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0.1 Dimension

Recall the following facts about affine space. Fix an algebraically closed field k, A =
klxy,...,z,), S = Kkl[zo, ..., 2]

Proposition 1. If Y C A" is a quasi-affine variety, then dimY = dimY .

Proof. 1t Zyg C ... C Z, =Y Is a sequence of distinct closed irreducible subsets of Y,
ZogC ...C 4, CY remain closed, irreducible, and distinct. Thus, dimY < dimY'.

Suppose dimY = m, so there exists a maximal chain Zy, C ... C Z,, =Y. It is clear
from maximality of Z; that Z; is a point P.
We claim P =79 C ... C Z,, =Y is a chain in Y maximal in the sense that there are

no missing intermediate elements. Suppose there exists X C Y closed irreducible such that
Z,CX C 7i+1. Then, Z; C X NY C Z;11, where X NY is closed and irreducible. Hence,
XNY =Z;or Zipy. Thus, X =X NY = Z; or Z;,. Thus, Z; is a maximal chain.

The closed irreducible Z; correspond to a chain 0 = P C Pm1 C ... CTPpo C A(?) of
prime ideals. Because Z is a point, pg is maximal. Because A(Y) is catenary, height py = m.
Thus, by Thm 1.8A,

dim A(Y") = height po + dim A(Y)) /po = height po + dimk = m = dimY"

]
Proposition 2. An affine variety has dimension n— 1 if, and only if, it is the zero set Z(f)
of a single nonconstant irreducible polynomial in A = k[z1, ..., x,].
Proof. See Hartshorne Proposition 1.13. n

Recall the following theorem.
Theorem 3 (Exer 2.6). IfY is a projective variety, dim S(Y) = dimY + 1.
Using this theorem, we can generalize the two propositions to projective space.

Proposition 4 (Exer 2.7). If Y C P" is a quasi-projective variety, then dimY = dim Y.



Proof. For some i, Y N U; is nonempty, so dimY = dim(Y N U;). Because Y N Uj; is affine
andYNY, =Y NU, in U;,
dim(Y NU;) = dim(Y N U;).
Thus,
dimY = sup dim(Y NU;) = supdim(Y NU;) = dimY.
Y NU; #0

O

Proposition 5 (Exer 2.8). A projective variety Y C P™ has dimension n—1 if, and only if,
Y = Z(f) for f € S nonconstant, homogeneous, and irreducible.

Proof. It Y = Z(f), then dim S(Y) — 1 =dim S/(f) —1=n— 1.

Suppose dimY = n — 1. There exists Uy such that Y NU, # (). Note that Y N U remains
irreducible, as shown last time. Then, Y NU, = Z(g) for g € k[z1,...,x,] irreducible,
non-constant. Let f € S be defined by

F(@o, ... x) = 259 - g(x1/T0, . . ., Tn/T0).

Then, f is homogeneous and non-constant with deg f = degg.
We claim Y = Z(f). It is clear that Y NUy = Z(f)NUy. Because Z(f) and Y are closed,
Up is dense, we have Y = Z(f). Because Y is a variety, f is irreducible. O

Definition 6. Let ¢: A" —0 — P" be the quotient map. For Y C P" a nonempty algebraic
set, we define the affine cone over Y to be

CY)=q¢ (Y)U{(0,...,0)}.
Proposition 7 (Exer 2.8). The following hold:
a. C(Y) is an algebraic set with ideal I1(Y'),
b. C(Y) is irreducible if, and only if, Y is irreducible,
c. dimC(Y)=dimY + 1.

Proof. Suppose Y = Z(a).
(a): C(V)={0}U{z € A" | q(z) e Y} ={0}U{xz € A" | f(z) = OVf € a} = Z(a).
(b): C(Y) irreducible <= a is prime <= Y irreducible.
(¢): dmY =dimS(Y) - 1=dimC(Y) — 1. O

0.2 Linear Varieties

Definition 8 (Exer 2.11). A hyperplane (in P™) is a hypersurface Z(f) defined by a linear
polynomial f.

Proposition 9. IfY C P" is a variety, then Y is an intersection of hyperplanes if, and only
if, 1(Y) is generated by linear polynomials.



Proof. Y =Z(fi)N---NZ(f,) <= I(Y) = (f1,..., fn) when the f; are irreducible (S is
a UFD). O

Proposition 10. Let Y C P" be a linear variety of dimension r. Then, I(Y') is minimally
generated by n — r homogeneous linear polynomials.

Proof. 1t suffices to show Y is the intersection of at least n — r homogeneous linear polyno-
mials.
Suppose
Y=2(T,....,T,)=2Z(T)N---NZ(T,),

where m is minimal. Because m is minimal, T3, ...,7T,, are linearly independent. Thus, by
a linear change of variables, it suffices to consider the case

Y =Z(Xn,- . Xoom).

