and
the images-; of F; give the fan forP" in Ni.

The construction oP(&’) given in 87.0 involves taking the dual vector bundle.
ThusP(&) =P(Ve), whereV, is the vector bundle whose sheaf of sections is

Oxs.(—Do) @ - -+ @& Ox,,(—Dy).
The fan ofV is built from cones

Congu, +ag,e+--+a,& | pco(l))+Condey,....&)
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and their faces, asranges over the conesc X. To get the fan fol?(&£) = P(Vy),

takeo € ¥ and letR be a facet of Coney,...,& ). This gives the cone
CongU, + 80,0+ +ar& | p € o(1)) +F C Ng x R,

and one sees that C Nr x N is the image of this cone under the projection map

NR X Rprl — NR X NR.

Proposition 7.3.3. The coneqo; | 0 € ¥,i =0,...,r} and their faces form a fan
Y in Ng x Ng whose toric variety X is the projective bundI®(&).

Proof. Consider the faig in Ng given by theF; and their faces. Also, far € &,
let 5 be the image of Core, +ag €0+ +ar,& | p € 0(1)) in Ng x Ng. Then
one easily adapts the proof of Proposition 7.3.1 to showttietoric varietyX.
of X, is a fibration overXy, with fiber P'. Furthermore, working over an affine
open subset oKXy, one sees thak . is obtained fronV, by the process described
in 87.0. We leave the details as Exercise 7.3.4. O

In practice, one usually replac&= Z'*+1/Z(ey+--- + &) with Z" and the
basisey,...,&. Then segp = —e; — - -- — g and we redefing as
(7.3.2) F = Condey,...,8,...,&) CR'
and for a coner € X, redefines; as
(7.3.3) o0i=Condu, + (a;, —ag,)e1+ -+ (&, —ag, )& |p € o(l)) +F
in Ng x R". This way,X ¢ is a fan inNg x R". Here is a classic example.
Example 7.3.4. The fan forP! has minimal generatons; andup = —u;. Also
let Op1(1) = Op1(Dg), whereDy is the divisor corresponding 1. Fix an integer
a> 0 and consider

éa — ﬁpl @ ﬁﬂml(a)

As above, we get afaBis in R x R = R?. The minimal generatong, u; live in the
first factor. In the second factor, the vectegs= —>"_;&,€y,...,& in the above

construction reduce tey = —ey, ;. ThusFy = Conge;) andF; = Con€ey). We
will use uy, e as the basis dR?.

The maximal cones for the fan &' arec = Condu;) ando’ = Congu).
ThenX ¢ has four cones:

G0 = Congus + (0 0)ey) +Fo = Conguy. &)
o1 = Congu; + (0—0)e;) + F, = Conguy, —e1)
5y = Condup+ (a—0)er) + Fo = Cond—uy + aey, 1)
&, = Condug + (a—0)er) + F1 = Cond —u; + ae, —ey).
This is the fan for the Hirzebruch surfacé;. Thus
Ha=P(Op @ Op()).
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Note also that the toric morphism#z — P! constructed earlier is the projection
map for the projective bundle. O

This example generalizes as follows.

Example 7.3.5.Given integers,r > 1and 0< a; < --- < a, consider the projec-
tive bundle
P(&) =P(Ops® Ops(aq) & --- & Ops(&)).
The fanX, of P(&) has a nice description. We will work iR® x R", whereR®
has basisiy, ..., us andR" has basi®y,...,&. Also setug = — Z?:l uj andeg =
—Ziszla. As usual,up corresponds to the divisddg of P° such thatdps(a) =
Ops(&Do).
The description (7.3.3) of the conesMhuses generators of the form

(7.3.4) Uy + (81, —agp)€1 + - + (&, — agp) &,
where theu, are minimal generators of the fan of the base of the projedtiindle.
Here, theu,’s areup, ..., Us. Since we are using the divisorsedDo, . .., a; Do, the
formula (7.3.4) simplifies dramatically, giving minimalmgrators

U =U: Vo=UW+aer+ - +a&

U,=Uuj: vj=uj, j=1....s
Since the maximal cones Bf are Conéuy, ..., Uj, ..., Us), (7.3.2) and (7.3.3) im-
ply that the maximal cones a&f are

Condvy,...,Vj,...,Vs) + Condey, ....&,...,&)
forall j=0,...,sandi=0,...,r. Itis also easy to see that the minimal generators
Vo, ..., Vs, €0,...,& have the following properties:
® Vi,...,Vs,€1,...,6 form a basis ofZ® x Z'.
e &+---+& =0.
e Vot - F+Vs=a1€1+ -+ 6.

The first two bullets are clear, and the third follows fr@?zo uj = 0 and the
definition of thev;.

One also sees thaty = P(&) is smooth of dimensios+r. SinceXs has
(s+1)+(r+1) =s+r+2 minimal generators, the description of the Picard group
given in 84.2 implies that

Pic(P(&)) ~ Z2.
(Exercise 7.3.5). Also observe thal, ...,Vvs} and{ey,...,& } give primitive col-
lections of¥,. We will see below that these are the only primitive collect
of Xe. Furthermore, they are extremal in the sense of §6.4 and phienitive
relations generate the Mori coneBf&’).

This is a very rich example! O
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A Classification Theorem Kleinschmidt [L77] classified all smooth projective
toric varieties with Picard number 2, i.e., with Pig;) ~ 72. The rough idea is
that they are the toric projective bundles described in Eptard.3.5. Following
ideas of Batyrev14], we will use primitive collections to obtain the classifiicen.

We begin with some results fromi4] about primitive collections. Recall from
86.4 that a primitive collectio = {p1,..., ok} C X(1) gives the primitive relation

(7.3.5) Upy £ F Uy — 2 ey )Gl =0, G € Qo

wherey € ¥ is the minimal cone containing,, + - -- 4 U,,. WhenXs, is smooth
and projective, these primitive relations have some niopgities.

Proposition 7.3.6. Let Xz be a smooth projective toric variety. Then:

(a) In the primitive relation(7.3.5) PN~(1) =0 and ¢, € Zq for all p € o(1).
(b) There is a primitive collection P with primitive relation, U+ - -- 4 u,, = 0.

Proof. Thec, are integral sinc& is smooth. Let the minimal generators-pbe
Up,...,Us, SO the primitive relation becomes

Upy -+ + Uy, = Crly + - - - + Colp.
To prove part (a), suppose for example thgt= u;. Then
Up, +-+-+ Uy = (c1 —1)ug + Cou2- - - + Colyp.

Note thatu,,, ..., U, generate a cone af sinceP is a primitive collection. So the
above equation expresses an element of a cohdmterms of minimal generators

in two different ways. Sincé& is smooth, these must coincide. To see what this
means, we consider two cases:

e ¢ > 1. Then{u,,,...,u,} = {ug,uy,...,u}, so thatu, = u; for somei > 1.
This is impossible sinca,, = u;.

e c;=1. Then{u,,,... U, } = {uz,...,Ug}. Sinceu,, = uy, we obtainP C v(1),
which is impossible sincP is a primitive collection.

Sincec; must be positive, we conclude that = u; leads to a contradiction. From
here, it is easy to see that (1) = 0.

Turning to part (b), letp be the support function of an ample divisor ¥§5.
Thusy is strictly convex. Sinc& is complete, we can find an expression

(7.3.6) biu,, +---+bsu,, =0

such thaby, ..., bs are positive integers. Note thay,,...,u, cannot lie in a cone
of 3. By strict convexity and Lemma 6.1.13, it follows that

(7.3.7) 0= ‘P(O) = Sp(blupl +- bsups) > blSO(upl) +F bs@(ups)-
Pick a relation (7.3.6) so that the right-hand side is as bigassible.
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The set{u,,,...,U,} is not contained in a cone &f and hence has a subset
that is a primitive collection. By relabeling, we may assuiinat {u,,,...,u,},
k < s, is a primitive collection. Using (7.3.6) and the primitikeation (7.3.5), we
obtain the nonnegative relation

Z cpup+z Du, + Z biu, =0.

pev(2) i=k+1
Sinceyp is linear ony and strictly convex,

k k
Z Cop(Up) = %0< Z Cpup) = ‘P(Zupi) > Z@(Upi),
pey(1) pey(1) i=1 i=1
which implies that
k

Z CPSO(up)+Z( P(Up) + Z bip(Up)

pev(1) i=1 i=k+1
k k S
> > o(uy) + > (b= Dp(u,) + Z big(Uy) = _big(uy,).
i=1 i=1 i=k+1 i=1
This contradicts the maximality of the right-hand side aB(7), unlesk = sand
by =--- =by =1, in which case we get the desired primitive collection. O

We now prove Kleinschmidt’s classification theorem.

Theorem 7.3.7. Let Xs be a smooth projective toric variety wifPic(Xs;) ~ Z2.
Then there are integersis> 1, s+r =dimXg and0 < a; <--- < a with

X~ P(ﬁps b ﬁﬂms(al) D---D ﬁps(a;)) .

Proof. Let n = dimXs. Then Pi¢Xs) ~ Z? and Theorem 4.2.1 imply that(1)
hasn+ 2 elements. We recall two facts about divisbBren Xsx::
e If D is nef ands € X(n), thenD ~ 3 a,D, wherea, = 0 for p € o(1) and
a,>0forpé¢o(l).
e If D> 0andD ~ 0, thenD = 0 sinceXy is complete.
The first bullet was proved in (6.4.10), and the second is ag eansequence of
Propositions 4.0.16 and 4.3.8.

