Your browser does not support the canvas element.

Jincheng Yang

The University of Texas at Austin

%--Paired Delimiters-- $ \newcommand{\abs}[1]{\left\lvert #1 \right\rvert} \newcommand{\ang}[1]{\left\langle #1 \right\rangle} \newcommand{\bkt}[1]{\left\lbrack #1 \right\rbrack} \newcommand{\nor}[1]{\left\lVert #1 \right\rVert} \newcommand{\pth}[1]{\left( #1 \right)} \newcommand{\set}[1]{\left\lbrace #1 \right\rbrace} \newcommand{\abset}[1]{\abs{\set{#1}}} \newcommand{\ptset}[1]{\pth{\set{#1}}} $ %--Operators-- $ \newcommand{\grad}{\nabla} \newcommand{\La}{\Delta} \renewcommand{\div}{\operatorname{div}} \newcommand{\curl}{\operatorname{curl}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\Hess}{\operatorname{Hess}} \newcommand{\mm}{\mathcal{M}} \newcommand{\inv}{^{-1}} \newcommand{\tensor}{\otimes} \newcommand{\cross}{\times} \newcommand{\weak}[1]{\xrightharpoonup{#1}} $ %--Notations-- $ \newcommand{\Vol}{\mathrm{Vol}} \newcommand{\loc}{\mathrm{loc}} \renewcommand{\dim}{\mathrm{dim}} \newcommand{\Span}{\mathrm{Span}} \newcommand{\diam}{\mathrm{diam}} \newcommand{\Id}{\mathrm{Id}} \newcommand{\Lip}{\mathrm{Lip}} \newcommand{\dist}{\mathrm{dist}} \newcommand{\inv}{^{-1}} $ %--Algebra-- $ \newcommand{\hfsq}[1]{\frac{\abs{#1} ^2}{2}} $ %--Sets-- $ \newcommand{\R}{\mathbb{R}} \newcommand{\RR}[1]{\R ^{#1}} \newcommand{\Rd}{\RR d} \newcommand{\Rn}{\RR n} \renewcommand{\S}{\mathbb{S}} \renewcommand{\Z}{\mathbb{Z}} \newcommand{\T}{\mathbb{T}} \newcommand{\ssubset}{\subset \subset} \newcommand{\spt}{\operatorname{spt}} \newcommand{\supp}{\operatorname{supp}} \newcommand{\diam}{\mathrm{diam}} \newcommand{\diag}{\operatorname{diag}} \renewcommand{\dim}{\mathrm{dim}} \newcommand{\dimH}{\mathrm{dim} _\mathcal{H}} \newcommand{\Sing}{\mathrm{Sing}} \newcommand{\Vol}{\mathrm{Vol}} \newcommand{\inds}[1]{\mathbf1_{\set{#1}}} \newcommand{\ind}[1]{\mathbf1_{#1}} $ %--Summations-- $ \newcommand{\SUM}[3]{\sum \cnt{#1}{#2}{#3}} \newcommand{\PROD}[3]{\prod \cnt{#1}{#2}{#3}} \newcommand{\cnt}[3]{ _{#1 = #2} ^{#3} } \newcommand{\seq}[2]{\set{#1 _{#2}} _{#2}} \newcommand{\seqi}[2]{\set{#1 _{#2}} \cnt{#2}1i} $ %--Superscript and Subscript $ \newcommand{\pp}[1]{^{(#1)}} \newcommand{\bp}[1]{^{(#1)}} \newcommand{\pps}[2][1]{^{#2 + #1}} \newcommand{\bps}[2][1]{_{#2 + #1}} \newcommand{\pms}[2][1]{^{#2 - #1}} \newcommand{\bms}[2][1]{_{#2 - #1}} $ %--Notations-- $ \newcommand{\loc}{\mathrm{loc}} \newcommand{\Span}{\operatorname{Span}} \newcommand{\argmin}{\operatorname{argmin}} \newcommand{\argmax}{\operatorname{argmax}} \newcommand{\osc}{\operatorname{osc}} \newcommand{\Id}{\mathrm{Id}} \newcommand{\Lip}{\operatorname{Lip}} \newcommand{\Leb}{\operatorname{Leb}} \newcommand{\PV}{\mathrm{P.V.}} \newcommand{\dist}{\operatorname{dist}} \newcommand{\at}[1]{\bigr\rvert _{#1}} \newcommand{\At}[1]{\biggr\rvert _{#1}} \newcommand{\half}{\frac12} $ %--Text-- $ \newcommand{\inn}{\text{ in }} \newcommand{\onn}{\text{ on }} \renewcommand{\ae}{\text{ a.e. }} \newcommand{\st}{\text{ s.t. }} \newcommand{\forr}{\text{ for }} \newcommand{\as}{\text{ as }} $ %--Differential-- $ \newcommand{\d}{\mathop{\kern0pt\mathrm{d}}\!{}} \newcommand{\dt}{\d t} \newcommand{\dx}{\d x} \newcommand{\dy}{\d y} \newcommand{\ptil}{\partial} \newcommand{\pt}{\ptil _t} \newcommand{\pfr}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\dfr}[2]{\frac{\mathrm{d} #1}{\mathrm{d} #2}} \newcommand{\ddt}{\dfr{}t} \newcommand{\pthf}[2]{\pth{\frac{#1}{#2}}} $ %--Integral-- $ \newcommand{\intR}{\int _0 ^\infty} \newcommand{\intRn}{\int _{\Rn}} \newcommand{\intRd}{\int _{\Rd}} \newcommand{\fint}{-\!\!\!\!\!\!\int} \newcommand{\intset}[1]{\int _{\set{#1}}} $ %--Greek-- $ \newcommand{\e}{\varepsilon} \newcommand{\vp}{\varphi} $ %--Norm-- $ \newcommand{\nmL}[2]{\nor{#2} _{L ^#1}} $

