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Review on Navier-Stokes Equations
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3D Incompressible Navier-Stokes Equations

Velocity u(t, x) : [0, T )× R3 → R3.

Pressure P (t, x) : [0, T )× R3 → R.

∂tu+ u · ∇u+∇P = ∆u,

div u = 0,

u
∣∣
t=0

= u0.

Weak solution: u ∈ D ′, s.t. ∀ϕ ∈ C∞([0, T )× R3), divϕ = 0,
suppϕ ⊂⊂ R3 × [0, T ),

ˆ T

0

ˆ
R3

−∂tϕ · u− (u · ∇ϕ) · u+∇ϕ · ∇udx dt =

ˆ
R3

u0 · ϕ
∣∣
t=0

dx.
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3D Incompressible Navier-Stokes Equations

Leray-Hopf solution: a weak solution

u ∈ L2(0, T ;H1(R3)) ∩ C([0, T ];L2
w(R3)),

with energy inequality ∀τ ∈ (0, T ),

1

2

ˆ
R3

|u(τ, x)|2 dx+

ˆ τ

0

ˆ
R3

|∇u|2 dx dt ≤ 1

2

ˆ
R3

|u0|2 dx.

Suitable weak solution: a Leray-Hopf solution with generalized energy
inequality in the sense of distribution, ∀t ∈ (0, T ) a.e.,

∂t
|u|2

2
+ div

[
u

(
|u|2

2
+ P

)]
+ |∇u|2 −∆

|u|2

2
≤ 0.
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Known Results for Navier-Stokes Equations

Weak solution

non-uniqueness (Buckmaster & Vicol, 2019)

Leray-Hopf solution

Global-in-time existance (Leray, 1934)
Smoothness criteria: L∞t L

3
x ∼ L2

tL
∞
x implies smoothness and

uniqueness (Ladyženskaja, Prodi & Serrin, 1959-1967)
Limit case L∞t L

3
x (Iskauriaza, Serëgin & Shverak, 2003)

Partial regularity: H
5
3 (Sing(u)) <∞ (Scheffer, 1976)

Suitable weak solution

Global-in-time existance (Caffarelli, Kohn & Nirenberg, 1982)
Partial regularity: H 1(Sing(u)) = 0 (C-K-N, 1982)

Second derivative estimate: ∇2u ∈ L
4
3−ε
t,x (Constantin, 1990)

∇2u ∈ L
4
3 ,∞
t,x (Lions, 1996)

Higher derivative estimate: ∇αu ∈ L
4

1+α ,∞
loc (Choi & Vasseur, 2014)
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Blow-up Technique along Trajectories
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Scaling and Dimension Analysis

Scaling: (uε, Pε) is also a solution to

∂tuε + uε · ∇uε +∇Pε = ∆uε

where

uε(t, x) = εu(ε2t, εx), Pε(t, x) = ε2P (ε2t, εx).

Dimension analysis:

t : 2 dt : 2 ∂t : −2

x : 1 dx : 3 ∇ : −1

u : −1 P : −2 D
Dt : −2´

|u|
10
3 dx dt : 5

3

´
|∇u|2 dx dt : 1

´
|∆u|

4
3 dx dt : 1
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Parabolic Cylinders

Qr =
{

(t, x) : t ∈ (−r2, 0), x ∈ Br(0) ⊂ R3
}

.

t

x

x

r2

r
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Parabolic Cylinders along Trajectories
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Parabolic Cylinders along Mollified Flow

Mollified flow: fix a spatial mollifier ϕ ∈ C∞c (B1),
´
ϕ = 1,

ϕε(x) = ε−3ϕ
(
ε−1x

)
, ũε = u ∗x ϕε, and let Xε(t0, x0; ·) solve

d

dt
Xε(t0, x0; t) = ũε(t,Xε(t0, x0; t)),

Xε(t0, x0; t0) = x0.

Parabolic cylinders along Xε: given (t0, x0), define

Starting and terminal time: S = t0 − ε2, T = t0 + ε2.
Central streamline: X(t) = Xε(t0, x0; t).
ε-neighborhood of Central streamline: B(t) = Bε(X(t)).
Curved parabolic cylinder:

Qε(t0, x0) =
{

(t, x) ∈ R× R3 : S < t < T, x ∈ B(t)
}
.
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Covering Lemma
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Admissible Cylinder

Fix u ∈W 1,1
loc (R× R3).

