Algebraic curves lecture 26 and 27

Algebraic curves lecture 26 and 27 by Karl Christ
  1. Construction of Brill-Noether varieties
  2. Determinantal Varieties
    1. Examples
  3. Tangent spaces of the generic determinantal variety.
  4. Start of Lecture 27
    1. Why do we care about determinental varieties?
    2. Examples

Construction of Brill-Noether varieties

Question: For what triples (g,r,d)(g,r,d) are there maps f:XPrf:X\to \mathbb P^r such that ff has degd\deg d and XX has genus gg?

Idea: Look at the locus of line bundles

Wdr(X)={Lr(L)r}Picd(X)\begin{aligned} W^r_d(X) = \{L\mid r(L) \geq r\} \subseteq \operatorname{Pic}^d(X) \end{aligned}

whose rank is at least rr.

We'll need a few ingredients.

  1. Determinantal varieties

  2. Some facts about the Picard scheme Picd(X)\operatorname{Pic}^d(X)

Determinantal Varieties

Let MKM_K denote the locus of matrices of rank k\leq k, and note that this is a subset of M(n,m)M(n,m). This is called the generic determinantal variety. We can realize MKM_K as a variety in the following way. Define this auxiliary object

M~k={(A,W)M(n,m)×Gr(nk,n)AW=0}\begin{aligned} \tilde{M}_k = \{(A, W) \in M(n,m) \times Gr(n-k, n) \mid A\cdot W = 0\} \end{aligned}

consisting of all tuples (A,W)(A,W) where AA is a n×mn\times m matrix and WW is a (nk)(n-k)-dimensional subset of knk^n where WkerAW\subset \operatorname{ker} A. We then get a map φ:M~kMk\varphi:\tilde{M}_k \to M_k, and it is generically 11 to 11: if AMkA\in M_k has rank kk then φ1(A)=(A,kerA)\varphi^{-1}(A) = (A, \operatorname{ker} A).

Let π2\pi_2 denote the projection onto the second component:

π2:M(n,m)×Gr(nk,M)Gr(nk,n).\begin{aligned} \pi_2:M(n,m)\times Gr(n-k,M) \to Gr (n-k,n). \end{aligned}

For HGr(nk,n)H\in Gr(n-k, n), the fiber of π2M~k\pi_2|_{\tilde{M}_k} consists of all the AM(n,m)A\in M(n,m) which vanish on HH. This is isomorphic to Amk\mathbb A^{m - k} (to see this, row reduce AA).

It is true that M~k\tilde{M}_k is irreducible, and hence MkM_k is irreducible since φ\varphi is surjective. We (meaning those of us in class) don't know why M~k\tilde{M}_k is irreducible, it would follow from the properness of π2\pi_2 except that π2\pi_2 isn't proper, so for now we simply accept that M~k\tilde{M}_k is irreducible.

Lemma: Gr(e,)Gr(e, \ell) has dimension e(e)e\cdot (\ell - e).

Proof.   Fix HGr(e,)H \in Gr(\ell - e, \ell) and let VV be the \ell-dimensional vector space whose e\ell-e dimensional subspaces Gr(e,)Gr(\ell - e, \ell) parameterizes. Let λ(eV)\lambda\in (\bigwedge^e V)^* and UGr(e,)U\subseteq Gr(e, \ell) be the set given by λ0\lambda \neq 0. Then UU is the subset of ee-dimensional subspaces transversal to HH. Any element in UU can be identified with the graph of a linear function V/HHV/H \to H. Elaborating: each choice of HH gives you a split short exact sequence HVV/HH\to V\to V/H, which in turn gives you a map V/HHV/H \to H. Conversely, if you have a surjective map VBV \to B with BB isomorphic to V/HV/H, you get a subspace HH in VV so that HBVH\oplus B \cong V.