By assumption Xy, has an ample divisob which lies in the interior of the
nef cone NefXs). ChangingD if necessary, we can assume tlais effective
and [D] € Pic(Xy)r is not a scalar multiple of aniD,] for p € ¥(1). The line
determined by[D] divides Pi¢Xs)r ~ R? into closed half-planesi* andH~.
Then define

P={peX(1)|[D,] € H'}
Q={peS(1)|[D,]eH }.
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Note thatPU Q = (1), andP N Q = 0 by our choice oD. We claim that
¥(n)={o,, | p€P,p €Q}, where

0pp = CONEU; | p € X(1)\{p,p'}).

To prove this, first take € ¥(n). Since|o(1)| =nand|X(1)| = n+ 2, we have

(7.3.9) ¥(1) =o()U{p,p'}.

Applying the first bullet above t® and o, we get[D] = a[D,] + b[D,/] where
a,b > 0 since[D] is a multiple of neithefD,] nor [D,]. It follows that[D,] and
[D,] lie on opposite sides of the line determined [BY. We can relabel so that
p € Pandy’ € Q, and thens has the desired form by (7.3.9).

For the converse, takec P andy’ € Q. Since Pi¢Xs)r ~ R2, we can find a
linear dependence

(7.3.8)

ag[D,] +bo[D,] +¢o[D] =0, ag,bp,co € Z not all Q.

We can assume thai,by > 0 since[D,] and[D,] lie on opposite sides of the
line determined byD]. Note also thaty < 0 by the second bullet above, and then
ap,bp > 0 by our choice oD. It follows thatD’ = ayD, + bgD, is ample. In
Exercise 7.3.6 you will show that

X5\ SupD’) = Xs \ (D,UD,)

is the nonvanishing set of a global section/{, (D’) and hence is affine. This set
is also torus-invariant and hence is an affine toric vari&tyus it must beJ,, for
someo € Y. In other words,

Xs;=U,UD,UD,.

SinceU, N (D,UD,) = 0, the Orbit-Cone correspondence (Theorem 3.2.6) im-
plies thato satsisfies (7.3.9) and hence gives an elemebi(af. This completes
the proof of (7.3.8).

An immediate consequence of this description3i§h) is thatP and Q are
primitive collections. Be sure you understand why. It isoalsie thatP and Q
are theonly primitive collections of¥. To prove this, suppose that we had a third
primitive collectionR. ThenP ¢ R, so there is» € P\ R, and similarly there is
p' € Q\RsinceQ ¢ P. By (7.3.8), the rays oR all lie in o, , € %(n), which
contradicts the definition of primitive collection.

SinceXy is projective and smooth, Proposition 7.3.6 guarantedsithaas a
primitive collection whose elements sum to zero. We may rassthatP is this
primitive collection. Let|P| =r+ 1 and|Q| = s+ 1, sor,s> 1 since primitive
collections have at least two elements, ards= n since|P|+ |Q| = n+ 2.

Now rename the minimal generators of the rayP iasey, . ..,e. Thus

&+ +e=0.
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The next step is to rename the minimal generators of the rafsasvy, ..., Vs.
Proposition 7.3.6 implies th@?zovj lies in a coney € X whose rays lie in the
complement ofQ, which isP. SinceP is a primitive collection,y must omit at
least one element &, which we may assume to be the ray generatedybyfhen
the primitive relation ofQ can be written

Vot +Vs=auer + -+ aer,

and by further relabeling, we may assumg @; < --- < a,. Finally, observe that
V1,...,Vs,€1,...,6 generate a maximal cone Bfby (7.3.8). Sincex is smooth,
it follows that theser + s vectors form a basis dil. Comparing all of this to
Example 7.3.5, we conclude that the toric variety>bis the projective bundle
]P’(ﬁ[ps@ﬁPs(al)@---EBﬁ]ps(ar)). O

The classification result proved ifn']7] is more general than the one given in
Theorem 7.3.7. By using a result frorig1] on sphere triangulations with few
vertices, Kleinschmidt does not need to assume Xgats projective. Another
proof of Theorem 7.3.7 that does not assume projective céoupel in [L4, Thm.
4.3]. We should also mention that (7.3.8) can be proved usiaGale transforms
discussed in93, 11.4—6] and R81, Ch. 6]. We will explain this is §15.2.

Exercises for §7.3

7.3.1. Here you will supply some details needed to prove Theorem. 7.3

(@) In the proof we constructed a malg — C. Show that this map ig (—™, where
vp(U) = (M, u) forue o.

(b) Given conesr, T € ¥, the transition map frot,n, x C CU, x Cto U, x C C
U, x Cis given by(u,t) — (u,g,-(u)t). Prove thag,, = x™ ™.

7.3.2.In Example 7.3.2, we study the rank 1 vector bundle: P" whose sheaf of sections

is Opn(—1). Let X be the fan o/ in R™1,

(a) Provethaty,... e r1,—€ — - - — e+ €441 are the minimal generators bf

(b) Prove that: is the normal fan of

P =Conv0,ey,...,e,) +Conden;1,61+ €nt1,---,6n+ Ent1).

(c) The example constructs a morphigm- P" x C"1. Prove that the image of this map
is defined byxyj = x;y; and explain how this relates to Example 6.0.19.

7.3.3. Consider the locally free sheaf (7.3.1) and the cang€SNgr x R" defined in the
discussion following (7.3.1). Prove that these cones aail faces give a fan ifNg x R"
whose toric variety is the vector bundle with (7.3.1) as §béaections.

7.3.4. Complete the proof of Proposition 7.3.3.

7.3.5. Let P(&) — IPS be the toric projective bundle constructed in Example 7.Brove
that PidP(&)) ~ Z2.

7.3.6. Let D be an ample effective divisor on a complete normal varietyThe goal of
this exercise is to prove tht\ SupgD) is affine.
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(a) Assume thaD is very ample. Lets € T'(X,0x(D)) be nonzero and consider the
nonvanishing sebf s defined byU = {se X | s(x) # 0}. Prove thatJ is affine.
Hint: Show that a basis = 5,1, ..,Sn Of I'(X, 0% (D)) gives a closed embedding
X — P™. LetP™ have homogeneous coordinaigs. .., Xn and regardX as a subset
of P™. Prove that) = X NUg, whereUgy C P™ is wherexg # 0.

(b) Explain why part (a) remains true whé&nis ample but not necessarily very ample.
Hint: s€ € T'(X, &x (kD)).

(c) SinceD is effective, 1€ T'(X, €% (D)) is a global section. Prove that the nonvanish-
ing set of this global section X\ SupgD). Hint: Fors e I'(X, &x (D)), recall the
definition of diw(s) given in §4.0.

Parts (b) and (c) imply thaX \ SupfD) is affine wherD is ample, as desired. Note also
that part (b) is a special case of Proposition 7.A.6.

7.3.7. By Example 2.3.16, theational normal scroll S, is the toric variety of
P,b = Conv(0,ae1, &, be; + &) C R?,
wherea,b € N satisfy 1< a <b, andS,, ~ J%_a by Example 3.1.16. Thus rational

normals scroll are Hirzebruch surfaces. Here you will espBnn-dimensional analog.

Take integers KX dg < dj <--- <dy_1. ThenPy, .4, , is the lattice polytope iR"
having the 2 lattice points

O) d0e17 e2; ez+dlela e37 e3+d2e1;"'7en; enJFdnflel

as vertices. The toric variety &%, ... 4, , iS denotedyy, .. g, ;-

(@) ExplainwhyPy, g, , isa“truncated prism” whose base{id} x R"~1is the standard
simplexAn_1, and above the vertices df,_; there are edges of lengtllg, ..., dn_1.
Here, “above” means they direction. Draw a picture whem= 3.

(b) Prove thaSjO VVVVV dhg =2 ]P)(ﬁpl (do) b---D ﬁpl (dn,]_)).

(¢) S.,....d._, is smooth by part (b), so th&, g, , is very ample and hence gives a
projective embedding d&,,... 4,_,. Explain how this embedding consistsroémbed-
dings ofP! such that for each poimt € P2, the resultingh points in projective space
are connected by am— 1)-dimensional plane that lies By, 4, ,-

(d) Explain how part (c) relates to the scroll discussionxaimEple 2.3.16.

(e) Show that thén— 1)-dimensional plane associatedge P! in part (c) is the fiber of
the projective bundI®(Op:(do) @ - - - ® Op1(dn_1)) — PL.

7.3.8. Consider the toric varietf(£’) constructed in Example 7.3.5.
(a) Prove thaP (&) is projective. Hint: Proposition 7.0.5.

(b) Show thatP(&) ~ P(Ops(1) ® Ops(a1 + 1) ® --- @ Ops(a +1)). Hint: Part (b) of
Lemma 7.0.8.