Fix a small universal η > 0, Qε(t0, x0) is an η-admissible cylinder if

 
Qε(t0,x0)

Mx(|∇u|) dx dt ≤ ηε−2.

Here Mx is the spatial maximal function.

Denote Qη to be the set of all η-admissible cylinders.

Admissibility ensures that nearby flows are close.
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Statement of Covering Lemma

Theorem (Covering Lemma, Y., 2019)

Let η be small enough. There exists a universal constant C > 0 such that
the following is true.

Let Λ be an index set. Let {Qα}α∈Λ be a family of η-admissible
cylinders, where

Qα = Qεα(tα, xα).

Assume µ(
⋃
αQ

α) <∞. Then we can find a pairwise disjoint

subcollection {Qαi}Ii=1 such that

I∑
i=1

µ(Qαi) ≥ 1

C
µ

(⋃
α

Qα

)
.
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Claim: Closeness of Intersecting Cylinders

Let η be small enough. Assume Qα ∩Qβ 6= ∅,
εβ ≤ 2εα. Then for all t ∈ (Sα, Tα) ∩ (Sβ, T β),
Bβ(t) ⊂ 9Bα(t).

(Sα, Tα)

(Sβ, T β)

(Sα, Tα)

(Sβ, T β)

Qα

Qβ
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(Sα, Tα)
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Proof of Covering Lemma

Key step: ensure that the measure of

Qα∗ =
⋃

Qβ∩Qα 6=∅
εβ<2εα

Qβ

is comparable to the measure of Qα.

Split every Qβ into three parts

Qβ− = Qβ ∩ {t ≤ Sα},
Qβ◦ = Qβ ∩ {Sα < t < Tα},

Qβ+ = Qβ ∩ {t ≥ Tα}.

Can control
⋃
β Q

β
◦ by 9Qα, but cannnot control Qβ+ or Qβ−.
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Proof of Covering Lemma

To control Qβ+, we make sure they are close to
each other.

Want to pick a subcollection from Qβ that
occupies enough space with summable
measure.

Which ones to pick? Qβ+ controls Qγ+ if Qβ+
is relatively larger.
lasts longer.

Dilemma: Qβ1+ and Qγ1+ .

Qα

Tα

Qβ+Q
β1
+

Qγ1+

Qβ+

Qγ+
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Proof of Covering Lemma

Solution: Group by size, then sort by length.

Suppose

2εα > εβ1 , . . . , εβn ≥ εα T β1 ≥ · · · ≥ T βn

εα > εγ1 , . . . , εγm ≥ 1

2
εα T γ1 ≥ · · · ≥ T γm

1

2
εα > εδ1 , . . . , εδl ≥ 1

4
εα T δ1 ≥ · · · ≥ T δl

. . . . . .

Inside each group, cylinders all have
comparable size.

Select a disjoint subcollection in each group by
a Vitali argument according to length.

Qα

Tα

Qβ+Q
β1
+

Qγ1+

Qβ+

Qγ+
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Proof of Covering Lemma

Let
{
Q
βjk
+

}
be a pairwise disjoint selection.

Their dilation covers all Qβ+ in this group.

µ

 n⋃
j=1

Q
βj
+

 ≤∑
k

µ
(

9Q
βjk
+

)

Section volume of
{
Q
βjk
+

}
is less than 9Bα.

Length is less than 2 · (2εα)2.

µ

 n⋃
j=1

Q
βj
+

 ≤ 93
∑
k

µ
(
Q
βjk
+

)
≤ 93|9Bα| · 2 · 4(εα)2 ≤ 4 · 96µ(Qα).

Qα

Tα

Qβ+Q
β1
+

Qγ1+

Qβ+

Qγ+
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Proof of Covering Lemma

Because the maximal length is shorter for the
next group,

µ

 n⋃
j=1

Q
βj
+

 ≤ 4 · 96µ(Qα),

µ

 m⋃
j=1

Q
γj
+

 ≤ 1 · 96µ(Qα),

µ

 l⋃
j=1

Q
δj
+

 ≤ 1

4
· 96µ(Qα),

. . .

⇒ µ
(⋃

β Q
β
+

)
≤ Cµ(Qα).

