
Morphisms, cont.

Justin Toyota

Here’s a basic isomorphism:

Proposition 1. Let Ui ⊂ Pn be the open set defined by xi ̸= 0. Then the mapping

ϕi : Ui → An ϕi(a0, . . . , an) =
(
a0
ai
, . . . ,

ai−1
ai

,
ai+1
ai

, . . . ,
an
ai

)
is an isomorphism of varieties.

Proof.

For the next theorem, we need to introduce some notation. We start with a graded
ring S, the main relevant example for this purpose being a projective coordinate ring
S(Y ). Given a homogeneous prime ideal p of S, let T be the set of homogeneous
elements of S that do not lie in p form a multiplicative subset of S (since p is prime).
We can therefore consider its localization T−1S, and this ring inherits a grading from
S: if f is homogeneous and g ∈ T , then we define

deg(f/g) = deg f − deg g.

The subset of T−1S consisting of the elements of degree 0 form a subring of T−1S,
which we call S(p). This is presumably the projective analogue of the localization
Sp. Just as with Sp (and for the same reason, namely considering the units), it is
a local ring whose maximal ideal is (p · T−1S) ∩ S(p), the elements of S(p) that are
multiples of elements of p. Similarly, if f ∈ S is a homogeneous element, then S(f) is
the subring of degree 0 elements in the localization Sf .

Theorem 2. Let Y ⊂ Pn be a projective variety with homogeneous coordinate ring
S(Y ). Then

(a) for any P ∈ Y , if mP is the ideal of S(Y ) generated by the homogeneous
f ∈ S(Y ) such that f(P ) = 0, then OP = S(Y )(mP ) (the ring of germs of
regular functions at P );
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(b) K(Y ) ∼= S(Y )((0)) (field of all germs of regular functions); as occurs when we
localize at 0 usually, this is a field, essentially the projective version of the field
of fractions;

(c) O(Y ) = k (the ring of regular functions);

For comparison, let’s recall the corresponding results for an affine variety Y :

(a) OP
∼= A(Y )mP (here mP is the ideal of functions in A(Y ) that vanish at P );

(b) K(Y ) ∼= Frac(A(Y ));

(c) O(Y ) ∼= A(Y );

We can see from this that they are fairly similar (besides the first one), once we
replace the classical localization with this projective localization.

Proof. We start with some preliminaries. As with the previous proposition, let
Ui ⊂ Pn be the open set xi ̸= 0, and let Yi = Y ∩ Ui. Since Ui is isomorphic to An,
the same isomorphism ϕi allows us to view each Yi as an affine variety. Furthermore,
A(Yi) is naturally isomorphic to S(Y )(xi). To prove this, we start with the map

k[y1, . . . , yn] → k[x0, . . . , xn](xi) = S(xi)

f(y1, . . . , yn) 7→ f

(
x0
xi
, . . . ,

xn
xi

)
,

which is an isomorphism. Of course A(Yi) is the quotient of the left side by I(Yi), so
we just need to examine the quotient of S(xi) by the image of I(Yi). It was shown in
an exercise that this image is I(Y )S(xi), which means the quotient is indeed S(Y )(xi).
We will label the isomorphism of the quotients as ϕ∗

i .

(a) Let i be such that P ∈ Yi, which is always possible since we’re in projective
space. If m′

P is the maximal ideal of functions in A(Yi) vanishing at P , then
viewed from the affine perspective OP

∼= A(Yi)m′
P
. The image of m′

P under ϕ∗
i

is mP · S(Y )(xi). By our choice of i, xi /∈ mP (the projective one), and we can
thus localize by it:

OP
∼= A(Yi)m′

P

∼= (S(Y )(xi))mP ·S(Y )(xi)
= S(Y )(mP ).
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(b) Again, we start by examining it from the affine lens. K(Yi) is the same as K(Y ),
since Yi is just the intersection of Y with an open set, and germs are determined
up to open sets. The affine theorem showed that K(Yi) is isomorphic to the
fraction field of A(Yi). A(Yi) is isomorphic to S(Y )(xi), and the fraction field
of this is just the maximal homogeneous localization, which is S(Y )((0)).

(c) Let f ∈ O(Y ), that is a regular function on Y . For each i, f is therefore also in
O(Yi). Recall from the previous lecture that we can identify O with coordinate
rings A when we embed both in K. From this view, f ∈ A(Yi) ∼= S(Y )(xi)

for all i. Therefore f = gi/x
Ni
i for some homogeneous gi ∈ S(Y ) of degree Ni

(since the element must have degree 0).

