Exotic real projective Dehn surgery space

Jeffrey Danciger
with Sam Ballas, Gye-Seon Lee and Ludovic Marquis

University of Texas – Austin jdanciger@math.utexas.edu

Geometric Structures, Strasbourg June 27- July 2, 2022 Let N=3-manifold. A *real projective structure* (\mathbb{RP}^3 -structure) on N is locally modeled on real projective geometry.

Real projective geometry
$$\supset$$
 hyperbolic geometry $\mathbb{RP}^3 = (\mathbb{R}^4 - 0)/\mathbb{R}^* \supset \mathbb{H}^3 = \mathbb{P}\{x_1^2 + x_2^2 + x_3^2 - x_4^2 < 0\}$ $G = PGL_4\mathbb{R} = GL_4\mathbb{R}/\mathbb{R}^* \supset \mathbb{G} = PO(3,1)$

Basic Question

Assume N is a closed 3-manifold which admits an \mathbb{H}^3 -structure.

Does N admit other \mathbb{RP}^3 structures?

dim = 2:
$$N = \Sigma_a, g \ge 2$$
:

∃ continuous deformations

Hitchin component $\cong \mathbb{R}^{16g-16}$

continuous deformations seem to be *rare*.

Let M = complete, finite volume, orientable, \mathbb{H}^3 -manifold, with one cusp.

Thurston's hyperbolic Dehn filling theorem

All but finitely many *Dehn fillings* $M_{p/q}$ of M admit a hyperbolic structure.

Main Theorem (Ballas-D-Lee-Marquis)

Assume:

```
M is infinitesimally projectively rigid rel cusp (IPR). M does not have the constant unipotent slope property. M = m003, m004, m007, m019 Then there exists I \subset \mathbb{P}^1\mathbb{Q} so that for all but finitely many filling slopes p/q \in I,
```

Then there exists $I \subset \mathbb{P}^{q}$ so that for all but limitely many filling slopes $p/q \in I$ $M_{p/q}$ admits an exotic \mathbb{RP}^3 structure.

Further these structures are convex.

 \implies get discrete, faithful, Zariski dense representations $\pi_1 M_{p/q} \to \operatorname{SL}_4 \mathbb{R}$

An \mathbb{RP}^n structure on N is *convex* if:

 $\widetilde{N} \cong \Omega \subset \mathbb{RP}^n$ open, properly convex:

• Ω = projection of sharp convex cone in \mathbb{R}^{n+1}

deck action: $\rho : \pi_1 N \to \operatorname{Aut}(\Omega) < G = \operatorname{PGL}(n+1,\mathbb{R})$ discrete faithful.

some 2-d convex sets (Goldman):

Theorem (Benoist, Koszul)

If *N* closed, the convex \mathbb{RP}^n structures on *N* make up a union of connected components of $X(\pi_1 N, G)$.

Corollary of Main Theorem

There exist closed manifolds whose deformation space of convex \mathbb{RP}^n structures has multiple components.

M= complete, finite volume, orientable \mathbb{H}^3 -manifold with one cusp.

$$X(\pi_1 M, \mathbb{G}) := \operatorname{Hom}(\pi_1 M, \mathbb{G}) /\!\!/ \mathbb{G}$$
 \mathbb{G} -character variety $\mathbb{G} = \operatorname{Isom}(\mathbb{H}^3)$

- basepoint: ρ_{hyp} unique discrete faithful.
- $\dim_{\mathbb{R}} X = 2$: near ρ_{hyp} , X parameterizes deformations of the hyperbolic structure on M (incomplete): hyperbolic Dehn filling space.

Let $\rho \in X(\pi_1 M, \mathbb{G})$ near ρ_{hyp} .

- Restrict to the peripheral subgroup $\pi_1 \partial M = \langle \alpha, \beta \rangle \cong \mathbb{Z} \times \mathbb{Z}$.
- If $\rho \neq \rho_{hyp}$, $\rho(\pi_1 \partial M) = loxodromic$:
 - ▶ translations and rotations around a geodesic $\mathscr{A} \subset \mathbb{H}^3$.

Generalized Dehn filling parameters.

