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Introduction

A D-module is simply a module over a ring of differential operators, or more generally, a quasi coherent
sheaf of modules over a sheaf of differential operators. Given this, it is no surprise that they first appeared in
algebraic approaches to differential equations. The basic idea, dating back to B. Malgrange, is to associate a
module M over the ring of differential operators D to a system of differential equations with solutions in some
commutative ring of functions O. The solution space of such a system can then be interpreted as HomD(M,O).
This area of study truly took off with with M. Kashiwara’s master’s thesis, “Algebraic study of systems of partial
differential equations” [Kas97], in which he applied techniques such as this to the study of equations with analytic
coefficients.

Around the same time, I. N. Bernstein was developing the theory of modules over the Weyl algebra for
entirely different reasons. He was interested in answering an open question posed by I. M. Gelfand, namely
“what is the meaning of the complex power fs of a polynomial?” This can be stated more concretely in terms of
extending certain holomorphic functions on the upper half plane to meromorphic functions on all of C. The
first solutions to this question involved Hironaka’s resolutions of singularities, but Bernstein discovered a more
elementary answer involving the Weyl algebra and Bernstein-Sato polynomials, or b-functions [Ber72]. We
discuss a version of his lemma on b-functions in these notes.

It is somewhat remarkable that D-modules as a field of study emerged independently from two starkly
different starting points. Perhaps it was an early indication of the theory’s ubiquity. Today, D-modules remain
interesting due to a plethora of robust applications in fields as broad as mathematical physics, differential
equations, representation theory and even number theory .

Where We Are Headed

These notes are intended to provide a friendly introduction to D-modules. However, a modern account of this
theory requires some highly technical language, particularly from derived algebraic geometry and homological
algebra, which we intend to avoid. This poses a severe limitation, as many standard definitions hinge on the
use derived categories. It therefore becomes necessary to limit the scope of the discussion to avoid the most
technical language pervading the theory.

As suggested by the title of this essay, our primary setting will be that of smooth affine varieties. The “smooth”
hypothesis guarantees the existence of a so-called local coordinate system {xi, ∂i} on DX |U while the “affine”
hypothesis means these local coordinate systems actually exist globally. Our goal is to provide as detailed an
introduction to the basic theory of D-modules as possible while adhering to these two main assumptions. Ideally,
this essay will develop enough intuition and background to prepare the reader for a more thorough treatment
complete with homological and derived language. Luckily, much can be accomplished even in this restricted
setting, for D-modules are characterized by their local structure.

Section 1 deals entirely with rings and sheaves of differential operators. It aims to provide insight into what
is gained from the smooth and affine hypotheses and what is lost when they are omitted, and is hence longer
than strictly necessary for the other sections. Section 2 introduces D-modules, focusing primarily on the case
of the Weyl algebra. We discuss good filtrations, dimension, holonomy, and prove special cases of Bernstein’s
inequality and the lemma on b-functions. Section 3 is broadly about functoriality. It discusses pushforwards,
pullbacks, and the celebrated Kashiwara equivalence.

We drop the affine hypothesis to discuss certain elementary results concerning D-modules over general
smooth varieties where appropriate, but this is not our primary focus. Our approach is to first carefully develop
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the theory in the affine setting and then extend to the global case. Section 3 is the only exception, where we
instead make global definitions before specializing to the affine case. This section deals with pushing forward
and pulling back along a morphism φ : X −→ Y of varieties, and there is substantial value in developing the
vocabulary for such things in the global setting. We will, nonetheless, adopt two more major limitations to
avoid derived functors; namely, we define direct images only for right DX -modules along closed embeddings
ι : X ↪→ Y .

Discussion of References

As this essay is entirely expository, all of the material presented here can be found in some form elsewhere. We
focus exclusively on D-modules over smooth varieties with a heavy emphasis on the affine case. Such content
lives somewhere between Coutinho’s exposition on modules over the Weyl algebra [Cou95] and the book by
Hotta, Takeuchi, and Tanisaki [HTT08], and the influence of both books is felt strongly throughout. The first
chapter deals exclusively with rings and sheaves of differential operators, material largely inspired by online
notes from Jeffries [Jef20] and from Ginzburg [Gin98]. The latter source proved invaluable for our discussion
on good filtrations as well. Lecture notes by [Sch19] helped the author bridge the gap between the affine and
non-affine cases, particularly in Sections 2.4, 3.2 and 3.3. The books [MR01] by McConnell and Robson and
[BH93] by Bruns and Herzog were also helpful throughout Section 1.

5



1 Differential Operators

One must understand fields before one can define vectors spaces, and similarly one must understand the ring
of differential operators before one can study D-modules. In this section, we do exactly that. We first define
the ring of differential operators relative to an arbitrary ring homomorphism A −→ R and discuss some of its
basic properties before focusing on the case where A is a field and R a polynomial ring with coefficients in
A. This latter object will provide a more explicit setting and will motivate arguments in the general case. We
discuss several other examples of rings of differential operators, including in the case when R is not regular, and
conclude this section by defining the sheaf of differential operators over a smooth variety.

It is worth noting that there are several equivalent ways to define the ring of differential operators in
characteristic zero. We discuss three such definitions in the case of a polynomial ring over a field and show that
they are equivalent when char(K) = 0. These definitions will no longer coincide when char(K) > 0, however.

1.1 The Ring of Differential Operators over an Arbitrary Ring

Let A −→ R be a map of rings and let M and N be two R-modules. We may identify R with a subring of
EndR(M) via the map which sends an element f ∈ R to the R-linear map f̂ : m 7−→ f ·m onM . We denote the
image of f ∈ R in EndR(M) by f̂M when there is risk of confusing the domain of f̂ with some other module.
Given a morphism α ∈ HomR(M,N), we abuse notation and write [α, f̂ ] to mean α ◦ f̂M − f̂N ◦ α.

Definition 1.1. With A,R,M and N as above, we inductively define the collection of differential operators of
order k ∈ Z, denoted Dk

R/A(M,N), as follows:

• Dk
R/A(M,N) = 0 when k < 0

• Dk
R/A(M,N) =

{
α ∈ HomA(M,N)

∣∣∣ [α, f̂] ∈ Dk−1
R/A(M,N) for all f ∈ R

}
when k ≥ 0.

We set DR/A(M,N) =
⋃

k∈ZD
k
R/A(M,N).

This is sometimes known as the “coordinate-free” approach to differential operators, and was first introduced
by Grothendieck.

Remark 1.2. It is worth noting that α ∈ DR/A(M,N) satisfies [α, f̂ ] = 0 ∈ D−1R/A(M,N) exactly when α is
R-linear, hence D0

R/A(M,N) = HomR(M,N). Many sources, [Gin98] and [Ber] for instance, simply define
D0

R/A(M,N) = HomR(M,N) and proceed inductively from there.

Example 1.3. As a first example, suppose K is a field and R is a module finite K-algebra. Once we fix a basis
for R, for any f ∈ R the operator f̂ is simply the diagonal matrix fI , where I is the identity matrix. Any other
map P ∈ HomK(R,R), interpreted as a matrix, then satisfies

P ◦ f̂ = P · fI = fI · P = f̂ ◦ P,

hence [P, f̂ ] = 0 and P ∈ D0
R. It then follows that DR = HomK(R,R).

We will see far more interesting examples later in section 1.2 and 1.3, but first we lay out some of the basis
structure of rings of differential operators in general. The following lemma is elementary but nonetheless quite
important:
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Lemma 1.4. For each k ∈ Z we have an inclusion Dk−1
R/A(M,N) ⊆ Dk

R/A(M,N). Furthermore, Dk
R/A(M,N)

is a left R-module under the action fα 7−→ f̂ ◦ α and a right R-module under the action αf 7−→ α ◦ f̂ . This
particularly implies that RR/A(M,N) is a left and right R-module under these same actions.

Proof: Both claims are proved inductively. The first is clear: the base case follows from the simple fact that
D−1R/A(M,N) = 0 ⊆ D0

R/A(M,N), and if α ∈ Dk−1
R/A(M,N) then [α, f̂ ] ∈ Dk−2

R/A(M,N) for any f ∈ R by
definition. The inductive hypothesis then implies that [α, f̂ ] ∈ Dk−1

R/A(M,N), and hence α ∈ Dk
R/A(M,N).

For the second claim, note first that HomA(M,N) is an R-module by maps R −→ HomR(M,N) −→
HomA(M,N), and since Dk

R/A(M,N) ⊆ HomA(M,N), it suffices to show that Dk
R/A(M,N) is closed

under addition and multiplication byR. Our base case is done by Remark 1.2: D0
R/A(M,N) = HomR(M,R).

Suppose then that Dm
R/A(M,N) is a left R-module for each m < k and note that for any two f, g ∈ R

the associated module endomorphisms commute by the commutativity of R, i.e. f̂ ĝ = ĝf̂ . Fix α, β ∈
Dk

R/A(M,N) and a, b ∈ R. For any other f ∈ R we have

[âα+ b̂β, f̂ ] = (âα+ b̂β)f̂ − f̂(âα+ b̂β)

= âαf̂ − âf̂α+ b̂βf̂ − b̂f̂β

= â[α, f̂ ] + b̂[β, f̂ ].

Both â[α, f̂ ] and b̂[β, f̂ ] are elements of the left R-module Dk−1
R/A(M,N), hence so is their sum. The proof

that Dk
R/A(M,N) is a right R-module is similar.

Notation 1.5.

• We write DR/A(M) for DR/A(M,M) when M = N . As we shall see in Corollay 1.8, DR/A(M) is a
ring under pointwise-addition and composition and is called the ring of differential operators over M .
Given two operators α, β ∈ DR/A(M) we often drop the composition symbol and write αβ to mean α ◦ β.

• When R =M = N , we simply write DR/A, or when there is no risk of ambiguity, DR.

We will be primarily interested in DR for a K-algebra R and will often write simply DR. Some authors use this
to denote the ring of differential operators with respect to the unique map Z −→ R, but we never consider this
case.

It will be useful to establish some basic commutator relations. These have nothing to do with differential
operators but will used extensively in later sections, often without comment.

Proposition 1.6. Let A be a (not necessarily commutative) ring, M a left A-module and α, β, γ ∈ EndA(M)

A-linear maps on M . Then

(a) [α, β + γ] = [α, β] + [α, γ] and [α+ β, γ] = [α, γ] + [β, γ]

(b) [f̂α, β] = [α, f̂β] = f̂ [α, β] for f ∈ A

(c) [α, β] = −[β, α]

(d) [αβ, γ] = α[β, γ] + [α, γ]β and [α, βγ] = [α, β]γ + β[α, γ].

(e) [α, [β, γ]] + [β, [γ, α]] + [γ, [α, β]] = 0 (Jacobi identity).
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Proof: These are all straightforward computations. Identity (e) is perhaps slightly confusing, the left hand
side is

α(βγ − γβ)− (βγ − γβ)α+ β(γα− αγ) + (γα− αγ)β + γ(αβ − βα)− (αβ − βα)γ,

and all terms cancel once the expression is fully expanded.

1.1.1 Order of Differential Operators

Fix a commutative ring map A −→ R. A differential operator D ∈ DR/A(M) is said to be of order k if
D ∈ Dk

R/A(M) but D ̸∈ Dk−1
R/A(M). As the operator 0 is contained in Dk

R/A for every k ∈ Z, we say the order
of 0 is −∞. Here, we describe how order interacts with composition, addition, and commutation. Throughout
this section A −→ R is a map of commutative rings and M is an R-module.

Proposition 1.7. Suppose α ∈ Dm
R/A(M) and β ∈ Dn

R/A(M). The following hold:

(a) α+ β ∈ Dd
R/A(M) where d = max{m,n}

(b) αβ ∈ Dm+n
R/A (M)

(c) [α, β] ∈ Dm+n−1
R/A (M).

Proof: Part (a) follows immediately from Lemma 1.4. We prove (b) and (c) simultaneously by induction on
m + n. The base case is clear, for when m + n = 0 we have αβ ∈ HomR(R,R). Suppose then that both
(b) and (c) hold for m+ n < k for some positive integer k. Fix f ∈ R and let m+ n = k. By the inductive
hypothesis we then have that α[β, f̂ ] and [α, f̂ ]β are in Dm+n−1

R/A (M), and hence

[αβ, f̂ ] = α[β, f̂ ] + [α, f̂ ]β ∈ Dm+n−1
R/A (M)

by Proposition 1.6 (d). This proves (b).
Rearranging the terms of the Jacobi identity, we have that[

[α, β], f̂
]
=
[
α, [β, f̂ ]

]
+
[
β, [f̂ , α]

]
.

The inductive hypothesis tells us that the rightmost terms are elements ofDm+n−2
R/A (M), hence so is

[
[α, β], f̂

]
.

This proves (c).

This proposition yields some basic facts regarding the structure of DR/A(M).

Corollary 1.8. Let A −→ R be a map of commutative rings. Then DR/A(M) is a ring and the graded ring

SR/A(M) :=
⊕
k∈N

Sk
R/A(M); Sk

R/A(M) = Dk
R/A(M)/Dk−1

R/A(M)

is commutative. We call SR/A(M) the graded ring associated to DR/A(M) and discuss it further in Section 2.

Proof: For any two α, β ∈ DR/A(M), αβ ∈ DR/A(M) by Proposition 1.7 (b), hence DR/A(M) is a subring
of EndA(M).

We identify Sk
R/A(M) with its image under inclusion Sk

R/A(M) −→ SR/A(M) and let α denote the image
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of α ∈ Dk
R/A(M) in Sk

R/A(M). For α ∈ Dm
R/A(M) and β ∈ Dn

R/A(M), we have [α, β] ∈ Dm+n−1
R/A (M) by

Proposition 1.7 (c), hence αβ − βα = [α, β] = 0. Since every element of SR/A(M) can be written as a sum
of finitely many α, we are done.

1.1.2 Derivations

As of yet there has been no reason to restrict our generality, but now, we focus our attention exclusively
on rings of differential operators of the form DR/A. We already understand operators of order 0; since
D0

R/A = HomR(R,R) ∼= R, they’re simply the operators of the form f̂ for some f ∈ R. In this section we seek
to understand the operators of order 1 as well, i.e. the R-module D1

R/A.
Recall that an A-derivation of R is an A-linear map d : R −→ R such that d(ab) = ad(b) + d(a)b for all

a, b ∈ R. Note that d(1) = d(1 · 1) = d(1)− d(1) = 0. Further notice that for any derivation d ∈ DerA(R) and
f, r ∈ R,

[d, f̂ ](r) = d
(
f̂(r)

)
− f̂ (d(r)) = d(fr)− fd(r) = d(f)r.

This means that [d, f̂ ] is simply d̂(f) ∈ D0
R/A as a map on R, hence we have an inclusion ι : DerA(R) ↪→ D1

R/A.
Let’s now consider an arbitrary element α ∈ D1

R/A. The map α′ = α− α̂(1) is also an order 1 operator by
Lemma 1.4; in fact, it’s a derivation. Indeed, it is A-linear by virtue of its membership to D1

R/A and for any
r, s ∈ R we have

α′(rs) = α′r̂(s) = (r̂α′)(s) + α̂′(r)(s) = rα′(s) + α′(r)s

since [α′, r̂] = α′(r).
Consider then the map φ : D1

R/A −→ DerA(R) defined φ(α) = α− α̂(1). It is A-linear, and since α(1) = 0

for any derivation α, φ ◦ ι is the identity on DerA(R). This means the short exact sequence

0 −→ kerφ −→ D1
R/A

φ−−→ DerR(A) −→ 0

splits, giving us an isomorphism D1
R/A

∼= kerφ⊕DerR(A). However, φ(α) = 0 precisely when α = α̂(1), i.e.
when α ∈ D0

R/A
∼= HomR(R,R) ∼= R. The results of this discussion are summarized in the proposition below.

