Algebraic Curves Lecture 10: Hurwitz bound and hyperelliptic curves.

The 10th lecture of algebraic curves with Karl Christ
  1. Proof of Hurwitz Bound
  2. Hyperelliptic curves

Proof of Hurwitz Bound

Last time we ended with the Hurwitz bound:

Cor: (Hurwitz bound).   Suppose XX has genus 2\geq 2 and finitely many automorphisms. Then Aut(X)84(g1)|\operatorname{Aut}(X)| \leq 84(g - 1).

Note that if XX is genus 00 or 11 then it will never have finitely many automorphisms.

Proof.   let fif_i be the number of points of ramification index rir_i over a point pip_i in the base. Orbit stabilizer theorem says that Aut(X)=firi|\operatorname{Aut}(X)| = f_ir_i. Let hh denote the genus of X/Aut(X)X/\operatorname{Aut}(X). Riemann-Hurwitz says that

2g(X)2=Aut(X)(2h2)+i,j(ei,j1)=Aut(X)(2h2)+i=1bfi(ri1)=Aut(X)(2h2i=1b(11ri)).\begin{aligned} 2g(X) - 2 &= |\operatorname{Aut}(X)| \cdot (2h - 2) + \sum_{i,j}(e_{i,j} - 1) \\ &= |\operatorname{Aut}(X)| \cdot (2h - 2) + \sum_{i=1}^bf_i(r_i - 1) &= |\operatorname{Aut}(X)| \cdot \left(2h - 2 - \sum_{i=1}^b(1 - \frac{1}{r_i})\right). \end{aligned}
Set c=(2h2i(11ri))c = \left(2h - 2 - \sum_{i}(1 - \frac{1}{r_i})\right). We'll come up with a lower bound on cc by examining a few cases:

Case 1: h2h \geq 2. Then c2c \geq 2 and Aut(X)g1|\operatorname{Aut}(X)| \leq g - 1.

Case 2: h=1h = 1. Then b1b \geq 1 (remember, bb is the number of branch points) and c12c \geq \frac{1}{2}. Thus Aut(X)4(g1)|\operatorname{Aut}(X)|\leq 4(g - 1).

Case 3: h=0h = 0.

Case 3.1: If b5b\geq 5, then c12c \geq \frac{1}{2} and so Aut(X)4(g1)|\operatorname{Aut}(X) \leq 4(g - 1).

Case 3.2: If b=4b = 4 then not all rir_i can be equal to 22. Then

c232=g+4126=16    Aut(X)12(g1).\begin{aligned} c \geq -2 \frac{3}{2} = \frac{g + 4 - 12}{6} = \frac{1}{6} \implies |\operatorname{Aut}(X)| \leq 12(g - 1). \end{aligned}

Case 3.3: The case that b2b \leq 2 is not possible since gg is at least 22.

Case 3.4: If b=3b = 3 then suppose r1r2r3r_1\leq r_2 \leq r_3 without loss of generality. Now MORE subcases:

Case 3.4.1: If r13r_1\geq 3, then not all rir_i can be equal to 33, so

c2+23+23+34=24+16+912=112,\begin{aligned} c \geq -2 + \frac{2}{3} + \frac{2}{3} + \frac{3}{4} = \frac{-24 + 16 + 9}{12} = \frac{1}{12}, \end{aligned}
from which it follows that Aut(X)24(g1)|\operatorname{Aut}(X)| \leq 24(g - 1).

Case 3.4.2: If r1=2r_1 = 2 then r2>4r_2 > 4 and r35r_3 \geq 5. Then

c2+12+34+45=40+10+15+1620=120\begin{aligned} c \geq -2 + \frac12 + \frac34 + \frac 45 = \frac{-40 + 10 + 15 + 16}{20} = \frac{1}{20} \end{aligned}
so Aut(X)40(g1)|\operatorname{Aut}(X)| \leq 40(g - 1).

Case 3.4.3: If r1=2r_1 = 2, r2=3r_2 = 3 and then r37r_3 \geq 7. Then

c2+12+34+67=142\begin{aligned} c \leq -2 + \frac{1}{2} + \frac34 + \frac67 = \frac{1}{42} \end{aligned}
so Aut(X)84(g1)|\operatorname{Aut}(X)| \leq 84(g - 1), which is exactly the Hurwitz bound.

So in all cases, if XX is a genus 2\geq 2 curve, then Aut(X)84(g1)|\operatorname{Aut}(X)| \leq 84(g - 1).

