Projective Varieties

Ryan Wandsnider

February 12, 2024

Fix an algebraically closed field k.
Definition 1. Define projective n-space, denoted \mathbb{P}^{n}, to be $\left(k^{n+1}-0\right) / \sim$, where

$$
\left(a_{0}, \ldots, a_{n+1}\right) \sim\left(b_{0}, \ldots, b_{n+1}\right) \Longleftrightarrow \exists \lambda \in k, b_{i}=\lambda a_{i}, \forall i .
$$

An equivalence class $P \in \mathbb{P}^{n}$ (a point in projective space) is often denoted $\left[a_{0}: \cdots: a_{n}\right]$.
Let $A=k\left[x_{1}, \ldots, x_{n}\right]$ and $S=k\left[x_{0}, \ldots, x_{n}\right]$.
Proposition 2. The decomposition of S into the direct sum of S_{d}, where S_{d} contains all monomials of degree d, gives S the strucutre of a graded ring, i.e.

$$
S=\bigoplus_{d \geq 0} S_{d}
$$

and $S_{d} S_{e} \subset S_{d+e}$.
In the affine setting, we have a correspondence between closed sets in \mathbb{A}^{n} and ideals in A. In the projective setting, we will define a topology on \mathbb{P}^{n} which gives a correspondence between closed sets in \mathbb{P}^{n} and homogeneous ideals in S.

Definition 3. Let $\mathfrak{a} \subset S$ be an ideal in S (or more generally in any graded ring). TFAE:
i. \mathfrak{a} is generated by homogeneous elements, i.e. elements in S_{d} for some d,
ii. $\mathfrak{a}=\bigoplus_{d \geq 0}\left(\mathfrak{a} \cap S_{d}\right)$.

In the case that \mathfrak{a} satisfies (i) and (ii), we say \mathfrak{a} is homogeneous.
Proposition 4. The collection of homogeneous ideals in S is closed under sum, product, intersection, and radical.

We are now ready to define the closed sets of \mathbb{P}^{n}.

Definition 5. Given a collection T of homogeneous elements in S, we define the zero set (or vanishing set) of T to be

$$
Z^{+}(T)=\left\{\left[a_{0}: \cdots: a_{n}\right] \in \mathbb{P}^{n} \mid f\left(a_{0}, \ldots, a_{n}\right)=0, \forall f \in T\right\} .
$$

Because all $f \in T$ are homogeneous, $Z^{+}(T)$ is well-defined.
We call the sets $Z^{+}(T)$ algebraic sets in \mathbb{P}^{n}.
Definition 6. The complements of algebraic sets in \mathbb{P}^{n} are the open sets of the Zariski topology on \mathbb{P}^{n}.

Definition 7. If $X \subset \mathbb{P}^{n}$ is closed and irreducible, we say it is a projective algebraic variety. We say an open subset of a projective algebraic variety is a quasiprojective algebraic variety.

Given $Y \subset \mathbb{P}^{n}$, define

$$
I^{+}(Y)=\left\{f \in S_{d} \mid d \geq 0, f\left(a_{0}, \ldots, a_{n}\right)=0, \forall\left[a_{0}: \cdots: a_{n}\right] \in Y\right\}
$$

Note $I^{+}(Y)$ is well-defined because the f are required to be homogeneous. We call $I^{+}(Y)$ the homogeneous ideal of (associated to) Y.

Remark 8. Let $q: \mathbb{A}^{n+1} \backslash\{0\} \rightarrow \mathbb{P}^{n}$ be the quotient map. If $Y \subset \mathbb{P}^{n}$, then $I^{+}(Y)=I\left(q^{-1} Y\right)$. If $T \subset S$ is homogeneous, then $Z^{+}(T)=q(Z(T) \backslash\{0\})$.

Proposition 9. We have the following:
a. $T_{1} \subset T_{2}$ homogeneous subsets of S, then $Z^{+}\left(T_{1}\right) \supset Z^{+}\left(T_{2}\right)$,
b. $Y_{1} \subset Y_{2}$ subsets of \mathbb{P}^{n}, then $I^{+}\left(Y_{1}\right) \supset I^{+}\left(Y_{2}\right)$,
c. $Y_{1}, Y_{2} \subset \mathbb{P}^{n}$, then $I^{+}\left(Y_{1} \cup Y_{2}\right)=I^{+}\left(Y_{1}\right) \cap I^{+}\left(Y_{2}\right)$,
d. \mathfrak{a} homogeneous ideal with $Z^{+}(\mathfrak{a}) \neq \emptyset$, then $I^{+}\left(Z^{+}(\mathfrak{a})\right)=r(\mathfrak{a})$,
e. $Y \subset \mathbb{P}^{n}$ implies $Z^{+}\left(I^{+}(Y)\right)=\bar{Y}$.