Proposition 1.9. Let A −→ R be a map of commutative rings. Then D1
R/A

∼= R⊕DerA(R) as A-modules via
the map which sends (f, d) ∈ R⊕DerA(R) to f̂ + d. □

It is important to note that there is a more functorial way to define derivations. Given an A-algebra R, we
first define the multiplication mapR⊗AR −→ R given by x⊗ y 7−→ xy. The kernel of this map is denoted ∆R/A

and is generated by elements of the form r ⊗ 1− 1⊗ r:

∆R/A = ⟨{r ⊗ 1− 1⊗ r | r ∈ R}⟩ = ker(R⊗A R
mult−−−−→ R). (1)

We use this to define the module of Kähler differentials.

Definition 1.10. Let R be an A-algebra. The module of A-linear Kähler differentials is

ΩR/A = ∆R/A/∆
2
R/A.

It comes equipped with a derivation d : R −→ ΩR/A called the universal derivation:

d(r) = r ⊗ 1− 1⊗ r + ∆2
R/A.
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Hartshorne defines ΩR/A to be the R-module, unique up to isomorphism, equipped with an A-derivation
d : R −→ ΩR/A such that for any other A-derivation d′ : R −→ M there exists a unique R-module map
f : ΩR/A −→M with d′ = f ◦ d. This is equivalent to the definition given above. Defining ΩR/A via a universal
property does make the following characterization of DerA(R) immediately evident, however:

Proposition 1.11. Let M be an R-module. There exists an isomorphism of R-modules

HomR(ΩR/A,M) ∼= DerA(M)

given by composing a map f : ΩR/A −→ M with the universal derivation d : R −→ ΩR/A. Hence the functor
M 7−→ DerA(M) is represented by ΩR/A.

In other words, ΩR/A represents the functor DerA(−).

1.1.3 Derivation Examples

Proposition 1.9 tells us that to understand D1
R/A it suffices to understand DerA(R). Here, we explicitly

describe the module DerA(R) for specific rings R.

Example 1.12. Let K be a field of characteristic zero and R = K[x1, ..., xn] be a polynomial ring over K. By
the product rule, the K-linear maps ∂xi

(1 ≤ i ≤ n) each of which sends a polynomial f to its partial derivative
in xi are derivations. Any other derivation α ∈ DerK(R) satisfies

α(xki ) = kxk−1i α(xi) = ∂xi
(x

ki
i )α(xi).

This means that for a monomial xk11 ...x
kn
n we have

α
(
x
k1
1 ...x

kn
n

)
= α(x

k1
1 )x

k2
2 ...x

kn
n + x

k1
1 α(x

k2
2 ...x

kn
n )

= α(x1)∂x1
(x

k1
1 ...x

kn
n ) + x

k1
1

(
α(x

k2
2 )x

k3
3 ...x

kn
n + x

k2
2 α(x

k3
3 ...x

kn
n )
)

...

= α(x1)∂x1
(x

k1
1 ...x

kn
n ) + ... + α(xn)∂xk1

1 ...x
kn
n
.

Since monomials form a basis overK forR, we get that α = α(x1)∂x1
+ ... + α(xn)∂xn

. Hence {∂x1
, ..., ∂xn

}
generates DerK(R) as a R-module. In particular, DerK(R) is a free-module over R of rank n.

Example 1.13. As before, let K be a field of characteristic zero. Consider the ring R = K[t2, t3], noting that
R ∼= K[x, y]/J for J = (y2 − x3) via the map x 7−→ t2 and y 7−→ t3. As we will see, DerK(R) is generated by
t∂t and t2∂t.

First consider the derivations D1 = 2y∂x + 3x2∂y and D2 = 3y∂y + 2x∂x on K[x, y]. These are also
derivations on K[x, y]/J since D1(J), D2(J) ⊆ J , and in fact, we will show they generate DerK (K[x, y]/J)

as aK[x, y]/J-module. Any other derivation α onK[x, y]/J can be written as α = f1∂x+f2∂y by the previous
example with the extra requirement that α(J) ⊆ J . This is equivalent to the condition

−3x2f1 + 2yf2 = u(y2 − x3) (2)

for some polynomial u ∈ K[x, y]. Notice that f1 cannot have a constant term, if it did, the LHS of equation (2)
would have a nonzero x2 summand while the RHS would not. This means f1 may have only terms of degree 1
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or higher, hence we may write f1 = 2(yg + xh) for some g, h ∈ K[x, y]. Plugging this into equation (2) and
rearranging yields

2yf2 = u(y2 − x3) + 6x2yg + 6x3h

and substituting u′ = u− 6(y2 − x3)h gives

2yf2 = u′(y2 − x3) + 6x2yg + 6x3h+ 6(y2 − x3)h = u′(y2 − x3) + 6x2yg + 6y2h.

The LHS of this equation is divisible by y so the RHS must be as well, implying v = u
′

2y ∈ K[x, y]. Hence
f2 = v(y2 − x3) + 3x2g + 3yh. We then get

α = f1∂x + f2∂y = 2(yg + xh)∂x +
(
v(y2 − x3) + 3x2g + 3yh

)
∂y

= g(2y∂x + 3x2∂y) + h(2x∂x + 3y∂y) + v(y2 − x3)∂y

= gD1 + hD2 + v(y2 − x3)∂y.

Since v(y2 − x3)∂y is the trivial derivation on K[x, y]/J , the above shows that α is in the K[x, y]/J-span of
D1 and D2. Finally, for an arbitrary f ∈ R we have

t∂t(f) = t · ∂f
∂x

dx

dt
+ t · ∂f

∂y

dy

dt
= 2t2

∂f

∂x
+ 3t3

∂f

∂y
= (2x∂x + 3y∂y)(f) = D2(f)

and

t2∂t(f) = t2 · ∂f
∂x

dx

dt
+ t2 · ∂f

∂y

dy

dt
= 2t3

∂f

∂x
+ 3t4

∂f

∂y
= (2y∂x + 3x2∂y)(f) = D1(f)

by the chain rule.

1.2 The Weyl Algebras

Throughout this section A = K and R = K[x1, ..., xn], where K is a field. We call the ring DR the nth

Weyl Algebra, and it was one of the earliest rings of differential operators to be studied in detail. It first appeared
as Dirac’s quantum algebra, which consists of polynomial expressions in variables p and q subject to the relation
pq− qp = 1. Weyl algebras admit tractable, explicit descriptions in terms of generators and relations and thereby
serve as a fantastic source of examples. They also provide a good starting point for newcomers seeking to develop
intuition.

Our first aim in this section is to show the three main presentations of the nth Weyl algebra are equivalent.

Theorem 1.14. (Definition) Let K be a field of characteristic 0 and let R = K[x1, ..., xn]. The following are
isomorphic modules.

• The K-subalgebra An(K) ⊆ EndK(R) generated by the maps x̂i and ∂xi
= ∂

∂xi
. We will often omit the

K from this notation when there is no risk of ambiguity and simply write An.

• The K-algebra Dn defined to be the free K-algebra in the 2n-variables y1, ..., y2n modulo the ideal J ,
where multiplication is given by concatenation on monomials and J is generated by all the elements of the
form [yi+n, yi]− 1 for 1 ≤ i ≤ n or [ya, yb] for a ̸≡ b mod n, 1 ≤ a, b ≤ 2n.
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• The ring of differential operators DR.

Before we prove this, we need to understand some basic facts about the module An.

Lemma 1.15. The generators of An satisfy the following relations:

[∂xi
, x̂j ] = δij , [∂xi

, ∂xj
] = [x̂i, x̂j ] = 0

where δij is the Kronecker delta function. Furthermore, for f ∈ R,

[∂xi
, f̂ ] =

∂̂f

∂xi
.

Proof: For any polynomial f (and more generally, any differentiable function) we have

∂xi
x̂j(f) = ∂xi

(xj · f) = ∂xi
(xj) · f + xj · ∂xi

(f)

from the product. Since ∂xi
(xj) = δij and xj · ∂xi

(f) = x̂j∂xi
(f), rearranging the above yields the first

relation.
Differentiation is K-linear, so it suffices to prove ∂xi

∂xj
(f) = ∂xj

∂xj
(f) for a monomial f . This is clear

from the power rule. The fact [x̂i, x̂j ] = 0 is a consequence of the commutativity of xi and xj in R.
Finally, for the final property it once again suffices to prove [∂xi

, f̂ ] = ∂f
∂xi

for monic monomials. We first
show it holds for f = xmi . The relation [∂xi

, x̂1] = 1 serves as the base case, so suppose it holds for all m < k.
Then

∂xi
x̂ki = (∂xi

x̂i)x̂
k−1
i = (1 + x̂i∂xi

)x̂k−1i = x̂k−1i + x̂i∂xi
x̂k−1i .

The inductive hypothesis implies ∂xi
x̂k−1i = (k − 1)x̂k−1i + x̂k−1i ∂xi

, so after rearranging the above and
combining like terms we have exactly that [∂xi

, x̂ki ] = kx̂k−1i .
For an arbitrary monic monomial xm1

1 ...xmn
n we have that

[∂xi
, x̂

m1
1 ...x̂mn

n ] = x̂
m1
1 ...x̂

mi−1

i−1 [∂xi
, x

mi
i ]x̂m+1

i+1 ...x̂
mn
n

by repeated use of Proposition 1.6 (d). This reduces to

[∂xi
, x̂

m1
1 ...x̂mn

n ] = mi · x̂
m1
1 ...x̂

mi−1
i ...x̂mn

n

by what we have already proven.

Remark 1.16. It is worth saying a few words about our choice of notation. Most authors simply write “f” to
refer interchangeably to f ∈ R and its image in DR/A(M). This is reasonable, especially since the R-action
on DR/A(M) is given by the inclusion R ↪→ DR/A(M). Nonetheless, we prefer to distinguish between an
element f ∈ R and its image in DR/A(M) due to the notational similarity between ∂xi

f̂ and ∂xi
(f). There exist

abundant opportunities for confusion; for example, ∂x(x) = 1 ∈ K[x] whereas ∂xx̂ = 1 + x̂∂x ̸= 1 ∈ A1.

We now construct a basis for the Weyl algebra, a basis known as the canonical basis.

Lemma 1.17. The set B = {x̂α∂β | α, β ∈ Nn} is a basis for An as a K-vector space. By x̂α we mean the
operator x̂α1

1 · ... · x̂αn
n , and the degree of this monomial is the length of α defined |α| = α1 + ...+ αn.

12



Proof: By definition, An is generated by monomials in ∂xi
and x̂j for i and j ranging between 1 and n. Using

the fact that ∂xi
x̂i − x̂i∂xi

= ∂̂f
∂xi

from Lemma 1.15 we can move all x̂j terms to the left of all ∂i terms, so it is
clear that B spans An.

We now show that B is linearly independent. Suppose that

D =
m∑
i=1

cix̂
αi∂βi .

We call this summation the canonical form of D ∈ An and show that D = 0 if and only if ci = 0 for each
1 ≤ i ≤ m. Assume without loss of generality that ci ̸= 0 for all 1 ≤ i ≤ m and (αi, βj) = (αj , βj) if and only
if i = j; that is, make m as small as possible. Let βℓ be the multi-index such that |βℓ| = min{|β1|, ..., |βm|}.
By repeated use of the power law we get that

∂βℓ(xβℓ) = βℓ! ̸= 0

where β! = β1! · ... · βn! for β ∈ Nn, but that ∂βi(xβℓ) = 0 for all |βi| > |βℓ|. It is possible that ∂βℓ appears
multiple times in the above summation. For simplicity, set λ = βℓ! and let {α′1, ..., α

′
k} be the (necessarily

distinct) multi-indices such that x̂α
′
i∂βℓ appears with nonzero coefficient in the canonical form of D. Likewise

let c′i be the coefficient of x̂α
′
i∂βℓ appearing in the canonical form of D. Then

D(xβℓ) =
k∑

i=1

c′ix̂
α
′
i∂βℓ(xβℓ) = λ

(
c′1x

α
′
1 + ...+ c′kx

α
′
k

)
.

Since the α′i are pairwise distinct, the above polynomial is nonzero and D ̸= 0. We conclude that D = 0 if
and only if ci = 0 and we conclude that B is linearly independent over K.

To illuminate the details of the above proof, let’s examine some examples of differential operators over a
polynomial ring in canonical form.

Example 1.18. Consider the first Weyl algebra DK[x], which is generated by x̂ and ∂. The following identities
hold:

(a) ∂mx̂ = x̂∂m +m · ∂m−1 and

(b) ∂ax̂b =
∑d

j=0 j!
(
a
j

)(
b
j

)
x̂b−j∂a−j .

These of course easily generalize toDR by replacing x̂ with x̂i and ∂ with ∂i. They are both proven via induction
and liberal use of the fact that [∂, x̂b] = bx̂b−1, but neither proof is particularly enlightening. It is perhaps more
useful to see an explicit computation for low values of a and b:

∂2x̂3 = ∂
(
∂x̂3

)
= ∂

(
x̂3∂ + 3x̂2

)
= x̂3∂2 + 6x̂2∂ + 6x̂

and how (b) can be used to compute the canonical form of operators in larger Weyl algebras, for instance in

13



DK[x,y]:

∂x∂
2
y x̂

3ŷ2 = ∂2xx̂
3 · ∂26 ŷ

2

=
(
x̂3∂x + 3x̂2

)(
ŷ2∂2 + 4ŷ∂y + 2

)
= x̂3ŷ∂x∂

2
y + 3x̂2ŷ2∂2y + 4x̂3ŷ∂x∂y + 12x̂2ŷ∂y + 2x̂3∂x + 6x̂2.

In the general setting of DR/A where A −→ R is an arbitrary map of rings, we have a notion of order. For the
ring of differential operators over a polynomial ring, the existence of the canonical basis gives us something
something better: a notion of degree. This doesn’t give us a graded structure, but it does recover some of the
properties of degree in a polynomial ring.

Let D ∈ An be an operator in canonical form. The degree of D, denoted deg(D), is the length |(α, β)| of
the largest multindex (α, β) ∈ Nn × Nn such that xα∂β appears with nonzero coefficient in the canonical form
of D. The following proposition should be compared to Proposition 1.7, and due to its similarity the proof is
omitted (Hint: as with many things in life, it suffices to check monomials).

Proposition 1.19 ([Cou95, Theorem 2.1.1.]). Let D,D′ ∈ An and assume char(K) = 0.

(a) deg(DD′) = deg(D) + deg(D′)

(b) deg(D +D′) ≤ max{deg(D), deg(D′)}

(c) deg[D,D′] ≤ deg(D) + deg(D′)− 2.

As deg(0) = −∞, an immediate corollary to part (a) of the above proposition is that An is a domain. We
can also use the proposition to prove the following theorem:

Theorem 1.20. The algebra An is simple.

Proof: Let I be a nonzero two-sided ideal of An and suppose D ∈ I is a nonzero operator. If deg(D) = 0,
then D ∈ K and I = An. If deg(D) = d > 0, then there must be some summand xα∂β with nonzero
coefficient and for which either α ̸= 0 or α ̸= 0. In the former case, suppose the αi component of α is nonzero.
Then [∂i, D] ̸= 0 and deg([∂i, D]) ≤ d − 1. Furthermore, since I is two-sided, [∂i, D] ∈ I . By replacing
D with [∂i, D] and repeating the above process, we can construct an element of degree 0 in I and hence
concludeI = An. A similar argument in which we instead consider [xi, D] works in the case that β ̸= 0.

Note that while An does not have any proper nontrivial two-sided ideals, it has many left and right ideals and
is by no means a division ring. Furthermore, the kernel of any map of nontrivial unital rings must necessarily be
a two-sided ideal, hence we have the following corollary.

Corollary 1.21. If ϕ : An −→ B is a map of unital rings then it is injective. □

We are now ready to prove Theorem 1.14.

