Heegaard Floer Homology Exercise Set #3

Exercise 1: Show that the following is a short exact sequence of chain complexes.

$$0 \longrightarrow \widehat{CF}(\Sigma, \underline{\alpha}, \underline{\beta}, z, s) \stackrel{\iota}{\longrightarrow} CF^+(\Sigma, \underline{\alpha}, \underline{\beta}, z, s) \stackrel{U}{\longrightarrow} CF^+(\Sigma, \underline{\alpha}, \underline{\beta}, z, s) \longrightarrow 0$$

Here $\iota(x) = [x, 0].$

Exercise 2: Recall that U is defined as an isomorphism of CF^{∞} . This restricts to a map U^- in CF^- and induces a map U^+ on CF^+ . Furthermore, these maps induce U_*, U_*^- , and U_*^+ on their respective homologies. (In practice, abusing notation all of these maps are referred to as U.)

- 1. Which of these maps are always injective? ... surjective?
- 2. Recall the long exact sequence

 $\cdots \longrightarrow HF^{-}(Y,s) \xrightarrow{i_{*}} HF^{\infty}(Y,s) \xrightarrow{\pi_{*}} HF^{+}(Y,s) \longrightarrow \cdots$

Show that $\ker((U_*^{-})^k) = \ker(i_*)$ and that $\operatorname{im}((U_*^{+})^k) = \operatorname{im}(\pi_*)$.

3. Prove that $HF_{red}^+(Y,s) \cong HF_{red}^-(Y,s)$.

Exercise 3: Prove that Y is an L-space if and only if $\mathsf{rk} HF^{-}(Y) = |H_1(Y; \mathbf{Z})|$.

Exercise 4: Consider the Y from last time (Heegaard diagram pictured below).

Figure 1: Heegaard diagram example

Let $s = s_z(x_1y_1)$. Draw the complexes $CF^-(\Sigma, \underline{\alpha}, \beta, z, s)$ and $CF^+(\Sigma, \underline{\alpha}, \beta, z, s)$.