In this case, it is clear that I[(Y) = (X,,..., Xp-m), and dim S/I(Y) = n+ 1 —m. Thus,
since
r=dimY =dimS/I(Y)—1=n—m,

we conclude m =n —r. O

Proposition 11. Suppose Y, Z C P™ are linear varieties of dimension r,s. Then,
r+s—-n>0 = YNZ#(.
Proof. Observe that dim, C(Y) =r + 1, dimy, C(Z) = s + 1. Then,

dimyC(Y)NnC(Z)>r+1+s+1—-n—-1=r+s—n+1>1.

0.3 Two Canonical Embeddings

Definition 12 (The Segre Embedding). Let 7, s € Nand N = rs+r+s. Define ¢: P"xP* —
PV to be the map

[(10, ce ,CLT] X [bo, ce 7b5] — [aobo, aobl, . ,aobs, albo, ce ,arbs].
Proposition 13. The Segre embedding is well-defined and injective.

Proof. Well-definedness is clear by homogeneity of each component and the fact that some
a;b; # 0. For injectivity, suppose ¢ (a,b) = (¢, d). Without loss of generality agby = cody =
1. Then,

a; a;bo cido Ci

Qo aobo cody Co

a Thus, a = c and b = d. O

. . b .
and similarly =T
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Proposition 14. The image of the Segre embedding is a subvariety of PV,

Proof. Consider the map I': k[z;;] — Ek[zo, ..., %, Yo, - .., ys) which maps z;; — z;y;. Observe
that a = kerI' is a homogeneous ideal. We claim Im(¢)) = Z(a).
For the easy direction (C), consider ¢ = 9(a,b) = [aghy : - - : a,bs] € Im(¢)). Let f € a,

so I'(f) = 0. We see
f(e) = f(i(a, b)) =T(f)(a,b) = 0.
Thus, ¢ € Z(a).
For the hard direction (D), suppose ¢ = [cqo @ « - : ¢s] € Z(a). Without loss of generality

suppose coo # 0. Observe that I'(zj020; — z002i;) = 0 for all 7,j. Define a = [ag : a1 : -+ :
a,] €P" b=1[by:by:---:bs] €P° by

Cio Coj

a; = —, bj = —.
Coo Co0

Because cgg # 0, a and b are well-defined. We see

2

C C10C00 CroCos
¥(a,b) = 0. D
o Cho 3o
= [coo: " Crs)e
Thus, ¢ € Im .

Irreducibility of Z(a) follows from the fact that 0 is prime in k[zo,..., 2, Yo, .., Ys).
Thus, Imv = Z(a) is a subvariety of PV. ]
Definition 15 (The d-Uple Embedding). Fix n,d > 0 and let N = (”:d) — 1. Denote by
My, ..., My the monomials of degree d in n + 1 variables zg, ..., x,. Let pg: P* — PV be
defined, for a = [ag : - -+ : a,] € P™, by

pa(a) = [Mo(a) : - - - My(a)].

Proposition 16. The d-Uple embedding is well-defined and injective.

Proof. Well-definedness is clear because M; are all homogeneous of the same degree and at

least one of ad, ..., a? is necessarily nonzero. For injectivity, suppose [My(a) : - : My (a)] =
[Mo(b) : -+ : My(b)]. Without loss of generality suppose ad = bd # 0. Then,

a; . agflai . bgilbi . bz

Ao N af)l bg b()
for all 7, so a = b. O

Proposition 17. The image of the d-Uple embedding is a subvariety of PV,



Proof. Consider O: klyo,...,yn] — k[zo,...,x,] which maps y; to M;. Let b = ker©, a
homogeneous ideal. We claim Im(py) = Z(b).
For the easy direction (C), let ¢ = p4(a) = [Mo(a), ..., My(a)]. Let f € b. Then,

f(e) = f(pa(a)) = O(f)(a) = 0.

Thus, ¢ € Z(b). '
For the hard direction (D), let ¢ € Z(b). Denote by c[z ...z"] = c[x] the component
of ¢ corresponding to the monomial 7, where I = (ig, ..., 4,), ig + -+ + i, = d.

We claim c[x¢] # 0 for some k. For any I, the polynomial p € k[yo, ..., yn] defined by

p(y) = y[z']" — ylxd] .. y[zd].
We see ‘ A ‘ ‘
O(p) = ald. . aind — gdio  gdin =
Thus, ' ‘
c[:cl]d = (| g]“’ N c[:ci]‘"

Because ¢ € PV, there exists J = (jo, ..., jn) such that c[z7] # 0. Because j, # 0 for some
k, there exists k such that c[z{] # 0.
Without loss of generality let & = 0. Define a € P" by

a; = clzd ™ a;).

It is clear that ag # 0 so a € P".
Let b = pa(a). We claim b = c. Indeed, we see

baf) _al claga)? _ clagd)elad] _ clad
bad] ~al ~ cladl T clad]

Further checks require a few more calculations which we leave as an exercise for a lazy sunday
afternoon. O]