Property (d) is the only one that looks slightly strange. In the affine case, $I(Z(\mathfrak{b}))$ holds for any ideal $\mathfrak{b} \subset A$. However, $Z^{+}(\mathfrak{a})=\emptyset$ does not imply $\mathfrak{a}=(1)$ in the projective setting. In fact, we have the following proposition.

Proposition 10. TFAE:
i. $Z^{+}(\mathfrak{a})=\emptyset$,
ii. $\mathfrak{a} \supset S_{d}$ for some $d>0$,
iii. $r(\mathfrak{a})$ is either S or $S_{+}=\bigoplus_{d>0} S_{d}$.

Proof. (i) \Longrightarrow (iii): Because $Z^{+}(\mathfrak{a})=\emptyset$,

$$
Z(\mathfrak{a})-0=\left\{\left(a_{0}, \ldots, a_{n}\right) \neq 0 \mid f\left(a_{0}, \ldots, a_{n}\right)=0, \forall f \in \mathfrak{a}\right\}=\emptyset
$$

Thus, $Z(\mathfrak{a})=\emptyset$ or $Z(\mathfrak{a})=\{0\}$. If $Z(\mathfrak{a})=\emptyset, \mathfrak{a}=S$, so $r(\mathfrak{a})=S$. If $Z(\mathfrak{a})=\{0\}$, then there exist d_{0}, \ldots, d_{n} such that $x_{i}^{d_{i}} \in \mathfrak{a}$. Thus, $r(\mathfrak{a}) \supset S_{+}$. Every element of S_{0} is a unit, so $r(\mathfrak{a})=S_{+}$.
(iii) \Longrightarrow (ii): If $r(\mathfrak{a})=S$ or S^{+}, then $x_{0}^{d_{0}}, \ldots, x_{n}^{d_{n}} \in \mathfrak{a}$ for some d_{0}, \ldots, d_{n}. Thus, for $d=\max \left\{d_{i}\right\}, x_{i}^{d} \in \mathfrak{a}$ for all i. Thus, $S_{d} \subset \mathfrak{a}$.
(ii) \Longrightarrow (i): We see $Z^{+}(\mathfrak{a}) \subset Z^{+}\left(x_{0}^{d}, \ldots, x_{n}^{d}\right)=\emptyset$.

The ideal S_{+}is sometimes called the irrelevant maximal ideal of S, because there is no algebraic set whose associated ideal is S_{+}.

Remark 11. Homogeneous radical ideals correspond to algebraic sets, and homogeneous prime ideals correspond to projective varieties.

Remark 12. \mathbb{P}^{n} is irreducible and noetherian.
Remark 13. \mathbb{P}^{n} is locally homeomorphic to \mathbb{A}^{n} : for

$$
U_{i}=\left\{\left[a_{0}: \ldots, a_{n}\right] \in \mathbb{P}^{n} \mid a_{i} \neq 0\right\}
$$

we have a homeomorphism $\phi_{i}: U_{i} \rightarrow \mathbb{A}^{n}$ given by

$$
\left[a_{0}: \cdots: a_{n}\right] \mapsto\left(a_{0} / a_{i}, \ldots, a_{i-1} / a_{i}, a_{i+1} / a_{i}, \ldots, a_{n} / a_{i}\right)
$$

Recall the following notions of dimension.
Definition 14. For X a topological space, we define $\operatorname{dim} X$ to be the maximum n such that

$$
X_{0} \subsetneq X_{1} \subsetneq \cdots \subsetneq X_{n} \subset X
$$

where each X_{i} is closed, irreducible.
For R a ring, we define $\operatorname{dim} R$ to be the maximum n such that

$$
\mathfrak{p}_{0} \subsetneq \mathfrak{p}_{1} \subsetneq \cdots \subsetneq \mathfrak{p}_{n} \subset X
$$

where each \mathfrak{p}_{i} is prime.
In the affine case we have the following result.
Proposition 15. Suppose $X \subset \mathbb{A}^{n}$ is an affine variety. Then,

$$
\operatorname{dim} X=\operatorname{dim} A(X)
$$

where $A(X)=A / I(X)$ is the affine coordinate ring of X.
In the projective case, we have a natural analogue.