Research Blog

Distance Between Sines

2020, January 12

Proposition

Let $\alpha > \beta > 0$ be two distinct real numbers. Then

\[\begin{align} \sup _{x \in \mathbb R} |\sin (\alpha x) - \sin (\beta x)| \ge \sqrt 3. \end{align}\]

Proof.

\[\begin{align*} \sin (\alpha x) - \sin (\beta x) &= 2 \cos \left( \frac{\alpha + \beta}2 x \right) \sin \left( \frac{\alpha - \beta}2 x \right). \end{align*}\]

Whenever $x = \dfrac{2 k \pi}{\alpha + \beta}$, $\left|\cos \left( \dfrac{\alpha + \beta}2 x \right)\right| = 1$, so

\[\begin{align*} \sin (\alpha x) - \sin (\beta x) &= \pm 2 \sin \left( \frac{\alpha - \beta}2 \frac{2 k \pi}{\alpha + \beta} \right) \\\ &= \pm 2 \sin \left( \frac{\alpha - \beta}{\alpha + \beta} k \pi \right) \end{align*}\]

Let $\gamma = \dfrac{\alpha - \beta}{\alpha + \beta}$. If $\gamma$ is an irrational number, then $\sup _k \sin (\gamma k \pi) = 1$ (see Stein, Fourier Analysis for example). If $\gamma$ is a rational number, then the set $\lbrace\gamma k\rbrace$ mod 1 will be $\lbrace 0, \frac1q, \frac2q, \dots, \frac{q-1}q \rbrace$ for some $q$, which must contain an element in $[\frac13, \frac23]$, so $\lvert\sin (\gamma k \pi)\rvert \ge \frac{\sqrt 3}2$ for some $k$.

Comment.

$\sqrt 3$ is not optimal. By a rescaling in $x$, we may assume that $\beta = 1$. $\gamma$ will be exactly $\frac13$ when $\alpha = 2$, and $\gamma$ will be $\frac23$ when $\alpha = 5$. In the case $\alpha = 2$,

\[\begin{align*} f (x) := \sin (2 x) - \sin (x) \end{align*}\]

is smooth and periodic over $\mathbb R$. To find its critical points, set

\[\begin{align*} f' (x) = 2 \cos (2 x) - \cos (x) &= 0. \\\ 4 \cos (x) ^2 - 2 - \cos (x) &= 0. \\\ \cos (x) &= \frac{1 \pm \sqrt{33}}8. \end{align*}\]

Because $f$ is odd, it suffices to consider $x \in (0, \pi)$. When

\[\begin{align*} x &= \cos ^{-1} \left( \frac{1 + \sqrt{33}}8 \right) \\\ \sin (x) &= \sqrt{1 - \cos ^2 (x)} \\\ &= \sqrt{1 - \frac{(1 + \sqrt{33})^2}{64}} \\\ &= \sqrt{1 - \frac{34 + 2 \sqrt{33}}{64}} \\\ &= \frac18 \sqrt{30 - 2 \sqrt{33}} \\\ f (x) &= 2 \sin (x) \cos (x) - \sin (x) \\\ &= \left(\frac{1 + \sqrt{33}}4 - 1\right) \frac18 \sqrt{30 - 2 \sqrt{33}} \approx 0.3690. \end{align*}\]