Solve for $(p, q) \in \mathbb{R}^2$:

$$\rho(\alpha)^p \rho(\beta)^q = \text{Rotation by } 2\pi$$

If (p, q) = relatively prime integers, then

$$\rho(\pi_1 \partial M) \setminus \mathcal{N}_B(\mathscr{A}) \cup \text{(incomplete } \mathbb{H}^3 \text{ structure on } M) = M_{p/q}$$

M = complete, finite volume, orientable \mathbb{H}^3 -manifold with one cusp. Deformations of M as an \mathbb{RP}^3 structure parametrized by:

$$X(\pi_1 M, \mathsf{G}) := \mathrm{Hom}(\pi_1 M, \mathsf{G}) /\!\!/ \mathsf{G}$$
 G-character variety $\mathsf{G} = \mathsf{PGL}_4 \mathbb{R}$

Let $\rho \in X(\pi_1 M, G)$ near ρ_{hyp} . Restrict to $\pi_1 \partial M = \langle \alpha, \beta \rangle$. Solve for (p, q):

$$\rho(\alpha)^p \rho(\beta)^q = \text{Rotation by } 2\pi$$

Proposition

If (p, q) a relatively prime integer solution and ρ sufficiently close to $\rho_{h\nu\rho}$, then: \mathbb{RP}^3 structure on M fills in to a convex \mathbb{RP}^3 structure on $M_{n/a}$.

Issues

- Which (p, q) are achieved?
- 2 For typical ρ , can not solve for (p, q)!

6/17

restriction map: ι^* : Hom $(\pi_1 M, G) \to \text{Hom}(\pi_1 \partial M, G)$

Question

For ρ near ρ_{hyp} , what can $\iota^*(\rho)$ look like?

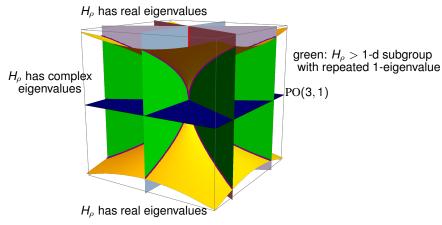
- $\operatorname{Hom}(\pi_1 \partial M, G) = \operatorname{Hom}(\mathbb{Z} \times \mathbb{Z}, G)$ smooth near $\iota^* \rho_{hyp}$. $\dim = 6$ up to conjugation.
- We get a good picture of Hom(ℤ × ℤ, G).
 - ▶ WARNING: Hom($\mathbb{Z} \times \mathbb{Z}$, G)/G poorly behaved near $\iota^* \rho_{hyp}$.
 - ▶ instead, work in an explicit six-dimensional slice.

Assumption: (IPR)

The complete hyperbolic structure on *M* is *infinitesimally projectively rigid rel* boundary.

- Hom($\pi_1 M$, G) smooth near ρ_{hvp} . dim = 3 up to conjugation.
- ι* locally injective, up to conjugation.

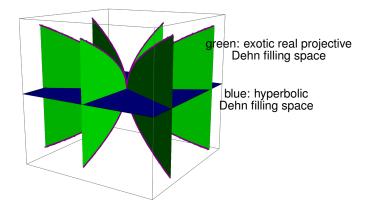
Picture of $X(\pi_1 M, G)$



$$H_{\rho} := \text{hull}(\rho(\pi_1 \partial M)) < G$$
 2-d Lie subgroup

for Dehn fillings, need $H_{
ho} >$ 1-d rotation subgroup $\left. \sim \, \, \right|_{}^{e^{i\theta}} \, \left|_{}^{} \, \right|_{}$

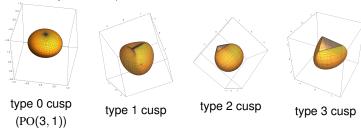
Picture of $X(\pi_1 M, G)$



 Let $M = \Gamma \backslash \mathbb{H}^3$ finite volume, one cusp.

