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Abstract. These notes are from a talk given at UT in a graduate differential topology
class, and are meant to be self-contained. The Goal is to introduce sheaves and how they
relate to the category of smooth manifolds. Sheaves are a systematic way to keep track of a
bevy of data within one object. Considering the historicity of sheaves we will briefly go over
Grothendieck’s contribution to the field of algebraic geometry and how his foundational
work [EGA] has had a long-standing impact on the whole of mathematics. We will be
mainly pulling from Global Calculus By Ramanan [Ram], and Algebraic Geometry By
Hartshorne[Ram].

1. Sheaves

Historically, the terminology used to developed the theory of schemes was inspired by the
agrarian social-political movement of the time. With that context we start with our first
definition.

Definition 1.1. A smooth function element on M is an ordered pair (f, U), where U is an
open subset of M and f : U → R is a smooth function.[Lee]

Definition 1.2. Given a point p ∈ M, let us define an equivalence relation on the set of all
smooth function elements whose domains contain p by setting (f, U) ∼ (g, V ) if f ≡ g on
some neighborhood of p. The equivalence class of a function element (f, U) is called the germ
of f at p.[Lee]

The set of all germs of smooth functions at p is denoted by C∞
p (M). Now continuing with

our agrarian terminology,

Definition 1.3. Let X be a topological space. A presheaf F of abelian groups on X consists
of the data

(a) for every open subset U ⊆ X, an abelian group F(U), and
(b) for every inclusion V ⊆ U of open subsets of X, a homomorphism of abelian groups

ρUV : F(U) → F(V ),

subject to the condtions
(0) F(∅) = 0,
(1) ρUU is the identity map F(U) → F(U), and
(2) if W ⊆ V ⊆ U are three open subsets, then ρUW = ρVW ◦ ρUV .

[Har]

Examples 1.4. Examples of abelian groups assigned to each open subsets of X,

(1) R valued functions on U,
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(2) Differential forms on U
(3) Vector Fields on U
(4) Holomorphic functions on U,
(5) Constant functions on U

Remark 1.5. If F is a presheaf on X then F(U) is referred to as the section of the presheaf
F over the open set U. Where the sections are elements in Γ(U,F). Also, restriction maps
ρUV (s) = s|V
Definition 1.6. A presheaf F on a topological space X is a sheaf if it satisfies the following
conditions:

(3) if U is an open set, if {Vi} is an open covering of U, and if s ∈ F(U) is an element
such that s|Vi

= 0 for all i, then s = 0.
(4) if U is an open set, if {Vi} is an open covering of U, and if we have elemnts si ∈ F(Vi)

for each i, with the property that for each i, j, si|Vi∩Vj
= sj|Vi∩Vj

, then there is an
element s ∈ F(U) such that s|Vi

= si for each i.

[Har]

For a fixed x, one says that elements f ∈ F(U) and g ∈ F(V ) are equivalent if there exists
W : x ∈ W where W ⊆ U ∩ V has ρWU(f) = ρWV (g), (both elements of F(W )).
These equivalence classes form the stalk Fx at x of the presheaf. Where this equivalence
relation is the abstraction of the germ equivalence.

Definition 1.7. The stalk of F at x is defined as
Fx := lim

−→
U∋x

F(U)

The direct limit is indexed over all the open sets containing x, with order relation induced
by reverse inclusion.[Har]

Remark 1.8. In some contexts it is best to think
1) if Germ vanishes at p then the Germ represents tangent vector at p,
2) a Stalk as containing the maximal ideal of all the Germs that vanish at p, and from here
you can quotient by the Germs which vanish with order two, and
3) a Sheaf as all the collection of all the data of the manifold from which you can extract
the tangent bundle out of.[Har]

Example 1.9. Let X be a topological space, and A an abelian group. Define the constant
sheaf A on X determined by A as follows. We give A the discrete topology, and for any
open set U ⊂ X, let A(U) be the group of continuous maps U into A. Then with the usual
restriction maps we obtain A the constant sheaf.[Har]

Remark 1.10. Note that for every connected open set U, A(U) = A.

Remark 1.11. You can define a presheaf of rings, sets, or abelian groups. This is done in the
obvious way i.e., Define the presheaf with values in any fixed category C, by replacing the
word abelian group in the definition of presheaf by the object in C you’d like.

Example 1.12. Let X be a topological space and for every open subset U ⊂ X let O(U) be
the ring C∞(U). For each V ⊂ U, let ρUV : A(U) → A(V ) be the restriction map. Then O
is the sheaf of rings on X.
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Definition 1.13. If F ,G are presheaves on X, a morphism φ : F → G consists of a morphism
of abelian groups φ(U) : F(U) → G(U) for each open set U, such that whenever V ⊆ U is
an inclusion, the diagram

F(U) G(U)

F(V ) G(V )

ρUV

φ(U)

ρ′UV

φ(V )

is commutative, where ρ, and ρ′ are the restriction maps in mcf and G. If mcf, and G are
sheaves on X, we use the same definition for morphism. [Har]

Remark 1.14. A morphism φ : F → G of presheaves on X induces a morphism φp : Fp → Gp

on the stalks, for any point p ∈ X.

Proposition 1.15. φ is a isomorphism of sheaves over X if and only if the map induced on
the stalks in a isomorphism for every point p ∈ X. [Har]

We now introduce the concept of local rings.

