PART III TORIC GEOMETRY (LENT 2022) EXAMPLE SHEET 1

Notes: As always, we fix a lattice N which gives rise to a dual lattice $M=\operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$ and an associated algebraic torus $T=\operatorname{Spec} \mathbb{C}[M]$. Unless stated otherwise, "cone" means "strictly convex rational polyhedral cone" and "toric variety" means "normal toric variety". There are loads more exercises to be found in Fulton and Cox-Little-Schenck, and I encourage you to try whichever ones appeal to you.

Theory

(1) Given a cone $\sigma \subseteq N_{\mathbb{R}}$ prove that the double dual recovers the original cone:

$$
\left(\sigma^{\vee}\right)^{\vee}=\sigma
$$

This justifies the use of the word "dual".
(2) Given a cone $\sigma \subseteq N_{\mathbb{R}}$ prove that σ is full-dimensional ${ }^{1}$ if and only if σ^{\vee} is strictly convex.
(3) Let Σ and Σ^{\prime} be fans in vector spaces $N_{\mathbb{R}}$ and $N_{\mathbb{R}}^{\prime}$. Work out for yourself the correct definition of the product fan $\Sigma \times \Sigma^{\prime}$ in $N_{\mathbb{R}} \oplus N_{\mathbb{R}}$. Show that there is a natural isomorphism:

$$
X_{\Sigma \times \Sigma^{\prime}} \cong X_{\Sigma} \times X_{\Sigma^{\prime}} \cdot{ }^{2}
$$

"The construction of a toric variety from a fan commutes with products."
(4) In lectures, we claimed that the toric variety X_{σ} is smooth if and only if σ is generated by a subset of a \mathbb{Z}-basis for N. Complete the proof of this statement. Give an example to show that if σ is generated by a subset of a \mathbb{Q}-basis then X_{σ} need not be smooth.
(5) Let X be a not-necessarily normal toric variety with dense torus T. Recall that we partitioned the lattice $N=\operatorname{Hom}_{\mathrm{AlgGp}}\left(\mathbb{C}^{\star}, T\right)$ of T based on the limits of oneparameter subgroups of T inside X. If X were normal, this would give the fan of X and therefore determine X uniquely. Give examples to show that, without the normality assumption, this data does not uniquely determine X.

[^0](6) Let $S \subseteq M$ be an affine semigroup. The saturation of S is defined to be:
$$
S^{\mathrm{sat}}=\left\{m \in M: c m \in S \text { for some } c \in \mathbb{Z}_{\geq 1}\right\}
$$

Clearly $S^{\text {sat }}$ is saturated, and S is saturated if and only if $S=S^{\text {sat }}$. Consider the inclusion

$$
\mathbb{C}[S] \subseteq \mathbb{C}\left[S^{\mathrm{sat}}\right]
$$

Look up "integral closure" of an integral domain, and prove that $\mathbb{C}\left[S^{\text {sat }}\right]$ is the integral closure of $\mathbb{C}[S]$. The dual morphism is known as the normalisation of Spec $\mathbb{C}[S]$. In each of the following examples, write down equations in affine space for both Spec $\mathbb{C}[S]$ and its normalisation Spec $\mathbb{C}\left[S^{\text {sat }}\right]$, and study the morphism between them:
(a) $S=2 \mathbb{N}+3 \mathbb{N} \subseteq \mathbb{Z}$,
(b) $S=(1,1) \mathbb{N}+(1,0) \mathbb{N}+(0,2) \mathbb{N} \subseteq \mathbb{Z}^{2}$.

Practice

(1) Consider the following 3 cones in \mathbb{R}^{2} :

- $\sigma_{1}=\operatorname{Cone}\langle(1,0),(1,1)\rangle$
- $\sigma_{2}=\operatorname{Cone}\langle(1,1),(0,1)\rangle$
- $\tau=\operatorname{Cone}\langle(1,1)\rangle$

