Your browser does not support the canvas element.

Jincheng Yang

The University of Texas at Austin

%--Paired Delimiters-- $ \newcommand{\abs}[1]{\left\lvert #1 \right\rvert} \newcommand{\ang}[1]{\left\langle #1 \right\rangle} \newcommand{\bkt}[1]{\left\lbrack #1 \right\rbrack} \newcommand{\nor}[1]{\left\lVert #1 \right\rVert} \newcommand{\pth}[1]{\left( #1 \right)} \newcommand{\set}[1]{\left\lbrace #1 \right\rbrace} \newcommand{\abset}[1]{\abs{\set{#1}}} \newcommand{\ptset}[1]{\pth{\set{#1}}} $ %--Operators-- $ \newcommand{\grad}{\nabla} \newcommand{\La}{\Delta} \renewcommand{\div}{\operatorname{div}} \newcommand{\curl}{\operatorname{curl}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\Hess}{\operatorname{Hess}} \newcommand{\mm}{\mathcal{M}} \newcommand{\inv}{^{-1}} \newcommand{\tensor}{\otimes} \newcommand{\cross}{\times} \newcommand{\weak}[1]{\xrightharpoonup{#1}} $ %--Notations-- $ \newcommand{\Vol}{\mathrm{Vol}} \newcommand{\loc}{\mathrm{loc}} \renewcommand{\dim}{\mathrm{dim}} \newcommand{\Span}{\mathrm{Span}} \newcommand{\diam}{\mathrm{diam}} \newcommand{\Id}{\mathrm{Id}} \newcommand{\Lip}{\mathrm{Lip}} \newcommand{\dist}{\mathrm{dist}} \newcommand{\inv}{^{-1}} $ %--Algebra-- $ \newcommand{\hfsq}[1]{\frac{\abs{#1} ^2}{2}} $ %--Sets-- $ \newcommand{\R}{\mathbb{R}} \newcommand{\RR}[1]{\R ^{#1}} \newcommand{\Rd}{\RR d} \newcommand{\Rn}{\RR n} \renewcommand{\S}{\mathbb{S}} \renewcommand{\Z}{\mathbb{Z}} \newcommand{\T}{\mathbb{T}} \newcommand{\ssubset}{\subset \subset} \newcommand{\spt}{\operatorname{spt}} \newcommand{\supp}{\operatorname{supp}} \newcommand{\diam}{\mathrm{diam}} \newcommand{\diag}{\operatorname{diag}} \renewcommand{\dim}{\mathrm{dim}} \newcommand{\dimH}{\mathrm{dim} _\mathcal{H}} \newcommand{\Sing}{\mathrm{Sing}} \newcommand{\Vol}{\mathrm{Vol}} \newcommand{\inds}[1]{\mathbf1_{\set{#1}}} \newcommand{\ind}[1]{\mathbf1_{#1}} $ %--Summations-- $ \newcommand{\SUM}[3]{\sum \cnt{#1}{#2}{#3}} \newcommand{\PROD}[3]{\prod \cnt{#1}{#2}{#3}} \newcommand{\cnt}[3]{ _{#1 = #2} ^{#3} } \newcommand{\seq}[2]{\set{#1 _{#2}} _{#2}} \newcommand{\seqi}[2]{\set{#1 _{#2}} \cnt{#2}1i} $ %--Superscript and Subscript $ \newcommand{\pp}[1]{^{(#1)}} \newcommand{\bp}[1]{^{(#1)}} \newcommand{\pps}[2][1]{^{#2 + #1}} \newcommand{\bps}[2][1]{_{#2 + #1}} \newcommand{\pms}[2][1]{^{#2 - #1}} \newcommand{\bms}[2][1]{_{#2 - #1}} $ %--Notations-- $ \newcommand{\loc}{\mathrm{loc}} \newcommand{\Span}{\operatorname{Span}} \newcommand{\argmin}{\operatorname{argmin}} \newcommand{\argmax}{\operatorname{argmax}} \newcommand{\osc}{\operatorname{osc}} \newcommand{\Id}{\mathrm{Id}} \newcommand{\Lip}{\operatorname{Lip}} \newcommand{\Leb}{\operatorname{Leb}} \newcommand{\PV}{\mathrm{P.V.}} \newcommand{\dist}{\operatorname{dist}} \newcommand{\at}[1]{\bigr\rvert _{#1}} \newcommand{\At}[1]{\biggr\rvert _{#1}} \newcommand{\half}{\frac12} $ %--Text-- $ \newcommand{\inn}{\text{ in }} \newcommand{\onn}{\text{ on }} \renewcommand{\ae}{\text{ a.e. }} \newcommand{\st}{\text{ s.t. }} \newcommand{\forr}{\text{ for }} \newcommand{\as}{\text{ as }} $ %--Differential-- $ \newcommand{\d}{\mathop{\kern0pt\mathrm{d}}\!{}} \newcommand{\dt}{\d t} \newcommand{\dx}{\d x} \newcommand{\dy}{\d y} \newcommand{\ptil}{\partial} \newcommand{\pt}{\ptil _t} \newcommand{\pfr}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\dfr}[2]{\frac{\mathrm{d} #1}{\mathrm{d} #2}} \newcommand{\ddt}{\dfr{}t} \newcommand{\pthf}[2]{\pth{\frac{#1}{#2}}} $ %--Integral-- $ \newcommand{\intR}{\int _0 ^\infty} \newcommand{\intRn}{\int _{\Rn}} \newcommand{\intRd}{\int _{\Rd}} \newcommand{\fint}{-\!\!\!\!\!\!\int} \newcommand{\intset}[1]{\int _{\set{#1}}} $ %--Greek-- $ \newcommand{\e}{\varepsilon} \newcommand{\vp}{\varphi} $ %--Norm-- $ \newcommand{\nmL}[2]{\nor{#2} _{L ^#1}} $