This means

UHom(V/H,H)C(e)e.\begin{aligned} U \cong \operatorname{Hom}(V/H, H) \cong \mathbb C^{(\ell - e)\cdot e}. \end{aligned}
Note that (e)e(\ell - e)\cdot e is the product of the dimension of HH with the dimension of an element in UU. We have a Plucker embedding Gr(e,)(eV)Gr(e, \ell) \hookrightarrow (\bigwedge^e V)^*, and so these UU's actually give us the affine charts of Gr(e,)Gr(e, \ell).

\square
 


Cor: - dimM~k=dim(Mk)=mk+k(nk)=k(n+mk)\operatorname{dim} \tilde{M}_k = \operatorname{dim} (M_k) = m\cdot k + k\cdot (n - k) = k\cdot (n + m - k) - codim(Mk)=nm(n+mk)k=(nk)(mk)\operatorname{codim}(M_k) = n\cdot m - (n + m - k)k = (n - k)(m - k).

Theorem: (Second fundamental theorem of invariant theory.)   MkM_k is cut out scheme-theoretically by the (k+1)×(k+1)(k+1)\times (k+1)-minors.

Examples

  1. Suppose m=nm = n, k=m1k = m-1. Then M(n,m) Mm1=GL(m)M(n,m) \ M_{m-1} = GL(m) and Mm1M_{m-1} is given by the vanishing of the determinant.

  2. Suppose k=1k = 1 and that AA has rank at most 1    A=utv1\iff A = u^t\cdot v. Then M1(n,m)M_1(n, m) is the image of the Segre map An×AmAnm\mathbb A^n \times \mathbb A^m \to \mathbb A^{n-m}. A quadric surface in P3\mathbb P^3 is the projectivization of M1(2,2)M_1(2,2). (This is what we keep encountering, a quadric surface embeds in P1×P1P3\mathbb P^1\times \mathbb P^1\subset \mathbb P^3 embedded in P3\mathbb P^3 via the Segre embedding).

  3. The following is a determinantal variety, and it is true that Xa1,a2=M1(2,r+1)HiX_{a_1,a_2} = M_1(2, r + 1) \cap H_i where HiH_i is a hyperplane given by x1,2=x2,1,x1,3=x2,2,...x_{1,2} = x_{2,1}, x_{1,3} = x_{2,2},...

Xa1,a2=(x0x1x2xa11y0y1ya21x1x2x3xa1y0y1ya2).\begin{aligned} X_{a_1,a_2} = \begin{pmatrix} x_0 & x_1 & x_2 & \dots & x_{a_1-1} & y_0 & y_1 & \dots & y_{a_2 - 1} \\ x_1 & x_2 & x_3 & \dots & x_{a_1} & y_0 & y_1 & \dots & y_{a_2} \end{pmatrix}. \end{aligned}

Tangent spaces of the generic determinantal variety.

For a variety XX over kk and pXp\in X a point, we define the tangent space of XX at pp by

TpX=Hom((Speck[ϵ]/(ϵ2),(ϵ)),(X,p)).\begin{aligned} T_pX = \operatorname{Hom}((\operatorname{Spec} k[\epsilon]/(\epsilon^2), (\epsilon)), (X, p)). \end{aligned}

Example: Consider THGr(k,V)T_H Gr(k, V). Given a map

φ:Speck[ϵ]/(ϵ2)Gr(k,V)\begin{aligned} \varphi:\operatorname{Spec} k[\epsilon]/(\epsilon^2) \to Gr (k,V) \end{aligned}

and a basis ω1,...,ωk\omega_1,...,\omega_k a basis of HH, we obtain a relative basis ωi+ϵvi\omega_i + \epsilon\cdot v_i. Conversely, a map ωvi\omega \mapsto v_i gives a linear map HV/HH\to V/H. This should be enough to convince oneself that

THGr(k,V)=Hom(H,V/H).\begin{aligned} T_H Gr(k,V) = \operatorname{Hom}(H, V/H). \end{aligned}

Start of Lecture 27

I arrived late and so these notes ought to be cross checked with Karl's.

Last time we saw that TWGr(,V)Hom(W,V/W)T_WGr(\ell,V) \cong \operatorname{Hom}(W, V/W).

