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Review on Navier-Stokes Equations
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3D Incompressible Navier-Stokes Equations

m Velocity u(t,x) : [0,T) x R3 — R3.
m Pressure P(t,z): [0,T) x R® — R.

ou+u-Vu+ VP = Au,
divu = 0,

u}t:O = Uo-

m Weak solution: u € 7', s.t. Y € C([0,T) x R3), divp = 0,
supp CC R? x [0,7),

T
/ —8t§0-u—(u-Vw)'u-i-V(P-Vudxdt:/ UO'@‘tzodx'
0 JR3 -
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3D Incompressible Navier-Stokes Equations

m Leray-Hopf solution: a weak solution
u€ L*0, T H'(R*) N C([0, T]; L, (R?)),

with energy inequality V7 € (0,7),

1 T 1
-/ |u(7',x)|2d:v+/ / Vul? de dt < -/ o2 dz.
2 Jgrs 0 JR3 2 Jgrs

m Suitable weak solution: a Leray-Hopf solution with generalized energy
inequality in the sense of distribution, ¥Vt € (0,7) a.e.,

Juf?

2 2
ol a2 4 )] - ol <o
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Known Results for Navier-Stokes Equations

® Weak solution

m non-uniqueness (Buckmaster & Vicol, 2019)
m Leray-Hopf solution

m Global-in-time existance (Leray, 1934)

m Smoothness criteria: L{°L3 ~ L?L2° implies smoothness and

uniqueness (LadyZenskaja, Prodi & Serrin, 1

959-1967)

m Limit case L{°L3 (Iskauriaza, Serégin & Shverak, 2003)
= Partial regularity: 3 (Sing(u)) < oo (Scheffer, 1976)

m Suitable weak solution
m Global-in-time existance (Caffarelli, Kohn &

Nirenberg, 1982)

m Partial regularity: 5! (Sing(u)) = 0 (C-K-N, 1982)
4_
= Second derivative estimate: V?u € L7, ° (Constantin, 1990)

V2u € L (Lions, 1996)

_4
T5a ©

m Higher derivative estimate: V¥u € L, 7
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(Choi & Vasseur, 2014)
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Blow-up Technique along Trajectories
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Scaling and Dimension Analysis

m Scaling: (u., P:) is also a solution to
Osue + ue - Vue + VP. = Au,
where
ue(t, x) = eu(e’, ex), P.(t,z) = e P(c%, ex).

m Dimension analysis:

t:2 dt: 2 O —2

z:1 dz : 3 V-1

w:—1 P:—2 7 2
[lul¥ dzdt: 3 | [[Vudedt:1 | [|Aufs dedt: 1
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Parabolic Cylinders

Qr = {(t,z): t € (—r?,0),z € B,(0) C R3}.
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Parabolic Cylinders along Trajectories
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Parabolic Cylinders along Mollified Flow

m Mollified flow: fix a spatial mollifier ¢ € C°(By), [ =1,

we(x) =€~ go(s 13:), Ue = U %, @e, and let X (to, zo; ) solve

d -
EXE(to, xo;t) = Ue(t, Xc(to, xost)),

Xc(to, zo; to) = xo.

m Parabolic cylinders along X.: given (tg, z), define

m Starting and terminal time: S =ty — &2, T = to + £2.
Central streamline: X (t) = X (to,xo;1).
e-neighborhood of Central streamline: B(t) = B.(X (t)).
Curved parabolic cylinder:

Q:(to,x0) = {(t,z) eERxR*: S <t < T,z € B(t)}.
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Covering Lemma
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Admissible Cylinder

Fix u € Wb ! (R x R?).

ocC

Fix a small universal n > 0, Q-(to,xo) is an n-admissible cylinder if

][ M (|Vu|) dz dt < ne~2.
Qe (to,zo)

Here M, is the spatial maximal function.

Denote Q,, to be the set of all n-admissible cylinders.

m Admissibility ensures that nearby flows are close.
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Statement of Covering Lemma

Theorem (Covering Lemma, Y., 2019)

Let n be small enough. There exists a universal constant C' > 0 such that
the following is true.

m Let A be an index set. Let {Q“} ., be a family of n-admissible
cylinders, where

QO{ — an (ta’ma).

m Assume p(|J, Q%) < co. Then we can find a pairwise disjoint
subcollection {Q®}_, such that

; Q) > Cu(U Q“)

Jincheng Yang
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Claim: Closeness of Intersecting Cylinders

Let i be small enough. Assume Q* N QF +# &,
e? < 2e“. Then for all t € (S, T%) N (S5, T7P),

BA(t) C 9B(t).
(5%, T%) —
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Claim: Closeness of Intersecting Cylinders

Let i be small enough. Assume Q* N QF +# &,
e? < 2e“. Then for all t € (S, T%) N (S5, T7P),
BA(t) C 9B*(t).
— (S, T%) —
— (S, T%) —

March 27, 2020 16 / 30

Jincheng Yang Candidacy Talk e The University of Texas at Austin



Proof of Covering Lemma

m Key step: ensure that the measure of

= J @
QPNQ#2
P <2e

is comparable to the measure of Q“.