These cones (together with their faces) assemble to form a fan Σ. Express the resulting toric variety X_{Σ} as a gluing of two affine spaces. Using this description, express X_{Σ} as a closed subvariety of $\mathbb{C}^{2} \times \mathbb{P}^{1}$. Study the composite morphism $X_{\Sigma} \rightarrow \mathbb{C}^{2} \times \mathbb{P}^{1} \rightarrow \mathbb{C}^{2}$. What do its fibres look like?
(2) Give an explicit construction of the toric variety $\mathbb{P}^{2} \times \mathbb{P}^{1}$ from a fan - you should describe each affine toric open subset X_{σ}, the gluing morphisms, and why the resulting toric variety is $\mathbb{P}^{2} \times \mathbb{P}^{1}$.
(3) Consider the fan Σ in \mathbb{R}^{2} whose rays are generated by $(1,0),(0,1)$ and $(-1,-1)$ and which does not have any 2-dimensional cones. Describe the toric variety X_{Σ} explicitly. Calculate the Euler characteristic ${ }^{3}$ of the topological space $X_{\Sigma}^{\text {an }}{ }^{4}$
(4) Give an example of a toric variety X of dimension 3 (a toric threefold) and a point $x \in X$ such that the tangent space $T_{x} X$ at this point has dimension 4. Are there any restrictions on the dimension of the tangent space of a point on a toric threefold?
(5) (Hirzebruch surfaces.) Let Σ_{r} be the fan in \mathbb{R}^{2} whose rays are given by

$$
(1,0),(0,1),(-1, r),(0,-1)
$$

[^1]for r a non-negative integer, and whose two-dimensional cones are spanned by adjacent pairs of vectors, i.e:
\[

$$
\begin{aligned}
& \text { Cone }\langle(1,0),(0,1)\rangle \text {, } \\
& \text { Cone }\langle(0,1),(-1, r)\rangle \text {, } \\
& \text { Cone }\langle(-1, r),(0,-1)\rangle \text {, } \\
& \text { Cone }\langle(0,-1),(1,0)\rangle \text {. }
\end{aligned}
$$
\]

Show that $X_{r}=X_{\Sigma_{r}}$ admits a morphism to \mathbb{P}^{1} such that every fibre is isomorphic to \mathbb{P}^{1} (so X_{r} is a \mathbb{P}^{1}-bundle over \mathbb{P}^{1}).

Soft bonus question: can you see a "shadow" of this morphism in a morphism from the fan of X_{r} to the fan of \mathbb{P}^{1} ? (We haven't defined morphisms of fans yet, but we will. In the meantime, see if you can work out what the definition should be.)
(6) Give an example of a morphism of smooth toric varieties $X \rightarrow \mathbb{C}^{2}$ such that the fibre over $(0,0)$ in \mathbb{C}^{2} is singular.
(7) Recall that $\mathcal{O}_{\mathbb{P}^{1}}(-1)$ is a line bundle on \mathbb{P}^{1} whose fibre over a point is the line in \mathbb{C}^{2} associated to that point. Prove that the total space of this bundle $\operatorname{Tot}\left(\mathcal{O}_{\mathbb{P}^{1}}(-1)\right)$ is a 2 -dimensional toric variety ${ }^{5}$ and draw its fan. Prove that there is an open embedding of $\operatorname{Tot}\left(\mathcal{O}_{\mathbb{P}^{1}}(1)\right)$ into the Hirzebruch surface X_{1}.

We will see later that the X_{r} are all compact, so X_{1} is a compactification of the total space of this bundle.

[^2]
[^0]: ${ }^{1}$ The span of σ is the smallest vector subspace $V \subseteq N_{\mathbb{R}}$ containing σ. It can be defined as $V=\sigma+(-\sigma)$. By definition σ is full-dimensional if and only if $V=N_{\mathbb{R}}$.
 ${ }^{2}$ As always, product of schemes means fibre product over the ground field: $X_{\Sigma} \times_{\text {Spec } \mathbb{C}} X_{\Sigma}^{\prime}$. For obvious reasons, we usually omit the $\operatorname{Spec} \mathbb{C}$ from the notation.

[^1]: ${ }^{3}$ If you are confused by this, first calculate the Euler characteristic of \mathbb{P}^{2} by giving it a cell decomposition.
 ${ }^{4} X_{\Sigma}^{\text {an }}$ means X_{Σ} with the "usual" i.e. Euclidean topology, as opposed to the Zariski topology. The Euclidean topology is defined locally be embedding each affine open set in \mathbb{C}^{n} and restricting the Euclidean topology on \mathbb{C}^{n}. These agree on overlaps, hence glue to give a topology on $X_{\Sigma}^{\text {an }}$.

[^2]: ${ }^{5}$ Hint: try to find equations for $\operatorname{Tot}\left(\mathcal{O}_{\mathbb{P}^{1}}(-1)\right)$ inside a simple ambient variety.

