PART III TORIC GEOMETRY (LENT 2022) EXAMPLE SHEET 4

- 1. Read Section 2.5 of Fulton and complete the exercises. This leads you through a classification of smooth and proper toric surfaces.
- 2. Prove that every smooth proper toric surface is projective.
- 3. Read Section 2.6 of Fulton and prove the continued fraction expression given on page 46. This gives the self-intersection numbers of the exceptional divisors in the minimal resolution of a toric surface singularity.
- 4. Let Σ be a smooth and proper 2-dimensional fan. Let ρ be a ray given by the intersection of 2-dimension cones σ_1 and σ_2 . Form Σ^{\dagger} by blowing up $\sigma_1 \in \Sigma$ (i.e. take the star subdivision). Compare the Cartier divisor $D_{\rho} \subseteq X_{\Sigma^{\dagger}}$ to the pullback of the Cartier divisor $D_{\rho} \subseteq X_{\Sigma}$ (the former is the strict transform, the latter the total transform). How does the self intersection of D_{ρ} change under the blowup?
- 5. Let Σ be the fan of $\mathbb{P}^1 \times \mathbb{P}^1$ and let H_1 , H_2 be the invariant divisors corresponding to (1,0), (0,1). For strictly positive integers a, b, compute the polytopes P_D associated to the following divisors: (1) aH_1 , (2) $aH_1 + bH_2$. Which are basepoint-free and which are ample? Could you also have proved this without using the toric dictionary?
- 6. Let $f: X \to Y$ be a toric morphism between proper toric varieties. Prove that the pullback f^*L of a basepoint-free line bundle is basepoint-free. Show that the pullback of an ample line bundle need not be ample.
- 7. Let σ be the cone over a square, i.e. the cone in \mathbb{R}^3 generated by $e_3, e_1 + e_3, e_2 + e_3, e_1 + e_2 + e_3$. Let D_1, D_2, D_3, D_4 be the invariant divisors corresponding to the four rays. Give necessary and sufficient conditions for the following Weil divisor to be Cartier:

$$D = a_1 D_1 + a_2 D_2 + a_3 D_3 + a_4 D_4.$$

- 8. Complete the exercise on page 71 of Fulton, giving an example of a smooth proper toric 3-fold which is not projective.
- 9. Prove that there exist smooth proper toric varieties of every dimension at least 3 which are not projective.
- 10. (*) Let X_{Σ} be a smooth projective toric variety and let $X_{\Sigma'}$ be the blowup of a toric stratum. Prove that $X_{\Sigma'}$ is also projective.
- 11. Work out the quotient description of each Hirzebruch surface \mathbb{F}_k . Hence prove that \mathbb{F}_k is a fibrewise compactification of the total space of the line bundle $\mathcal{O}_{\mathbb{P}^1}(k)$.

- 12. Calculate the rational cohomology groups and the ring structure for: \mathbb{P}^n , $\mathbb{P}^2 \times \mathbb{P}^2$, $\mathbb{P}^2 \times \mathbb{P}^1$ and the Hirzebruch surfaces \mathbb{F}_k . Interpret the answers geometrically, focusing especially on the ring structure.
- 13. (*) Let X_{Σ} be a toric variety and let φ be a strictly convex piecewise linear function giving rise to a projective embedding of X. Let τ be a cone of Σ . Give a combinatorial algorithm that describes the restriction of $\mathcal{O}_X(D_{\varphi})$ to the closed stratum $V(\tau)$.

Just for fun.

- A. (*) Let X be the surface obtained from \mathbb{P}^2 by blowing up three collinear points. Prove that X is not a toric variety.
- B. (*) There exist smooth proper toric varieties that admit no non-constant morphisms to projective space. The example was first constructed in 2005 by Payne in this paper https://arxiv.org/pdf/math/0501204.pdf. Study and summarise this example.
- C. (*) (Chow Lemma) Let X_{Σ} be a proper toric variety. Prove that there is a toric projective variety $X_{\Sigma'}$ birational to X_{Σ} via a toric morphism $X_{\Sigma'} \to X_{\Sigma}$.
- D. (\star) (Toric Nakai Criterion¹ for line bundles) Prove that if X is a complete toric variety and L is a line bundle, L is ample if and only if the degree of $L|_C$ is strictly positive for every irreducible boundary curve C.

¹The Nakai criterion holds more generally and is quite useful from time to time. Look it up.