(c) Find a lattice polytope ifR® x R" whose toric variety i€(£). Hint: In the polytope
of Exercise 7.3.7, each vertex fi} x An_; C R x R"1 s attached to a line segment
in the normal direction. Also observe that a line segmentrisuétiple of A;. Adapt
this by using{0} x A; C R®x R" as “base” and then, at each vertexf, attach a
positive mutliple ofAs in the normal direction.
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7.3.9. Let Xy, be a projective toric variety and B, ..., D, be torus-invariant ample divi-
sors onXy. EachD; gives a lattice polytop& = Dp whose normal fan i&. Prove that
the projective bundI®(0x,, (Do) & --- @ Ok, (Dy)) is the toric variety of the polytope in
Nr x R

Conv(Py x {0} UPL x {e;}U---UP x {&}).
Hint: If you get stuck, seed[1, Sec. 3]. Do you see how this relates to Exercise 7.3.8?

7.3.10.Use primitive collections to show th&t' is the only smooth projective toric variety
with Picard number 1.

Appendix: More on Projective Morphisms
In this appendix, we discuss some technical details retatpdojective morphisms.

Ampleness A comprehensive treatment of ampleness appears in VolumgHlements
de ¢eonttrie algebrique(EGA) by Grothendieck and Dieudonn&?7]. The results we
need from EGA are spread out over several sections. Here Neetcthe definitions and
theorems we will use in our discusion of amplenkss.

Definition 7.A.1. Aline bundle.Z on a varietyX is absolutely ampléf for every coherent
sheafZ onX, there is an integed such thatZ @, £ is generated by global sections
for all k > ko.

By [127, (4.5.5)], this is equivalent to what EGA calls “ample” in7, (4.5.3)]. We
use the name “absolutely ample” to prevent confusion witfiriiteon 6.1.9, where “ample”
is defined for line bundles on complete varieties. Here igtaralefinition from EGA.

Definition 7.A.2. Let f : X — Y be a morphism. A line bundl¢’ on X is relatively ample
with respect tof if Y has an affine open covgl);} such that for every, Z|,_.(U;) is

absolutely ample ofi—1(U;).

This is [L27, (4.6.1)]. When mapping to an affine variety, relatively dengnd abso-
lutely ample coincide. More precisely, we have the follogwiesult from [L27, (4.6.6)].

Proposition 7.A.3. Let f: X — Y be a morphism, where Y is affine, and$étbe a line
bundle on X. Then:

Z is relatively ample with respect to £ .Z is absolutely ample. ]

The reader should be warned that in EGA, “relatively ampléhwespect tof” and
“f-ample” are synonyms. In this text, they are slightly diffiet, since “relatively ample
with respect tof” refers to Definition 7.A.2 while f-ample” refers to Definition 7.2.5.
Fortunately, they coincide when the mé&js proper.

Theorem 7.A.4. Let f: X — Y be a proper morphism an&’ a line bundle on X. Then
the following are equivalent:

(a) Z is relatively ample with respect to f in the sense of DefinificA.2.

The theory developed in EGA applies to very general schefffesvarieties and morphisms appearing in
this book are nicely behaved—the varieties are quasi-cotrgyal noetherian, the morphisms are of finite type,
and coherent is equivalent to quasicoherent of finite typmdd most of the special hypotheses needed for some
of the results in127] are automatically true in our situation.
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(b) 2 is f-ample in the sense of Definition 7.2.5.

(c) There is an integer k- 0 such that f is projective with respect #** in the sense of
Definition 7.0.3.

Proof. First observe that (b) and (c) are equivalent by Definitich%..Now suppose that
f is projective with respect t&#®k. Then there is an affine open coverifig} of Y such
that for each, there is a finite-dimensional subspatleC F(Ui,,%@k) that gives a closed
embedding off ~1(U;) into U; x P(W") for eachi.

The locally free shea#” = WY ®¢ 0y, is the sheaf of sections of the trivial vector
bundleU; x WY — U;. This gives the projective bundi&(&’) = U; x P(WV), so that we
have a closed embedding

f_l(Ui) — P(&).
By definition [127, (4-4-2)]’$®k|f*1(ui) is very ample forf|f71(ui). Then [L27, (4.6.9)]
implies that.i”|f71(ui) is relatively ample with respect tb|f*1(ui)' and hence absolutely
ample by Proposition 7.A.3. The®’ is relatively ample with respect td by Defini-
tion 7.A.2.

Finally, suppose tha¥ is relatively ample with respect tband let{U;} be an affine
open covering off. Then [127, (4.6.4)] implies thati”|f71(ui) is relatively ample with

respect t°f|f*1(ui)' By [127, (4.6.9)],g®k|f,1(ui) is very ample forf|f71(ui), which by
definition [127, (4.4.2)] means that=1(U;) can be embedded (&) for a coherent sheaf

& onU;. Then the proof of273 Thm. 5.44] shows how to find finitely many sections of
Z%k over f~1(U;) that give a suitable embedding 6f1(U;) into U; x P(WV). O

In EGA [127, (5.5.2)], the definition of when a morphisfn: X — Y is projective
involves two equivalent conditions stated h2[7, (5.5.1)]. The first condition uses the
projective bundléP(&) of a coherent sheaf onY, and the second uses Rtgf), where
. is a quasicoherent graded -algebra such tha#; is coherent and generate$. By
[127, (5.5.3)], projective is equivalent to proper and quaggetive, and by the defintion
of quasiprojective]27, (5.5.1)], this means that has a line bundle relatively ample with
respect tof . Hence Theorem 7.A.4 shows that the definition of projeatieephism given
in EGA is equivalent to Definition 7.0.3.

We close with two further results about projective morphisfroofs can be found in
[127, (4.6.4)] and 127, (5.5.7)] respectively.
Proposition 7.A.5. Let f: X — Y be a proper morphism an# a line bundle on X. Given
an affine open covejU;} of Y, the following are equivalent:
(a) Zis f-ample.
(b) For every i,$|f,1(ui) is f|f,1(ui)-ample. O
Proposition 7.A.6. Let f : X — Y be a projective morphism with Y affine and#étbe an
f-ample line bundle on X. Then:

(a) Given a global sections I'(X,.%), let X C X be the open subset where s is nonvan-
ishing. Then Xis an affine open subset of X.

(b) There is an integerdsuch thatZ®K is generated by global sections for albkky. [



Chapter 8

The Canonical Divisor
of a Toric Variety

88.0. Background: Reflexive Sheaves and Differential Forms

This chapter will study the canonical divisor of a toric wyi The theory devel-
oped in Chapters 6 and 7 dealt with Cartier divisors and lumedkes. As we will
see, the canonical divisor of a normal toric variety is a Vdg@iisor that is not
necessarily Cartier. We will also study the sheaves agsacta Weil divisors.

Reflexive SheavesA Weil divisor D on a normal varietX gives the sheaf’x (D)
defined by
I'(U,0x(D)) = {f € C(X)" | (div(f) +D)|, > 0} U {0}.

Ouir first task is to characterize these sheaves.
Recall that the dual of a sheaf 6fx-modules.# is 7" = Homg, (F, Ox).
We say that# is reflexiveif the natural map

9_>95\/\/

is an isomorphism. It is easy to see that locally free sheareseflexive. Here are
some properties of reflexive sheaves.

Proposition 8.0.1. Let.# be a coherent sheaf on a normal variety X and consider
the inclusion j Ug — X where | is open withcodim(X \ Ug) > 2. Then:

(@) .#" and henceZ "V are reflexive.

(b) If # is reflexive, ther# ~ j*(ﬁ|uo).

(c) If Z|y, is locally free, thenz vV ~ +(Z|y,)-

347
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Proof. Recall from 84.0 that the direct imagg4 of a sheafs onUy is defined by
I'U, j.¥9)=T(UnNUy,%¥) for U C X open.

Parts (a) and (b) of the proposition are provedli@Z Cor. 1.2 and Prop. 1.6].
For part (c), we first observe that restriction is compatiih taking the dual, i.e.,
Gy, = (9y,)" for any coherent sheaf on X. Then

TN 2 (FV)) = 1 (Fl) ™) = 1 |y,)s

where the first isomorphism follows from parts (a) and (b)] &me last follows
since.# U is locally free and hence reflexive. O

Later in the section we will study the she@f, of p-forms onX. This sheaf is
locally free wherX is smooth. FoiX normal, however)} may be badly behaved,
though it is locally free on the smooth locus Xf Hence we can use part (c) of
Proposition 8.0.1 to create a reflexive versiorf X

For more on reflexive sheaves, the reader should coris2d &nd [235].

Reflexive Sheaves of Rank Oné&\Ve first define the rank of a coherent sheaf on an
irreducible varietyX. Recall that’7x is the constant sheaf ofigiven byC(X).

Definition 8.0.2. Given a.# coherent sheaf on irreducible variety the global
sections of# ®4, #x form a finite-dimensional vector space ovéfX) whose
dimension is theank of .7.

For alocally free sheaf, the rank is just the rank of the dased vector bundle.
Other properties of the rank will be studied in ExerciseB.0.

In the smooth case, reflexive sheaves of rank 1 are easy tostaaie.

Proposition 8.0.3. On a smooth variety, a coherent sheaf of rdnis reflexive if
and only if it is a line bundle. d

This is proved in 132 Prop. 1.9]. We now have all of the tools needed to
characterize which coherent sheaves on a normal varietg ¢am Weil divisors.

Theorem 8.0.4. Let .# be a coherent sheaf on a normal variety X. Then the
following are equivalent:

(a) .2 is reflexive of rank..