When

\[\begin{align*} x &= \cos ^{-1} \left( \frac{1 - \sqrt{33}}8 \right) \\\ \sin (x) &= \sqrt{1 - \cos ^2 (x)} \\\ &= \sqrt{1 - \frac{(1 - \sqrt{33})^2}{64}} \\\ &= \sqrt{1 - \frac{34 - 2 \sqrt{33}}{64}} \\\ &= \frac18 \sqrt{30 + 2 \sqrt{33}} \\\ f (x) &= 2 \sin (x) \cos (x) - \sin (x) \\\ &= \left(\frac{1 - \sqrt{33}}4 - 1\right) \frac18 \sqrt{30 + 2 \sqrt{33}} \approx -1.7602. \end{align*}\]

Therefore

\[\begin{align*} \sup _{x} |\sin(2 x) - \sin (x)| \approx 1.7602. \end{align*}\]

In the case $\alpha = 5$,

\[\begin{align*} g (x) := \sin (5 x) - \sin (x) \end{align*}\]

is smooth and periodic over $\mathbb R$. To find its critical points, set

\[\begin{align*} g' (x) = 5 \cos (5 x) - \cos (x) &= 0. \\\ 5 \cos ^5 x - 50 \cos ^3 x \sin ^2 x + 25 \cos x \sin ^4 x - \cos (x) &= 0. \\\ \cos (x) \left[ 5 \cos ^4 x - 50 \cos ^2 x (1 - \cos ^2 x) + 25 (1 - \cos ^2 x) ^2 - 1 \right] &= 0. \\\ 4 \cos (x) \left[ 20 \cos ^4 x - 25 \cos ^2 x + 6 \right] &= 0. \\\ \cos (x) = 0 \qquad \text{ or } \qquad \cos ^2 (x) = \frac{25 \pm \sqrt{145}}{40}. \end{align*}\]

Notice that

\[\begin{align*} g (x) = 4 \sin x (4 \cos ^4 x - 3 \cos ^2 x). \end{align*}\]

If $\cos x = 0$ then $g (x) = 0$. If $\cos ^2 x = \frac{25 \pm \sqrt{145}}{40}$ then $20 \cos ^4 x - 25 \cos ^2 x + 6 = 0$. So

\[\begin{align*} g (x) &= 4 \sin x (4 \cos ^4 x - 3 \cos ^2 x) \\\ &= 4 \sin x \left(5 \cos ^2 x - \frac65 - 3 \cos ^2 x\right) \\\ &= \frac85 \sin x \left(5 \cos ^2 x - 3\right) \end{align*}\]

Because $f$ is odd and of period $\pi$, it suffices to consider $x \in (0, \frac\pi2)$. When

\[\begin{align*} x &= \cos ^{-1} \left(\sqrt{\frac{25 + \sqrt{145}}{40}}\right) \\\ \sin x &= \sqrt{1 - \frac{25 + \sqrt{145}}{40}} \\\ &= \sqrt{\frac{15 - \sqrt{145}}{40}} \\\ g (x) &= \frac85 \sqrt{\frac{15 - \sqrt{145}}{40}} \left(5 \frac{25 + \sqrt{145}}{40} - 3\right) \approx 0.7093. \end{align*}\]

When

\[\begin{align*} x &= \cos ^{-1} \left(\sqrt{\frac{25 - \sqrt{145}}{40}}\right) \\\ \sin x &= \sqrt{1 - \frac{25 - \sqrt{145}}{40}} \\\ &= \sqrt{\frac{15 + \sqrt{145}}{40}} \\\ g (x) &= \frac85 \sqrt{\frac{15 + \sqrt{145}}{40}} \left(5 \frac{25 - \sqrt{145}}{40} - 3\right) \approx -1.8157. \end{align*}\]

Therefore

\[\begin{align*} \sup _{x} |\sin(5 x) - \sin (x)| \approx 1.8157. \end{align*}\]

For any other $\alpha$, $\lbrace\gamma k\rbrace \operatorname{mod} 1 = \lbrace 0, \frac1q, \frac2q, \dots, \frac{q-1}q \rbrace$ for some $q \neq 3$, which must contain an element in $[\frac25, \frac35]$, so $\lvert\sin (\gamma k \pi)\rvert \ge \sin\left(\dfrac{5\pi}2\right) = \sqrt{\dfrac58+\dfrac{\sqrt5}8} \approx 0.9511$ for some $k$. To sum up, for $\alpha > \beta > 0$,

\[\begin{align*} \sup _{x \in \mathbb R} |\sin (\alpha x) - \sin (\beta x)| \begin{cases} \approx 1.7602 & \alpha = 2 \beta \\ \approx 1.8157 & \alpha = 5 \beta \\ \ge 1.9021 & \frac\alpha\beta \in \mathbb Q \setminus \lbrace 2, 5 \rbrace \\ = 2 & \frac\alpha\beta \in \mathbb R \setminus \mathbb Q \end{cases} . \end{align*}\]

Recent Posts

22 Jan 2021

De Giorgi

14 Apr 2020

Lorentz Space