Research Blog

Jensen's Approximation

2021, February 05

Introduction

Given a continuous function $u \in C (\mathbb T ^n)$, consider $ \newcommand{\xo}{x _0} \newcommand{\ue}{u ^\e} \newcommand{\xos}{x _0 ^*} \newcommand{\Pd}{P ^\delta} \newcommand{\ve}{v _\e} $ \begin{align*} \ue (\xo) := \sup _x \set{ u (x) - \frac1\e \abs{x - \xo} ^2 } = \sup _h \set{ u (\xo - h) - \frac1\e \abs h ^2. }. \end{align*} Think each of the function inside $\set{}$ as a function of $\xo$, there are two intepretations:

  1. $\ue$ is a sup of a family of paraboloids (concave of opening $\frac2\e$). (Left)
  2. $\ue$ is a sup of a family of translations of $u$ ($h$ horizontally, $\frac1\e\abs h ^2$ downwards). (Right)

Jensen's Approximation Solution

It has the following properties.

  1. $\ue (\xo) = u (\xos) - \frac1\e \abs{x - \xos} ^2$ for some $\xos$. $\ue (\xo) = u (\xo - h ^*) - \frac1\e \abs{h ^*} ^2$.

    This is because the sup is attainable in a compact set.

  2. $\ue (\xo) \ge u(\xo)$.

    By definition, set $x = \xo$.

  3. $\ue$ is $\frac2\e \diam(\mathbb T)$-Lipschitz.

    This is because for every $x$, $u (x) - \frac1\e\abs{x - \xo} ^2$ is $\frac2\e \diam(\mathbb T)$-Lipschitz in $\xo$.

  4. $\ue$ decreases as $\e \to 0$.

    Because $u (x) - \frac1\e\abs{x - \xo} ^2$ decreases as $\e \to 0$.

  5. $\abs{\xos - \xo} ^2 \le \e \osc u$.

    Because $u (\xo) \le u (\xos) - \frac1\e\abs{\xos - \xo} ^2$.

  6. $0 \le \ue (\xo) - u (\xo) \le u (\xos) - u (\xo)$.

    Because 1. and 2.

  1. $\ue \in C (\mathbb T ^n)$.
  2. $\ue \downarrow u$ uniformly as $\e \to 0$.
  3. For every $\xo$ there exists a concave paraboloid of opening $2/\e$ that touches $\ue$ by below at $\xo$. Hence $\ue$ is $C ^{1,1}$ by below. In particular, $\ue$ is punctually second order differentiable almost everywhere.

Proof.

  1. We even have Lipschitz continuity from Property 3.
  2. Property 4. implies monotonocity. Uniformily can be seen from \begin{align*} \ue (\xo) - u (\xo) \le u (\xos) - u(\xo) \to 0 \end{align*} uniformly since $\xos \to \xo$ uniformly and $u$ is uniform continuous.
  3. Because Property 1. asserts that the sup is attained by $\xos$, $\ue$ is touched by a paraboloid by below.