(b) There is an open subset Py — X such thatcodim(X \ Up) > 2, X\UO is a
line bundle on iJ, and.Z’ ~ j.(Z| ).

(c) £ ~ Ox(D) for some Weil divisor D on X.

Proof. (a) = (b) SinceX is normal, its singular locug = Sing(X) has codimen-
sion at least two irK by Proposition 4.0.17. Theldp = X\ 'Y is smooth, which
implies that,i”|UO is a line bundle by Proposition 8.0.3. Hengé~ j*($|uo) by
Proposition 8.0.1.
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(b) = (c) The line bundle,2ﬂ|UO can be written agyy,(E) for some Cartier
divisorE =), aEj onUg. Consider the Weil divisob = ), &D;, whereD; is the
Zariski closure oE; in X. Given f € C(X)*, note that

div(f)+D >0 <= (div(f)+D)|,, =0
since codiniX \ Ug) > 2, and the same holds over any open seX.ofCombining
this withE = D|UO, we obtain
O%(D) = [0y (E) = j.(ZL]y,) ~ £

(c) = (a) The proof of (b)= (c) shows thatwx (D) ~ j*(ﬁx(D)yUO). But
codim(X \Uo) > 2, and&x (D)|,, = Ou,(D|y,) is locally free sincé is smooth.
Thus j.(6x(D)|y,) =~ 0x(D)"" by Proposition 8.0.1, s&x (D) ~ 0x(D)"" is
reflexive and has rank 1 since it is a line bundldUgn O

Tensor Products and DualsGiven Weil divisorsD, E on a normal variety, the
map f ® g— fg defines a sheaf homomorphism

(8.0.2) Ox (D) ®¢, Ox(E) — Ox(D+E).
This is an isomorphism whdn or E is Cartier but may fail to be an isomorphism
in general.

Example 8.0.5. Consider the affine quadric cone= V(y? —xz) C C3. From
examples in previous chapters, we know that this is a norora surface. The
line L =V(y,2z) gives a Weil divisor that is not Cartier, though & Cartier (this
follows from Example 4.2.3). The coordinate ringXfs R= C[x,y,Z/(y> — x2.
Let x,y,z denote the images of the variablesRnIn Exercise 8.0.2 you will show
the following:

e I'(X,0x(—L)) is the ideally,z) C R.
e I'(X,0x(—2L)) is the idealz) C R (principal since-2L is Cartier).
e On global sections, the image of the map
Ox(—L) ®p, Ox(—L) — Ox(—2L)
is (y,2)?, which is a proper subset 8 X, 0x(—2L)) = (2).
It follows that Ox (—L) @4, Ox (—L) % Ox(—2L). O

If we apply (8.0.1) where = —D, we get a map
Ox(D) @y Ox(—D) — 0%,
which in turn induces a map
(8.0.2) Ox(—D) — Ox(D)".

As noted in 86.0, this is an isomorphism wh@iis Cartier. In general, we have the
following result about the maps (8.0.1) and (8.0.2).
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Proposition 8.0.6. Let D,E be Weil divisors on a normal variety X. Th&hO0.1)
induces an isomorphism

(ﬁx(D) R ey ﬁx(E))vv ~ ﬁx(D—F E).
Furthermore,(8.0.2)is an isomorphism, i.e.,

Oy (—D) ~ O (D).

Proof. The first isomorphism follows from Proposition 8.0.1 singg(D + E) is
reflexive and (8.0.1) is an isomorphism on the smooth locuX.ofThe second
isomorphism follows similarly since both sheaves are réfteand (8.0.2) is an
isomorphism on the smooth locus. O

Divisor Classes Recall that Weil divisorD andE on X are linearly equivalent,
written D ~ E, if D = E +div(f) for somef € C(X)*.

Proposition 8.0.7. Let X be a normal variety.
(@) If D and E are Weil divisors on X, then

ﬁx(D) ~ ﬁx(E) <~—D~E.
(b) If D is a Weil divisor on X, then

D is Cartier <= 0x(D) is a line bundle

Proof. Linearly equivalent divisors give isomorphic sheaves lypBsition 4.0.29.
Converselyfx (D) ~ Ox(E) implies

Ox(D) @y Ox(—E) ~ O (E) ® gy Ox(—E).

Taking the double dual and using Proposition 8.0.6, wegé€D —E) ~ Ox. From
here, showing tha ~ E follows exactly as in the proof of Proposition 6.0.22.

One direction of part (b) was proved in Chapter 6 (see Prtipos$.0.17 and
Theorem 6.0.18). Conversely,dfx (D) is a line bundle orX, then Theorem 6.0.20
shows thatox (D) ~ Ox (E) for some Cartier divisoE. ThusD ~ E by part (a).
Then we are done since any divisor linearly equivalent tori€alivisor is Cartier
by Exercise 4.0.5. a

In Chapter 4 we defined the class groug>Ql and Picard group P{X) in
terms of Weil and Cartier divisors. Then, in Chapter 6, watapreted PicX)
as the group of isomorphism classes of line bundles, whergtbup operation
was tensor product and the inverse was the dual. We can notemgiet C(X) as
the group of isomorphism classes of reflexive sheaves of tamkhere the group
operation is the double dual of the tensor product and thersevis the dual. This
follows immediately from Propositions 8.0.6 and 8.0.7.
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Kahler Differentials. In order to give an algebraic definition of differential fasm
on a variety, we begin with the case of’aalgebra.

Definition 8.0.8. Let R be aC-algebra. Thanodule of Kahler differentials of R
over C, denoted(g/c, is theR-module generated by the formal symbdif for
f € R, modulo the relations

(@) d(cf+g) =cdf+dgforallce C,f,geR
(b) d(fg) = fdg+gdfforall f,ge R

Example 8.0.9.1f R= C|[xq,..., X, then

n
QR/(C ~ @ Rdx.
i=1

This follows because the relations definifig, ¢ imply df = Zﬁzlg—)‘;dx for all
f € R(Exercise 8.0.3). O

A C-algebra homomorphisiR — Sinduces a natural homomorphism
QR/(C — QS/(C'
When we regardlg,c as anR-module, we obtain a homomorphism®modules
S®ROQR/c — Os/c-

Here is a case when this map is easy to understand. 1898 Thm. 25.2] for a
proof.

Proposition 8.0.10.Let R— S be a surjection df-algebras with kernel I. Then
there is an exact sequence of S-modules

1/1? — S®rQRr/c — Qs/c — 0,
where[f] € 1/1? maps tol @ df € S@r Qr/c. O

Example 8.0.11.Let R= C[xq,...,X:| andS= R/I, wherel = (fq,...,fs). The
generators of give a surjectiorR® — | and hence a surjectid® — | /I2. Combin-
ing this with Proposition 8.0.10 and Example 8.0.9, we abéai exact sequence

SSLSn—>Qs/(C—>O,

wherea is given by the reduction of thex s Jacobian matrix

BX]_ BX]_
(8.0.3) : :
OXn OXn

modulo the ideal (Exercise 8.0.4). This presentation @ is very useful for
computing examples. O
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Kahler differentials also behave well under localizatias you will prove in
Exercise 8.0.5.

Proposition 8.0.12. Let Rs be the localization of R at a non-nilpotent element
f eR. Theme/C':QR/(C(@Rf. O

Cotangent and Tangent Sheavedlow we globalize Definition 8.0.8.

Definition 8.0.13. Let X be a variety. Theotangent sheaf is the sheaf of
Ox-modules defined via

0% (U) = Qg uy/c
on affine open setd. Thetangent sheaf% is the dual sheaf

Fx = (Q%)" = Hom, (O, 6x).

The reason for the superscript in the notation for the caangheaf will be-
come clear later in this chapter. In Exercise 8.0.6 you vaél &Example 8.0.11 and
Proposition 8.0.12 to show th@¥, is a coherent sheaf. Sek3, 11.8] for a slightly
different approach to defining the shéf, and [L31, 11.8, Comment 8.9.2] for the
connection between these methods.

WhenU = Spec¢R) is an affine open oK, the definition of the tangent sheaf
implies that
c%((U) = HOTTIR(QR/(C, R)

This can also be described in terms of derivations—see Besr8.0.7 and 8.0.8.

WhenX is smooth, these sheaves are nicely behaved, as shown hpfltve f
ing result from 31, Thm. 11.8.15].

Theorem 8.0.14.A variety X is smooth if and only b is locally free. When this
happens§} and % are locally free sheaves of rank n=ndim X. a

In the smooth toric case, it is easy to see that the cotanfeat & locally free.

Example 8.0.15.A smooth coner C Nr ~ R" of dimensiorr gives the affine toric
variety

U, ~ C" x (C)™" c .