T(W,W)M~k={(φ,B)  BM,φHom(W,V/W) s.t. BW=Aφ}.\begin{aligned} T_{(W,W)}\widetilde{M}_k = \{(\varphi,B) ~\mid~ B\in M, \varphi\in \operatorname{Hom}(W,V/W) \text{ s.t. } B|_W = A\circ \varphi\}. \end{aligned}
Proposition: M~k\widetilde{M}_k is smooth.

Take π:M~kMk\pi:\widetilde{M}_k\to M_k to be the projection map. Then πT(A,W)M~kTAMk\pi_*T_{(A,W)}\widetilde{M}_k \subseteq T_AM_k.

The forward direction is obvious, if BW=AφB|_W = -A\circ \varphi then BWimg(A)B\cdot W \subset \operatorname{img}(A). Likewise, if BWimg(A)B\cdot W \subset \operatorname{img}(A), we can define a φ\varphi by setting for any B(w)=A(v)B(w) = A(v) φ(w)=v\varphi(w) = -v. This defines a map φ:WV/W\varphi:W\to V/W.

πT(A,W)M~k={BM  BWimg(A)}.\pi_* T_{(A,W)}\widetilde{M}_k = \{B\in M ~\mid~ B\cdot W\subseteq \operatorname{img}(A)\}.
dim(πT(A,W)M~)=dim(Hom(W,img(A)))+km=(nk)k+km=(n+mk)k=dim(Mk)=dim(M~k)\begin{aligned} \operatorname{dim}(\pi_*T_{(A,W)}\widetilde{M}) &= \operatorname{dim}(\operatorname{Hom}(W,\operatorname{img}(A))) + k\cdot m \\ &= (n-k)k + k\cdot m = (n+m - k)k \\ &= \operatorname{dim}(M_k) = \operatorname{dim}(\widetilde{M}_k) \end{aligned}
Proposition: MkMk1M_k\setminus M_{k-1} is smooth. MkM_k is singular along Mk1M_{k-1} with Zariski tangent space equal to M(n,m)M(n,m).

Why do we care about determinental varieties?

If φ:FE\varphi:F\to E is a map of vector bundles of ranks n,mn, m on XX. There exists a UXU\subset X which simultaneously trivializes these bundles; φU:OXnOXm\varphi|_U:\mathcal O^{\oplus n}_X \to \mathcal O^{\oplus m}_X. Then φ\varphi gives a matrix whose entries are regular functions on UU, i.e. functions ψ:UM\psi:U\to M, Uk(φ):=ψ1MkU_k(\varphi):=\psi^{-1}M_k. The set Uk(φ)U_k(\varphi) does not depend on the choice of UU. This means there exists some Xk(φ)XX_k(\varphi)\subset X that restricts to Uk(φ)U_k(\varphi) on UU. This is called the kkth determinantal locus of φ\varphi.

Proposition: Xk(φ)X_k(\varphi) is either empty or of codimension at most (mk)(nk)(m-k)(n-k).

Examples

If FOXF\cong \mathcal O_X then φ:FE\varphi:F\to E corresponds to a global section of EE. X0(φ)X_0(\varphi) is the vanishing locus of such a section. Hence the expected codimenion is codim(X0(φ))=(mk)(nk)=(10)(rank(E)0)=rank(E)\operatorname{codim}(X_0(\varphi)) = (m - k)(n - k) = (1 - 0)(\operatorname{rank}(E) - 0) = \operatorname{rank}(E) .

If E=OP2OP2(1)E = \mathcal O_{\mathbb P^2} \oplus \mathcal O_{\mathbb P^2}(1), then for a section (σ,τ)E(\sigma, \tau)\in E. If σ0\sigma \neq 0 then V(s)=V(s) = \emptyset and if σ=0\sigma = 0 then V(s)V(s) is a line which has codimension 11 in P2\mathbb P^2.

©Isaac Martin. Last modified: April 05, 2024.