Algebraic Curves Lecture 13:

The 13th lecture of algebraic curves by Karl Christ
  1. Grassmanians Continued

We have a correspondence between maps to Pn\mathbb P^n and line bundles, so an embedding φ:CP3\varphi:C\hookrightarrow \mathbb P^3 gives a line bundle L=φLOP3(1)=OP3(1)C=KCL = \varphi_L^*\mathcal O_{\mathbb P^3}(1) = \mathcal O_{\mathbb P^3}(1)|_C = K_C and each line bundle LL gives an embedding φ:CP3\varphi:C\hookrightarrow \mathbb P^3. CHECK THIS AFTER CLASS

Grassmanians Continued

An element λnV\lambda\in \bigwedge^n V is decomposable if λ=v1...vk\lambda = v_1\wedge...\wedge v_k. We have a map G(K,V)P(kV)G(K,V)\to \mathbb P\left(\bigwedge^k V\right) called the Plücker embedding:

Gr(k,V)P(kV)Wv1...vk\begin{aligned} \mathbb{Gr}(k,V) &\to \mathbb P(\bigwedge^k V) \\ W &\mapsto v_1\wedge ... \wedge v_k \end{aligned}

Plücker Relations

Fix a basis for VV. The coordinates of a kk-dimensional subspace WVW\subseteq V are given by the K×KK\times K minors of the n×kn\times k matrix with columns basis vectors of WW.

For any two sequences i1<...<ik1i_1 < ... < i_{k-1} and j1<...<jk+1j_1 < ... < j_{k+1} with iis,jni\leq i_s, j_\ell \leq n, it holds that

=1k+1(1)Wi1...ik1jWj1...j^...jk+1=0\begin{aligned} \sum^{k+1}_{\ell = 1}(-1)^{\ell} W_{i_1...i_{k-1}j_\ell} W_{j_1...\hat{j_\ell}...j_{k+1}} = 0 \end{aligned}

where Wi1...ik1jW_{i_1...i_{k-1}j_\ell} is the coordinate corresponding to the k×kk\times k minor with rows in i1...ik1ji_1...i_{k-1}j_\ell under the Plücker embedding. Such relations are called the Plücker relations.

Example: Consider the Plücker embedding φ:G(2,4)2V\varphi: G(2,4) \to \bigwedge^2 V and choose WG(2,4)W\in G(2,4). Choose a basis v1,v2v_1,v_2 of WW where
v1=a1e1+a2e2+a3e3+a4e4v2=b1e1+b2e2+b3e3+b4e4.\begin{aligned} v_1 &= a_1e_1 + a_2e_2 + a_3e_3 + a_4e_4 \\ v_2 &= b_1e_1 + b_2e_2 + b_3e_3 + b_4e_4. \end{aligned}
These are the image of the matrix
M=(a1b1a2b2a3b3a4b4).\begin{aligned} M = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \\ a_4 & b_4 \end{pmatrix}. \end{aligned}
Taking v1v2v_1\wedge v_2 gives me
v1v2=(a1e1+a2e2+a3e3+a4e4)(b1e1+b2e2+b3e3+b4e4)=b1a2(e2e1)+b2a1(e1e2)...=(b1a2b2a1)(e1e2)+...\begin{aligned} v_1 \wedge v_2 &= (a_1e_1 + a_2e_2 + a_3e_3 + a_4e_4)\wedge (b_1e_1 + b_2e_2 + b_3e_3 + b_4e_4) \\ &= b_1a_2\cdot (e_2 \wedge e_1) + b_2\cdot a_1 \cdot (e_1 \wedge e_2) ... \\ &= (b_1 \cdot a_2 - b_2 \cdot a_1)(e_1\wedge e_2) + ... \end{aligned}
Now take sequences i1=1i_1 = 1 (only option) and j1=1,j2=2,j3=3j_1 = 1, j_2 = 2, j_3 = 3 (k=2k = 2 and n=4n=4). Then the Plücker relation is given
0+W12W13W13W12=0,\begin{aligned} - 0 + W_{12} \cdot W_{13} - W_{13}\cdot W_{12} = 0, \end{aligned}
which is always true. Taking i1=1i_1 = 1, j1=2,j3=3,j4=4j_1 = 2, j_3 = 3, j_4 = 4 and we get
W12W34+W13W24W14W23=0,\begin{aligned} - W_{12}\cdot W_{34} + W_{13}\cdot W_{24} - W_{14}\cdot W_{23} = 0, \end{aligned}
which is a nonempty statement. This is the only Plücker relation in this case. This realizes G(2,4)G(2,4) as a quadric hypersurface in P5\mathbb P^5.

Claim: λ2V\lambda \in \bigwedge^2 V is decomposable if and only if λλ=0\lambda \wedge \lambda = 0.