Proof: (Theorem 1.14) We first show An
∼= Dn. Let K{y1, ..., y2n} denote the free algebra over K in

2n variables with multiplicative given by concatenation of monomials and let J ⊆ K{y1, ..., y2n} be the
ideal generated by all the elements of the form [yi+n, yi] − 1 for 1 ≤ i ≤ n or [ya, yb] for a ̸≡ b mod n,
1 ≤ a, b ≤ 2n. Note Dn = K{y1, ..., y2n}/J by definition.
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Define a map ψ : An −→ Dn by setting ψ(xα∂β) = y(α,β) + J , noting that it suffices to define ψ on
monomials in canonical form. A quick check shows that each of the relations on the generators of An given
in Lemma 1.15 are preserved by ψ, so it is indeed a map of rings. Using the relations given by J , the same
proof used in Lemma 1.17 can be used to show {yα,β + J}α,β⊆Nn is a basis for Dn, so it is clear that ψ is
surjective. Furthermore, ψ is a map of unital rings and is therefore injective by Corollary 1.21. Hence ψ is an
isomorphism.

We now wish to prove An
∼= DR. Denote by Ck the subset of An consisting of operators of degree at most

k. We use the following two facts without proof:

(i) If P ∈ DR and [P, x̂i] = 0 for each 1 ≤ i ≤ n, then P ∈ R ([Cou95, Lemma 3.2.1]).

(ii) Let P1, ..., Pn ∈ Cr−1 and assume that [Pi, xj ] = [Pj , xi] for all 1 ≤ i, j ≤ n. Then there existsQ ∈ Cr

such that Pi = [Q, xi], for i = 1, ..., n ([Cou95, Lemma 3.2.2]).

From Proposition 1.19 it is clear that Ck ⊆ Dk
R, so it suffices to prove the reverse inclusion. We proceed by

induction. Proposition 1.9 gives us the base case k = 1. Suppose then that Dr
R = Cr for all 0 ≤ r ≤ k − 1

and that P ∈ Dk
R. Let Pi = [P, x̂i] and note that Pi ∈ Dk−1

R by definition. Since x̂i and x̂j commute for all
1 ≤ i, j ≤ n we have

[Pi, xj ] = [[P, xi], xj ] = [[P, xj ], xi] = [Pj , xj ]

by the Jacobi identity. By fact (ii) above, there exists some Q ∈ Ck such that [Q, xi] = Pi for each 1 ≤ i ≤ n

and hence [Q− P, xi] = 0. Then Q− P ∈ R by fact (i) above, so P = Q+ f̂ for some f ∈ R. This means
P ∈ Ck, and we are done.

1.2.1 Difficulties in Prime Characteristic

Even at this early stage, when K is of positive characteristic p > 0 we can see major departures from
what we have shown. Consider A1 = K[x, ∂] ⊆ EndK(K[x]) for K = Fp. Let k be any positive integer and
consider the action ∂p on xk ∈ K[x]. If k < p, then ∂p(xk) = 0. If k ≥ p, then at least one of the integers
k − p+ 1, k − p+ 2, ..., k − 1, k is divisible by p, and hence

∂p(xk) = k(k − 1)(k − 2)...(k − p+ 1)xk−p = 0.

Since ∂p is zero on a basis for K[x], it is identically zero on all of K[x]. This means ∂ is a nilpotent element and
hence A1 is not a domain.

Now consider D1, the free algebra in x and ∂ over K modulo the relation [∂, x] = 1. In contrast to A1, this
ring is a domain since Proposition 1.19 still holds, so we no longer have A1

∼= D1. It is not clear that D1 is
preferable to A1 however, for there is another major departure from the characteristic zero world: Dn is not
simple. For example,

[∂, xp] = pxp−1 = 0,

from which it follows that D1 has a nontrivial center, a two-sided ideal.
Furthermore, in characteristic zero, not all operators can be written asR-linear combinations of compositions
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of derivations. Take for instance the operator α ∈ DR/Fp
when R = Fp[x] defined

xn 7−→

{(
n
p

)
xn−p if n ≥ p

0 otherwise
.

In characteristic zero, this operator is simply 1
p!∂

p, but in characteristic p > 0 it cannot be written as the
composition of smaller order operators.

To summarize, when working with rings of differential operators DR, it is necessary to fix either the
characteristic of K to be 0 or the choice of definition for DR. In this document we do the former and consider
only fields of characteristic 0.

1.3 Differential Operators on a Smooth Variety

It seems natural to ask whether there exist nice descriptions of DR comparable to those given by Theorem
1.14 and Lemma 1.17 when R is “nearly a polynomial ring”. When “nearly a polynomial ring” is interpreted
to mean “a regular K-algebra of finite type”, the answer turns out to be “yes”. The regular hypothesis is quite
necessary, as we shall see. Regular finitely-generated K-algebras are also precisely the local version of smooth
algebraic varieties, which we introduce in the context of differential operators here.

1.3.1 Regular K -Algebras of Finite Type

Theorem 1.22. Let R be a regular K-algebra of finite type. Then Dm
R is generated as an R-module by all

products of up to m many K-derivations of R. In particular, DR is generated by R and DerK(R) as an
R-module.

Proof: The case in which R is a domain is handled by [MR01, Theorem 15.5.5]. Here is a rough outline
of the ideas used. Suppose L = Frac(R) and {x1, ..., xn} is a transcendence basis for L over K. One can
pass to the polynomial ring K[x1, ..., xn] and use the fact that DerK(L) =

∑
L · ∂/∂xi to show that DL is

spanned by L and DerK(L) by mimicking the proof of the case in which R is a polynomial ring. It then only
remains to prove DR = {α ∈ DL | α(R) ⊆ R}.

The general case is given by [Muh88, Theorem 1.15]. Every regular ring is reduced, hence the intersection
of all minimal primes in R is 0. The ring R can therefore be written as a product of domains by the Chinese
Remainder Theorem. Muhasky uses the fact that D(R1×R2)

∼= DR1
×DR2

to conclude.

Not only do derivations generateDR, but each operator can be expressed in a way reminiscent of the canonical
form for operators in the Weyl algebra (see Lemma 1.17). Namely, ifR is a regularK-algebra of Krull dimension
n, then any P ∈ Dk

R can be written as a finite sum

P =
∑
α

f̂α∂
α

where each α ∈ Nn, fα ∈ R and {∂1, ..., ∂n} generate DerK(R). This fact is slightly stronger than Theorem
1.22 however. See Theorem 1.26 below.

Let us examine two examples, one in which the hypotheses of Theorem 1.22 hold and one in which they do
not.
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Example 1.23. Let K be a field of characteristic zero and set R = K[x, y]/(f) where f = x3 − x− y2. As the
matrix [

∂f
∂x (x0, y0)

∂f
∂y (x0, y0)

]
=
[
3x20 − 1 −2y0

]
is rank 1 for all points (x0, y0) ∈ K2 in the graph of f , R is easily seen to be regular by the Jacobian criterion.
Hence, to understand DR it suffices to understand the derivations on R.

It isn’t terribly difficult to see that the set of derivations on R is given by

DerK(R) =
{θ ∈ DerK(K[x, y]) | θ((f)) ⊆ (f)}

(f)DerK(K[x, y])
.

We know DerK(R) is a one-dimensional K-vector space since DerK(R) is two-dimensional by example
1.12. It therefore suffices to find one derivation θ : K[x, y] −→ K[x, y] which fixes (f) to compute DerK(R).
Furthermore, since θ(f · g) = fθ(g) + gθ(f), θ fixes (f) if and only if θ(f) ∈ (f), reducing our task of
calculating DerK(R) to finding a single derivation θ on K[x, y] which sends f to a multiple of itself. But this is
exceptionally easy; the derivation θ = ∂x(f)∂y − ∂y(f)∂x maps f to zero.

We conclude that DR =
⊕∞

k=0R · θk where θ = (3x2 − 1)∂y + 2y∂x.

Example 1.24. We return to the curve f = y2 − x3, which has a singularity at the origin. Let R = K[t2, t3]

and recall from Example 1.13 that K[x, y]/(f) ∼= K[t2, t3].
Consider the operator α = t∂2t − ∂t in DK[t]. Since α(t2) = 0 and α(t3) = 3t2, α(R) ⊆ R and therefore

α|R ∈ DR. However, DerK(R) is generated as a vector space by t∂t and t2∂, and by considering these to be
operators on K[t] it is clear that α is outside the subring of DK[t] generated by t2∂t and t∂t. Therefore DR is
strictly larger than the ring generated by DerK(R) and R, highlighting the need for the regular hypothesis in
Theorem 1.22.

1.3.2 Smooth Varieties

We now define the sheaf of differential operators on a smooth variety, the primary setting of [HTT08]. The
definitions given here are precisely those found in section 1.1 of [HTT08] contextualized within the discussion
up to this point.

Definition 1.25. LetX be a smooth variety over a fieldK of characteristic zero and OX be its structure sheaf. We
denote by End K OX the sheaf of K-linear endomorphisms of OX . We say that a section θ ∈ (End K OX)(X)

is a vector field on X if θ(U) = θ|U is a K-derivation on OX(U) for each open subset U ⊆ X . For any open
subset U ⊆ X , the set of vector fields on U is denoted Θ(U). Then Θ(U) is an OX(U)-module, and the
assignment U 7−→ Θ(U) is a sheaf of OX -modules. We denote this sheaf by ΘX and note that when X is affine,
ΘX

∼= D̃erK(OX(X)).

We then have the following theorem.

Theorem 1.26. Let X be a smooth algebraic variety of dimension n over an algebraically closed field K. Then
for each point p ∈ X , there exists an affine open neighborhood V of p, regular functions xi ∈ K[V ] = OX(V ),

and vector fields ∂i ∈ ΘX(V ) for 1 ≤ i ≤ n satisfying the conditions{
[∂i, ∂j ] = 0, ∂i(xj) = δij (1 ≤ i, j ≤ n)

ΘV =
⊕n

i=1OV ∂i
.
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Moreover, we can choose the functions x1, ..., xn so that they generate the maximal ideal mp of OX,p. We call
the set {xi, ∂i}1≤i≤n a local coordinate system of p on U .

Proof: [HTT08, Theorem A.5.1].

Note that the elements xi appearing in the local coordinate system above are regular functions xi : V −→ K,
not elements of EndK(OX(V )).

It follows from Theorem 1.22 that for any affine open U ⊆ X , the ring of differential operators of OX(U) is
generated by OX(U) and ΘX(U). This justifies the following definition:

Definition 1.27. Let X be a smooth variety over a field K of characteristic zero. We define the sheaf DX of
differential operators on X to be the K-subalgebra of End K(OX) generated by OX and ΘX .

For any point p ∈ X , we may find an affine open U ⊆ X containing p and a local coordinate system
{xi, ∂i}1≤i≤n such that

DU = DX |U =
⊕
α∈Nn

OX(U)∂α

by combining Theorems 1.22 and 1.26. When X is not smooth, it is instead necessary to consider the sheaf
given locally on open affines by U 7−→ DOX(U), where DOX(U) is defined as in Definition 1.1. This definition
agrees with the one above by the theory we have developed thus far, and as we are only concerned with smooth
varieties in these notes, we will always have access to a system of local coordinates.

Alternatively, one can defineDX by gluing over open affines. One does this by setting Γ(U,DX) = DΓ(U,OX)

for each open affine U ⊆ X . For this to work, we need the following compatibility result:

Proposition 1.28. Let R be a finitely generated regular K-algebra of dimension n. For nonzero f ∈ R, denote
by Rf the localization of R at the set {1, f, f2, ...}. Then

DRf
∼= Rf ⊗R DR and Di

Rf
∼= Rf ⊗R D

i
R.

Proof: Let φ : R −→ Rf be the canonical map. The prime ideals of Rf correspond to the primes in R which
avoid f , hence we have an isomorphism (Rf )p ∼= R

φ
−
1(p)

for each prime p ⊆ Rf . The local ring R
φ
−
1(p)

is
regular, hence Rf is regular.

Set Wf = {1, f, f2, ...} ⊆ R so that Rf = W−1f R. By the isomorphism Ω
W

−1
f R

∼= W−1f ΩR [Har77,
Proposition 2.8.3], we have

DerK(Rf ) ∼= HomRf
(W−1f ΩR, Rf ) ∼=W−1f HomR(ΩR, R) ∼=W−1f DerK(R) ∼= Rf ⊗R DerK(R).

The Rf -module is generated by Rf and DerK(Rf ) by Theorem 1.22, hence the above isomorphism
extends to an isomorphism Di

Rf
∼= Rf ⊗R D

i
R.

This means that an operator in DRf
extends to an operator in DR once we multiply by a large enough power

of f .

It is worth noting that Γ(X,DX) generally fails to embed in EndK(OX(X)) when X is not affine, which
explains why we must define differential operators locally on affine opens. We conclude this section on differential
operators with an example demonstrating this failure.
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Example 1.29. Let X = P1
K and let U0 = A1

K and U1 = A1
K denote the standard affine opens of X . If x0 is

the coordinate on U0 and x1 the coordinate on U1, then Γ(U0, DX) is the Weyl algebra generated by x̂0, ∂0 and
Γ(U1, DX) is the Weyl algebra generated by x̂1, ∂1. We may view the sheaf DX to be the sheaf obtained by
gluingDX |U0

andDX |U1
over U0 ∩U1, and hence a global differential operator θ ∈ Γ(X,DX) is fully specified

by a pair (θ0, θ1) of two elements θ0 ∈ Γ(U0, DX) and θ1 ∈ Γ(U1, DX) such that θ0 = θ1 on U0 ∩ U1.
We change coordinates from U0 to U1 via x0 7−→ x−11 . To express ∂1 in terms of x̂0, ∂0 on the open set

U0 ∩ U1 we use the chain rule:

∂1 =
∂

∂x1
=

∂

∂x0

ˆdx0
dx1

= −x̂−21 ∂0 = −x̂20∂0.

Two differential operators

θ0 =
n∑

i=1

aix̂
bi
0 ∂

ci
0 and θ1 =

m∑
j=1

αj x̂
βj

1 ∂
γj
1

are therefore equal on U0 ∩ U1 if and only if

n∑
i=1

aix̂
bi
0 ∂

ci
0 =

m∑
j=1

αj x̂
−βj

0

(
−x̂20∂1

)γj
.

Determining whether two such arbitrary operators agree on U0 ∩ U1 is quite difficult in general, as it involves
expanding multiple terms of the form (−x̂20∂0)

γ at once. However, we can use this restriction criterion to easily
construct an infinite set of K-linearly independent global differential operators. Define δ = −x̂20∂ ∈ Γ(U0, DX).
Then δn is equal to ∂n1 on U0 ∩ U1 for any n ∈ N, and so the set {(δn, ∂n1 )} is a K-linearly independent set of
global differential operators. This means Γ(X,DX) is infinite dimensional as a K-vector space.

Since EndK(OX(X)) = EndK(K) = K is a 1-dimensional K-vector space, there is no embedding
Γ(X,DX) −→ EndK(OX(X)).

1.4 A Word Regarding Non-Regular K -Algebras

To conclude our discussion of the ring of differential operators, we say a brief word about the singular
case. There is still an "R-linear" way to compute the modules Di

R even when R is not regular. We loosen our
assumptions on R and once again take R to be an algebra over another commutative ring A. Taking cues from
the characterization of DerK(R) in terms of Kähler differentials, we define

P i
R/A =

R⊗A R

∆i+1
R/A

(3)

to be the module of ith principal parts of R over A, with ∆R/A as in Definition 1.10. One can then prove that

Di
R/A

∼= HomR(P
i
R/A, R).

Thus the functor R 7−→ Di
R/A is represented by P i

R/A. This construction can be found in [Moo04], who attributes
it to Grothendieck.
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2 D-Modules: Basic Definitions and Facts

We start with the definition of a D-module.

Definition 2.1. Let X be a smooth variety over a field K. A left (or right) D-module over X , or a DX -module,
is a quasi-coherent OX -module M together with a left (or right) action by DX . We say that M is a coherent
DX -module if it is locally finitely generated over DX .