Then Example 8.0.9 and Proposition 8.0.12 imply m@; is locally free of rankn.
It follows immediately thaQ}(E is locally free for any smooth toric varieis,. ¢

We know from Chapter 6 that a locally free sheaf is the sheakofions of a
vector bundle. WheiX is smooth, the vector bundles correspondin@oand 7%
are called theotangent bundlandtangent bundleespectively.
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Example 8.0.16.We construct the cotangent bundle #t. Recall thatP? has a
covering by the affine open sets

Uy, ~ Spec¢C[x,y])

U, = SpeClyx *,x 1))

U, =~ SpedClxy ',y 1).
whereoyg, 01,07 are the maximal cones in the usual fanFst

LetC2 = SpecR) for R=C|[x,y]. The modulég,c is a freeR-module of rank
2 with generatorsix, dy by Example 8.0.9. Thus a 1-form @ may be written
uniquely asf, dx+ fody, wheref; € R. To generalize this t®2, we require that
after changing coordinatedx anddy transform via the Jacobian matrix described
in Example 8.0.11. More precisely, the matrix for the tréasi function ¢;; will
be the Jacobian of the mépy; — U,,.

OnU,,, the coordinatega;,ay) are represented in terms of tfey) coordi-
nates orJ,, as(xy 1,y~1), yielding
_(1)y Y
Next, we computesip. Things get messy if we keep everything(xy) coordi-

nates, so we first translate to coordinates ay) onU,,, and then translate back.
OonU,, we identify (ag,ap) with (xy~1,y~1). ThenU,,, has coordinates

1 a
-1 ,-1,_ [+ &
oty - (1.2).
So in terms of a1, ap), we have
_(-Vva& o
2= (T 1)
Rewriting this in terms ofx,y) yields
_ (Y 0)
P12 (—y/x2 y/x)
Finally, computingg,g directly, we obtain

10— —y/x%> 1/x
0= \-1x¢ o0 )
A check shows thab1g = @120 ¢0. Similar computations show that the compati-
bility criteria are satisfied for all j,k, i.e.,

dik = Gij © Pjk-
Since detojj ) is invertible onU,; NU,;, the same is true fasi;. Hence we obtain
a rank 2 vector bundle di? whose sheaf of sections %2. O
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Relation with the Zariski Tangent SpaceThe definition of the tangent sheaf
Fx seems far removed from the definition of the Zariski tang@aiceT,(X) =
Homc(mxp/m?(’p,C) given in Chapter 1. Here we explain (without proof) the
connection.

The stalk(.% ) p of the tangent sheaf g@te X can be described as follows. The
stalk of Q% at pis the module of Kahler differentials

(Q>1()p = Qﬁx,p/((ja

wheredx ; is the local ring ofX at p. Sincedx p/mx p ~ C andQ¢,c = 0 (easy
to check), the exact sequence of Proposition 8.0.10 givagecton

2
mxvp/mXﬁ fox,p/(C ®ﬁ><,p(c

which is an isomorphism of vector spaces oteoy [131, Prop. I1.8.7]. SinceZx
is dual tof)%, taking the dual of the above isomorphism gives

(8.0.4) (F)p® ey ,C =2 Homg (mx p/m% 5, C) = Tp(X).

This omits many details but should help you understand Whyis the correct
definition of tangent sheaf.

Example 8.0.17.LetV C C" be defined by =1(V) = (fy,..., fs) CC[Xq,...,Xn].
The coordinate ring o¥ is S= C[xy,...,Xa]/I, so that Example 8.0.11 gives the
exact sequence
SS—>Sn—>QS/(C — 0.
Now takep € V and tensor withoy , to obtain the exact sequence
Dp— Op — Loy pc — 0

(Exercise 8.0.9). If we tensor this with and dualize, (8.0.4) and the isomorphism
Qgy p/c B0y ,C =~ mx,p/mip give the exact sequence

0— ToV) —C" -2 s,

whered comes from thes x n Jacobian matrix(g—)g(p)) (Exercise 8.0.9). This
explains the description di,(V) given in Lemma 1.0.6. O

Conormal and Normal SheavesGiven a closed subvariety Y < X, it is natural
to ask how their cotangent sheaves relate. We begin withxhet sequence
0— A — Ox — 1,00 — 0,
which we write more informally as
0— A — Ox — Oy — 0.

The quotient sheafﬁy/sz has a natural structure as a sheafZ®fmodules, as
does.Z ® g, Oy for any sheat# of Ox-modules. The following basic result is
proved in L31, Prop. 11.8.12 and Thm. 11.8.17].
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Theorem 8.0.18.Let Y be a closed subvariety of a variety X. Then:
(a) There is an exact sequence®@f-modules

fy/fyz — Q)l( ®[,>xﬁy — Q\l( — 0.

(b) If X and Y are smooth, then this sequence is also exact onftranlti 74, / 42
is locally free of rank equal to the codimension of Y . a

Note that part (a) of this theorem is a global version of Psitian 8.0.10. We
call % /%2 the conormal sheabf Y in X and call its dual

Mepx = (Hv | 5)" = Homy, (F | 57, Ov)
thenormal sheafof Y in X. WhenX andY are smooth, we can dualize the sequence
appearing in Theorem 8.0.18 to obtain the exact sequence

0— K — K Qe Oy — Ny x — 0.

The vector bundle associated.t¢ x is thenormal bundleof Y in X. Then the
above sequence says that when the tangent bunidsafestricted to the subvari-
etyY, it contains the tangent bundle¥fwith quotient given by the normal bundle.
This is the algebraic analog of what happens in differerg@metry, where the
normal bundle is the orthogonal complement of the tangendleuofY .

Differential Forms. We call Q% the sheaf ofl-forms and we define theheaf of
p-formsto be the wedge product

Qf = AP
For any sheaf7 of 0x-modules, the exterior powekpﬁ is the sheaf associated
to the presheaf which to each opendetssigns theix (U )-module/\P.Z (U).

Example 8.0.19.ForC", Q(:(L:n is the sheaf associated to the flRenodule(g,c =
@i”:lex, R=C[Xq,...,Xn)- Theann is the sheaf associated to

APQr/c = EB R, A+ AdX,.
1<ip < <ip<n

It follows thatQfs is free of rank(g). O

More generally, Theorem 8.0.14 implies tHfaf is locally free of rank(g)
whenX is smooth of dimension. In particular,2% is a line bundle in this case.

Zariski p-Forms and the Canonical SheafFor a normal variety, the sheaf of
p-forms Qf may fail to be locally free. However, this sheaf is locallgdron the
smooth locus oK, and the complement of the smooth locus has codimensian
sinceX is normal. Hence we can use Proposition 8.0.1 to definghibaf of Zariski
p-forms

(8.0.5) Of = (R = 1.9f,,
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wherej : Ug — X is the inclusion of the smooth locus Xt It follows thatﬁQ is a
reflexive sheaf of ranlég), wheren = dim X.

For later purposes, we note that by Proposition 8.0.1,§8i6.valid forany
smooth open subskl C X whose complement has codimensior2.

The casep = nis especially important.
Definition 8.0.20. Thecanonical sheafof a normal varietyX is
Wy = ﬁ?o
wheren is the dimension oK. This is a reflexive sheaf of rank 1, so that
wy =~ Ox(D)

for some Weil divisoD on X. We call this divisor acanonical divisorof X, often
denoteKy.

Proposition 8.0.7 shows that the canonical diviggris well-defined up to
linear equivalence and hence gives a unique divisor clagd(X), known as the
canonical clas®f X. In the toric case, we will see later in the chapter that tigere
a natural choice for the canonical divisor.

WhenX is smooth, we calby thecanonical bundleince it is a line bundle. In
this case, the canonical divisor is Cartier. There are atsgutar varieties whose
canonical divisors are Cartier—these are@wrenstein varietieto be studied later
in the chapter.

While it often suffices to knowwy up to isomorphism, there are situations
where a unique model afy is required. One such construction uﬁkﬂc(x)/c,
whereC(X) is the field of rational functions oX. We can regardl\" Qcx)/c as
the constant sheaf of rationafforms onX, similar to the way thaf (X) gives the
constant sheaf?y of rational functions oiX. There is an obvious sheaf map

O — A"Qcx/c-
You will prove the following result in Exercises 8.0.10 an@.81.
Proposition 8.0.21. When X is normal, image of the ma§ — A" Qcx)/c is
wy € A" Qe O

The canonical sheaf can be defined for any irreducible yaXeds a subsheaf
of A" Qc(x)/c, though the definition is more sophisticated (sb&4 §9]). When
X is projective, another approach is given i8], I1l.7], wherewy is called the
dualizing sheafWe will see in Chapter 9 thaiy plays a key role in Serre duality.

Exercises for §8.0

8.0.1. The rank of a coherent sheaf on an irreducible variety wase@fh Definition 8.0.2.
Here are some properties of the rank.
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(a) Let an irreducible affine variety have coordinate ritgith field of fractionsK. Let
M be a finitely generate®-module. Show thall ®rK is a finite-dimensional vector
space oveK whose dimension equals the rank of the coherent eaf Spe¢R).

(b) Let.# be a coherent sheaf ofiletU C X be an nonempty open subset. Prove that
and.# |, have the same rank.

(c) Let0— # — ¥ — 2 — be an exact sequence of sheaveXoRrove that rank?) =
rank(.%) 4 rank 7).

8.0.2. Prove the claims made in Example 8.0.5.

8.0.3. LetR=C|[xy,...,%n). In Example 8.0.9 we claimed thdf = Zi”:l %2 dx in Qg/c

forall f € R. Prove this.

