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Fix an algebraically closed field k.

Definition 1. Define projective n-space, denoted Pn, to be (kn+1 − 0)/ ∼, where

(a0, . . . , an+1) ∼ (b0, . . . , bn+1) ⇐⇒ ∃λ ∈ k, bi = λai,∀i.

An equivalence class P ∈ Pn (a point in projective space) is often denoted [a0 : · · · : an].

Let A = k[x1, . . . , xn] and S = k[x0, . . . , xn].

Proposition 2. The decomposition of S into the direct sum of Sd, where Sd contains all
monomials of degree d, gives S the strucutre of a graded ring, i.e.

S =
⊕
d≥0

Sd

and SdSe ⊂ Sd+e.

In the affine setting, we have a correspondence between closed sets in An and ideals in
A. In the projective setting, we will define a topology on Pn which gives a correspondence
between closed sets in Pn and homogeneous ideals in S.

Definition 3. Let a ⊂ S be an ideal in S (or more generally in any graded ring). TFAE:

i. a is generated by homogeneous elements, i.e. elements in Sd for some d,

ii. a =
⊕

d≥0(a ∩ Sd).

In the case that a satisfies (i) and (ii), we say a is homogeneous.

Proposition 4. The collection of homogeneous ideals in S is closed under sum, product,
intersection, and radical.

We are now ready to define the closed sets of Pn.
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Definition 5. Given a collection T of homogeneous elements in S, we define the zero set
(or vanishing set) of T to be

Z+(T ) = {[a0 : · · · : an] ∈ Pn | f(a0, . . . , an) = 0,∀f ∈ T}.

Because all f ∈ T are homogeneous, Z+(T ) is well-defined.
We call the sets Z+(T ) algebraic sets in Pn.

Definition 6. The complements of algebraic sets in Pn are the open sets of the Zariski
topology on Pn.

Definition 7. If X ⊂ Pn is closed and irreducible, we say it is a projective algebraic variety.
We say an open subset of a projective algebraic variety is a quasiprojective algebraic variety.

Given Y ⊂ Pn, define

I+(Y ) = {f ∈ Sd | d ≥ 0, f(a0, . . . , an) = 0,∀[a0 : · · · : an] ∈ Y }.

Note I+(Y ) is well-defined because the f are required to be homogeneous. We call I+(Y )
the homogeneous ideal of (associated to) Y .

Remark 8. Let q : An+1\{0} → Pn be the quotient map. If Y ⊂ Pn, then I+(Y ) = I(q−1Y ).
If T ⊂ S is homogeneous, then Z+(T ) = q(Z(T ) \ {0}).

Proposition 9. We have the following:

a. T1 ⊂ T2 homogeneous subsets of S, then Z+(T1) ⊃ Z+(T2),

b. Y1 ⊂ Y2 subsets of Pn, then I+(Y1) ⊃ I+(Y2),

c. Y1, Y2 ⊂ Pn, then I+(Y1 ∪ Y2) = I+(Y1) ∩ I+(Y2),

d. a homogeneous ideal with Z+(a) ̸= ∅, then I+(Z+(a)) = r(a),

e. Y ⊂ Pn implies Z+(I+(Y )) = Y .

Property (d) is the only one that looks slightly strange. In the affine case, I(Z(b)) holds
for any ideal b ⊂ A. However, Z+(a) = ∅ does not imply a = (1) in the projective setting.
In fact, we have the following proposition.

Proposition 10. TFAE:

i. Z+(a) = ∅,

ii. a ⊃ Sd for some d > 0,

iii. r(a) is either S or S+ =
⊕

d>0 Sd.
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Proof. (i) =⇒ (iii): Because Z+(a) = ∅,

Z(a)− 0 = {(a0, . . . , an) ̸= 0 | f(a0, . . . , an) = 0,∀f ∈ a} = ∅.

Thus, Z(a) = ∅ or Z(a) = {0}. If Z(a) = ∅, a = S, so r(a) = S. If Z(a) = {0}, then
there exist d0, . . . , dn such that xdi

i ∈ a. Thus, r(a) ⊃ S+. Every element of S0 is a unit, so
r(a) = S+.