In the affine case, a D-module corresponds to a module M over a ring of differential operators, i.e. a
left or right DR-module, via the correspondence between Γ(X,OX)-modules and quasi-coherent sheaves of
OX -modules (see Example 2.9). When working over an affine variety SpecR = X , it therefore suffices (and is
more convenient) to study M = Γ(X,M) rather than M itself.

Note that a coherent DX -module is not necessarily coherent as an OX -module. For instance, An(K) =

Γ(X,DX) is the nth Weyl algebra when X = SpecK[x1, ..., xn], and though An(K) is trivially finitely
generated as a module over itself, it is certainly not finitely generated as a Γ(X,OX) = K[x1, ..., xn]-module as
there is no way to increase the degree of an operator via the action of a polynomial.

We start this section with several examples before discussing the basic theory relating to the structure of
D-modules.

2.1 Examples of D-modules

Let R be a regular finitely generated K-algebra. We start with a trivial example.

Example 2.2. Every ring is a module over itself, so DR is a left DR-module as are all of its left ideals. The
polynomial ring R is also a left DR-module, where the left action of an operator α ∈ DR on f ∈ R is given by
applying α to f , i.e. α · f = α(f).

This is quite unremarkable, so we quickly move on to some more interesting examples.

Example 2.3. Let R = K[x], so that DR = A is the first Weyl algebra. Suppose I = A∂ and J = Ax̂ be the
left ideals of A generated by ∂ and x̂ respectively and let M = A/I and N = A/J . These are quotients of left
A-modules and are therefore themselves left A-modules. As K-vector spaces, it is clear that M ∼= K[x̂] and
M ∼= K[∂].

To understand the A-action on M , it suffices to understand the action of x̂ and ∂ on the basis {1 + I, x̂+

I, x̂2 + I, ...} of M . The operator x̂ acts by multiplication; it’s an infinite Jordan block with one’s along the
upper diagonal and zeros elsewhere. Let us now consider the action of ∂ on M . Since ∂x̂ = 1+ x̂∂ and x̂∂ ∈ I ,
we have that ∂(x̂ + I) = 1 + I . Similarly, ∂(x̂k + I) = ∂(x̂k) + I = kx̂k−1. Thus, the map K-linear map
K[x] −→M given by x 7−→ x̂ is compatible with the action of A, and is hence an isomorphism of left A-modules.
The K-linear isomorphism N −→ K[∂] can be used to identify the action of A on N with K[∂]; ∂ acts on K[∂]

by multiplication and x̂ · ∂ = −1. This also gives us an isomorphism of left A-modules.
In addition to their structural similarities, the modulesM andN are related in a slightly deeper way. Suppose

we are given a ring S, an automorphism σ : S −→ S and a left S-module P . The twist of P by σ is denoted Pσ.
It is isomorphic to P as an Abelian group and has a left S-action defined by s · p = σ(s)p for p ∈ P and s ∈ S.

Consider now the automorphism F of A defined F (x) = −∂ and F (∂) = x. The kernel of F composed
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with the projection A −→ A/I is F−1(I) = Ax̂ = J , so

A/F−1(I) ∼=M

as A-modules by the first isomorphism theorem. Furthermore, the projection π : A −→ (A/I)F satisfies

π(a) = a · π(1) = F (a) + I

for a ∈ A and has kernel F−1(J). We therefore have isomorphisms

NF = (A/I)F ∼= A/F−1(I) ∼=M.

This construction is important enough that we give it a name.

Definition 2.4. LetM be a leftAn-module. The Fourier transform M̂ ofM is defined as follows. As an additive
group, M̂ =M , while the actions of x̂i and ∂xi

on u ∈M are given by

x̂i · u = −∂xi
(u), and ∂xi

· u = x̂i(u).

This is equivalent to defining M̂ =MF with F defined in Example 2.3.

This will appear again in the final section.

Example 2.5. LetK = C, denote byA the Weyl algebra over C, and fix a subset U ⊆ C open with respect to the
Euclidean topology. Every holomorphic function on C is analytic, and therefore the set H(U) of holomorphic
functions on U is a left A-module. Somewhat more surprising is the fact that it is not a torsion module; one can
show that the function h(x) = exp(exp(z)) is not killed by any element of A for instance [Cou95, Proposition
5.3.2].

Example 2.6 (Module Associated to a Differential Equation). Let K = R, denote by An the nth Weyl algebra
and fix a set U ⊆ Rn. The set C∞(U) of infinitely differentiable functions in x1, ..., xn is then an An module.

Consider now an arbitrary operator P =
∑m

i=1 gαi
∂αi ∈ An where αi ∈ Nn is a multi-index for each

1 ≤ i ≤ n. This operator gives us a differential equation:

P (f) =
m∑
i=1

gαi
∂αi(f) = 0

where f ∈ C∞(U). We can similarly define a system of differential equations

P1(f) = ... = Pk(f) = 0 (4)

given P1, ..., Pk ∈ An. The R-vector space of solutions to this system is certainly not an An-module, if f
satisfies the system there is no expectation that ∂xi

(f) does as well for instance, but it does nonetheless admit a
nice description via the theory of An-modules.

Let J =
∑k

i=1AnPk be the left ideal generated by P1, ..., Pk and set M = An/J . We say that M is the
An-module associated to the system (4). We will show that the set of polynomial solutions to (4) is isomorphic
to HomAn

(M,R[x1, ..., xn]) as a R-vector space.
First, consider a polynomial solution f ∈ R[x1, ..., xn] to (4), and associate to f the An-module homomor-

phism φf : An −→ R[x1, ..., xn] defined by 1 7−→ f . If Q ∈ J , then Q(f) = 0, so φf (Q) = 0 and hence φf

induces a map φf :M −→ R[x1, ..., xn].
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Consider now the R-linear map f 7−→ φf taking a polynomial solution of (4) to its associated An-module
homomorphism. The map σ 7−→ σ(1) which sends a homomorphism σ :M −→ R[x1, ..., xn] to its evaluation at
1 ∈M is the inverse of f 7−→ φf , hence it is an isomorphism.

These examples have all been of left An-modules, but we can turn left modules into right modules and vice
versa. Let R be a regular K-algebra of finite type as in Theorem 1.22.

Example 2.7. (Swapping Left and Right Modules) Consider an operator P ∈ DR given by P =
∑

α f̂α∂
α. It’s

formal adjoint is the operator

tP :=
∑
α

(−∂)αf̂α ∈ DR.

This satisfies t(PQ) =t Q tP , so P 7−→ tP is an anti-automorphism of DR. Given a left DR-module M , we can
obtain a right DR-module tM which is isomorphic to M as an Abelian group and whose DR-action is given by
u · P = tPu. We can do something similar to obtain a left module from a right module.

This notion depends on choice of local coordinates, and therefore does not extend to non-affinesDX -modules.
The correct globalization of this process involves the canonical sheaf, see [HTT08, Chapter 1.2].

Now let X be a smooth variety over K.

Example 2.8. A necessary and sufficient condition for a sheaf F of OX -modules to be affine is that for any affine
U ⊆ X , F|U ∼= M̃ where M = Γ(U,F) (see [Har77, Chapter 2.5]). If U ⊆ X is affine and f ∈ OX(U), then

Γ(D(f), DX |U ) = DOX(U)f
∼= OX(U)f ⊗OX(U) DOX(U)

by Proposition 1.28, soDX |U ∼= ˜Γ(U,DX). This implies that DX is itself a leftD-module, and we can similarly
see that OX is a left DX -module. Indeed, for any open affine U , the algebra DX(U) acts on Γ(U,DX) and
Γ(U,OX) by the construction in Section 1.3.2.

Example 2.9. When X = SpecR is affine, every left DX -module M corresponds to a left DR-module via
M 7−→ Γ(X,M). Examples 2.3 through 2.7 are therefore all examples of D-modules over An

K once we pass to
the associated sheaf.

2.2 Filtrations

Though we have neither commutativity nor a graded structure, we can extend the tools of used in commutative
algebra to study graded modules to better understand the structure of D-modules. This is accomplished by
associating a graded commutative ring to DR and a compatible graded module to a DR-module M through the
use of filtrations. These methods will be especially fruitful in the study of modules over the Weyl algebra.

This is a brief overview of some definitions concerning filtered K-algebras, tailored to the purposes of this
essay. We are primarily interested in good filtrations of finitely generated An-modules, as these provide us with
sufficient conditions to discuss dimension. A more general treatment suitable to the case of DX -modules over a
scheme X can be found in Chapter 1 of [Gin98], which largely serves as the inspiration for this section. Though
all of our statements deal with left modules, everything holds if we replace “left” with “right” and make the
obvious, necessary changes.
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Definition 2.10. Let R be a K-algebra. We say R is a filtered K-algebra if it comes equipped with a collection
{Fi}i∈N of K-vector spaces such that

(1) K = F0 ⊂ F1 ⊂ F2 ⊂ ... ⊂ R

(2) Fi · Fj ⊆ Fi+j .

(3) R =
⋃

i≥0 Fi, (we say the filtration is exhausting)

When equipped with a filtration, R is said to be a filtered K-algebra. We often write this as a pair (R,F•), set
F−1 = {0} and iterate over Z rather than N.

Remark 2.11 (Definition Cont.). Let (R,F•) be as in the above definition. The collection of sets {F i+r}i∈Z,r∈R
form the basis of a topology on R. With this in mind, it is often convenient to impose two additional conditions:

(4)
⋂

i≥−1 Fi = {0}, which is equivalent to say that the topology induced by F• is separating,

(5) R is complete with respect to this topology.

We also have a notion of a filtered ring in which we replace the K-vector spaces with abelian groups, but in
this essay we will only be concerned with filtered K-algebras.

Example 2.12. The collection D•R =
{
Dk

R

}
k∈N

is a filtration of DR. Requirement (1) holds by Lemma 1.4,
requirement (2) by Proposition 1.7 (be) and requirement (3) by definition ofDR. This is called the order filtration
on DR. Note that D0

R = R, and is therefore an infinite dimensional K-vector space.

Example 2.13. The nth Weyl algebra An is comes equipped with another filtration, the Bernstein filtration. We
denote this filtration B = {Bk}k≥0 where Bk = {D ∈ An | deg(D) ≤ k}. The operators x̂α∂β of degree at
most k form a basis for Bk over K, and hence the Bernstein filtration has the added benefit that each component
is finite dimensional.

Example 2.14. Suppose R =
⊕

i∈NRi is a graded ring. Then (R,F•) is a filtered K-algebra with respect to
the filtration Fk =

⊕k
i=0Ri.

Definition 2.15. Let (R,F•) be a filtered K-algebra. The associated graded K-algebra, grF• R, is defined

grF• R =
∞⊕
i=0

Fi/Fi−1.

When the filtration is known, we write grR. For any r ∈ Fi, we denote by σi(r) its image in Fi/Fi−1 and say
σi(r) is the ith principal symbol of r. The associated graded ring to the filtration given in Example 2.14 recovers
the original graded ring, as one might hope.

We use the principal symbol maps σi to define an algebra structure on grF• R. A homogeneous element of
grF• R is any operator d ∈ grF• R such that d = σk(a) for some a ∈ Fk. Given two homogeneous elements
σi(a) and σj(b), we define their product by

σi(a) · σj(b) = σi+j(a · b).

Extending this multiplication to all of grF• R by distributivity makes grF• R into a graded K-algebra whose
homogeneous components are the individual summands Fk/Fk−1.
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Example 2.16. Let Sn = grB An. Then the graded algebra Sn is isomorphic to K[y1, ..., y2n].
The conceptual sketch of this statement is perhaps more enlightening than the full proof. Since we have

surjective maps πk : An −→ Bk
σk−−→ Bk/Bk−1, Sn is generated as an algebra by the images of elements

x1, ..., xn, ∂1, ..., ∂n ∈ An. The only thing preventing us from defining a isomorphism K[y1, ..., y2n] −→ Sn
sending yi 7−→ xi and yi+n 7−→ ∂i for 1 ≤ i ≤ n is a possible lack commutativity, however, we saw in
Corollary 1.8 that the graded ring associated to the order filtration is commutative. This allows us to define a
surjective homomorphism K[y1, ..., y2n] −→ Sn. Since there are no additional relations between the generators
x1, ..., xn, ∂1, ..., ∂n, the kernel of this map is trivial and hence we have an isomorphism.

Definition 2.17. Let (R,F•) be a filtered K-algebra and M a left R-module. A filtration of M compatible with
F•is a family Γ = {Γ0}i≥0 of K-vector spaces satisfying

(1) Γ0 ⊆ Γ1 ⊆ Γ2 ⊆ ... ⊆M ,

(2) FiΓj ⊆ Γi+j .

(3) M =
⋃

i≥0 Γi

Such a module is said to be filtered, and as with algebras, we set Γ−1 = 0. The associated graded module toM is

grΓM =

∞⊕
i=0

Γi/Γi−1

and is a graded grR module.

The associated grading can tell us something about its filtered module.

Theorem 2.18. Suppose that R is a filtered K-algebra with filtration F• such that S = grF• R is Noetherian.
Let M be a left R-module with filtration Γ = {Γi}i≥0. If grΓM is a Noetherian then so is M .

Proof: Let N ⊆M be a R-submodule of M . We prove that it is finitely generated. Define Γ′i = N ∩ Γi for
i ≥ 0. The collection Γ′ = {Γ′i} is then a filtration of N , which we call the induced filtration of N by Γ. The
inclusions Γ′i ⊆ Γi give us an inclusion grΓ

′
N ⊆ grΓM , and since grΓM is Noetherian, grΓ

′
N must be a

finitely generated as an S-module.
Let {c1, ..., cr} be a generating set for grΓ

′
M . We assume that each ci is homogeneous without loss of

generality; each ci is a linear sum of finitely many homogeneous elements and we can therefore replace each ci
by its homogeneous components without compromising the finiteness of our generating set. For each ci we
can therefore find some integer ki and some ui ∈ Γ′ki such that µki(ui) = ci. Let m = max{k1, ..., kr}, and
note that ui ∈ Γ′m for each 1 ≤ i ≤ r. We show that Γ′m generates N .

Suppose v ∈ Γℓ. If ℓ ≤ m then v ∈ Γ′ℓ ⊆ Γ′m, and hence v is in the R-submodule of M generated by Γ′m.
Suppose now that ℓ > m and Γℓ−1 is contained in the R-linear span of Γ′m. Because {µk1(u1), ..., µkr(ur)}
generates grΓ

′
N as an S-module, there exist a1, ..., ar such that

µℓ(v) =

r∑
i=1

σℓ−ki(ai)µki(ui).
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Hence

µℓ

(
v −

r∑
i=1

aiui

)
= 0

v′ = v −
r∑

i=1

aiui ∈ Γ′ℓ−1.

The element v is a linear sum of elements in Γ′m if and only if v′ is too. However, v′ ∈ Γ′ℓ−1 and is therefore in
the R-linear span of Γ′m by the inductive hypothesis. Hence v ∈ R · Γ′m, and since every element of N is
contained in Γ′ℓ, Γ

′
m generates N .

It is left to show that there is a finite subset of Γ′m which generates N . However, Γ′m is a finite dimensional
K-vector space. Any K-basis for Γ′m will generate all of Γ′m and will therefore serve as a set of generators for
N .

Note that the set {u1, ..., ur} in the above proof is not necessarily a generating set for N . The in-
duction step gives us an algorithm for writing any v ∈ Γ′ℓ in terms of the ui only in the case that
ℓ > max{deg(u1), ...,deg(ur)}.

We have the following immediate corollary.

Corollary 2.19. The nth Weyl algebra An is left Noetherian.

Proof: The associated graded ring of An with respect to the Bernstein filtration is the polynomial ring in two
variables by Example 2.16, which is Noetherian.

As mentioned in the introduction to this section, these statements hold if we replace “left” by “right” and
make the necessary adjustments, meaning An is also right Noetherian. This is quite convenient, for it means any
finitely generated left or right An-module is automatically Noetherian.