m Split every QP into three parts

QF =@ n{t < sy,
Q% =Q°N{s* <t < T},
QY =Q°n{t>T1"}.

m Can control UB Qf by 9Q%, but cannnot control Qi or QE.
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Proof of Covering Lemma

T(Y
m To control Qﬂ, we make sure they are close to
each other.
m Want to pick a subcollection from Q? that A
occupies enough space with summable Q" Q1
measure.
m Which ones to pick? Qi controls Ql if Qi s
m is relatively larger. p. Q@

m lasts longer.
® Dilemma: Qﬁl and Q1. 5
Q@

71

QY
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Proof of Covering Lemma

TQ
m Solution: Group by size, then sort by length.
m Suppose
2% > P> This> > b
1
€a>671,...,57m2§g°‘ TN >...> T 4 )
1 1 Q" Qi
et s > S > > T
2 9 ) — 4 - -
B
/ @

m Inside each group, cylinders all have

comparable size. oF
m Select a disjoint subcollection in each group by 2},\
<+

a Vitali argument according to length.
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Proof of Covering Lemma

TO',

Let { BJ’“} be a pairwise disjoint selection.

m Their dilation covers all Qﬁ in this group.

VCAE > n(902)
j=1 k

Section volume of {Qf_]’“} is less than 9B,
Length is less than 2 - (2%)2.

Je? | 9> u(e) Q"
J=1 k ﬁd() 1

< 9319B%] -2 4(e%)? < 4-95u(QY).
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Proof of Covering Lemma

«
m Because the maximal length is shorter for the T
next group,
P
pl @Y | <4-9°%u(Q%),
j=1
m / ~
o ,
pl JQY ) <1-9°%u(@), v %
j=1
B
l Q
9j 1 6 fe! / +
< .
7=1
Q%
QY

m = M(Uﬁ Qﬁ) < Cp(Q%).
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Proof of Covering Lemma

m Proof of Key step.

=u(Q%) = p <UQ»’30Q°‘75® Qﬁ) < ou@”).

eP<2e®

So QY has measure comparable to the measure of Q.
m By Vitali, this finishes the proof of the covering lemma.
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Consequences of Covering Lemma

m Let f € L] (R x R3). Define

Mo(f)(t,z)=  sup ][ F(s,)] ds dy
€:Qe(t,x)EQy J Qe (t,x)

to be largest possible average among all admissible cylinders centered
at (¢, z).
m If w is also divergence free, then
m Mg is of weak type (1,1).
Mg is of strong type (00, 0).
Mg is of strong type (p,p) for all p > 1.
Almost every (t,x) € R x R? are Q-Lebesgue points, i.e.

70JQ.(te)
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Application to Navier-Stokes Equations
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Local Theorem

Lemma (Local Theorem, Vasseur, Y., 2019)

If w is a suitable weak solution,

/ o(@)ult,z)dz =0,  ae te(=2,0),

/ \Vu|2dxdt§ n,
(—2,0)x By

then |Au| <1 in (—1,0) x Bj.

Putting it back into global coordinate, it means if
][ |Vu|? dedt < ne™?,
QE(tv‘T)

then |Au(t, z)| < e73.
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Second Derivative Estimate

Assume u is a suitable weak solution in (0,7").
m For each (t,x) € (0,T) x R3, select £(t, ) such that either

f Mo (V) dardt = mle(t, )]
Q:—:(t,x) (t,:t)

or £(t,x) = /t, and above = is replaced by <.
m In either case, |Au| < g3 by local theorem.
m ¢ % is either bounded by %MQ[M:(:(|VU|)2] ort=2,

m |Aull

4
{|Au|>t_%} €Ls.
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Improvement of Local Theorem

Hypothesis (Improvement of Local Theorem)

If we can weaken the requirement to for some p < 2,

/ ol@)ult,z)dz =0,  ae te (=2,0),

/ |VulP dedt < n,
(—2,0)x Ba

then |Au| <1 in (—1,0) x Bj.

Putting it back into global coordinate, it means if

][ |VulP dodt < ne=?P,
Qe(t,x)

then |Au(t, z)| <e73.
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Improvement of Second Derivative Estimate

Assume u is a suitable weak solution in (0,7").
m For each (t,x) € (0,T) x R3, select £(t, ) such that either

][ IM(|Vul) [P dz dt = nle(t, )] 7.
Qs(t,m) (t,:L‘)

or £(t,x) = /t, and above = is replaced by <.
m In either case, |Au| < g3 by local theorem.
m ¢~ 2P is either bounded by %}MQ[MIUVUDP] ort7P.

m |Aull

4
{laue-3) €L
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Difficulty of Improvement

m The proof of the local theorem relies on Gronwall and De Giorgi.
ou+u-Vu+ VP = Au.

m Estimating quadratic term u - Vu becomes substantially more difficult
because it is less than L! in time.

m Cannot work with pressure: V2P € L}#H. by Compensated
compactness (Coifman, Lions, Meyer & Semmes, 1993).
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Thank you for your attention!
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