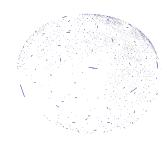
$$\mathsf{Let}\; \rho \in \mathit{X}(\pi_1 \mathit{M}, \mathsf{G}) \; \mathsf{near}\; \rho_{\mathit{hyp}}. \qquad \qquad \mathit{H}_{\rho} := \mathsf{hull}(\rho(\pi_1 \partial \mathit{M})) < \mathsf{G}.$$

- (A) H_{ρ} has real eigenvalues.
 - generalized cusp group (Cooper-Long-Tillmann). 4 types (Ballas-Cooper-Leitner)



ho determines a convex projective structure on M with generalized cusps. (Cooper-Long-Tillmann)

Convex projective deformations of the figure 8 complement.



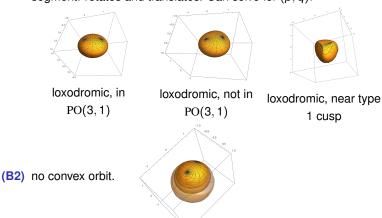
with type 1 cusp (Ballas).

with type 3 cusp (Ballas-D-Lee).

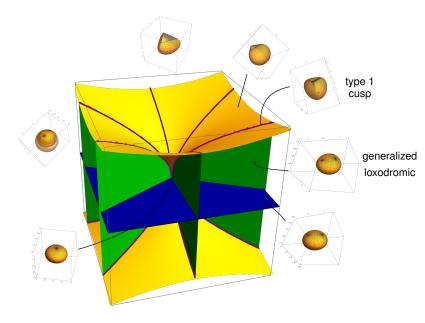
Let $\rho \in X(\pi_1 M, G)$ near ρ_{hyp} . $\rho(\pi_1 \partial M)$ determines a 2-d Lie subgroup: $H_\rho = \text{hull}(\rho(\pi_1 \partial M)) < G$.

(B) complex eigenvalues

(B1) generalized loxodromic group: preserves (convex) neighborhood of line segment. rotates and translates. Can solve for (p, q)!



A picture of $X(\pi_1 M, G)$ labeled by the orbits of H_ρ .



Type 1 cusps and nearby loxodromic groups

$$H_{
ho} = egin{pmatrix} e^u & e^u v & rac{1}{2}e^u(v^2+2u) & 0 \ 0 & e^u & e^u v & 0 \ 0 & 0 & e^u & e^{-3u} \end{pmatrix}$$

Solve

$$\rho(\alpha)^r \rho(\beta)^s = \text{unipotent}.$$

 $\mu(\rho) := \frac{r}{s} \in \mathbb{R} \cup \{\infty\}$: the *unipotent slope*.

Proposition

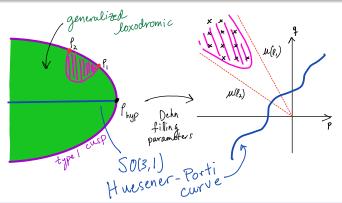
If $\rho_t \to \rho_0$ with H_{ρ_t} converging from loxodromic (t > 0) to type 1 cusp (t = 0), then

$$rac{p_t}{q_t}
ightarrow \mu(
ho_0)$$

where (p_t, q_t) = generalized Dehn surgery coordinates of ρ_t .

Assumption 2

(One of) the path(s) of deformations of M through convex \mathbb{RP}^3 structures with type 1 cusps has *non-constant* unipotent slope.



Main theorem

Then there exists $I \subset \mathbb{P}^1\mathbb{Q}$ so that for all but finitely many filling slopes $p/q \in I$, $M_{p/q}$ admits an exotic convex \mathbb{RP}^3 structure.

June 27-Jul 2, 2022

Convexity

Suppose M is an \mathbb{RP}^3 manifold. Is it convex?

- Canonical line bundle $E \rightarrow M$.
- M convex \Leftrightarrow there is a proper, strictly convex section $s: M \to E \mathbf{0}$.

Suppose M is convex. Deform the \mathbb{RP}^3 structure.

- s remains strictly convex, on a compact part of M. (Koszul)
- If M not compact, must control s in the ends.
 - ends deforming as generalized cusps (Cooper-Long-Tillmann)
 - for a (p, q)-Dehn filling deformation, make a convex model of the appropriate solid torus, with section s, and glue back to convex part.

type 1 cusp

loxodromic, near type 1 cusp

Thank you!