The converse of Theorem 2.18 need not always hold, that is, it need not be the case that grΓM is finitely
generated even if M is finitely generated. We therefore distinguish filtrations which produce finitely generated
associated graded modules.

Definition 2.20. Let M be a left module over a filtered K-algebra (R,F•). A filtration Γ of M is said to a good
filtration with respect to F• if grΓM is finitely generated. Good filtrations provide a framework to discuss the
dimension of modules over the Weyl algebra.

Good filtrations always exist for finitely generated modules.

Proposition 2.21. Let (R,F•) be a filtered K-algebra and M be a finitely generated left R-module. Then there
exists a good filtration Γ of M compatible with F•.

Proof: Let u1, ..., ur be a generating set for M over R and define Γk =
∑r

i=0 Fkui. Then grΓM is finitely
generated over grF• R by the images of u1, ..., uk in Γk.

We end the section on filtrations by stating two propositions, both of which are included primarily for
convenient use in the discussion of holonomic modules over An. One provides a criterion for easily checking
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whether a filtration is good, and the other allows us to compare two good filtrations of a module.

Proposition 2.22. Let M be a left module over a filtered K-algebra R,F•). A filtration Γ of M with respect to
F• is good if and only if there exists an integer k0 such that Γi+k = FiΓk for all k ≥ k0.

Proof: [Cou95, Proposition 8.3.1]

This criterion is useful for determining both good and bad filtrations.

Example 2.23. Consider the Bernstein filtration B = {Bi}i∈N on the Weyl algebra An. Set Γi = B2i. We then
have that BiΓk = Bi+2k ̸= B2(i+k) = Γi+k, so Γi is not a good filtration of An with respect to the Bernstein
filtration.

Proposition 2.24. Let M be a left module of the filtered K-algebra (R,F•). Suppose that Γ and Λ are two
filtrations of M with respect to F•. The following statements are true.

(a) If Γ is good with respect to F• then there exists some k0 such that Λi ⊆ Λi+k0
for all i ∈ N.

(b) If both Γ and Λ are good with respect to F•, then there exists some k1 such that Λi−k1 ⊆ Γi ⊆ Λi+k1
.

Proof: [Cou95, Proposition 8.3.2]

2.3 Modules over the Weyl algebra

The finite dimensionality of each component in the Bernstein filtration makes it distinctly nice because of the
following property. For any module M over the Weyl algebra with a good filtration Γ, the K-vector spaces Γi are
each finite dimensional. This means we can apply results regarding Hilbert polynomials to modules over the
Weyl algebra, and thereby obtain a robust dimension theory with relatively little headache.

Throughout this section K is a field of characteristic 0, An = DK[x1,...,xn]
is the nth Weyl algebra, Sn is the

associated graded ring to An with respect to the Bernstein filtration B, and M is a finitely generated left An

module. We work almost entirely with left An-modules in this section, but all results in this section hold if “left”
is replaced with “right” and the obvious modifications are made.

2.3.1 Dimension

The primary goal of this section is a proof of Bernstein’s Inequality, a striking example of how the theory
of D-modules can drastically differ from that of modules over commutative rings. To accomplish this, it is
necessary to discuss several basic facts regarding the dimension of modules over the Weyl algebra, theory which
relies on dimension theory from commutative algebra. We brazenly omit proofs and discussion of these facts in
eternal deference to Atiyah-Macdonald [AM16].

Recall that if M = ⊕i≥0Mi is a finitely generated graded module over a polynomial ring K[x1, ..., xm], then
there exists a polynomial χ(t) ∈ Q[t] and a positive integer N such that

t∑
i=0

dimK(Mi) = χ(t)

for all t ≥ N . We typically suppress N from our notation and simply write “for all t ≫ 0” to mean “for all t
sufficiently large”. The polynomial χ(t) is called the Hilbert polynomial of M .
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If M is a finitely generated left An-module then there exists a filtration Γ of M which is good with respect to
the Bernstein filtration by Proposition 2.21. The associated graded module grΓM is then seen to be Noetherian
since it is finitely generated over Sn = grΓAn, a Noetherian ring. This means the Hilbert polynomial for grΓM
exists, and we denote it by χ(t,Γ,M) ∈ Q[t]. This discussion leads us to the following definition.

Definition 2.25. Let M be a finitely generated left An-module equipped with a good filtration Γ with respect to
the Bernstein filtration. Denote by χ(t,Γ,M) the Hilbert polynomial of grΓM . Let a be the leading coefficient
of χ(t,Γ,M) and let d be its degree. The dimension d(M) of M is d and the multiplicity m(M) of M is d! · a.
Both of these are nonnegative integers.

See [AM16] for details, or [Cou95, Chapter 9] for a discussion tailored specifically to modules over the Weyl
algebra. The latter sources also provides a brief argument demonstrating that the definitions of dimension and
multiplicity do not depend on the choice of good filtration.

Example 2.26. It is well known that the Hilbert polynomial of the polynomial rink K[x1, ..., xm] is degree m.
Hence the Hilbert polynomial of Sn = K[y1, ..., y2n] is degree 2n and d(An) = 2n. By this same argument,
d(K[x1, ..., xn]) = n.

Proposition 2.27. Let M be a finitely-generated left An-module and N ⊆M a submodule. Then

(a) dim(M) = max{d(N), d(M/N)}

(b) We have

m(M) =


m(N) +m(M/N) if d(N) = d(M/N)

m(N) if d(N) > d(M/N)

m(M/N) if d(N) < d(M/N)

.

Proof:

(a) Let us first see how the Hilbert polynomials of M , N and M/N related. Denote by Sn the associated
graded ring of An, and let Γ be a good filtration of M with respect to B. Let Γ′ and Γ′′ be the induced
filtrations for N and M/N . We then obtain the following short exact sequence of associated graded
Sn-modules:

0 −→ grΓ
′
N −→ grΓM −→ grΓ

′′
M/N −→ 0.

We know grΓM is a finitely generated Sn-module since Γ is good, hence grΓ
′′
M/N is also finitely

generated since it is isomorphic to a quotient of grΓM . Likewise, since Sn is Noetherian and grΓ
′
N is

isomorphic to a submodule of grΓM , grΓ
′
N is finitely generated. This tells us that Γ′ and Γ′′ are both

good filtrations.

Now consider the short exact sequence of vector spaces

0 −→ Γ′k/Γ
′
k−1 −→ Γk/Γk−1 −→ Γ′′k/Γ

′′
k−1 −→ 0

for 0 ≤ k. By the rank-nullity theorem, dimK Γk/Γk−1 = dimK Γ′k/Γ
′
k−1 + dimK Γ′′k/Γ

′′
k−1, so

∞∑
k=0

(dimK Γk/Γk−1) =
∞∑
k=0

(
dimK Γ′k/Γ

′
k−1 + dimK Γ′′k/Γ

′′
k−1
)
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and thus for s≫ 0 we get

χ(s,Γ,M) = χ(s,Γ′, N) + χ(s,Γ′′,M/N).

As all of the above are polynomials with positive leading coefficients,

deg
(
χ(s,Γ′, N) + χ(s,Γ′′,M/N)

)
= deg

(
χ(s,Γ′, N)

)
+
(
χ(s,Γ′′,M/N)

)
and hence

d(M) = max {d(N), d(M)} .

(b) If d(N) > d(M), then the degree of χ(s,Γ′, N) is strictly larger than the degree of χ(s,Γ′′,M/N), and
hence the leading coefficient of χ(s,Γ,M) is equal to the leading coefficient of χ(s,Γ′, N) by what we
proved in (a). The same argument works for the case that d(N) < d(M). If instead d(M/N) = d(N),
then the polynomials χ(s,Γ,M), χ(s,Γ′,M) and χ(s,Γ′′, N) all have the same degree. This then
implies that the leading term of χ(s,Γ,M) is equal to the sum of the leading terms of χ(s,Γ′, N) and
χ(s,Γ′′,M/N).

Corollary 2.28. Let M be a finitely generated An-module. Then d(M) ≤ 2n.

Proof: Let {u1, ..., ur} be a generating set over An for M . There then exists a surjective homomorphism
ϕ : A⊕rn −→M . Proposition 2.27 then tells us that d(A⊕rn ) = max{d(M), d(kerϕ)}.

We claim that d(A⊕rn ) = 2n. Indeed, we have seen that d(An) = 2n, and there exists an exact sequence

0 −→ An −→ A⊕rn −→ A⊕(r−1)n −→ 0

from which we get that (A⊕rn ) = max{d(An), d(A
⊕(r−1)
n )}. Induction on r then gives us the desired result,

hence max{d(M), d(kerϕ)} = 2n. We conclude d(M) ≤ 2n.

2.3.2 Bernstein’s Inequality

We now prove Bernstein’s inequality, which serves as a striking example of the difference between the
structure of modules over the polynomial ring and modules over the Weyl algebra.

Theorem 2.29 (Bernstein’s Inequality). IfM is a finitely-generated leftAn(K)-module, then either n ≤ dim(M)

or M = 0.

Proof: Let B = {Bk}k≥0 be the Bernstein filtration. Fix a generating set u1, ..., ur for M over An and let Γ
be the good filtration obtained by setting Γk =

∑r
i=1Bkui, as in the proof of Proposition 2.21. Finally, let

χ(t) = χ(t,Γ,M) be the Hilbert polynomial of M .
We first show that the K-vector space Bi embeds in HomK(Γi,Γ2i) for each i ≥ 0. For a ∈ Bi define

ϕa : Γi −→ Γ2i by u 7−→ au and let ϕ : Bi −→ HomK(Γi,Γ2i) be the K-linear map a 7−→ ϕa, noting that ϕ is
injective exactly when aΓi ̸= 0 for any 0 ̸= a ∈ Bi. We prove that aΓi is never 0 by induction on i.

For i = 0 we have B0 = K, and hence ϕ is injective exactly when Γ0 ̸= 0. Since u1, ..., ur ∈ Γ0, this is
satisfied.
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Assume now that ϕ is injective for all 1 ≤ j < i, that is, if 0 ̸= b ∈ Bj then bΓj ̸= 0. Fix some nonzero
a ∈ Bi. The canonical form of a must then include a nonzero term which is a product of either x̂ℓ or ∂xℓ

for
some 1 ≤ ℓ ≤ n. In particular,

[a, P ] ̸= 0, for some P ∈ {x̂1, ..., x̂n, ∂x1
, ..., ∂xn

}.

Suppose for the sake of contradiction that aΓi = 0. Since deg(P ) = 1, PΓi−1 ⊆ Γi, so a(PΓi−1) = 0. We
then have that

[a, P ]Γi−1 = a(PΓi−1)− P (aΓi−1) = 0. (∗)

However, deg([a, P ]) ≤ deg(a)− 1 by Proposition 1.19 (c), so [a, P ] is a nonzero element of Bi−1. Hence
(∗) contradicts the inductive hypothesis and aΓi ̸= 0. This proves that ϕ is injective for all values i ≥ 0.

We now prove that d(M) ≥ n. The injectivity of ϕ implies

dimK(Bi) ≤ dimK(HomK(Γi,Γ2i)) (†)

for all i ≥ 0. Let’s examine the RHS of this inequality. It is a fact of elementary linear algebra that
dimK(HomK(Γi,Γ2i) = dimK(Γi) dimK(Γ2i), hence for i≫ 0, dimK(HomK(Γi,Γ2i) = χ(i)χ(2i).

Now consider the LHS. By definition, the set of all elements of the form x̂α∂β with α, β ∈ Nn satisfying
|α|+ |β| ≤ 2i forms a basis for Bi as a K-vector space. A combinatorial argument shows that the number of
monomials in k variables of degree at least d is

(
k+d
k

)
. Hence dimK(Bi) =

(
i+2n
2n

)
. Expanding, we see that(

i+ 2n

2n

)
=

(i+ 2n)!

i!(2n)!
=

1

(2n)!
(i+ 2n)(1 + 2n− 1)...(1 + 2n− (2n− 1))

is a polynomial in i of degree 2n. In order for the inequality (†) to hold for all values of i, χ(i)χ(2i) must
likewise be at least degree 2n. However, deg(χ(i)χ(2i)) = 2 deg(χ(i)) = 2d(M). This means 2d(M) ≥ 2n,
or d(M) ≥ n as desired.

2.3.3 Holonomic Modules

The Bernstein inequality tells us that a nonzero finitely-generated leftAn(K)-moduleM must have dimension
at least n. Those modules of minimal dimension are called holonomic modules. Holonomic modules turn out to
have particularly nice properties; for instance, they are preserved under inverse and direct images, as we shall see
in a later section.

Definition 2.30. A finitely generated left An(K)-module M is said to be holonomic if either M = 0 or
dim(M) = n.

Examples are easy to identify thanks to Bernstein. We know that R = K[x1, ..., xn] is holonomic since
dimK[x1, ..., xn] = n, and furthermore, both I and R/I are holonomic when I is any proper ideal of R by
Proposition 2.27. As another example, in the case that n = 1, for any nonzero ideal I ⊆ A1 we have that
dim(A1/I) ≤ 1 by Proposition 2.27. We know An/I is nonzero since I is proper, hence dim(A1/I) = 1 by
Bernstein’s inequality.

Proposition 2.31. The following are true.

(a) Submodules and quotients of holonomic An-modules are holonomic.
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(b) Direct sums of holonomic An-modules are holonomic.

Proof: Statement (a) follows from Bernstein’s inequality and the fact that for any finitely generatedAn-module
M and submodule N ⊆M , d(M) = max{d(N), d(M/N)}.

SupposeM1, ...,Mk are all holonomicAn-modules. Statement (b) follows by applying the above reasoning
to the short exact sequence

0 −→Mk −→M1 ⊕ ...⊕Mk −→M1 ⊕ ...⊕Mk−1 −→ 0

and induction on k.

Proposition 2.32. Holonomic modules are Artinian. Furthermore, their length is finite and bounded by their
multiplicity.

Proof: Here we use the additivity of multiplicity from Proposition 2.27 (b). Let M be a holonomic left
An-module and suppose we have a descending chain of proper submodules

M = N0 ⊋ N1 ⊋ N2 ⊋ · · · ⊋ Nk. (∗)

By Proposition 2.31, Ni and Ni/Ni+1 are holonomic for each i. Together with the properness of the above
inclusions, this implies d(Ni) = d(Ni/Ni+1) = n. We then have

m(M) =
k−1∑
i=0

m(Ni/Ni+1) + m(Nk).

Multiplicity is a nonnegative integer, and since the multiplicity of a nonzero module is by definition nonzero,
d(M) ≥ k (allowing for the case that Nk = 0). However, m(M) is itself a finite integer, so we cannot find a
chain (∗) of length greater than m(M). In particular, any infinite chain must either stabilize, in which case
m(Ni/Ni+1) = 0 for all i≫ 0, or terminate with Ni = 0 for all i≫ 0.

2.3.4 Lemma on B-Functions

Let f be a polynomial in K[x1, ..., xn] and let s be a new variable. We will consider the Weyl algebra
An(K(s)) over the field of rational functions in s and the An(K(s))-module generated by the formal symbol fs,
upon which a rational function p ∈ K(s) acts in the obvious way and the operator ∂i acts by the formula

∂j (f
s) =

s

f
· ∂f
∂xi

. (5)

Note that when we write fs+k for some integer k, we mean fk · fs. When s is an integer and fs is treated not as
a formal symbol but as a power, this action agrees with the existing action of ∂j . The above formula means that
An(K(s))fs is an An(K(s))-submodule of K(s)[x1, ..., xn, f

−1]fs.

Lemma 2.33. Suppose M is a left An-module with a filtration Γ. If there exists a polynomial q ∈ K[y] of
degree n such that dimK(Γi) ≤ q(i) for sufficiently large i, then M is finitely generated and holonomic. In
addition, if a is the leading coefficient of q, then m(M) ≤ n!a.

