$1PPP+1PPL+1PLP+2LLL$ has degree $496$
This is a minimal problem for three calibrated
views. Here is a random instance:
Image data in $(\mathbb{P}^{2} \times \mathbb{P}^{2} \times
\mathbb{P}^{2}) \times (\mathbb{P}^{2} \times
\mathbb{P}^{2} \times (\mathbb{P}^{2})^{\vee}) \times (\mathbb{P}^{2} \times (\mathbb{P}^{2})^{\vee} \times
\mathbb{P}^{2}) \times ((\mathbb{P}^{2})^{\vee} \times (\mathbb{P}^{2})^{\vee} \times
(\mathbb{P}^{2})^{\vee})^{\times 2}$.
496 complex solutions in
$a,b,c,d,e,f,g,h,t_{2,1},t_{2,2},t_{2,3},t_{3,1},t_{3,2},t_{3,3}$ coordinates.