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0.1 Dimension

Recall the following facts about affine space. Fix an algebraically closed field k, A =
k[x1, . . . , xn], S = k[x0, . . . , xn].

Proposition 1. If Y ⊂ An is a quasi-affine variety, then dimY = dimY .

Proof. If Z0 ⊂ . . . ⊂ Zm = Y is a sequence of distinct closed irreducible subsets of Y ,
Z0 ⊂ . . . ⊂ Zm ⊂ Y remain closed, irreducible, and distinct. Thus, dimY ≤ dimY .

Suppose dimY = m, so there exists a maximal chain Z0 ⊂ . . . ⊂ Zm = Y . It is clear
from maximality of Zi that Z0 is a point P .

We claim P = Z0 ⊂ . . . ⊂ Zm = Y is a chain in Y maximal in the sense that there are
no missing intermediate elements. Suppose there exists X ⊂ Y closed irreducible such that
Zi ⊂ X ⊂ Zi+1. Then, Zi ⊂ X ∩ Y ⊂ Zi+1, where X ∩ Y is closed and irreducible. Hence,
X ∩ Y = Zi or Zi+1. Thus, X = X ∩ Y = Zi or Zi+1. Thus, Zi is a maximal chain.

The closed irreducible Zi correspond to a chain 0 = pm ⊂ pm−1 ⊂ . . . ⊂ p0 ⊂ A(Y ) of
prime ideals. Because Z0 is a point, p0 is maximal. Because A(Y ) is catenary, height p0 = m.
Thus, by Thm 1.8A,

dimA(Y ) = height p0 + dimA(Y )/p0 = height p0 + dim k = m = dimY.

Proposition 2. An affine variety has dimension n−1 if, and only if, it is the zero set Z(f)
of a single nonconstant irreducible polynomial in A = k[x1, . . . , xn].

Proof. See Hartshorne Proposition 1.13.

Recall the following theorem.

Theorem 3 (Exer 2.6). If Y is a projective variety, dimS(Y ) = dimY + 1.

Using this theorem, we can generalize the two propositions to projective space.

Proposition 4 (Exer 2.7). If Y ⊂ Pn is a quasi-projective variety, then dimY = dimY .
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Proof. For some i, Y ∩ Ui is nonempty, so dimY = dim(Y ∩ Ui). Because Y ∩ Ui is affine
and Y ∩ Yi = Y ∩ Ui in Ui,

dim(Y ∩ Ui) = dim(Y ∩ Ui).

Thus,
dimY = sup

Y ∩Ui ̸=∅
dim(Y ∩ Ui) = sup dim(Y ∩ Ui) = dimY.

Proposition 5 (Exer 2.8). A projective variety Y ⊂ Pn has dimension n− 1 if, and only if,
Y = Z(f) for f ∈ S nonconstant, homogeneous, and irreducible.

Proof. If Y = Z(f), then dimS(Y )− 1 = dimS/(f)− 1 = n− 1.
Suppose dimY = n−1. There exists U0 such that Y ∩U0 ̸= ∅. Note that Y ∩U0 remains

irreducible, as shown last time. Then, Y ∩ U0 = Z(g) for g ∈ k[x1, . . . , xn] irreducible,
non-constant. Let f ∈ S be defined by

f(x0, . . . , xn) = xdeg g0 · g(x1/x0, . . . , xn/x0).

Then, f is homogeneous and non-constant with deg f = deg g.
We claim Y = Z(f). It is clear that Y ∩U0 = Z(f)∩U0. Because Z(f) and Y are closed,

U0 is dense, we have Y = Z(f). Because Y is a variety, f is irreducible.

Definition 6. Let q : An+1−0 → Pn be the quotient map. For Y ⊂ Pn a nonempty algebraic
set, we define the affine cone over Y to be

C(Y ) = q−1(Y ) ∪ {(0, . . . , 0)}.

Proposition 7 (Exer 2.8). The following hold:

a. C(Y ) is an algebraic set with ideal I(Y ),

b. C(Y ) is irreducible if, and only if, Y is irreducible,

c. dimC(Y ) = dimY + 1.

Proof. Suppose Y = Z(a).
(a): C(Y ) = {0} ∪ {x ∈ An+1 | q(x) ∈ Y } = {0} ∪ {x ∈ An+1 | f(x) = 0∀f ∈ a} = Z(a).
(b): C(Y ) irreducible ⇐⇒ a is prime ⇐⇒ Y irreducible.
(c): dimY = dimS(Y )− 1 = dimC(Y )− 1.

0.2 Linear Varieties

Definition 8 (Exer 2.11). A hyperplane (in Pn) is a hypersurface Z(f) defined by a linear
polynomial f .

Proposition 9. If Y ⊂ Pn is a variety, then Y is an intersection of hyperplanes if, and only
if, I(Y ) is generated by linear polynomials.
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Proof. Y = Z(f1) ∩ · · · ∩ Z(fn) ⇐⇒ I(Y ) = (f1, . . . , fn) when the fi are irreducible (S is
a UFD).

Proposition 10. Let Y ⊂ Pn be a linear variety of dimension r. Then, I(Y ) is minimally
generated by n− r homogeneous linear polynomials.

Proof. It suffices to show Y is the intersection of at least n− r homogeneous linear polyno-
mials.

Suppose
Y = Z(T1, . . . , Tm) = Z(T1) ∩ · · · ∩ Z(Tm),

where m is minimal. Because m is minimal, T1, . . . , Tm are linearly independent. Thus, by
a linear change of variables, it suffices to consider the case

Y = Z(Xn, . . . , Xn−m).