8.0.4. Prove that the map in the exact sequence from Example 8.0.11 comes from the
Jacobian matrix (8.0.3).

8.0.5. Prove Proposition 8.0.12.

8.0.6. Prove that the cotangent shé3f defined in Definition 8.0.13 is a coherent sheaf.

8.0.7. Given aC-algebraR and anR-moduleM, a C-derivations : R — M is aC-linear

map that satisfies the Leibniz rule, i.&(fg) = fo(g) +gd(f) forall f,ge R.

(@) Show thatf — df defines a&C-derivationd : R — Qg/c.

(b) More generally, show that i : Qgr/c — M is an R-module homomorphism, then
¢od:R— M is aC-derivation.

8.0.8. Continuing Exercise 8.0.7, we let RER M) denote the set of alC-derivations

0 : R— M. This is anR-module wherdr§)(f) =ro(f).

(a) Use part (b) of Exercise 8.0.7 to constructRyimodule isomorphism De(R M) ~
Homg(2r/c, M). Explain whyd : R— Qg is called theuniversal derivation

(b) Let % be the tangent sheaf of a varieXyand letU = Spec¢R) be an affine open
subset ofX. Prove that%(U) = Derc (R R).

8.0.9. Fill in the details omitted in Example 8.0.17.

8.0.10.Let j : U — X be the inclusion of a nonempty open subset of a vadtety
(@) Show that there is a sheaf mé@— j.(.7| ) for any sheaf” on X.

(b) Show that the map of part (a) is an isomorphism wkeis irreducible and% is a
constant sheaf.

8.0.11. Prove Proposition 8.0.21. Hinf2} is locally free when restricted to the smooth
locus ofX. Exercise 8.0.10 will be useful.

8.0.12. Let 1 € Ty be the identity element of the torli§ and letm C C[M)] be the corre-

sponding maximal ideal. S& = N®z C andM¢ = M ®C.

(@) Letf =3 cmx™e C[M]. Show thatf € m? if and only if 3", .cm =0 in C and
> - mCmm=0in Mc. Hint: Pick a basis,...,e, of M and set; = x®, so thatf is
a Laurent monomial iy, ..., t,. Then show thaf € m? if and only if f € m and

gl(1)=0foralli.

(b) Use part (a) to construct an isomorphistyim? ~ Mc, and conclude that the Zariski
tangent space dfy at the identity is naturally isomorphic .
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8.0.13.LetF be a free module of rankover a ringR and fix 0< p < n. Recall that wedge
product induces an isomorphistd " F ~ Homg(A\PF, A"F).

(@) If X is smooth of dimension, then show tha®} " ~ J#omy, (QF,QF).

(b) Show that ifX is a normal variety of dimension, then there is an isomorphism
Qy P ~ A#omg, (QF,wy). Hint: If you get stuck, see7l, Prop. 4.7].

(c) In a similar vein, show that the tangent shéafof a normal varietyX satisfies%x ~
Homg, (0%, O%).

88.1. One-Forms on Toric Varieties

In this section we will describe two interesting exact semas that involve the
sheavessy  andQy on a normal toric variets.

The Torus The coordinate ring of the torugy is the semigroup algebr@[M].
Then the map

Qcmy/c — M@z CM|
defined bydy™ — m® yMis easily seen to be an isomorphism. It follows that
(8.1.1) OF, ~M®z Oy,
and dualizing, we obtain
I, ~N®gz 01, = Nc ®c 07,

This makes intuitive sense sin@g = N ®7 C* as a complex Lie group. Thus its
tangent space at the identityNsxz C = N¢ via the exponential map. This is also
true algebraically, as shown in Exercise 8.0.12. The graipra transports the
tangent spactlc over the whole torus, which explains the above trivializatof
the tangent bundler,,.

As a consequence, the 1-forfi§f;ﬂT is a global section oSfl%N that maps ton® 1
in (8.1.1) and hence is invariant under the actiomafSee Exercise 8.1.1 for more
on invariant 1-forms on the torus.

The First Exact SequenceNow consider the toric varietiy, of the fan>. For
p € £(1), the inclusioni : D, — Xs gives the sheaf, &p, on X5, which following
88.0 we write a¥’p,. Using the magM — Z given bym+— (m,u,), we obtain the
composition

M ®z Oxy — LRz Oxs = Oxg — Op,.
This gives a natural map
(8.1.2) B:M®z Ox, — @D,0p,,
where the direct sum is over alle £(1). We also have a canonical map
(8.1.3) a: Oy, — M®gz Ok,
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constructed as follows. On the affine piége= Spec¢C[s¥ NM]), « is defined by
dx™ e Qciovamy/c — m®x™eM®zCloY NM].

TheseClo¥ NM]-module homomorphism&c¢/,vqum)c — M ®z Clo¥ NM] patch
to give the desired map (8.1.3) (Exercise 8.1.2). Note that the torusTy, the
mapa of (8.1.3) reduces to the isomorphism (8.1.1).

Theorem 8.1.1. For a smooth toric variety ¥, the sequence
0—>Q)l(E = M ®z, Oxs, 2, @pﬁop —0
formed using8.1.2)and(8.1.3)is exact.

Proof. We first verify thatg o « is the zero map. On the affine piedg C Xy, the
subvarietyD,NU,, C U, is defined by the ided}, = I(D,NU,) C C[o¥ NM]. By
Propositions 4.0.28 and 4.3.2, we have

8.14) 1,=T(U,,0x,(-D,))= & Cx"= & Cx"

div(xm)’ngDp’UU meoV NM,(m,u,)>0

OverU,, the compositiorﬂ>1<Z — M®gz Ox, — Op, takes a 1-formdx™, me
o'NM, to (mu,)x™e Clo¥ NM]/l,. This is obviously zero ifm,u,) =0, and
if (m,u,) # 0, it vanishes sincg™ € 1, in this case.

We now verify that the sequence is exact olkr. Sinceo is smooth, we
may assumer = Congey,...,& ), wherer < n andey,...,&, is a basis of\.
ThenU, = C" x (C*)"". Letx,...,X, denote the characters of the correspond-
ing dual basis oM, also denotedy,...,e,. The coordinate ring o), is R=
ClXw,-- %, X55, ..., %Y, and the 1-forms ob), form the freeR-module€gc =
@, Rdx by Example 8.0.9 and Proposition 8.0.12. Siactakesdx to g ® X;,
we see thatv can be regarded as the map

n n
Or/c = PRy — Me@rR= (PR
i=1 i=1

that send§:i”:l fidx to (fixq,..., fuXn). This gives the exact sequence

n r
0— Qgr/c —>€BR—> EBR/<X|> —0
i=1 i=1

sinceX;11,...,%, are units inR, and the theorem follows. O

Logarithmic Forms The exact sequence of Theorem 8.1.1 has a lovely interpreta-
tion in terms of residues of logarithmic 1-forms. The ideth®tM ®z Ox,, can be
thought of as the sheaf)l(z(log D) of 1-forms onXs, with logarithmic poles along
D= Zp D,. We begin with an example.
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Example 8.1.2.The coordinate ring of" is R= C|[xy, ..., %], and the divisoD is
the sum of the coordinate hyperplarigs= V(). As above{)r/c = D Rdx.
Now introduce some denominators: a rational 1-fanrhaslogarithmic poles

along Dif
n dXi
w= fi—, fieR
; | X| |

These form the freR—moduIe@{‘le%, and the corresponding sheaf is defined
to beQt(logD). The formal calculation

dy™ & dx
X

m
X i=1
shows that the ma%(%m — m® 1 induces an isomorphism of sheaves
Q%n(logD) ~ M ®¢n On

such that the map : Q. — M ®cn Ocn of (8.1.3) is induced by the inclusion of
1-formsQs — Qin(logD). O

This construction works for any smooth affine toric varigty, and the sheaves
of logarithmic 1-forms orJ, patch to give the sheaf){z(log D) for any smooth
toric varietyXy. Furthermore, we have a canonical isomorphism

(8.1.5) wy_(IogD) ~ M ®7 O
such that the magp of (8.1.3) comes from the inclusion of 1-forms.

The construction ofz)l(E (logD) can be done more generally. ébe a smooth
variety. A divisorD = ) ;D; on X hassimple normal crossing# every D; is
smooth and irreducible, and for evepye X, the divisors containing meet nicely.
More precisely, ifl, = {i | p € D;}, we require that the tangent spadg$D;) C
To(X) meet transversely, i.e.,

codim( N Tp(Di)) = Il.
iclp
For example, the divisob = Zp D, is a simple normal crossing divisor on any

smooth toric varietyXs. A nice discussion of)}(logD) for complex manifolds
can be found in125, p. 449].

The Poincaé Residue Map Let f(z) be an analytic (also called holomorphic)
function defined in a punctured neighborhood of a pqirt C. Take a counter-
clockwise loopC aroundp on X such thatf(z) has no other poles insid& Then
theresidueof the 1-formw = f(z)dzat p is the contour integral

1
res(w) = 2—7ri/cw
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In particular, ifp=0 andf(z) = izz) with g(z) analytic at zero, then the residue
theorem tells us that rggv) is the coefficient of in the Laurent series fof(2) at

0, and is equal tg(0). Note that the 1-formv = f(z)dz= g(z)";Z has a logarithmic
pole atp = 0.

When there are several variables, we can do the same cdiirbg working
one variable at a time. Here is an example.

