
Morphisms

Justin Toyota

In this section, Hartshorne, in true category-pilled fashion, introduces the notion
of morphisms in order to make our objects into a category.

In what follows, we let Y be a quasi-affine variety in An (open subset of an affine
variety). The easiest case is when the codomain is k = A1.

Definition 1. A function f : Y → k is regular at a point P ∈ Y if there is an open
neighborhood P ∈ U ⊂ Y and polynomials g, h ∈ A = k[x1, . . . , xn] such that h does
not vanish on U and f = g/h on U . We say f is regular on Y if it is regular at each
point.

In other words, a regular function Y → k is one that is locally a rational function.

Lemma 2. A regular function is Zariski-continuous as a map Y → k = A1.

Proof. We will show that f−1 maps closed sets to closed sets. A closed set of A1 is a
finite set of points, so we need only show that level sets f−1(a) are closed. Closedness
is locally checkable, in the sense that a subset of Y is closed in Y if is closed with
respect to an open cover.

In this case, we take an open cover of Y on which f is a rational function. If U
is one of these sets, then

f−1(a) ∩ U =
{
P ∈ U : g(P )

h(P ) = a

}
= Z(g − ah) ∩ U,

which is certainly closed.

We can similarly define regular maps on quasi-projective varieties Y ⊂ Pn.

Definition 3. A function f : Y → k is regular at a point P ∈ Y if there is an open
neighborhood P ∈ U ⊂ Y and homogeneous polynomials g, h ∈ S = k[x0, . . . , xn] of
the same degree such that h does not vanish on U and f = g/h on U .
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(It is critical that g and h have the same degree in order for g/h to be well-defined
on the projective set Y .)

One can similarly show that a regular function on a quasi-projective variety is
continuous. (k has the same topology as before.) On a variety open sets are dense,
so if two regular functions f, g : Y → k are equal on a non-empty open subset of Y ,
then they are equal on all of Y , sense the set where they are equal will be closed
(preimage of 0) and dense.

Definition 4. Let k be an algebraically closed field. A variety over k is an affine,
quasi-affine, projective, or quasi-projective variety. If X,Y are two varieties, a
morphism is a continuous map ϕ : X → Y such that for every open set V ⊂ Y and
regular function f : V → k, f ◦ ϕ : ϕ−1(V ) → k is regular.

It’s easy to see that this forms a category. Isomorphisms in this category are
homeomorphisms, but the converse is not true.

Definition 5. If Y is a variety, then O(Y ) is the ring of all regular functions on
Y . (They form a ring since rational functions form a ring.) For a point P ∈ Y , the
local ring OP,Y of P on Y is the ring of germs of regular functions on Y near P ,
in the form of pairs ⟨U, f⟩.

As one would hope, the local ring of P is actually a local ring. Just like for
manifolds, the maximal ideal of OP is the set of germs of regular functions that vanish
at P , as everything else is locally invertible. The residue field OP /m is isomorphic
to k, the isomorphism being the value of the germ at P .

Definition 6. If Y is a variety, then the set K(Y ) of all germs of regular functions
on Y (equivalence relation: equal on the intersection of the open sets) is calle dthe
function field of Y , with its elements being the rational functions on Y .

Unlike manifolds, since Y is irreducible, any two non-empty open sets have
non-trivial intersection. This lets us define addition and multiplication for any two
germs on Y , making K(Y ) a ring. To show it is a field, note that if ⟨U, f⟩ ∈ K(Y )
is nonzero, then f does not vanish on V = U \ Z(f), Z(f) being closed when f is
regular. Thsu 1/f is regular on V , giving us an inverse ⟨V, 1/f⟩ ∈ K(Y ).

The ring of regular functions O(Y ) maps into each OP , which in turn maps into
K(Y ). The first map is injective by our previous remark about equality of regular
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functions, and the second map is just an inclusion. We thus identify O(Y ) and
OP with subrings of K(Y ). Furthermore, an isomorphism of varieties induces an
isomorphism of each of these rings.

Theorem 7. Let Y ⊂ An be an affine variety with affine coordinate ring A(Y ).
Then:

(a) for each P ∈ Y , if mP be the ideal of functions in A(Y ) vanishing at P , then
P 7→ mP is a bijection from Y to the maximal ideals of A(Y );

(b) for each P , OP
∼= A(Y )mP and dimOP = dimY ;

(c) K(Y ) is isomorphic to the field of fractions of A(Y ). Thus K(Y ) is a finitely
generated algebra over k of transcendence degree dimY .

(d) O(Y ) ∼= A(Y ); in particular A(Y ) is an isomorphism invariant of Y ;

Proof. Every polynomial f ∈ A = k[x1, . . . , xn] defines a regular function on Y ,
giving a homomorphism A → O(Y ). Its kernel is I(Y ), giving us an injective
homomorphism α : A(Y ) → O(Y ).

(a) The minimal algebraic subsets of Y are just the points P ∈ Y , which means
the points of Y correspond 1-1 with the maximal ideals of A containing I(Y ),
which in turn correspond to the maximal ideals of A(Y ). Tracing this bijection
shows that it takes a point P to the ideal

mP = {f ∈ A(Y ) : f(P ) = 0}.

(b) For each P , the map α : A(Y ) → O(Y ) composed with the natural map
O(Y ) → OP takes every function in A(Y ) that vanishes at P , i.e., the elements
of mP , to a unit in OP . Universal property of localization then implies we get a
map A(Y )mP → OP . The original map is injective, so this map is also injective.
Since A(Y )mP is just quotients of polynomials by polynomials that don’t vanish
at P , this map is also surjective onto the germs of regular functions at P . Thus
OP

∼= A(Y )mP .

The primes of A(Y )mP correspond to the primes of A(Y ) contained in mP ,
which implies that dimOP is equal to the height of mP . Since A(Y )/mP

∼= k,

height(mP ) = dimA(Y )− dimA(Y )/mP = dimY − dim k = dimY.
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(c) The field of fractions of A(Y ) is equal to the field of fractions of each A(Y )mP ,
which from the last part can be identified with OP . The field of fractions of
OP is just K(Y ), as the localization takes care of the polynomials that vanish
at P . This establishes the isomorphism.

For the second part, we note that A(Y ) is a finitely generated k-algebra (as it
is a quotient of A), which implies the same is true of its field of fractions K(Y ).
An earlier fact states that the transcendence degree of the field of fractions of
an integral domain (finitely generated) algebra over k is the dimension of the
algebra. In this case that is dimA(Y ) = dimY .

(d) Note that O(Y ) ⊂ ∩P∈Y OP , where all of these rings are embedded into K(Y ).
Therefore, working in the quotient field of A(Y ),

A(Y ) ⊂ O(Y ) ⊂
⋂
P∈Y

OP ⊂
⋂
m

A(Y )m;

the first inclusion is the map induced by the natural inclusion A → OY , while
the final inclusion is a consequence of (b). However

⋂
mA(Y )m = A(Y ) since

A(Y ) is an integral domain, thus proving the claim.
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