Qα

Tα

Qβ+Q
β1
+

Qγ1+

Qβ+

Qγ+
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Proof of Covering Lemma

Proof of Key step.

µ
(⋃

β
Qβ+

)
≤ Cµ(Qα),

µ
(⋃

β
Qβ◦

)
≤ Cµ(Qα),

µ
(⋃

β
Qβ−

)
≤ Cµ(Qα),

⇒µ(Qα∗ ) = µ

(⋃
Qβ∩Qα 6=∅
εβ<2εα

Qβ

)
≤ Cµ(Qα).

So Qα∗ has measure comparable to the measure of Qα.

By Vitali, this finishes the proof of the covering lemma.
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Consequences of Covering Lemma

Let f ∈ L1
loc(R× R3). Define

MQ(f)(t, x) = sup
ε:Qε(t,x)∈Qη

 
Qε(t,x)

|f(s, y)|ds dy

to be largest possible average among all admissible cylinders centered
at (t, x).

If u is also divergence free, then

MQ is of weak type (1, 1).
MQ is of strong type (∞,∞).
MQ is of strong type (p, p) for all p > 1.
Almost every (t, x) ∈ R× R3 are Q-Lebesgue points, i.e.

lim
ε→0

 
Qε(t,x)

|f(s, y)− f(t, x)|dsdy = 0.
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Application to Navier-Stokes Equations
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Local Theorem

Lemma (Local Theorem, Vasseur, Y., 2019)

If u is a suitable weak solution,
ˆ
ϕ(x)u(t, x) dx = 0, a.e. t ∈ (−2, 0),

ˆ
(−2,0)×B2

|∇u|2 dx dt ≤ η,

then |∆u| ≤ 1 in (−1, 0)×B1.

Putting it back into global coordinate, it means if

 
Qε(t,x)

|∇u|2 dx dt ≤ ηε−4,

then |∆u(t, x)| ≤ ε−3.
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Second Derivative Estimate

Assume u is a suitable weak solution in (0, T ).

For each (t, x) ∈ (0, T )× R3, select ε(t, x) such that either

 
Qε(t,x)(t,x)

|Mx(|∇u|)|2 dx dt = η[ε(t, x)]−4.

or ε(t, x) =
√
t, and above = is replaced by <.

In either case, |∆u| ≤ ε−3 by local theorem.

ε−4 is either bounded by 1
ηMQ[Mx(|∇u|)2] or t−2.

|∆u|1{
|∆u|>t−

3
2

} ∈ L 4
3
,∞.
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Improvement of Local Theorem

Hypothesis (Improvement of Local Theorem)

If we can weaken the requirement to for some p < 2,

ˆ
ϕ(x)u(t, x) dx = 0, a.e. t ∈ (−2, 0),

ˆ
(−2,0)×B2

|∇u|p dx dt ≤ η,

then |∆u| ≤ 1 in (−1, 0)×B1.

Putting it back into global coordinate, it means if

 
Qε(t,x)

|∇u|p dx dt ≤ ηε−2p,

then |∆u(t, x)| ≤ ε−3.

Jincheng Yang Candidacy Talk • The University of Texas at Austin March 27, 2020 27 / 30



Improvement of Second Derivative Estimate

Assume u is a suitable weak solution in (0, T ).

For each (t, x) ∈ (0, T )× R3, select ε(t, x) such that either

 
Qε(t,x)(t,x)

|Mx(|∇u|)|p dx dt = η[ε(t, x)]−2p.

or ε(t, x) =
√
t, and above = is replaced by <.

In either case, |∆u| ≤ ε−3 by local theorem.

ε−2p is either bounded by 1
ηMQ[Mx(|∇u|)p] or t−p.

|∆u|1{
|∆u|>t−

3
2

} ∈ L 4
3 .
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Difficulty of Improvement

The proof of the local theorem relies on Grönwall and De Giorgi.

∂tu+ u · ∇u+∇P = ∆u.

Estimating quadratic term u · ∇u becomes substantially more difficult
because it is less than L1 in time.

Cannot work with pressure: ∇2P ∈ L1
tH1

x by Compensated
compactness (Coifman, Lions, Meyer & Semmes, 1993).

Jincheng Yang Candidacy Talk • The University of Texas at Austin March 27, 2020 29 / 30



Thank you for your attention!
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