(iii) =⇒ (ii): If r(a) = S or S+, then xd0
0 , . . . , xdn

n ∈ a for some d0, . . . , dn. Thus, for
d = max{di}, xd

i ∈ a for all i. Thus, Sd ⊂ a.
(ii) =⇒ (i): We see Z+(a) ⊂ Z+(xd

0, . . . , x
d
n) = ∅.

The ideal S+ is sometimes called the irrelevant maximal ideal of S, because there is no
algebraic set whose associated ideal is S+.

Remark 11. Homogeneous radical ideals correspond to algebraic sets, and homogeneous
prime ideals correspond to projective varieties.

Remark 12. Pn is irreducible and noetherian.

Remark 13. Pn is locally homeomorphic to An: for

Ui = {[a0 : . . . , an] ∈ Pn | ai ̸= 0},

we have a homeomorphism ϕi : Ui → An given by

[a0 : · · · : an] 7→ (a0/ai, . . . , ai−1/ai, ai+1/ai, . . . , an/ai).

Recall the following notions of dimension.

Definition 14. For X a topological space, we define dimX to be the maximum n such that

X0 ⊊ X1 ⊊ · · · ⊊ Xn ⊂ X

where each Xi is closed, irreducible.
For R a ring, we define dimR to be the maximum n such that

p0 ⊊ p1 ⊊ · · · ⊊ pn ⊂ X

where each pi is prime.

In the affine case we have the following result.

Proposition 15. Suppose X ⊂ An is an affine variety. Then,

dimX = dimA(X),

where A(X) = A/I(X) is the affine coordinate ring of X.

In the projective case, we have a natural analogue.

3



Proposition 16. Suppose Y ⊂ Pn is a projective variety. Then,

dimY = dimS(Y )− 1,

where S(Y ) = S/I+(Y ) is the projective coordinate ring of Y .

Example 17. To illustrate the need for subtracting 1, observe that

dimS/I+(Pn) = dim k[x0, . . . , xn]/(0) = dim k[x0, . . . , xn] = n+ 1.

Thus, the result implies dimPn = n+1− 1 = n. This makes sense intuitively, because Pn is
locally homeomorphic to An.

To prove this proposition, we require the following theorem and proposition.

Theorem 18 (Thm 1.8A). Suppose B is an integral domain which is a finitely generated
k-algebra. Then, dimB is the transcendence degree of K(B) := Frac(B) over k.

Proposition 19 (Exer 1.10b). If X is a space covered by a family of open sets {Ui}, then
dimX = sup dimUi.

We now prove the proposition.

Proof. Let Y ⊂ Pn be a projective variety. Consider ϕ0 : U0 → An, the homeomorphism
given above, and let Yi = Ui ∩ Y .

Without loss of generality consider the case i = 0. We identify A(Y0) with the deg 0
elements of S(Y )x0 via the injection

p(x1, . . . , xn) 7→ p̄ = p(x1/x0, . . . , xn/x0).

Extend this map to an isomorphism A(Y0)[x0, x
−1
0 ] → S(Y )x0 by mapping

q−nx
−n
0 + · · ·+ qmx

m
0 7→ q̄−nx

−n
0 + · · ·+ q̄mx

m
0 .

Thus, we have
dimS(Y )x0 = dimA(Y0)[x0, x

−1
0 ].

Because I+(Y ) is prime, S(Y ) is an integral domain (hence so is A(Y0)). By Theorem 1.8A,
we can pass to the field of fractions and look at transcendence degree. We see

dimA(Y0)[x0, x
−1
0 ] = tr. degk K(A(Y0)[x0, x

−1
0 ]) = tr. degk K(A(Y0)[x0]) = tr. degk K(A(Y0))+1 = dimA(Y0)+1

and
dimS(Y )x0 = tr. degk K(S(Y )x0) = tr. degk K(S(Y )) = dimS(Y ).

Thus,
dimS(Y ) = dimA(Y0) + 1.

We can do the same argument with any other i = 0, . . . , n. By Exercise 1.10b,

dimY = sup dimYi = sup dimA(Yi) = sup(dimS(Y )− 1) = dimS(Y )− 1.

Thus,
dimS(Y ) = dimY + 1.
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