Definition 1.16. A ring is local if it has a unique maximal ideal.

Example 1.17. (A) Any field.
(B) {a/b ∈ Q | p ∤ b}.
(C) More generally, suppose A is a commutative ring and p ⊂ A is a prime ideal. Let

S = A− p. Then,
Ap := S−1A = {a/b | b /∈ p}.

Proposition 1.18 (Locality Criterion). A ring A is local with maximal ideal m if, and only if,
m is an ideal such that every element in A \m is a unit.

Definition 1.19. A ringed space is a topological space X along with a sheaf of rings O on X.
We say (X,O) is a locally ringed space if the stalks Op are local for all p ∈ X.

Example 1.20 (Relevant Example). Recall the example (M,O) of a manifold M with O(U)
the smooth functions U → R. Observe that O(U) is a ring for each U , and the restriction
maps are ring homomorphisms. Hence, (M,O) is a ringed space.

We claim (M,O) is a locally ringed space. For p ∈ M , the stalk at p is

Op = {[(U, f)] : p ∈ U}.
Let

mp = {[(U, f)] : p ∈ U, f(p) = 0} ⊂ Op.

Clearly mp is an ideal in Op. Suppose [(U, f)] ∈ Op \mp. Then, f ̸= 0 on an open neighbor-
hood W ∋ p, so f |W has an inverse g : W → R. We see

[(U, f)] · [(W, g)] = [(W, f |W )] · [(W, g)] = [(W, f |Wg)] = [(W, 1)] = 1.

Thus, [(U, f)] is a unit. Hence, Op is local with maximal ideal mp.
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Remark 1.21. Let Man∞ be the category of smooth manifolds with morphisms given by
smooth maps. As we have shown, manifolds can also be thought of as locally ringed spaces.
It is natural to ask how much information about a manifold is encoded in its sheaf of smooth
functions. The answer to this question is all. Explicitly, we would like to describe a functor
from Man∞ to LRS, the category of locally ringed spaces. However, we first need to describe
the morphisms of LRS.

Definition 1.22. Suppose (X,OX) and (Y,OY ) are two locally ringed spaces. A morphism of
locally ringed spaces (f, f ♯) is the data of

(A) A continuous map f : X → Y
(B) A morphism of sheaves f ♯ : OY → f∗OX

such that the induced stalk maps

f ♯
yOY,y → (f∗OX)y

at each y ∈ f(X) ⊂ Y are local homomorphisms, i.e. the preimage of the maximal ideal of
(f∗OX)y is the maximal ideal of OY,y.

Example 1.23. Let M,N be smooth manifolds with OM and ON the respective smooth
function sheaves. Suppose f : M → N is a smooth map. Recall that, on each open set
V ⊂ N ,

(f∗OM)(U) = OM(f−1U)) = C ∞(f−1U)).

Define f ♯ : ON → f∗OM by
f ♯
V (g) = g ◦ f ∈ C ∞(f−1U)).

One can check that f ♯ commutes properly with restrictions and is indeed a morphism of
sheaves. The fact that f ♯

f(x) is a local homomorphism follows from the fact that g is 0 at
f(x) if, and only if, g ◦ f is 0 at x.

We can finally state the main theorem of this talk.

Theorem 1.24. Man∞ embeds fully faithfully in LRS.

Definition 1.25. Recall that a functor F : C → D is faithful (resp. full) if F is injective
(resp. surjective) on morphisms, i.e. ϕ ∈ C (A,B) maps to Fϕ ∈ C (FA, FB) is injective
(resp. surjective). We say F is an embedding if it is injective on objects and faithful.

Remark 1.26. The main theorem can thus be interpreted as saying: “Manifolds are a subclass
of locally ringed spaces, and morphisms of these locally ringed spaces are precisely the same
data as smooth maps.”

Proof. Define a functor Φ: Man∞ → LRS by the description of the previous example.
Explicitly, if M is a manifold, then

Φ(M) = (M, CM)

and if f : M → N is a smooth map, then Φ(f) = (f, f ♯), where f ♯ : CN → f∗CM is defined by

f ♯
V (g) = g ◦ f ∈ CM(f−1V )).

Injectivity of Φ on objects is clear. Furthermore, f 7→ (f, f ♯) is clearly injective, so Φ is
faithful. It remains to show Φ is full.

Suppose (f, F ) : (M, CM) → (N, CN) is a morphism, so
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(A) f : M → N is continuous (not a priori smooth) and
(B) F : CN → f∗CM is a morphism of sheaves which is a local homomorphism on stalks.

We claim F = f ♯ and f is smooth. Suppose g ∈ CN(V ) for V ⊂ N open. It suffices to show
that (g ◦ f)(p) = FV (g)(p) for all p ∈ U = f−1V ). Let p ∈ U and q = f(p). Because the
induced map on stalks

Fq : CN,q → (f∗CM)q
is a local homomorphism, if FV (g)(p) = 0 then g(q) = 0. Suppose FV (g)(p) = c ∈ R. Then,
FV (g − c)(p) = 0, so g(q)− c = 0, so g(q) = c. Thus, FV (g)(p) = (g ◦ f)(p), as desired.

It is not hard to see that f is smooth: for any g : V → R smooth, g ◦ f : f−1V ) → R is
smooth. Taking g to be a chart post-composed with a coordinate projection, one can show
f is smooth. □
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