Proof: Suppose first that 0 ̸= N ⊆M is a finitely generated submodule. We then have a good filtration Λ of
N with respect to the Bernstein filtration on An by Proposition 2.21 as well as an induced filtration on N
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given by Γi ∩N . By Proposition 2.24, there exists some positive integer k0 such that Λi ⊆ Γi+k0
∩N for all

i ∈ N, and hence dimK(Λi) ≤ dimK(Γi+k0
∩N) ≤ q(i+ k0).

Let χ(t) = χ(t,Λ, N) be the Hilbert polynomial for N with respect to Λ. For i≫ 0, we have

χ(i) =
i∑

j=0

dimK(Λi/Λi−1) = dimK(Γi) ≤ q(i+ k0).

This means deg(χ) ≤ deg(q) = n, and thereforeN is holonomic by Bernstein’s inequality. Since a polynomial
converges to its largest term in the limit t −→ ∞, this also implies that m(M) ≤ n!a, where a denotes the
leading coefficient of q.

Consider now an ascending chain of finitely generated modules

N0 ⊊ N1 ⊊ N2 ⊊ ... ⊊ Nk

where Ni ⊆M . Each of these is holonomic by what we have just proven. Repeating the argument from the
proof of Proposition 2.32, we have that

m(Nk) =
k∑

i=1

m(Ni/Ni−1) + m(N0) ≥ k.

However, we also have that m(Nk) ≤ n!a by what we have already shown. This means that n!a is an upper
bound on the length on an ascending chain in M , and therefore M itself is finitely generated. Repeating the
above argument for M , we get that d(M) = n and m(M) ≤ n!a.

The following corollary is crucial to the proof of Theorem 2.35.

Corollary 2.34. Fix a polynomial f ∈ K[x1, ..., xn]. The leftAn(K(s))-moduleM = K(s)[x1, ..., xn, f
−1]fs

defined above is holonomic.

Proof: Let m = deg(f) in K[x1, ..., xn]. Define

Γk =
{
qf−k · fs

∣∣∣ deg(q) ≤ (m+ 1)k
}
.

We write qf−k · fs rather than qfs−k to emphasize that qf−k is an element in K[x1, ..., xnf
−1] acting

on fs. Using the conventions of Definition 2.17, we show in detail that Γ is a filtration of M with
dimK(Γk) ≤

(n+k(m+1)
k(m+1)

)
. The holonomy of M then follows immediately from the previous lemma. Note that

B = {Bi}i∈N is the Bernstein filtration on An(K(s)), as per usual.

(1) Clearly, if qf−k · fs ∈ Γk, then

deg(q · f) = deg(q) + deg(f) ≤ (m+ 1)k +m ≤ mk + k +m+ 1 = (m+ 1)(k + 1).

Hence qf−k · fs = (qf)f−(k+1) · fs ∈ Γk+1, and therefore {Γi}i∈N is an upward nested sequence of
K-vector spaces.

(2) Fix 1 ≤ i ≤ n. The left action of x̂i ∈ An(K(s)) on qf−k · fs ∈ Γk increases the degree of q by 1, so
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x̂i

(
qf−k · fs

)
∈ Γk+1. The left action of ∂xi

on qf−k · fs is given by

∂xi
(qf−k · fs) = ∂xi

(q)p−k · ps − kp−(k+1)∂xi
(f)q · fs + qfs

s

f
f s∂xi

(f)

=
(
∂xi

(q)f + (s− k)q∂xi
(f)
)
f−(k+1) · ps.

Both terms inside the parentheses have degree at most deg(q)+m−1, which is less than (m+1)(k+1)

because deg(q) ≤ (m+ 1)k, so ∂xi
(qf−k · fs) ∈ Γk+1.

The set {x̂1, ..., x̂n, ∂x1
, ...∂xn

} forms a basis forB1, henceB1 ·Γk ⊆ Γk+1. Furthermore,BiΓk ⊆ Γk+i

since Bi = Bi.

(3) Choose an arbitrary element p ∈ K(s)[x1, ..., xn, f
−1] so that p · fs represents an arbitrary element of

M . Set k ≤ deg(p) and q = pfk. Then

p · fs = qf−k · fs and deg(q) = deg(f) + km ≤ k + km = (m+ 1)k,

so f · ps ∈ Γk. Every element of M is in Γk for some k, hence
⋃∞

i=0 Γk =M .

(4) The set of elements of the form uf−k · fs where u is a monomial of K[x1, ..., xn] with degree at most
(m+ 1)k generates Γk as a K-vector space, so each Γk is finite dimensional.

As discussed in the proof of Bernstein’s theorem, there are
(n+k(m+1)

k(m+1)

)
many monomials in K[x1, ..., xn] of

degree at most (m+ 1)k, so dimK(Γk) ≤
(n+k(m+1)

k(m+1)

)
by (4) above. This binomial coefficient is a degree n

polynomial in k, hence M is holonomic by Lemma 2.33.

We can now prove the Lemma on b-functions. Like many other named lemmas in mathematics, it is listed
not as a lemma but as a theorem.

Theorem 2.35. Fix f ∈ K[x1, ..., xn]. There exists a polynomial B(s) ∈ K[s] and a differential operator
D(s) ∈ An(K)[s] such that

B(s)fs = D(s)fs+1.

The set of all such B(s) form an ideal in K[s], the monic generator of which is called the Bernstein polynomial
of f and is denoted by bf (s).

Proof: The case in which f = 0 is trivial, so assume f ̸= 0. Since An(K(s))f s is a submodules of
K(s)[x1, ..., xnf

−1]fs, it too is holonomic and consequently of finite length. The descending sequence

An(K(s)) · fs ⊇ An(K(s)) · fs+1 ⊇ An(K(s)) · fs+2 ⊇ ...

must therefore terminate. In particular, there must exist some positive integer k such that

An(K(s))fk · fs = An(K(s))fk+1 · fs.

This implies that

f s+k = D(s)f s+k+1
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for someD(s) ∈ An(K(s)). As s is simply a dummy variable, we can send s 7−→ s−k to get fs = D(s−k)f s+1.
Note that D(s − k) is simply a polynomial in x̂1, ..., x̂n, ∂x1

, ..., ∂xn
with coefficients in K(s), so we may

multiply by an appropriate B(s) ∈ K[s] to clear denominators and get that B(s)D ∈ An(K)[s]. Setting
D′(s) = B(s)D(s− k) yields

B(s)fs = D′(s)fs+1

as desired.

Example 2.36. Let f = x21 + ...+ x2n. Notice that

∂2xi
fs+1 = 4x2i (s+ 1)sf s−1 + 2(s+ 1)fs.

Letting D = ∂2x1
+ ...+ ∂2xn

, we get that

D(fs+1) =

n∑
i=0

(
4x2i (s+ 1)sf s−1 + 2(s+ 1)f s

)
= 4(s+ 1)s(x21 + ...+ x2n)f

s−1 + 2n(s+ 1)fs

= 2(s+ 1)(2s+ n)f s,

hence bf (s) = 2(s+ 1)(2s+ n)fs.

A bountiful source of examples comes from Cayley’s identity. This was proven by Cayley prior to the
development of the theory of modules over the Weyl algebra.

Example 2.37. Let f = det(xij) be the determinant of a n× n matrix (xij) in n2 in indeterminates. Then

s(s+ 1)(s+ 2)...(s+ n− 1)f s = det(∂/∂xij)f
s+1.

See [Ful14] for a proof of this fact. Let’s check the 2× 2 case. Let

A =

(
x y

z w

)
, B =

(
∂x ∂y
∂z ∂w

)

and set f = det(A) = xw − yz and D = det(B) = ∂
2

∂x∂w − ∂
2

∂y∂z . Then

∂2

∂x∂w
(fs+1) = (s+ 1)sf s−1xw and

∂2

∂y∂z
(fs+1) = (s+ 1)sf s−1zy,

so

Dfs+1 = s(s+ 1)fs−1(xw − zy) = s(s+ 1)fs.

2.4 Analogs for Algebraic D-Modules

We now wish to extend the results of this section to the setting of algebraic D-modules. This section is
exclusively for reference; we prove almost nothing, and instead direct the reader to various sources. Throughout
this section, X is a smooth variety over K and M is either a left or right DX -module.
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Just as in the affine case, we study D-modules through filtrations. The sheaf DX is given locally on affines
SpecR = U ⊆ X by operators f ∈ DR, and likewise, for k ∈ N we may consider the coherent sheaf of
OX -modules Dk

X given locally by order k operators f ∈ Dk
R. The collection D•X of coherent OX -modules is

then a filtration of DX . A filtration of M is then an increasing family of coherent submodules F• = {Fi}i∈N
each of which satisfies

Di
X · Fj ⊆ Fi+j .

This collection is also required to be exhausting, i.e.⋃
i∈Z

Fi(U) = M(U) for each open U ⊆ X.

We say that a filtration F• of M is a good filtration if the associated graded grD
•
X DX -module

grF• M =
⊕
i∈Z

Fi/Fi−1

is coherent.
Every coherent DX -module M has a good filtration locally by Proposition 2.21. Somewhat more surprising

is the fact that good filtrations are guaranteed to exist globally as well.

Lemma 2.38. Let M be a coherent DX -module. Then there exists a good filtration F• of M by coherent
OX -modules.

Proof: Let M be a left DX -module, noting that the appropriate modifications to the following argument yield
the same result when M is instead a right DX -module. We will prove that there is a coherent OX -submodule
F ⊆ M which generates M over the action of DX . The product Di

XF will then be a coherent OX -module
for each i ∈ N since both Di

X and F are coherent OX -modules themselves. Defining

Fi = Di
X · F ⊆ M

then gives a filtration F• of M by coherent OX -submodules.
Every variety is of finite type over its base field and is therefore quasi-compact. We can then find a finite

cover U1, ..., Un of X by open affine subsets, each of which is nonempty. Let Si be a finite generating set for
Γ(Ui,M) over Γ(Ui, DX), which must exist by the coherence assumption on M. The sheaf of OUi

-modules
FUi

defined to be the sheaf associated to the Γ(Ui,OX)-span of Si is then a coherent by definition and
generates M|Ui

over DX |Ui
.

The trick, then, is to globalize these OUi
-submodules of M|Ui

. Hartshorne [Har77, Exercise 2.5.15] gives
us a method to do exactly that. Suppose X is a Noetherian scheme and G is a quasi-coherent OX -module. The
exercise states that if U ⊆ X is an open set and FU is a coherent subsheaf of G|U , then there is a coherent
subsheaf F ⊆ G such that F|U = FU . As every variety is a Noetherian scheme, we get can find a coherent
OX -submodule Fi ⊆ M such that Fi|Ui

= FUi
for each 1 ≤ i ≤ n. The universal property of sheafification

then gives us a map

F1 ⊕ ...⊕Fn −→ M,

whose image is a coherent OX -module which generates M as a DX -module by construction. Hence we are
done.
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If M is a coherent DX -module then we can find a good filtration F• of M by coherent OX -modules. The
associated graded module grF• M is then coherent as a grD

•
X DX -module. However, we no longer have access

to the Bernstein filtration and its finite dimensionality, and therefore cannot apply the theory of Hilbert functions.
We need another way to define dimension and introduce the following object.

Definition 2.39. The characteristic variety Ch(M) of M is the closed algebraic subset of T ∗X given by
˜
grF• M, the sheaf associated to grF• M, with reduced scheme structure.

The characteristic variety of a D-module, among other things, gives us another way to talk about dimension.
Among other things, the dimension of the characteristic variety gives us an analog of Bernstein’s inequality for
modules over the Weyl algebra.

Proposition 2.40. Let M be a coherent left or right DX -module. Then any irreducible component Λ of Ch(M)

satisfies the inequality dimΛ ≥ dimX . In particular, dimCh(M) ≥ dimX if M ≠ 0.

Proof: This is a consequence of the following fact: Ch(M) is involutive with respect to the symplectic
structure of T ∗X . Sato-Kawai-Kashiwara originally proved this [SKK73] and Gabber later came up with
algebraic proof [Gab81].

Holonomy is therefore still a valid concept for D-modules over smooth varieties, and in fact the lemma on
b-functions still holds. See [Kas77] for instance, or Mihnea Popa’s online notes [Pop21].
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3 Inverse Images, Direct Images and Kashiwara’s Theorem

Given a morphism of smooth varieties φ : X −→ Y , we may push a sheaf on X forward via the direct image
functor φ∗ : Sh(X) −→ Sh(Y ) and pull a sheaf on Y back via the inverse image functor φ−1 : Sh(Y ) −→ Sh(X).
These two operations are unfortunately not compatible with the action of differential operators; in general, the
naïve pushforward and pullback of a DX -module M along φ is not a DY -module.

Example 3.1. To see what goes wrong, let’s examine the direct image of a left DX -module M along
the map φ : An

K −→ An
k ×K AK = An+1

K defined by xn+1 = 0. This corresponds to the ring map
K[x1, ..., xn+1] −→ K[y1, ..., yn], xi 7−→ yi for 1 ≤ i ≤ n and xn+1 7−→ 0. There is a natural action of
x̂1, ..., x̂n, x̂n+1 on φ∗M, and letting ∂xi

act via ∂yi for 1 ≤ i ≤ n causes no problems. However, since the
action of xn+1 is trivial, for any section u of φ∗M we will always have

[∂xn+1
, x̂n+1]u = ∂xn+1

(x̂n+1(u))− x̂n+1(∂xn+1
(u)) = 0,

so there is no action of ∂n+1 will satisfy the relation [∂xn+1
, x̂n+1] = 1.

We therefore need to “fix” the direct and indirect image functors to work categories of D-modules.
Unfortunately, a complete account of these topics requires the use of derived categories and Grothendieck’s
six functor formalism, topics beyond the scope of this essay. The problem is homological: the full statement
of Kashiwara’s theorem establishes an equivalence of categories via the direct image functor on the derived
category ofD-modules, but the candidates for this functor are not necessarily exact on the category ofD-modules
themselves.

Nonetheless, we can provide a meaningful discussion if we limit our discussion of direct images to closed
embeddings ι : X ↪→ Y and right DX -modules. Our candidate definition for the direct images of D-module
involves the left exact functor φ∗ and the right exact functor ⊗, and is therefore neither left nor right exact itself.
However, the direct image is exact when φ is a closed embedding. The inverse image will turn out to be only
right exact.

As should be expected by now, many algebraic constructions are brushed under the rug. If the reader
becomes stuck, the now familiar resources [Gin98] should prove quite useful, or [Har77] of course. The author
additionally referenced [HTT08] and [Sch19] frequently while developing this section. Throughout, K is a field
of characteristic zero and both X and Y are smooth algebraic varieties over K.

3.1 Inverse Images

Suppose φ : X −→ Y is a morphism of smooth algebraic varieties over K and M is a left DY -module. We
wish to build a left DX -module from M in a meaningful way. The inverse image of M

φ∗M = OX ⊗
φ
−1OY

φ−1M

is a left OX -module, and we can endow it with a left DX -module structure as follows.
Fix a point p ∈ Y , an affine neighborhood U of p, a local coordinate system {yi, ∂yi}1≤i≤n of p on

U , and set V = φ−1(U). It suffices to define the OX(V ) and ΘX(V ) action on elements of the form
r ⊗ u ∈ OX(V )⊗

φ
−1OY (V )

φ−1M(V ), as such elements generate φ−1M(V ) and OX and ΘX generate DX .
We define the action of a ∈ OX(V ) on r⊗ u by a · (r⊗ u) = ar⊗ u and the action of a vector field θ ∈ ΘX(V )
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on r ⊗ u by

θ(r ⊗ u) = θ(r)⊗ u + r

n∑
i=1

θ(yi ◦ φ)⊗ ∂yi(u). (∗)

To check that this does indeed produce a DX -action on φ∗M , we need to verify that it satisfies the relations

[∂xi
, x̂j ] = δij

[x̂i, x̂j ] = [∂xi
, ∂xj

] = 0

in an affine neighborhood U ′ ⊆ X of φ−1(p) with a local coordinate system {xi, ∂xi
}1≤i≤m. We check the first

relation on and claim the others follows similarly. For r ⊗ u ∈ φ∗M , we have

∂xi
x̂j(r ⊗ u) = ∂xi

(xjr ⊗ u)

= ∂xi
(xjr)⊗ u + xjr

n∑
k=1

∂xi
(yk ◦ φ)⊗ ∂yk(u)

= rδij ⊗ u + xj∂xi
(r)⊗ u + xjr

n∑
k=1

∂xi
(yk ◦ φ)⊗ ∂yk(u)

= δij(r ⊗ u) + xj

(
∂xi

(r)⊗ u + r

n∑
k=1

∂xi
(yk ◦ φ)⊗ ∂yk(u)

)
= δij(r ⊗ u) + x̂j∂xi

(r ⊗ u),

hence [∂xi
, x̂j ](r ⊗ u) = δij(r ⊗ u). It holds on arbitrary elements of φ∗M by the linearity of the commutator.