Example 8.1.3.Given f = f(Xy,...,Xn) € R=C[Xy,...,X], we get the logarith-
mic 1-formw = fdx—’il. In terms of the above discussion of residues, we can regard
f(0,%2,...,%n) as the “residue” ok atV(x;). Note also thaf (0,xz,...,%,) repre-
sents the class df in R/(x1). Doing this for every variable shows that the map

n
Q%:n(log D) ~M X7 ﬁ(cn L @ ﬁDi
i=1
can be interpreted as a sum of “residue” maps. O

More generally, iiX is a smooth variety anD = ), D; a simple normal cross-
ing divisor, one can define tHeoincaré residue map

P : Q% (logD) — &P o,
i

(see R27, p. 254]) such that we have an exact sequence

(8.1.6) 0— Q% — Qk(logD) - P G, — 0.
i

When applied to a smooth toric varieXy; and the divisoD = > D, this gives
the exact sequence of Theorem 8.1.1 via the isomorphisnbj8.1

The Normal Case When Xy, is normal, we get an analog of Theorem 8.1.1 that
uses the shea’l)l(2 of Zariski 1-forms in place o&‘l}(E. SinceM ®z Oy, is reflexive,
taking the double dual of (8.1.3) gives a map

ﬁ)l(z — M ®z Oxs,.
Theorem 8.1.4.Let X be a normal toric variety. Then:
(a) The sequence
0— Ok, — M®zOx, — D,0p,
is exact.
(b) If Xy, is simplicial, then the map on the right is surjective, satha

0—>§\2)1<E — M ®gz Ox,, —’@pﬁDp —0

is exact.
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Proof. Let j : Uy C Xy be the inclusion map fodg = UpUp. Note thatUg is

a smooth toric variety whose fan has the same 1l-dimensiamascas:, and
codim(X \ Up) > 2 by the Orbit-Cone Correspondence. By Theorem 8.1.1, we
have an exact sequence

0— Qf, — M®z Oy, — &®,00,ru, — 0,
so that applying . gives the exact sequence
0— j*Q&JO — «(M®z ﬁUo) - @p j*ﬁmeUO

since j. is left exact (Exercise 8.1.3). Howeve, Q) = @{E by the remarks
following (8.0.5), andj.(M ®z Oy,) = M ®z Ox,, by Proposition 8.0.1. Hence we
get an exact sequence
0— SA%l(Z — M®z Ox, — EB,) J+0b,,nu,-
In Exercise 8.1.4 you will show that the maldszz Ox, — j«0p,nu, factor as
M®z Oxy, — Ob, — |+Ob Uy,
wheredp, — j.0p,nu, is injective. The exact sequence of part (a) then follows
immediately.
It remains to show tha¥l ®z Ox,, — @p Op, Is surjective wherXy, is simpli-
cial. Giveno € ¥, we need to show that
M®z Oy, — @pea(l) Op,nu,

is surjective. Fixp € o(1) and pickm € M such thatm,u,) # 0 and(m,u, ) =0
for all p’ # p in o(1). Such amm exists sincer is simplicial. Thenm® 1 maps
to a nonzero constant function @rp,~u, and to the zero function OﬁDp/mUJ for
o # p. The desired surjectivity now follows easily. O

WhenXs; has no torus factors, we learned in 85.3 that graded moduéggtoe
total coordinate rings= C[x, | p € 3(1)] give quasicoherent sheaves X#. It is
easy to describe a grad&module that givesl}@. For eactlp, there are two maps

M®RzS— Z®7S=S— S/(Xp>,

where the first map comes from— (m,u,) and the second map is obvious. This
gives a homomorphisivl @z S— P, S/(x,), and we defind)} to be the kernel
of this map. Hence we have an exact sequence of graaeddules

(8.1.7) 0—O5—MeS— @,S/(X,).
Using Example 6.0.10 and Theorem 8.1.4, we obtain the faligwesult.

Corollary 8.1.5. When X has no torus factorsﬁ}@ is the sheaf associated to the
graded S-modul@L. O



§8.1. One-Forms on Toric Varieties 363

The Euler Sequenceln [131, Thm. 11.8.13], Hartshorne constructs an exact se-
quence

(8.1.8) 0— Qfn — Opn(—1)" — Gpn — 0,

called theEuler sequencef P". He goes on to say “This is a fundamental result,
upon which we will base all future calculations involvindfdrentials on projective
varieties.” Of courseP" is toric, and there is a toric generalization of this result,
due to Batyrev and Matikov [20] and Jaczewskil6(Q in the smooth case and
Batyrev and Cox19, Thm. 12.1] in the simplicial case.

Theorem 8.1.6. Let Xz be a simplicial toric variety with no torus factors, i.e.,
{u, | p € ¥(1)} spans N. Then there is an exact sequence

00— Q}(E —_— @pﬁxz(—DP) — Cl(Xz) X7 ﬁxz — 0.
Furthermore, if X is smooth, then the sequence can be written
0— Oy, — @,0x:(—D,) — Pic(Xs) ©z Ox, — 0.

Proof. Consider the following diagram:

0 0 0

I

M ®7z ﬁxz e @pﬁDp —0

| |

0— &,0%:(~Dp) —— &,0x; —— B,0p, — 0

! |

0 — Cl(Xy) ®z Ox;;, — Cl(Xs) ®7 Ox;, —— 0——0

| |

0 0 0

The top row is from Theorem 8.1.4 and is exact siigeis simplicial. Also, by
Proposition 4.0.28, eaghe (1) gives an exact sequence

0— Ox,(—D,) — Ox, — Op, — 0,
and the middle row is the direct sum of these exact sequeibesthird row is the
obvious exact sequence that uses the identity map oGz Ox. .
SinceXsy; has no torus factors, we have the exact sequence

0—M-—P,Z— Cl(Xs) —0

from Theorem 4.1.3, and tensoring this wiflx, gives the middle column. The
column on the right is the another obvious exact sequena,0oaa can check
without difficulty that the solid arrows in the diagram conmtaExercise 8.1.5).
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Then commutativity and exactness imply the existence ofitited arrows in the
diagram, which give the desired exact sequence by a stadasghm chase. [

The exact sequence of sheaves in Theorem 8.1.6 is the (tiredyd&uler
sequencef the toric varietyXy;. We will use it in the next section to determine the
canonical sheaf ofy. The Euler sequence also encodes relations generalizng th
classical Euler relation for homogeneous polynomials Seercise 8.1.8). Note
also that in 160], Jaczewski shows that smooth toric varieties can be cteiaed
as smooth varieties which admit a generalized Euler seguenc

Exercises for §8.1

8.1.1. We will study invariant 1-forms and derivations on the tor8ince the toru3y =
Spe¢C[M]) is affine, we know from Exercise 8.0.8 that the derivationsdp&[M], C[M])
give the global sections of the tangent shé&gy.

(a) Forue N, defineg, : C[M] — C[M] by
Ou(x™) = (m,u)x™.

Prove thab, € Der:(C[M],C[M])

(b) Letxy,...,xy be the characters corresponding to the elemenit$ dfial to some par-
ticular basisey, . .., €, of N. ThusC[M] = C[x*%,...,xi1]. Prove thabg = X 7% and

thatI'(Ty, .7, ) is the freeC[M]-module generated by 2, ..., Xn 7o -

(c) Dualizing, conclude thak(Ty, Q1) is the freeC[M]-module generated by tHE-

invariant differentialg ..., 2.
1 Xn
8.1.2. Consider the affine toric variety, = Spe¢Cls¥ NM]).
(a) Prove that the map

de S QC[UVHM]/(C — MK Xm eM®y (C[O’v n M]

defines &[0 N M]-module homomorphism.

(b) For atoric varietys, prove that these homomorphisms patch together to give #ige m
a: Q. — M®z Ox, in (8.1.3).

8.1.3.Let0— .% — ¥ — 5 — 0 be an exact sequence of sheaveXamd letf : X —Y

be a morphism.

(@) Provethatd- f..7 — .9 — .57 is exactorY.

(b) Suppose that = {pt} andf : X — Y is the obvious map. Use part (a) to give a new
proof of Proposition 6.0.8.

8.1.4. In the proof of Theorem 8.1.4, show that the Mawz Ox,, — j«Ob,nu, factors as

M ®z Oxs, — Op, — j+O0b Uy,

wheredp, — j.0b,nu, IS injective.
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8.1.5. The proof of Theorem 8.1.6 contains the square

M®z ﬁxz — eapﬁDp

| |

@pﬁxz — @pﬁDp'

Describe the maps in this square carefully and prove thahitroutes.
8.1.6. Show that the Euler sequence from Theorem 8.1.6 reducesli&)8henX = P".

8.1.7. Sometimes the nameuler sequenceés used to refer to an exact sequence for the
tangent sheaf’,, of a smooth toric variety.
(a) Show that foi", we have an exact sequence
0— Opn — ﬁpn(l)m—l — Ipn — 0.
Hint: Use (8.1.8).
(b) What is the corresponding sequence for a general smoathvariety Xy, for 3 as in
Theorem 8.1.67?

8.1.8. Let f be ahomogeneous polynomial of degdde C[xy, . ..,%n]. The classicaEuler
relationis the equation

(8.1.9) zn:xia—f—d f
i=1 ax'

In this exercise, you will prove this relation and considenegralizations encoded by the
generalized Euler sequence from a toric variety.