Proposition 16. Suppose $Y \subset \mathbb{P}^{n}$ is a projective variety. Then,

$$
\operatorname{dim} Y=\operatorname{dim} S(Y)-1
$$

where $S(Y)=S / I^{+}(Y)$ is the projective coordinate ring of Y.
Example 17. To illustrate the need for subtracting 1, observe that

$$
\operatorname{dim} S / I^{+}\left(\mathbb{P}^{n}\right)=\operatorname{dim} k\left[x_{0}, \ldots, x_{n}\right] /(0)=\operatorname{dim} k\left[x_{0}, \ldots, x_{n}\right]=n+1
$$

Thus, the result implies $\operatorname{dim} \mathbb{P}^{n}=n+1-1=n$. This makes sense intuitively, because \mathbb{P}^{n} is locally homeomorphic to \mathbb{A}^{n}.

To prove this proposition, we require the following theorem and proposition.
Theorem 18 (Thm 1.8A). Suppose B is an integral domain which is a finitely generated k-algebra. Then, $\operatorname{dim} B$ is the transcendence degree of $K(B):=\operatorname{Frac}(B)$ over k.
Proposition 19 (Exer 1.10b). If X is a space covered by a family of open sets $\left\{U_{i}\right\}$, then $\operatorname{dim} X=\sup \operatorname{dim} U_{i}$.
We now prove the proposition.
Proof. Let $Y \subset \mathbb{P}^{n}$ be a projective variety. Consider $\phi_{0}: U_{0} \rightarrow \mathbb{A}^{n}$, the homeomorphism given above, and let $Y_{i}=U_{i} \cap Y$.

Without loss of generality consider the case $i=0$. We identify $A\left(Y_{0}\right)$ with the $\operatorname{deg} 0$ elements of $S(Y)_{x_{0}}$ via the injection

$$
p\left(x_{1}, \ldots, x_{n}\right) \mapsto \bar{p}=p\left(x_{1} / x_{0}, \ldots, x_{n} / x_{0}\right) .
$$

Extend this map to an isomorphism $A\left(Y_{0}\right)\left[x_{0}, x_{0}^{-1}\right] \rightarrow S(Y)_{x_{0}}$ by mapping

$$
q_{-n} x_{0}^{-n}+\cdots+q_{m} x_{0}^{m} \mapsto \bar{q}_{-n} x_{0}^{-n}+\cdots+\bar{q}_{m} x_{0}^{m} .
$$

Thus, we have

$$
\operatorname{dim} S(Y)_{x_{0}}=\operatorname{dim} A\left(Y_{0}\right)\left[x_{0}, x_{0}^{-1}\right]
$$

Because $I^{+}(Y)$ is prime, $S(Y)$ is an integral domain (hence so is $A\left(Y_{0}\right)$). By Theorem 1.8A, we can pass to the field of fractions and look at transcendence degree. We see $\operatorname{dim} A\left(Y_{0}\right)\left[x_{0}, x_{0}^{-1}\right]=\operatorname{tr} . \operatorname{deg}_{k} K\left(A\left(Y_{0}\right)\left[x_{0}, x_{0}^{-1}\right]\right)=\operatorname{tr} . \operatorname{deg}_{k} K\left(A\left(Y_{0}\right)\left[x_{0}\right]\right)=\operatorname{tr} . \operatorname{deg}_{k} K\left(A\left(Y_{0}\right)\right)+1=\operatorname{dim} A\left(Y_{0}\right.$ and

$$
\operatorname{dim} S(Y)_{x_{0}}=\operatorname{tr} . \operatorname{deg}_{k} K\left(S(Y)_{x_{0}}\right)=\operatorname{tr} . \operatorname{deg}_{k} K(S(Y))=\operatorname{dim} S(Y) .
$$

Thus,

$$
\operatorname{dim} S(Y)=\operatorname{dim} A\left(Y_{0}\right)+1
$$

We can do the same argument with any other $i=0, \ldots, n$. By Exercise 1.10b,

$$
\operatorname{dim} Y=\sup \operatorname{dim} Y_{i}=\sup \operatorname{dim} A\left(Y_{i}\right)=\sup (\operatorname{dim} S(Y)-1)=\operatorname{dim} S(Y)-1
$$

Thus,

$$
\operatorname{dim} S(Y)=\operatorname{dim} Y+1
$$