This discussion is summarized by the following definition.

Definition 3.2. Let φ : X −→ Y be a morphism of smooth algebraic varieties and let M be a DY -module. Then
the inverse image φ∗M of M endowed with the action defined in (∗) is DX -module, the inverse image of M .

Remark 3.3. While φ−1 is exact, the functor OX ⊗
φ
−1OY

− is only right exact in general. This means φ∗ is
also only right exact. To preserve homological data, it is typical to work in the derived setting and replace φ∗

with its left derived functor OX ⊗L
φ
−1OY

−. The definition provided will be suitable for our needs, however.

As a sanity check, let’s ensure the inverse image works as expected when φ is the identity map.

Example 3.4. Let φ : X −→ X be the identity morphism on a smooth variety X and M a DX -module. Note
that the presheaf U 7−→ OX(U)⊗OX(U) M(U) is a sheaf. We have φ−1(F)(U) = F(U) for any sheaf F on X
since φ is the identity, hence for any open set V ⊆ X ,

φ∗M(V ) = OX(V )⊗
φ
−1OX(V )

φ−1M(V ) ∼= OX(V )⊗OX(V ) M(V ) ∼=M(V ).

Fix a point p ∈ X , an affine open neighborhood U ⊆ X of p, and a local coordinate system {xi, ∂xi
}1≤i≤n at p

on U . Let θ ∈ ΘX(U) be a vector field on U and let θ =
∑n

i=1 ai∂xi
be θ expressed in local coordinates (here,
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ai ∈ OX(U)). For any u ∈M , we have that

θ(1⊗ u) = θ(1)⊗ u +
n∑

i=1

θ(xi ◦ φ)⊗ ∂xi
(u)

=
n∑

i=1

θ(xi)⊗ ∂xi
(u)

=
n∑

i=1

ai ⊗ ∂xi
(u)

= 1⊗

(
n∑

i=1

ai∂xi
(u)

)
= 1⊗ θ(u),

so φ∗M ∼=M via the isomorphism 1⊗ u 7−→ u.

However, inverse images can behave badly even for relatively simple morphisms φ : X −→ Y . For instance,
the inverse image of a coherent module need not itself be coherent, as seen in the following example.

Example 3.5 (Loss of Coherence). Suppose X = Y = A1
K , so that DX = DY = Ã1, the sheaf associated

to the first Weyl algebra. Though X and Y are two copies of the same variety, we distinguish the coordinate
systems of X and Y by {x, ∂x} and {y, ∂x} respectively, noting that these are globally valid.

Consider the morphism φ : X −→ Y defined φ(x) = x2 and note that the induced map on global sections
φ♯ : K[y] −→ K[x] sends a polynomial f(y) to f(x2). Finally, letM = A1, so that M̃ is Weyl algebra considered
as a module over itself.

Hartshorne tells us that φ∗(M) ∼= (K[x]⊗K[y] M)∼ [Har77, Proposition 2.5.2], so the global sections of
φ∗(M) are generated by elements of the form f ⊗ u for f ∈ K[x] and u ∈ M . Though M̃ is coherent as a
DY -module, we will see that φ∗M̃ is not a coherent DX module.

It suffices to check thatΓ(X,φ∗(M̃)) = K[x]⊗K[y]M is not finitely generated as aΓ(X,DX) = A1-module.
Suppose we have some finite set of elements B ⊆ K[x]⊗K[y] M . The span of an element f ⊗ u + f ′ ⊗ u′ is
contained in the span of {f ⊗ u, f ′ ⊗ u′}, so we may assume that B is comprised entirely of elements f ⊗ u for
f ∈ K[x] and u ∈M . Furthermore, by writing u in its canonical form (see Lemma 1.17) we may assume that
u = ŷa∂by for some a ∈ N and b ∈ N.

Suppose b is the largest natural number such that f ⊗ ŷa∂by is an element of B for some a ∈ N and f ∈ K[x].
From the K[y]-action on K[x], we get that f ⊗ ŷa∂by = x2af ⊗ ∂by. Noting that x ◦ φ = x2, we have

∂x(f ⊗ ŷa∂by) = ∂x(x
2af ⊗ ∂by)

= ∂(x2af)⊗ ∂by + x2af∂x(x
2)⊗ ∂y(∂

b
y)

=
(
2ax2a−1f(x) + x2af ′

)
⊗ ∂by + 2x2a+1f ⊗ ∂b+1

y .

Thus, the action of ∂x will increase the degree of both the first and second component of x2af ⊗ ∂by by 1.
This means the A1-span of K[x]⊗K[y] M avoids elements such as 1⊗ ∂b+1

y , as 1 has degree 0 and ∂b+1
y has

degree larger than b, the largest power of ∂y appearing in the set B. Therefore, the span of any finite subset of
K[x]⊗K[y] M will be a proper subset, so φ∗(M̃) is not a coherent DX -module.

There are a class of morphisms which do preserve finite generation of modules over the Weyl algebra under
pullbacks, namely projections.
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Example 3.6 (Projections). Let X = Am
K and Y = An

K , so that X ×K Y ∼= Am+n
K . We denote by K[X,Y ]

the polynomial ring K[x1, ..., xmy1, ..., yn]. Suppose that M is a left An-module and π : X ×K Y −→ Y is the
projection map defined by x1 = ... = xm = 0. By [Har77, Proposition 2.5.2],

π∗(M) ∼= K[X,Y ]⊗K[Y ] M

and this isomorphism can be checked to be compatible with the action of differential operators. As a K-vector
space, π∗(M) is generated by elements of the form pq⊗ u, where p is a monomial in x1, ..., xm, q is a monomial
in y1, ..., yn. However, pq ⊗ u = p⊗ qu, so we have an isomorphism

π∗(M) ∼= K[X]⊗K M

ofK-vector spaces. BecauseK[X] is a leftAm-module andM is a leftAn-module,K[Y ]⊗KM has the natural
structure of a Am+n-module. That is, an operator pq∂α∂β in Am+n with p ∈ K[X], q ∈ K[Y ], α ∈ Nm and
β ∈ Nm acts on f ⊗ u ∈ K[X]⊗ by

pq∂α∂β(f ⊗ u) = p∂α(f)⊗ q∂β(u).

We show that this coincides with the one defined by definition 3.2.
The action of polynomials in K[X,Y ] is clear. It then suffices to check the action of ∂xj

and ∂yk on a
generator pq⊗ u, where 1 ≤ j ≤ m, 1 ≤ k ≤ n, p is a monomial inK[X] and q is a monomial inK[Y ]. Noting
that yi ◦ π = yi for each 1 ≤ i ≤ n, we have

∂xj
(pq ⊗ u) = ∂xj

(pq)⊗ u + pq
n∑

i=1

∂xj
(yi)⊗ ∂yiu

= q∂xj
(p)⊗ u

= ∂xj
(p)⊗ qu

and

∂yk(pq ⊗ u) = ∂yk(pq)⊗ u + pq

n∑
i=1

∂yk(yi)⊗ ∂yi(u)

= p∂yk(q)⊗ u + pq ⊗ ∂yk(u)

= p⊗ ∂yk(qu),

where the last equality follows from Leibniz’s rule. Hence, π∗(M) ∼= K[X]⊗K M as a Am+n-module under
the identification K[X,Y ] ⊗K[Y ] M ∼= K[X] ⊗K M . In particular, since K[X] is finitely generated as a
Am-module, if M is finitely generated as a An-module then π∗(M) is finitely generated as a Am+n-module.

3.2 Direct Images

The inverse image of DY is the module φ∗DY = OX ⊗
φ
−1OY

φ−1DY . This inverse image is special, for in
addition to the left DX -action discussed in the previous section, it comes equipped with a right φ−1DY action.
These actions are compatible, and therefore φ∗DY is a (DX , φ

−1DY )-bimodule. We give is a special name.

Definition 3.7. Suppose φ : X −→ Y is a morphism of smooth varieties. We define the transfer module DX→Y

to be the (DX , φ
−1DY )-bimodule φ∗DY = OX ⊗

φ
−1OY

φ−1DY .

39



Let ι : X −→ Y be a closed embedding of smooth varieties and recall from the last section that the transfer
module DX→Y = ι∗DY is a (DX , ι

−1DY )-bimodule. Let’s examine DX→Y in local coordinates.

Lemma 3.8. The transfer module DX→Y is a locally free DX -module of infinite rank and contains a copy of
DX

Proof: Fix an affine open V ⊆ Y , then U = ι−1(V ) is an open affine in X . Every smooth variety is locally a
complete intersection; hence, we can choose local coordinates y1, ..., yn for Y on V such that X is defined
by the equations yr+1 = ... = yn = 0. Let ∂y1 , ..., ∂yn be the vector fields corresponding to the yi for Y on
V and let ∂x1

, ..., ∂xr
be the vector fields corresponding to x1 = y1, ..., xr = yr for X on U (see [HTT08,

Theorem A.5.3], for instance).
The transfer module has a global section 1⊗ 1̂, where 1 is the identity section of OX and 1̂ is the section

corresponding to the identity operator in ι−1DY . The actions of DX on 1 ⊗ 1̂ gives us an embedding
DX −→ DX→Y , which can be easily seen in local coordinates. The action of ∂xi

on 1⊗ 1 as defined in (∗)
from the previous section is

∂xi
(1⊗ 1̂) = ∂xi

(1)⊗ 1̂ +

n∑
j=1

∂xi
(yj ◦ ι)⊗ ∂yj ◦ 1̂ = 1⊗ ∂yi .

More generally, an operator P =
∑

α fα∂
α ∈ DX(U) with α ∈ Nr acts on 1⊗ 1̂ by the formula

P (1⊗ 1̂) =
∑
α

fα ⊗ ∂α1
y1
...∂αr

yr
.

Hence P (1 ⊗ 1) = 0 only if P = 0 in DX(U), so the map DX −→ DX→Y given by the action of DX on
1⊗ 1̂ is injective.

We now show DX→Y is a locally free left DX -module. Define the following subalgebra of DY :

DX
Y =

⊕
α∈Nr

OY · ∂α1
y1

· ... · ∂αr
yr
.

This is identical toDY itself except that we only allow vector fields which act nontrivially on the image ofX in Y .
Once we add the rest of the vector fields back in we recoverDY , i.e. the mapDX

Y ⊗KK[∂yr+1
, ..., ∂yn ] −→ DY

given by multiplication is an isomorphism. Furthermore, by the discussion above, we see that the map
DX −→ DX→Y identifies DX with the subalgebra OX ⊗

ι
−1OY

ι−1DX
Y of DX→Y . But then

DX→Y = OX ⊗
ι
−1OY

ι−1DY

∼= OX ⊗
ι
−1OY

ι−1
(
DX

Y ⊗K K[∂yr+1
, ..., ∂yn ]

)
∼=
(
OX ⊗

ι
−1OY

ι−1DX
Y

)
⊗K K[∂yr+1

, ..., ∂yn ]

∼= DX ⊗K K[∂yr+1
, ..., ∂yn ],

where we use the identification DX
Y

∼= OX ⊗
ι
−1OY

ι−1DX
Y in the final isomorphism. This implies DX→Y is

locally a free DX -module.

Remark 3.9. Notice that the above proof implies that inverse images over closed embeddings do not necessarily
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preserve coherence. Though DY is certainly locally finitely generated as a module over itself, its inverse image
DX→Y is locally a free module of infinite rank.

The functor −⊗DX
DX→Y is exact on left and right DX -modules since DX→Y is locally free. The direct

image functor on OX -modules ι∗ is also exact since ι is a closed embedding, so ι∗(− ⊗DX
DX→Y ) is exact.

Thus the following definition fits the desired criterion for a direct image functor on right DX -modules.

Definition 3.10. Let M be a right DX -module. The direct image or pushforward of M along ι is

ι+M = ι∗(M ⊗DX
DX→Y ).

This is a right DY -module under the morphism DY −→ ι∗ι
−1DY .

Remark 3.11. When ι is replaced by an arbitrary map φ : X −→ Y , φ∗ is only left exact and −⊗DX
DX→Y is

only right exact. We can fix this by replacing φ∗ with its right derived functor Rφ∗ and −⊗DX
DX→Y with the

left derived tensor product −⊗L
DX

DX→Y [HTT08].

Remark 3.12. The inclusion of DX ↪→ DX→Y given by Lemma 3.8 induces a similar inclusion of ι∗M into
ι+M. On an affine open U ⊆ Y , we have

ι+M ∼= ι∗M ⊗K K[∂yr+1, ..., ∂yn ]

in the local coordinates defined in the proof of the lemma. The pushforward as we’ve defined it therefore solves
the issue of DY ’s action on ι∗M by simply attaching a copy of ι∗M to each monomial in ∂yr+1

, ..., ∂yn . We can
also see that the copy of ι∗M given by ι∗M⊗ 1̂ is exactly the submodule of ι+M annihilated by the ideal sheaf
IX ⊆ OY defined by the closed embedding. This is clear locally, since IY (U) = (yr+1, ..., yn) ⊆ OY (U).

Example 3.13. Let’s compute the direct image of DX along ι : X ↪→ Y . We get

ι+DX = ι∗
(
DX ⊗DX

DX→Y

)
= ι∗DX→Y .

The sheaf i∗DX→Y is i∗(OX ⊗
ι
−1OY

ι−1DY ). But we have a natural map DY −→ i∗(OX ⊗
ι
−1OY

ι−1DY )

defined on sections by P 7−→ 1⊗ P , and this is surjective. Furthermore, a section P is sent to 0 in i∗DX→Y if
and only if it can be written locally on an affine U as a sum with coefficients in IX(U) ⊆ OY (U), so the kernel
of the map DY −→ ι+DX is IXDY , the sheaf of ideals given by the kernel of ι♯ : OY −→ ι∗OX . Hence

ι+DX
∼= i∗(OX ⊗

ι
−1OY

ι−1DY ) ∼= DY /IXDY .

Example 3.14. Now let us discuss the case of the embedding ι : Ar
K ↪→ An

K from the beginning of this section,
noting that because we’re working over affine varieties we can perform all computations on global sections.
Denote the corresponding quotient map by φ : K[y1, ..., yn] −→ K[x1, ..., xr] and let Ar and An be the rth and
nth Weyl algebras respectively. We compute the direct image of the right Ar-module M = Ar/(P1, ..., Pm)Ar.
We can realize M as the cokernel of the map

A⊕mr
(P1,...,Pm)−−−−−−−→ Ar,

and because ι+ is exact, it preserves this presentation. From the last example, ι+Ar
∼= An/ kerφAn =

An/(yr+1, ..., yn)An, so ι+M is the cokernel of the map

(An/(yr+1, ..., yn)An)
⊕m −→ An/(yr+1, ..., yn)An
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induced by ι+. If αP : Ar −→ Ar is the morphism given by multiplication on the right by P ∈ Ar, then the
induced endomorphism of An/(yr+1, ..., yn)An is still multiplication on the right by P , albeit with P expressed
in the coordinates y1, ..., yr, ∂y1 , ..., ∂yr . Hence ι+M ∼= An/(P1, ..., Pr, yr+1, ..., yn).