(a) Prove (8.1.9). Hint: Differentiate the equation
f(txg, ... txq) =t4F (X, ..., %)
with respect td.

(b) To see how the classical Euler relation generalizesllréfom Chapter 5 that given
a toric varietyXs, with no torus factors (i.e{u, | p € £(1)} spans\g), we have the
total coordinate ring

S=Clx, | pe S(1),
graded by QiXs). The graded pieceSs for 5 € Cl(Xy) consist of homogeneous
polynomials as described by (5.2.1) from Chapter 5¢ ¥ Hom;(Cl(Xx),Z) and
f € S3 show that we have a generalized Euler relation

of
Z ¢([Dp])xp87 =¢(B)-f.
0
pEX(L)
Hint: Follow what you did for part a, which is the caXe= P"1.

(c) When C[Xyx) has rank greater than 1, there will be several distinct gaized Euler
relations on homogeneous elementSofompute the Euler relations 0= P x PL.

88.2. Differential Forms on Toric Varieties

For a toric varietyXs, we have the sheaf qf-forms QQE and the sheaf of Zariski
p-formsQf_. By §8.0, the canonical sheaf ¥f; is wy, = Qf_, n=dim Xs.
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Properties of Wedge ProductdVe will need the following properties of wedge
products of fredR-modules.
Proposition 8.2.1. Let F,G,H be free R-modules of finite rank.
(@) An R-module homomorphisgn: F — G induces a homomorphism
AP¢: APF — APG.
(b) Let0— F — G — H — 0be an exact sequence witlnkF = m andrankH =
n. ThenrankG = m+ n and there is a natural isomorphism

A" = ATF @R AH.

Proof. Part (a) is straightforward (see Exercise 8.2.1 for an ekpdiescription
of AP¢), as is the rank assertion in part (b). For the isomorphismaot (b),
we assume > 0 and define a map\"F g A"H — A™"G as follows. If the
maps in the exact sequence areF — G and : G — H, then one checks that
A" : A"F — A"Gis injective and\"5: A"G — A"H is surjective. Them® v €
A™F @r A"H maps to\"a(pu) A’ € A™T"G, where\"v' = v. This map is well-
defined and gives the desired isomorphism (Exercise 8.2.1). d

A corollary of this proposition is that if 6= .% — ¥4 — J# — 0 is an exact
sequence of locally free sheaves on a varketyith rank.# = mand ranks# = n,
then rank4 = m+ n and there is a natural isomorphism

(8.2.1) AN™"G ~ N"F @6, N
Example 8.2.2. Suppose that C X is a smooth subvariety of a smooth variety,
and letn =dim X, m=dimY. Then we have the exact sequence
0— K/ IE— V@4 O — QF — 0
from Theorem 8.0.18, whergy C O is the ideal sheaf of . By (8.2.1), we obtain
Ak @0, O) =~ N"™( A ) IE) @6, ATOL.

One can check thah"(Q% ®g, OY) ~ (A"Q%) @4, Oy. Now recall thatwy =
A" Q5 andwy = ATy and that the normal sheaf 6fC X is A4 x = (H/F3)".
Hence the above isomorphism implies

wy 2wy Do A"

This isomorphism is called tredjunction formula O

The Canonical Sheaf of a Toric Variety Our first major result gives a formula for
the canonical sheaf of a toric variety.

Theorem 8.2.3.For a toric variety X, the canonical sheaby_ is given by

Wy, ™ O, ( - ZPDP).
Thus K, = —>_ D, is a torus-invariant canonical divisor onsX
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Proof. We first assume thafs; is smooth with no torus factors. Then we have the
Euler sequence

0— %, — ,0%:(~D,) — Pic(Xs) @z Ox, — 0

from Theorem 8.1.6. Eachix,(—D,) is a line bundle sinc&s, is smooth, and if
we setr = [%(1)], then one sees easily that Pig) @z Ox,, ~ 0y _". Hence we
can apply part (b) of Proposition 8.2.1 to obtain

(8.2.2) A"z @, NTOY " = N'(B,0%:(~D,)).-

It follows by induction from Proposition 8.2.1 that the rtgfland side of (8.2.2) is
isomorphic to

®pﬁXE(_DP) = ﬁxz ( - ZpDP) .
Turning to the left-hand side of (8.2.2), note thist "oy _" ~ Ox,, so that the
left-hand side is isomorphic to
A"Qy. = Q% =wy,
sinceXy, is smooth. This proves the result whén is smooth without torus factors.
In Exercise 8.2.2 you will deduce the result for an arbitrsmyooth toric variety.

Now suppose thaXs; is normal but not necessarily smooth. LjetUy C Xs,
be the inclusion map fddo = (J,U,. We saw in the proof of Theorem 8.1.4 that
Uo is @ smooth toric variety satsifying codix\ Ug) > 2. Now considetvy_ and
Oxs(—>_,D,). Since the fans fody andXs, have the same 1-dimensional cones,
these sheaves become isomorphic tkgeby the smooth case. Since these sheaves
are reflg_xive and codifX \ Up) > 2, we conclude thaby ~ Ox.(—>_,D,) by
Proposition 8.0.1. O

Here are some examples.
Example 8.2.4. Theorem 8.2.3 implies that the canonical bundI@®bfs
wpn =~ ﬁ]pn(—n— 1)

forall n > 1 since C{P") ~ Z andDg ~ D1 ~ - -- ~ Dy. In Exercise 8.2.3, you will
see another way to understand and derive this isomorphism. O
Example 8.2.5. The previous example shows thaf. ~ &p2(—3). We will com-
pute this directly using

WPZ = Q]%;Z = /\2 QI]P-JQ
and the description oﬂﬂlj,2 as a rank 2 vector bundle given in Example 8.0.16.
Recall that the transition functions for this bundle areegiby:

$20= (1(/)3’ :i%) $12= (iy;//;; y(/)x>, $10= (:31/7;2 1(/)x>.
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By Exercise 8.2.1, the corresponding maps/‘&rare given by the determinants of
these 2« 2 matrices:
-1
?7
Note that each is a cube. It is also evident that

N0 = Np12- N*p20,
so that these give the transition functions for a line bumdi®?.

On the other hand/\ZQ]%,)2 ~ Op2(—3) says the canonical bundle & is
the third tensor power of the tautological bundle descritre@xamples 6.0.19
and 6.0.21. To see this directly, we first need to calibratecthordinate systems.
Example 8.0.16 used coordinatey fromU,,,, and Example 6.0.19 used homoge-
neous coordinates,x;, %, for P2, with the standard open cover = P2\ V(x;).

Letting X = Xo/%2 andy = x1 /%2 gives an isomorphisid,,, = U,. Translating
coordinates fol,,, we have

(1/%,y/%) = (1/ (x0/%2), (x1/%2) / (X0/%2)) = (X2/%0,%1/%0)

henceU,, = Up. A similar computation shows,, =U;. We are now set for the
final calculation. Keep in mind that thg; are in the coordinate system with charts
U,,. We will used;; to denote the same transition function, but usingiheharts.
Thus we have

1
ﬁ.

2, 2, Y a2,
N 20 = N p12= 3 N p10=

N = —1/y* = (—x/x1)® = 612

Nz = —y3/¢ = (—x1/%0)° = bo1

Nooo = 1 = (%/%)° = oz
Upto a sign, these are indeed the cubes of the transitiotidunsathat we computed
for the tautological bundl&pn(—1) in Example 6.0.19. In Exercise 8.2.4, you will
work through the definition of the canonical bundle diredtyfind the transition
functions given in Example 8.0.16. O

Example 8.2.6.When we computed the class group of the Hirzebruch surfgce
in Example 4.1.8, we wrote the divisas, asD1,D»,D3,D4 and showed that

D3~ Dq
Dg~rDj+ Ds.

Thus C(s%) = Pic(s%) ~ 72 is freely generated by the classesafandD5. It
follows that the canonical bundle can be written

Wy ﬁjfr(_Dl_ Dy, —D3— D4) ~ ﬁjfr(—(r—i—Z)Dl—ZDz)
by Theorem 8.2.3. O
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The Canonical Module For a toric varietyXs. without torus factors, the canonical
sheafwy comes from a grade@-module, where&s= C[x, | p € ¥(1)] is the total
coordinate ring oXy,. This module is easy to describe explicitly.

Each variablex, € Shas degree d¢g,) = [D,] € CI(Xx,). Define

fo = ded(I[,%,) = [3Z,D,] € Cl(Xs).
ThenS(— /() is the graded-module whereS(— o), = S,—g, for o € CI(Xx). As

in 85.3, the coherent sheaf associate®(te 5p) is denotedx,. (—/5p). We have
the following result.

Proposition 8.2.7. Ok, (—fo) ~ wy..

Proof. According to Proposition 5.3. %, (— o) ~ Ox,, (D) for any Weil divisor
with —fo = [D] € CI(Xs). The definition of3 allows us to pickD = —3° D,.
Then Theorem 8.2.3 implies

Oxs(—fo) ~ Oxy, (— 22,Dp) = wyy;- O
We call S(—fp) the canonical modul®f S

Corollary 8.2.8. For any normal toric variety X we have an exact sequence

0 — wy, — Oxy —>@pﬁDp.

Proof. First suppose thafy; has no torus factors. Mult