Proof.   One direction is immediate. For the other direction, suppose λ\lambda is indecomposable and write it λ=e1e2+e3e4\lambda = e_1\wedge e_2 + e_3\wedge e_4 for some choice of coordinates on VV. Then
(λλ)=2(e1e2e3e4)0.\begin{aligned} (\lambda \wedge \lambda) &= 2 (e_1\wedge e_2\wedge e_3 \wedge e_4) \neq 0. \end{aligned}
Note that λλ\lambda\wedge\lambda lives in 4V\bigwedge^4 V.
\square
 

Let's return to the above example of G(2,4)G(2,4) and the Plücker relation

W12W34+W13W24W14W23=0.\begin{aligned} - W_{12}\cdot W_{34} + W_{13}\cdot W_{24} - W_{14}\cdot W_{23} = 0. \end{aligned}

We now have a characterization of decomposable elements, so for

λ=λ12(e1e2)+λ13(e1e3)+λ14(e1e4)+λ23(e2e3)+λ24(e2e4)+λ34(e3e4),\begin{aligned} \lambda &= \lambda_{12}(e_1\wedge e_2) + \lambda_{13}(e_1\wedge e_3) + \lambda_{14}(e_1\wedge e_4) \\ &\hspace{0.5cm} + \lambda_{23}(e_2\wedge e_3) + \lambda_{24}(e_2\wedge e_4) + \lambda_{34}(e_3\wedge e_4), \end{aligned}

we get

λλ=(λ12λ34λ13λ24+λ14λ23)(e1e2e3e4).\begin{aligned} \lambda \wedge \lambda &= (\lambda_{12} \cdot \lambda_{34} - \lambda_{13}\cdot \lambda_{24}+\lambda_{14}\cdot \lambda_{23})(e_1\wedge e_2 \wedge e_3 \wedge e_4). \end{aligned}

The coefficient λ12λ34λ13λ24+λ14λ23\lambda_{12} \cdot \lambda_{34} - \lambda_{13}\cdot \lambda_{24}+\lambda_{14}\cdot \lambda_{23} gives the Plücker relation. Set

Σ={(x,H) | xH}Pn×G(k,Pn)\begin{aligned} \Sigma = \left\{(x,H) ~\middle|~ x\in H\right\} \subseteq \mathbb P^n\times G(k,\mathbb P^n) \end{aligned}

and consider the projections π1:ΣPn\pi_1:\Sigma \to \mathbb P^n and π2:ΣG(k,Pn)\pi_2:\Sigma\to G(k,\mathbb P^n). We call Σ\Sigma an incidence variety. It is a subvariety since the condition xHx \in H means that xb1...bk=0x \wedge b_1 \wedge ... \wedge b_k = 0 where b1,...,bkb_1,...,b_k is a basis for HH, and hence

Σ={(x,h) | xb1...bk=0}\begin{aligned} \Sigma = \left\{(x,h) ~\middle|~ x\wedge b_1 \wedge ... \wedge b_k = 0\right\} \end{aligned}

meaning that Σ\Sigma is a variety since xb1...bkx \wedge b_1 \wedge ... \wedge b_k is a polynomial equation.

For any subvariety YG(k,Pn)Y\subseteq G(k,\mathbb P^n), I get a subvariety π1(π21(Y))\pi_1(\pi_2^{-1}(Y)) of Pn\mathbb P^n. If I take two subvarieties X,YPnX,Y\subseteq \mathbb P^n and consider the rational map

φ:X×YG(1,Pn)(x,y)xy\begin{aligned} \varphi: X\times Y&\to G(1,\mathbb P^n) \\ (x,y)&\mapsto x\wedge y \end{aligned}

defined outside the set x=yx = y in X×YX\times Y, then we can define two new varieties

J(X,Y)=π1(π21(imgφ))"join of X and Y"Sec(X)=J(X,X)"secant variety".\begin{aligned} J(X,Y) &= \pi_1(\pi_2^{-1}(\overline{\operatorname{img} \varphi})) \hspace{1cm}&\text{"join of $X$ and $Y$"}\\ \textrm{Sec}(X) &= J(X,X)\hspace{1cm}&\text{"secant variety"}. \end{aligned}

These have dimensions satisfying

dim(J(X,Y))dim(X)+dim(Y)+1dim(Sec(X))2dimX+1.\begin{aligned} \operatorname{dim}(J(X,Y)) &\leq \operatorname{dim} (X) + \operatorname{dim}(Y) + 1\\ \operatorname{dim}(\textrm{Sec}(X)) &\leq 2\operatorname{dim} X + 1. \end{aligned}

Example: Take XX to be a curve in Pn\mathbb P^n with n3n\geq 3.

©Isaac Martin. Last modified: February 21, 2024.