PART III TORIC GEOMETRY (LENT 2022) EXAMPLE SHEET 1

Notes: As always, we fix a lattice N which gives rise to a dual lattice $M = \text{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$ and an associated algebraic torus $T = \text{Spec } \mathbb{C}[M]$. Unless stated otherwise, "cone" means "strictly convex rational polyhedral cone" and "toric variety" means "normal toric variety". There are loads more exercises to be found in Fulton and Cox–Little–Schenck, and I encourage you to try whichever ones appeal to you.

Theory

(1) Given a cone $\sigma \subseteq N_{\mathbb{R}}$ prove that the double dual recovers the original cone:

$$(\sigma^{\vee})^{\vee} = \sigma.$$

This justifies the use of the word "dual".

- (2) Given a cone $\sigma \subseteq N_{\mathbb{R}}$ prove that σ is full-dimensional¹ if and only if σ^{\vee} is strictly convex.
- (3) Let Σ and Σ' be fans in vector spaces $N_{\mathbb{R}}$ and $N'_{\mathbb{R}}$. Work out for yourself the correct definition of the product fan $\Sigma \times \Sigma'$ in $N_{\mathbb{R}} \oplus N_{\mathbb{R}}$. Show that there is a natural isomorphism:

$$X_{\Sigma \times \Sigma'} \cong X_{\Sigma} \times X_{\Sigma'}.^2$$

"The construction of a toric variety from a fan commutes with products."

- (4) In lectures, we claimed that the toric variety X_{σ} is smooth if and only if σ is generated by a subset of a \mathbb{Z} -basis for N. Complete the proof of this statement. Give an example to show that if σ is generated by a subset of a \mathbb{Q} -basis then X_{σ} need not be smooth.
- (5) Let X be a not-necessarily normal toric variety with dense torus T. Recall that we partitioned the lattice $N = \operatorname{Hom}_{\operatorname{AlgGp}}(\mathbb{C}^*, T)$ of T based on the limits of oneparameter subgroups of T inside X. If X were normal, this would give the fan of X and therefore determine X uniquely. Give examples to show that, without the normality assumption, this data does not uniquely determine X.

¹The span of σ is the smallest vector subspace $V \subseteq N_{\mathbb{R}}$ containing σ . It can be defined as $V = \sigma + (-\sigma)$. By definition σ is full-dimensional if and only if $V = N_{\mathbb{R}}$.

²As always, product of schemes means fibre product over the ground field: $X_{\Sigma} \times_{\text{Spec } \mathbb{C}} X'_{\Sigma}$. For obvious reasons, we usually omit the Spec \mathbb{C} from the notation.

(6) Let $S \subseteq M$ be an affine semigroup. The *saturation* of S is defined to be:

 $S^{\text{sat}} = \{ m \in M : cm \in S \text{ for some } c \in \mathbb{Z}_{\geq 1} \}.$

Clearly S^{sat} is saturated, and S is saturated if and only if $S = S^{\text{sat}}$. Consider the inclusion

$$\mathbb{C}[S] \subseteq \mathbb{C}[S^{\text{sat}}].$$

Look up "integral closure" of an integral domain, and prove that $\mathbb{C}[S^{\text{sat}}]$ is the integral closure of $\mathbb{C}[S]$. The dual morphism is known as the normalisation of $\text{Spec} \mathbb{C}[S]$. In each of the following examples, write down equations in affine space for both $\text{Spec} \mathbb{C}[S]$ and its normalisation $\text{Spec} \mathbb{C}[S^{\text{sat}}]$, and study the morphism between them:

$$\begin{array}{ll} \text{(a)} & S=2\mathbb{N}+3\mathbb{N}\subseteq\mathbb{Z},\\ \text{(b)} & S=(1,1)\mathbb{N}+(1,0)\mathbb{N}+(0,2)\mathbb{N}\subseteq\mathbb{Z}^2. \end{array} \end{array}$$