\square
 

Hyperelliptic curves

A curve XX is called hyperelliptic if it admits a g21g^1_2, that is, a degree 22 map XP1X\to \mathbb P^1.

  1. If g=0g = 0 (meaning XP1X \cong \mathbb P^1) then h0(OP1(2))=3h^0(\mathcal O_{\mathbb P^1}(2)) = 3. Any 2-dimensional subspace VH0(OP1(2))V\subset H^0(\mathcal O_{\mathbb P^1}(2)) gives a g21g^1_2.

  2. If g1g \geq 1 and XX is hyperelliptic, then the g21g^1_2 needs to be complete.

  3. If g=1g = 1, then any degree 2 line bundle gives a g21g^1_2 (Riemann-Roch).

  4. If g=2g = 2, then the canonical divisor has degree equal to 2g2=22g - 2 = 2, and its space of global sections is h0(KX)=g=2h^0(K_X) = g = 2. From Riemann-Roch we can deduce that this is the unique g21g^1_2.

As a reminder:

Lemma: If XX has genus g1g \geq 1 and LL has degree 2g22g - 2 then h0(L)gh^0(L) \leq g and equality holds if and only if LKXL\cong K_X.
Proof.  
h0(L)h0(KXL)=2g2g+1=g1.\begin{aligned} h^0(L) - h^0(K_X - L) = 2g - 2 - g + 1 = g - 1. \end{aligned}
\square
 
Proposition: If XX is a hyperelliptic curve with g2g\geq 2 then KXLg1K_X\cong L^{\otimes g - 1} where LL is a g21g^1_2.
Proof.   LL induces a map φL:XP1\varphi_L:X\to \mathbb P^1. Consider the Veronese embedding of P1\mathbb P^1, i.e. the map P1Pg1\mathbb P^1 \to \mathbb P^{g - 1} induced by OP1(g1)\mathcal O_{\mathbb P^1}(g - 1): [x,y][x3,x2y,xy2,y3][x,y] \mapsto [x^3, x^2y, xy^2, y^3]. Then
φLOP1(1)L\begin{aligned} \varphi^*_L\mathcal O_{\mathbb P^1}(1)\cong L \end{aligned}
and
OP1(g1)OP1(1)g1.\begin{aligned} \mathcal O_{\mathbb P^1}(g - 1) \cong \mathcal O_{\mathbb P^1}(1)^{\otimes g - 1}. \end{aligned}
Thus φφL:XPg1\varphi\circ \varphi_L:X\to \mathbb P^{g - 1} given by Lg1L^{\otimes g - 1}. In particular, h0(Lg1)h^0(L^{\otimes g-1}) and deg(Lg1)=2g2\deg(L^{\otimes g-1}) = 2g -2, hence Lg1KXL^{g-1}\cong K_X.
\square
 

Theorem: Let g2g \geq 2. Then KXK_X is base point free and

  1. very ample if XX is not hyperelliptic

  2. a 2:12:1 cover of a rational normal curve in Pg1\mathbb P^{g-1} if XX is hyperelliptic.

Proof.   Let pXp\in X.

h0(KXp)h0(OX(p))=2g3g+1=g2.\begin{aligned} h^0(K_X - p) - h^0(\mathcal O_X(p)) = 2g - 3 - g + 1 = g - 2. \end{aligned}
We previously saw that h0(OX(p))=1h^0(\mathcal O_X(p)) = 1 in this case (I forgot why this is true) so h0(KXp)=g1=h0(KX)1h^0(K_X - p) = g - 1 = h^0(K_X) - 1.

  1. Since h0(OXO(p+q)=1h^0(\mathcal O_X O(p + q) = 1

    h0(Kxpq)h0(OXO(p+q))=2g4g+1=g2    h0(Kxpq)=g2.\begin{aligned}h^0(K_x - p - q) - &h^0(\mathcal O_X O(p + q)) = 2g - 4 - g + 1 = g-2 \\ &\implies h^0(K_x - p - q) = g - 2.\end{aligned}

  2. This was the previous proposition.

\square
 

Proposition: If XX is a hyperelliptic curve of genus 2\geq 2 then the g21g^1_2 is unique.
Proof.   Consider φKX:XPg1\varphi_{K_X}:X\to \mathbb P^{g -1}. By the previous proposition, this is a 2:12:1 cover of its image which is a rational curve. Conversely, give any g21g^1_2 on XX and it defines this cover. This implies the g21g^1_2 is unique.
\square
 
©Isaac Martin. Last modified: April 05, 2024.