In this case, it is clear that I(Y ) = (Xn, . . . , Xn−m), and dimS/I(Y ) = n + 1 −m. Thus,
since

r = dimY = dimS/I(Y )− 1 = n−m,

we conclude m = n− r.

Proposition 11. Suppose Y, Z ⊂ Pn are linear varieties of dimension r, s. Then,

r + s− n ≥ 0 =⇒ Y ∩ Z ̸= ∅.

Proof. Observe that dimk C(Y ) = r + 1, dimk C(Z) = s+ 1. Then,

dimk C(Y ) ∩ C(Z) ≥ r + 1 + s+ 1− n− 1 = r + s− n+ 1 ≥ 1.

0.3 Two Canonical Embeddings

Definition 12 (The Segre Embedding). Let r, s ∈ N and N = rs+r+s. Define ψ : Pr×Ps →
PN to be the map

[a0, . . . , ar]× [b0, . . . , bs] 7→ [a0b0, a0b1, . . . , a0bs, a1b0, . . . , arbs].

Proposition 13. The Segre embedding is well-defined and injective.

Proof. Well-definedness is clear by homogeneity of each component and the fact that some
aibj ̸= 0. For injectivity, suppose ψ(a, b) = ψ(c, d). Without loss of generality a0b0 = c0d0 =
1. Then,

ai
a0

=
aib0
a0b0

=
cid0
c0d0

=
ci
c0

and similarly
bj
b0

=
dj
d0
. Thus, a = c and b = d.
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Proposition 14. The image of the Segre embedding is a subvariety of PN .

Proof. Consider the map Γ: k[zij] → k[x0, . . . , xr, y0, . . . , ys] which maps zij 7→ xiyj. Observe
that a = ker Γ is a homogeneous ideal. We claim Im(ψ) = Z(a).

For the easy direction (⊂), consider c = ψ(a, b) = [a0b0 : · · · : arbs] ∈ Im(ψ). Let f ∈ a,
so Γ(f) = 0. We see

f(c) = f(ψ(a, b)) = Γ(f)(a, b) = 0.

Thus, c ∈ Z(a).
For the hard direction (⊃), suppose c = [c00 : · · · : crs] ∈ Z(a). Without loss of generality

suppose c00 ̸= 0. Observe that Γ(zi0z0j − z00zij) = 0 for all i, j. Define a = [a0 : a1 : · · · :
ar] ∈ Pr, b = [b0 : b1 : · · · : bs] ∈ Ps by

ai =
ci0
c00
, bj =

c0j
c00
.

Because c00 ̸= 0, a and b are well-defined. We see

ψ(a, b) =

[
c200
c200

:
c10c00
c200

: · · · : cr0c0s
c200

]
= [c00 : · · · : crs].

Thus, c ∈ Imψ.
Irreducibility of Z(a) follows from the fact that 0 is prime in k[x0, . . . , xr, y0, . . . , ys].

Thus, Imψ = Z(a) is a subvariety of PN .

Definition 15 (The d-Uple Embedding). Fix n, d > 0 and let N =
(
n+d
n

)
− 1. Denote by

M0, . . . ,MN the monomials of degree d in n + 1 variables x0, . . . , xn. Let ρd : Pn → PN be
defined, for a = [a0 : · · · : an] ∈ Pn, by

ρd(a) = [M0(a) : · · · :MN(a)].

Proposition 16. The d-Uple embedding is well-defined and injective.

Proof. Well-definedness is clear because Mi are all homogeneous of the same degree and at
least one of ad0, . . . , a

d
n is necessarily nonzero. For injectivity, suppose [M0(a) : · · · :MN(a)] =

[M0(b) : · · · :MN(b)]. Without loss of generality suppose ad0 = bd0 ̸= 0. Then,

ai
a0

=
ad−1
0 ai
ad0

=
bd−1
0 bi
bd0

=
bi
b0

for all i, so a = b.

Proposition 17. The image of the d-Uple embedding is a subvariety of PN .
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Proof. Consider Θ: k[y0, . . . , yN ] → k[x0, . . . , xn] which maps yi to Mi. Let b = kerΘ, a
homogeneous ideal. We claim Im(ρd) = Z(b).

For the easy direction (⊂), let c = ρd(a) = [M0(a), . . . ,MN(a)]. Let f ∈ b. Then,

f(c) = f(ρd(a)) = Θ(f)(a) = 0.

Thus, c ∈ Z(b).
For the hard direction (⊃), let c ∈ Z(b). Denote by c[xi00 . . . x

in
n ] = c[xI ] the component

of c corresponding to the monomial xI , where I = (i0, . . . , in), i0 + · · ·+ in = d.
We claim c[xdk] ̸= 0 for some k. For any I, the polynomial p ∈ k[y0, . . . , yN ] defined by

p(y) = y[xI ]d − y[xd0]
i0 · . . . y[xdn]in .

We see
Θ(p) = xi0d0 . . . xindn − xdi00 . . . xdinn = 0.

Thus,
c[xI ]d = c[xd0]

i0 · . . . c[xdn]in .

Because c ∈ PN , there exists J = (j0, . . . , jn) such that c[xJ ] ̸= 0. Because jk ̸= 0 for some
k, there exists k such that c[xdk] ̸= 0.

Without loss of generality let k = 0. Define a ∈ Pn by

ai = c[xd−1
0 xi].

It is clear that a0 ̸= 0 so a ∈ Pn.
Let b = ρd(a). We claim b = c. Indeed, we see

b[xdi ]

b[xd0]
=
adi
ad0

=
c[xd−1

0 xi]
d

c[xd0]
d

=
c[xd0]

d−1c[xdi ]

c[xd0]
d

=
c[xdi ]

c[xd0]
.

Further checks require a few more calculations which we leave as an exercise for a lazy sunday
afternoon.
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