We can take these identifications further and view O(Y ), K(Y ), and S(Y ) as
all being subrings of the quotient field L of S(Y ). (K(Y ) is due to (b), O(Y )
is using its natural inclusion into K(Y ).) What we have just showed is that
there exist Ni such that xNi

i f ∈ S(Y )Ni (the elements of degree Ni).

Let N ≥
∑
Ni. Then S(Y )N is spanned over k by monomials of degree N in

x0, . . . , xn. Furthermore, due to the size of N , each of these monomials has a
variable xi that occurs to a power ≥ Ni. Thus S(Y )N · f ⊂ S(Y )N . Iterating
gives us

S(Y )N · f2 = (S(Y )N · f) · f ⊂ S(Y )N · f ⊂ S(Y )N ,

and we can do this for all f q, q ≥ 1. In particular, xN0 f q ∈ S(Y ) for all q ≥ 1.
Consequently, the subring S(Y )[f ] of L is contained in x−N

0 S(Y ), which is
a finitely generated S(Y )-module. A theorem of commutative algebra (AM
Proposition 5.1) then implies f is integral over S(Y ). (Hartshorne also brings
up that S(Y ) is Noetherian but I don’t think this is necessary?) Thus

fm + a1f
m−1 + · · ·+ am = 0,

ai ∈ S(Y ). We described at the top that f ∈ S(Y )(xi), which means it has
degree 0, which means this equation is valid if we replace the ai by their
homogeneous components of degree 0. (This is just taking the degree 0 parts
of both sides.) That is to say, we replace them by their constant terms. This
shows that f is actually algebraic over k. The algebraic closure of k implies
f ∈ k.
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Proposition 3. Let X be a variety and Y an affine variety. Then there is a natural
bijection

α : HomVar(X,Y ) → HomAlg(A(Y ),O(X)).

Proof. Let ϕ : X → Y be a morphism of varieties. Then ϕ carries regular functions
on Y to regular functions on X by definition, giving us a map O(Y ) → O(X), which
is a k-algebra homomorphism. We now apply the isomorphism O(Y ) ∼= A(Y ) for
affine varieties. This gives us the map α.

Conversely, let h : A(Y ) → O(X) be an algebra homomorphism. Define xi to be
the image of the coordinate function xi in the quotient A(Y ). We can then define a
map ψ : X → An by

ψ(P ) = (h(x1)(P ), . . . , h(xn)(P )).

Each h(xi) is in O(X), so this makes sense (maps X to A1.) Goal: ψ maps into Y .
Since Y = Z(I(Y )), we can do this by showing that for any P ∈ X and f ∈ I(Y ),
f(ψ(P )) = 0. However, since f is a polynomial and h is a k-algebra homomorphism,

f ◦ ψ = f(h(x1), . . . , h(xn)) = h(f(x1, . . . , xn)),

where f should be interpreted as the corresponding polynomial on the quotient
variables. Now, f is in I(Y ): it’s a polynomial that when you pass the usual variables
in, it vanishes on Y . If you do this to the variables in A/I(Y ), it the result is 0, as
desired. Thus ψ is a map X → Y that induces h. What remains to show is that it is
a morphism, which follows from the following lemma:

Lemma 4. Let X be a variety and Y ⊂ An an affine variety. A function ψ : X → Y

is a morphism iff xi ◦ ψ is regular for each i.

In our example, xi ◦ ψ = h(xi) ∈ O(X).

Proof. If ψ is a morphism, xi ◦ ψ is a morphism since morphisms are closed under
composition. Conversely, suppose xi ◦ ψ are regular. Then for any polynomial f on
An, f ◦ ψ is regular on X.

A closed set of Y is the zero set of some polynomial f . Thus ψ−1(K) = (f◦ψ)−1(0)
for some f , and the latter is closed since f ◦ ψ is regular. Thus ψ is continuous.
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Finally, let g be a regular function on an open subset of Y . This is locally a
quotient of polynomials, so locally g ◦ ψ is a quotient of polynomials composed
with ψ. These are regular, and thus a quotient of regulars. But the local structure
implies these are in turn quotients of polynomials. Thus g ◦ψ is regular, making ψ a
morphism.

Corollary 5. If X and Y are two affine varieties, then X and Y are isomorphic if
and only if A(X) and A(Y ) are isomorphic k-algebras.

Proof. Follows from the naturality.

The category way of stating this is that X 7→ A(X) is a functor that induces an
arrow-reversing equivalence between the category of affine varieties and teh category
of finitely-generated integral domains over k

There’s also a commutative algebra result, but it’s proved in another book and
only used in the exercises.
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