Jensenn’s Approximate Solutions

Suppose $u$ is a viscosity subsolution of $F (D ^2 u) = 0$, we have that $\ue$ is a viscosity subsolution of $F (D ^2 u) = 0$. In particular $F (D ^2 \ue) \ge 0$ a.e.

Proof.

Let $P (x)$ touches $\ue$ at $\xo$ by above. Then it touches a translation of $u$ by above (using the second intepretation mentioned at the beginning): $P (\xo) = \ue (\xo) = u (\xo - h ^*) - \frac1\e \abs{h ^*} ^2$.

Consider \begin{align*} Q (x) = P (x + h ^*) + \frac1\e \abs{h ^\ast} ^2. \end{align*} Then $Q$ touches $u$ by above at $\xos$. Since $F (D ^2 u) \ge 0$ in the viscosity sense, \begin{align*} 0 \le F (D ^2 Q) = F(D ^2 P). \end{align*} Therefore $\ue$ is a viscosity subsolution.

Uniqueness

Let $u$ be a viscosity subsolution and $v$ be a viscosity supersolution to $F (D ^2 w) = 0$ in $\Omega$. Then \begin{align*} u - v \in \underline S (\lambda/n, \Lambda). \end{align*}

Proof.

It suffices to show $f := u ^\e - \ve \in \underline S (\lambda/n, \Lambda)$ in the interior because $S$ is closed under uniform convergence. Let $P$ be a paraboloid that touches $f$ from above at $\xo$.

By Approximation theorem, $\ue$ and $\ve$ are again viscosity sub/supersolutions, and punctually second order differentiable almost everywhere. In particular, if they are both punctually second order differentiable at $\xo$, then \begin{align*} 0 \le F (D ^2 \ue (\xo)) - F (D ^2 \ve (\xo)) \le \mathcal M ^+ (D ^2 f (\xo); \lambda/n, \Lambda) \le \mathcal M ^+ (D ^2 P (\xo); \lambda/n, \Lambda) \end{align*} which finishes the proof. The problem is that we don’t know if $\ue$ and $\ve$ are punctually second order differentiable at $\xo$.

To overcome this, we fix a small $r > 0$ and define \begin{align*} \Pd (x) = P (x) + \delta \abs{x - \xo} ^2 - \delta r ^2. \end{align*} That is, we pinch $\Pd$ a little such that it bends more downward without changing its value on $\partial B _r (\xo)$. Then we still have $\Pd > f$ on $\partial B _r (\xo)$ but $\Pd < f$ at $\xo$. Define $w = \Pd - f$. Let $\Gamma _w$ be the convex envelope of $-w ^- \ind{B _r (\xo)}$, then since $w$ can be touched from above by a paraboloid with uniform opening at any given point ($\ue$ can be touched by below, $\ve$ can be touched from above by a paraboloid of opening $2/\e$, and $\Pd$ is a paraboloid), by Lemma 3.5 we know that the contact set $\set{w = \Gamma _w}$ has positive measure.

Let $x _1$ be a point in $B _r$ intersect $\set{w = \Gamma _w}$ intersect the punctual second order differentiability set of $\ue - \ve$. Then at this point, $D ^2 w (x _1) = D ^2 \Gamma _w (x _1)$ is nonnegative, so \begin{align*} 0 &\le F (D ^2 \ue (x _1)) - F (D ^2 \ve (x _1)) \newline &\le F (D ^2 \ue (x _1) + D ^2 w (x _1)) - F (D ^2 \ve (x _1)) \newline &\le \mathcal M ^+ (D ^2 w (x _1) + D ^2 f (x _1); \lambda/n, \Lambda) \newline &\le \mathcal M ^+ (D ^2 \Pd; \lambda/n, \Lambda) \newline &\le \mathcal M ^+ (D ^2 P; \lambda/n, \Lambda) + 2 \Lambda \delta. \end{align*} Finally take $\delta \to 0$.

The Dirichlet problem \begin{align*} \begin{cases} F (D ^2 u) = 0 & \inn \Omega, \newline u = \vp & \onn \partial \Omega \end{cases} \end{align*} has at most one viscosity solution $u \in C (\bar \Omega)$.

Recent Posts

22 Jan 2021

De Giorgi

14 Apr 2020

Lorentz Space