Practice

- (1) Consider the following 3 cones in \mathbb{R}^2 :
 - $\sigma_1 = \text{Cone}((1,0), (1,1))$
 - $\sigma_2 = \text{Cone}((1,1), (0,1))$
 - $\tau = \operatorname{Cone}\langle (1,1) \rangle$

These cones (together with their faces) assemble to form a fan Σ . Express the resulting toric variety X_{Σ} as a gluing of two affine spaces. Using this description, express X_{Σ} as a closed subvariety of $\mathbb{C}^2 \times \mathbb{P}^1$. Study the composite morphism $X_{\Sigma} \to \mathbb{C}^2 \times \mathbb{P}^1 \to \mathbb{C}^2$. What do its fibres look like?

- (2) Give an explicit construction of the toric variety $\mathbb{P}^2 \times \mathbb{P}^1$ from a fan you should describe each affine toric open subset X_{σ} , the gluing morphisms, and why the resulting toric variety is $\mathbb{P}^2 \times \mathbb{P}^1$.
- (3) Consider the fan Σ in \mathbb{R}^2 whose rays are generated by (1,0), (0,1) and (-1,-1) and which *does not* have any 2-dimensional cones. Describe the toric variety X_{Σ} explicitly. Calculate the Euler characteristic³ of the topological space $X_{\Sigma}^{\text{an},4}$
- (4) Give an example of a toric variety X of dimension 3 (a toric threefold) and a point $x \in X$ such that the tangent space $T_x X$ at this point has dimension 4. Are there any restrictions on the dimension of the tangent space of a point on a toric threefold?
- (5) (Hirzebruch surfaces.) Let Σ_r be the fan in \mathbb{R}^2 whose rays are given by

$$(1,0), (0,1), (-1,r), (0,-1)$$

³If you are confused by this, first calculate the Euler characteristic of \mathbb{P}^2 by giving it a cell decomposition. ⁴X_{\Sigma}^{an} means X_{\Sigma} with the "usual" i.e. Euclidean topology, as opposed to the Zariski topology. The Euclidean topology is defined locally be embedding each affine open set in \mathbb{C}^n and restricting the Euclidean topology on \mathbb{C}^n . These agree on overlaps, hence glue to give a topology on X_{Σ}^{an} .

$$Cone\langle (1,0), (0,1) \rangle,$$

$$Cone\langle (0,1), (-1,r) \rangle,$$

$$Cone\langle (-1,r), (0,-1) \rangle,$$

$$Cone\langle (0,-1), (1,0) \rangle.$$

Show that $X_r = X_{\Sigma_r}$ admits a morphism to \mathbb{P}^1 such that every fibre is isomorphic to \mathbb{P}^1 (so X_r is a \mathbb{P}^1 -bundle over \mathbb{P}^1).

Soft bonus question: can you see a "shadow" of this morphism in a morphism from the fan of X_r to the fan of \mathbb{P}^1 ? (We haven't defined morphisms of fans yet, but we will. In the meantime, see if you can work out what the definition should be.)

- (6) Give an example of a morphism of smooth toric varieties $X \to \mathbb{C}^2$ such that the fibre over (0,0) in \mathbb{C}^2 is singular.
- (7) Recall that $\mathcal{O}_{\mathbb{P}^1}(-1)$ is a line bundle on \mathbb{P}^1 whose fibre over a point is the line in \mathbb{C}^2 associated to that point. Prove that the total space of this bundle $\operatorname{Tot}(\mathcal{O}_{\mathbb{P}^1}(-1))$ is a 2-dimensional toric variety⁵ and draw its fan. Prove that there is an open embedding of $\operatorname{Tot}(\mathcal{O}_{\mathbb{P}^1}(1))$ into the Hirzebruch surface X_1 .

We will see later that the X_r are all compact, so X_1 is a compactification of the total space of this bundle.

⁵Hint: try to find equations for $Tot(\mathcal{O}_{\mathbb{P}^1}(-1))$ inside a simple ambient variety.