Heegaard Floer Homology Exercise Set \#2

Exercise 1: Let \mathbf{x}, \mathbf{y}, and \mathbf{w} be intersection points in $\mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$, let $\phi_{1} \in \pi_{2}(\mathbf{x}, \mathbf{y})$ and let $\phi_{2} \in$ $\pi_{2}(\mathbf{y}, \mathbf{w})$. Define $\phi_{1} * \phi_{2} \in \pi_{2}(\mathbf{x}, \mathbf{w})$ to be the homotopy class of the map formed by concatenation. Show that

1. $\mathcal{D}\left(\phi_{1} * \phi_{2}\right)=\mathcal{D}\left(\phi_{1}\right)+\mathcal{D}\left(\phi_{2}\right)$, and
2. $\mu\left(\phi_{1} * \phi_{2}\right)=\mu\left(\phi_{1}\right)+\mu\left(\phi_{2}\right)$.

Exercise 2: Compute the homology of each of the following chain complexes.

Figure 1: Possible $\widehat{C F}$ complexes
Exercise 3: Let Y be the example from lecture using the Heegaard diagram pictured below. In this exercise $\widehat{H F}(Y)$ will be computed.

Figure 2: Heegaard diagram example
A) Show that $H_{1}(Y) \cong \mathbf{Z} / 3 \mathbf{Z}$. (Hint: To start choose a nice set of generators for $H_{1}(\Sigma)$)
B) Decide if each of the following domains is an image of a Whitney disk. If so compute the Maslov index for those Whitney disks. If the $\mu(\phi)=1$, then decide which pairs of intersection points are connected by ϕ.
(i) D_{3}
(ii) D_{4}
(iii) $D_{1}-D_{4}$
C) Compute the ϵ values for the following pairs of intersection points.
(i) $\epsilon\left(x_{1} y_{1}, x_{1} y_{2}\right)$
(ii) $\epsilon\left(x_{1} y_{2}, x_{3} y_{1}\right)$
(iii) $\epsilon\left(u v, x_{3} y_{2}\right)$
D) In addition to the contributing disks found in part (B), we found contributing Whitney disk between the following intersection points: $x_{2} y_{1} \mapsto x_{1} y_{1}, x_{2} y_{2} \mapsto x_{1} y_{2}$, and $x_{2} y_{2} \mapsto x_{3} y_{1}$. Use all the information found to draw $\widehat{C F}(\Sigma, \underline{\alpha}, \underline{\beta}, z)$. (Hint: Based on part (A) there should be three equivalence classes of points.)
E) Compute $\widehat{H F}(Y)$.