3.2.1 Direct Images for Affines

In the case that X = SpecA, Y = SpecB and φ : X −→ Y is any regular map, the pushforward φ∗(M̃) of
a quasi-coherent OX -module M̃ is simply the restriction of scalars along the ring homomorphism φ♯ : B −→ A

corresponding to φ. This leaves the underlying Abelian group of M unchanged and is hence exact. This
means that when X and Y are affine, replacing ι with φ Definition 3.10 gives us a reasonable definition for the
pushforward along φ.

We also have a way of obtaining left modules from right modules in the affine case, as described in Example
2.7. Using [Har77, Proposition 2.5.2] gives us that DX→Y = φ∗(DB) ∼= (A⊗B DB), so

DY←X := t(DX→Y ) ∼=
t(DB)⊗B

t(A)

is a (DB, DA)-bimodule by right action of DA on A. The rightmost isomorphism follows from the fact that
t(M1 ⊗RM2) ∼=

t(M2)⊗R
t
(M1), which can be quickly seen from definitions or found in [Cou95, Chapter 16].

Definition 3.15. Let φ : X −→ Y be a morphism of smooth affine varieties and M be a left DX -module. The
direct image of M by φ is the left DY -module

φ+M = DY←X ⊗DX
M.

Let’s use this to compute the pushforward of left and right DX×KY -modules along the projection onto Y when
X = Am

K and Y = An
K .

Example 3.16. Let π : X ×K Y −→ Y be the projection onto Y and M be a right Am+n-module. By Example
3.6 we know

DX→Y = π∗An = K[X]⊗K An,

and since K[X] ∼= Am/
∑m

i=1Am∂xi
, we have

DX→Y = Am

/ m∑
i=1

Am∂xi
⊗K An

∼= Am+n

/ m∑
i=1

Am+n∂xi
.

Since
∑m

i=1Am+n∂xi
is a (Am+n, An)-bimodule, the isomorphism

π+M =M ⊗Am+n

(
Am+n

/ m∑
i=1

Am+n∂xi

)
∼=M

/ m∑
i=1

M∂xi

of An-modules then follows from basic properties of tensor products. If N is instead a left Am+n-module, then
we simply need to compute DY←X . The standard anti-automorphism of Am+n takes ∂xi

7−→ −∂xi
, so

DY←X =

t(
Am+n/

m∑
i=1

Am+n∂xi

)
∼= Am+n

/ t( m∑
i=1

Am+n∂xi

)
∼= Am+n

/ m∑
i=1

∂xi
Am+n.

42



The fact t(An/J) = An/
t(J) used above follows immediately from considering the map An −→ t(An) −→

t(An/J). It then follows that

π∗N ∼= Am+n

/ m∑
i=1

∂xi
Am+n ⊗Am+n

N ∼= N
/ m∑

i=1

∂xi
N.

Note that the quotientAm+n/
∑m

i=1Am+n∂xi
appearing throughout this example is not aAm+n-module since the

left ideal
∑m

i=1Am+n∂xi
is not two-sided. Nevertheless, it is a An module under the embedding An ↪→ Am+n

because the generators of An all commute with the ∂xi
’s.

3.3 Kashiwara’s Equivalence

In the name of further developing our functorial language, we establish some categorical notation standard to
the literature.

Definition 3.17 (Notation). We establish the following notation.

• Modqc(DX) is the category of left DX -modules and Modc(DX) is the category of coherent left DX -
modules.

• If X ⊆ Y is a closed embedding, then Modqc
X(DY ) is the category of left DY -modules with support in

X , likewise Modc
X(DY ) is the category of coherent left DY modules with support in X .

The category of right DX -modules can be identified with Modqc(D
op
X ), so we obtain the right module versions

of the above definitions by replacing DX with Dop
X .

Let ι : X −→ Y once again be a closed embedding. It is convenient to identify X with its image in Y , and
indeed we can easily do so under the identifications xi 7−→ yi in local coordinates as given in the beginning of the
proof of Lemma 3.8. We can now state a version of Kashiwara’s equivalence theorem.

Theorem 3.18. Let ι : Y ↪→ X be a closed embedding. The functor ι+ induces the following equivalences of
categories

ι+ : Modqc(D
op
X ) −→ Modqc

X(Dop
Y ),

ι+ : Modc(D
op
X ) −→ Modc

X(Dop
Y )

between right DX -modules and right DX -modules with

Proof: Let M be a right DY -module. This proof naturally splits into three parts.
The first step is to construct a functor ι♮ which will serve as the inverse to ι+. We saw in Remark 3.12 that

ι∗M embeds into ι+M and is exactly the subsheaf annihilated by IX ⊆ OY . The functor ι♮ should therefore
take a DY -module N to its subsheaf of sections annihilated by IX , somehow interpreted as a DX -module.

There is a technical, yet efficient way of doing this. Given a right DY -module N , define

ι♮N = Hom
ι
−1

DY
(DX→Y , ι

−1N ).

This is a right ι−1DY -module by definition and has a right DX -module structure induced by the left DX
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action on DX→Y . We may rewrite this as

ι♮N = Hom
ι
−1

DY
(OX ⊗

ι
−1OY

ι−1DY , ι
−1N )

∼= Hom
ι
−1OY

(
OX ,Hom

ι
−1

DY
(ι−1DY , ι

−1N )
)

∼= Hom
ι
−1OY

(OX , ι
−1N )

using Hom-tensor adjunction. By definition of IX we have a short exact sequence

0 −→ IX −→ OY −→ ι∗OX −→ 0.

Applying the exact functor ι−1 gives us

0 −→ ι−1IX −→ ι−1OY −→ OX −→ 0

and applying Hom
ι
−1OY

(−, ι−1N ) gives us

0 −→ ι♮N −→ ι−1N −→ Hom
ι
−1OY

(ι−1IX , ι
−1N ).

The rightmost map can be factored as the isomorphism ι−1N −→ Hom
ι
−1OY

(ι−1OY , ι
−1N ) and the

restriction Hom
ι
−1OY

(ι−1OY , ι
−1N ) −→ Hom

ι
−1OY

(ι−1IX , ι
−1N ). The kernel of this map is locally the

sections of ι−1N which are annihilated by ι−1IX , so ι♮N is exactly the subsheaf of ι−1N annihilated by
ι−1IX by the exactness above. This isomorphism can be seen to be compatible with the natural DX actions
on the respective sheaves, but we omit this detail.

In the second part of the proof, we must prove that ι♮ and ι+ are indeed inverses. That is, for a DX -
module M and a DY -module N supported on X , we must show that the natural morphisms ι♮ι+M −→ M
and N −→ ι+ι

♮N are isomorphisms. It suffices to check this locally, so we assume without loss of
generality that Y = SpecB is affine with local coordinate system {yi, ∂yi} and that X is defined by the ideal
(yr+1, ..., yn) ⊆ B. Setting A = B/I , we then have X = SpecB/I . In this local setting, the pushforward of
a right DA-module M is then exactly M ⊗K K[∂yr+1

, ..., ∂yn ] as in Remark 3.12. This submodule of ι+M
annihilated by I is then M ⊗ 1 ∼=M , proving the first isomorphism.

The second isomorphism requires more work. Fix a rightDB-moduleN such that Supp(N) ⊆ V (I) = X

so that every element of N is annihilated by a sufficiently high power of I . Set N0 = {u ∈ N | uI = 0}k,
and note that we can consider N0 to be a right DA-module under the identifications xi 7−→ yi and ∂xi

7−→ ∂yi .
Our goal then is to show N ∼= ι+N0 = N0 ⊗K K[∂yr+1

, ..., ∂yn ]. The key to this will be the action of the
operator Tj = ŷj∂yj on N for r + 1 ≤ j ≤ n. The point is this: Tj acts trivially on N0 by definition and

Tj · ∂
er+1
yr+1

· ... · ∂enyn = ∂
er+1
yr+1

· ... · ∂enyn (Tj − ej),

which means

u⊗ ∂
er+1
yr+1

· ... · ∂enyn · (Tj − ej) = 0.

Elements of the form u⊗ ∂
er+1
yr+1

· ... · ∂enyn are therefore eigenvalues of Tj with corresponding eigenvalue ej , at
least when Tj is considered to be an operator on N0 ⊗K K[∂yr+1

, ..., ∂yn ]. Such elements also form a basis for
N0 ⊗K K[∂yr+1

, ..., ∂yn ] over K, so every eigenvector is of this form.
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We use this intuition to construct an isomorphism N ∼= N0 ⊗K K[∂yr+1
, ..., ∂yn ] by considering a

decomposition of N into eigenspaces. One can show by expanding that

Tj(Tj − 1)...(Tj − e) = ŷe+1
yj

∂e+1
yj

for e ≥ N.

Since each u ∈ N is annihilated by a sufficiently large power of xj ,

u · Tj(Tj − 1)...(Tj − e) = ŷe+1
yj

∂e+1
yj

= for e≫ 0.

In particular, this implies u can be written as a sum of eigenvectors of Tj with eigenvalues in N. The operators
Tr+1, ..., Tn all commute, so we obtain a decomposition

N ∼=
⊕

η∈Nn−r

Nη

of N into simultaneous eigenstates, where Tj acts on Nη via multiplication on the right by ηj . If s ∈ Nη, then
s∂yj ∈ Nη+ej

since Tj acts via multiplication by ηj + 1:

s∂yjTj = s(∂yj ŷj)∂yj = s(ŷj∂yj + 1)∂yj = s∂yj (ηj + 1).

Similarly, sŷj ∈ Ne−1 since Tj acts via multiplication by ηj − 1:

sŷjTj = sŷj(ŷj∂yj ) = sŷj(∂yj ŷj − 1) = sŷj(ηj − 1).

Since Nη is trivial whenever η has a component less than 0, N(0,...,) must be killed by ŷr+1, ..., ŷn, hence
N(0,...,0) = N0. Furthermore, since each Tj commutes with ŷ1, ..., ŷr, ∂y1 , ∂yr , each Nη is a DA-module and
the maps

N0 −→ Nη, s 7−→ s∂
ηr+1
yr+1

...∂ηnyn

are all isomorphisms of DA-modules. We conclude that the map

N0 ⊗K K[∂yr+1
, ..., ∂n] −→ N,

∑
u⊗ ∂

ηr+1
yr+1

...∂ηnyn =
∑

u∂
ηr+1
yr+1

...∂ηnyn

is an isomorphism, as desired.
For the final part of this proof, we must check that ι+ and ι♮ preserve coherence. It also suffices to check

this locally, so we may assume Y = SpecB and X = SpecA as above. Assume N is a finitely generated
right DB-module with support in X . By what we have just shown, N ∼= N0 ⊗K K[∂yr+1

, ..., ∂yn ], and hence
is generated as a DB-module by finitely many elements s1, ..., sk ∈ N0. But then ι♮N = ι♮N0 is generated as
a DA-module by s1, ..., sk.

Likewise, if M is a finitely generated right DA-module, then ι+M ∼=K K[∂yr+1
, ..., ∂yn ] is finitely

generated as a DB-module, and we are done.

3.4 Preservation of Holonomy

Our final, brief discussion is one that will tie the topics of dimension, holonomy, filtrations, functoriality, and
Fourier transforms together. We have seen that neither inverse images nor direct images over arbitrary maps of
varieties φ : X −→ Y preserve coherence, but somewhat surprisingly, they do preserve holonomy.
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It turns out that the proof of this statement for smooth varieties can be reduced to the case that X = An+1
K ,

Y = An
K , and φ is the projection map defined by xn+1 = 0. To see why the justification for this in full detail,

see [HTT08, Chapter 3]. Briefly, this is accomplished by decomposing an arbitrary regular map φ : X −→ Y as
the composition of a closed embedding ι : X −→ X ×K Y and a projection X ×K Y . It then suffices to assume
φ is either a closed embedding or a projection. The closed embedding case is handled fairly quickly by [HTT08,
Lemma 3.2.5]. When φ is a projection, the problem is further reduced to the special case mentioned above. The
proof of this final case fits nicely into the theory we developed over the course of this essay, and we present it
now as our final result.

Let us first state some lemmas.

Lemma 3.19. Suppose M is a finitely generated An-module and N is a finitely generated Am-module. Then

(a) d(M ⊗K N) = d(M) + d(N),

(b) m(M ⊗K N) = m(M) ·m(N).

Proof: [Cou95, Theorem 13.4.1].

Lemma 3.20. If ι : X −→ Y is a closed embedding of smooth varieties and M is a holonomic DY -module,
then ι∗M is a holonomic DX -module.

Proof: [HTT08, Theorem 3.2.3 and Lemma 3.2.5].

Lemma 3.21. Let M be a finitely generated left An-module and let M̂ be the Fourier transform of M . Then
d(M) = d(M̂) and m(M) = m(M̂).

Proof: Let B = {Bk}k∈N be the Bernstein filtration and F be the automorphism of An defined F (x̂i) = −∂i
and F (∂i) = x̂i for 1 ≤ i ≤ n. This preserves the degree of elements in An, and hence F (Bk) = Bk for all
k ∈ N.

As in Proposition 2.21, let Γ be a good filtration for M such that Γ0 is a finite dimensional K-vector space
whose basis is a set of generators for M . Then M̂ is also generated by Γ0 over An. Defining Ωk = F (Bk) ·Γ0

thus defines a good filtration Ω on M̂ , and since F (Bk) · Γ0 = BkΓ0 = Γk, we have Ω = Γ. This implies
that grΓM and grΩ M̂ have the same Hilbert polynomial, and hence M and M̂ have the same dimension and
multiplicity.

We can now prove that pushforwards and pullbacks of holonomic modules over the projection An+1
K −→ An

K

are themselves holonomic.

Theorem 3.22. Let X = A1
K , Y = An

K , and π : X ×K Y −→ Y be the projection defined by x = 0. If M is a
holonomic left DX×KY module and N is a holonomic left DY -module, then π+M is a holonomic DY -module
and π∗N is a holonomic DX×KY -module.

Proof: We can once again work with global sections since all varieties are affine. Set M = Γ(X ×K YM)

and N = Γ(Y,N ) so that M and N are holonomic modules over An+1 and An respectively.
Let us first show that π∗N is holonomic as a An+1-module. From Example 3.6, we know π∗N ∼=

K[x]⊗K N , and by Lemma 3.19 above, d(π∗N) = d(K[x]) + d(N) = 1 + n. Hence π∗N is a holonomic
An+1-module.
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Now consider the pushforward π+M . By Example 3.16 this is isomorphic to M/∂xM with the action of
An given by the embedding An ↪→ An+1. The same arguments used in Example 2.3 show this is isomorphic
to the Fourier transform of M/xM , and therefore M/xM and π+M have the same dimension by Lemma
3.21. We will write M/xM as the pullback of M along a closed embedding, which is necessarily holonomic
by Lemma 3.20.

Consider the closed embedding ι : Y ↪→ X ×K Y corresponding to the surjective ring homomorphism
K[x, y1, ..., yn] −→ K[y1, ..., yn]. Since we are working entirely over affines, the pullback of M is simply

ι∗M = K[y1, ..., yn]⊗K[x,y1,...,yn]
M

by definition, which is isomorphic to M/xM as a K[x, y1, ..., yn]-module. For an element q ⊗ u ∈ ι∗M and
a derivation ∂yi of An, we have

∂yi(q ⊗ u) = ∂yi(q)⊗ u + q
n∑

k=1

∂yk
∂yi

⊗ ∂yk(u)

= ∂yi(q)⊗ u + q ⊗ ∂yi(u),

which corresponds to the element ∂yi(qu) in M/xM , so the isomorphism ι∗M =M/xM is compatible with
the relations of An. Hence M/xM and consequently π+M are holonomic.
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