Projective Varieties 2

Ryan Wandsnider

February 19, 2024

0.1 Dimension

Recall the following facts about affine space. Fix an algebraically closed field $k, A=$ $k\left[x_{1}, \ldots, x_{n}\right], S=k\left[x_{0}, \ldots, x_{n}\right]$.

Proposition 1. If $Y \subset \mathbb{A}^{n}$ is a quasi-affine variety, then $\operatorname{dim} Y=\operatorname{dim} \bar{Y}$.
Proof. If $Z_{0} \subset \ldots \subset Z_{m}=Y$ is a sequence of distinct closed irreducible subsets of Y, $\bar{Z}_{0} \subset \ldots \subset \bar{Z}_{m} \subset \bar{Y}$ remain closed, irreducible, and distinct. Thus, $\operatorname{dim} Y \leq \operatorname{dim} \bar{Y}$.

Suppose $\operatorname{dim} Y=m$, so there exists a maximal chain $Z_{0} \subset \ldots \subset Z_{m}=Y$. It is clear from maximality of Z_{i} that Z_{0} is a point P.

We claim $P=\bar{Z}_{0} \subset \ldots \subset \bar{Z}_{m}=\bar{Y}$ is a chain in \bar{Y} maximal in the sense that there are no missing intermediate elements. Suppose there exists $X \subset \bar{Y}$ closed irreducible such that $\bar{Z}_{i} \subset X \subset \bar{Z}_{i+1}$. Then, $Z_{i} \subset X \cap Y \subset Z_{i+1}$, where $X \cap Y$ is closed and irreducible. Hence, $X \cap Y=Z_{i}$ or Z_{i+1}. Thus, $X=\overline{X \cap Y}=\bar{Z}_{i}$ or \bar{Z}_{i+1}. Thus, \bar{Z}_{i} is a maximal chain.

The closed irreducible \bar{Z}_{i} correspond to a chain $0=\mathfrak{p}_{m} \subset \mathfrak{p}_{m-1} \subset \ldots \subset \mathfrak{p}_{0} \subset A(\bar{Y})$ of prime ideals. Because \bar{Z}_{0} is a point, \mathfrak{p}_{0} is maximal. Because $A(\bar{Y})$ is catenary, height $\mathfrak{p}_{0}=m$. Thus, by Thm 1.8A,

$$
\operatorname{dim} A(\bar{Y})=\text { height } \mathfrak{p}_{0}+\operatorname{dim} A(\bar{Y}) / \mathfrak{p}_{0}=\text { height } \mathfrak{p}_{0}+\operatorname{dim} k=m=\operatorname{dim} Y
$$

Proposition 2. An affine variety has dimension $n-1$ if, and only if, it is the zero set $Z(f)$ of a single nonconstant irreducible polynomial in $A=k\left[x_{1}, \ldots, x_{n}\right]$.

Proof. See Hartshorne Proposition 1.13.
Recall the following theorem.
Theorem 3 (Exer 2.6). If Y is a projective variety, $\operatorname{dim} S(Y)=\operatorname{dim} Y+1$.
Using this theorem, we can generalize the two propositions to projective space.
Proposition 4 (Exer 2.7). If $Y \subset \mathbb{P}^{n}$ is a quasi-projective variety, then $\operatorname{dim} Y=\operatorname{dim} \bar{Y}$.

Proof. For some $i, \bar{Y} \cap U_{i}$ is nonempty, so $\operatorname{dim} \bar{Y}=\operatorname{dim}\left(\bar{Y} \cap U_{i}\right)$. Because $\bar{Y} \cap U_{i}$ is affine and $\bar{Y} \cap Y_{i}=\overline{Y \cap U_{i}}$ in U_{i},

$$
\operatorname{dim}\left(\bar{Y} \cap U_{i}\right)=\operatorname{dim}\left(Y \cap U_{i}\right) .
$$

Thus,

$$
\operatorname{dim} \bar{Y}=\sup _{\bar{Y} \cap U_{i} \neq \emptyset} \operatorname{dim}\left(\bar{Y} \cap U_{i}\right)=\sup \operatorname{dim}\left(Y \cap U_{i}\right)=\operatorname{dim} Y
$$

Proposition 5 (Exer 2.8). A projective variety $Y \subset \mathbb{P}^{n}$ has dimension $n-1$ if, and only if, $Y=Z(f)$ for $f \in S$ nonconstant, homogeneous, and irreducible.

Proof. If $Y=Z(f)$, then $\operatorname{dim} S(Y)-1=\operatorname{dim} S /(f)-1=n-1$.
Suppose $\operatorname{dim} Y=n-1$. There exists U_{0} such that $Y \cap U_{0} \neq \emptyset$. Note that $Y \cap U_{0}$ remains irreducible, as shown last time. Then, $Y \cap U_{0}=Z(g)$ for $g \in k\left[x_{1}, \ldots, x_{n}\right]$ irreducible, non-constant. Let $f \in S$ be defined by

$$
f\left(x_{0}, \ldots, x_{n}\right)=x_{0}^{\operatorname{deg} g} \cdot g\left(x_{1} / x_{0}, \ldots, x_{n} / x_{0}\right)
$$

Then, f is homogeneous and non-constant with $\operatorname{deg} f=\operatorname{deg} g$.
We claim $Y=Z(f)$. It is clear that $Y \cap U_{0}=Z(f) \cap U_{0}$. Because $Z(f)$ and Y are closed, U_{0} is dense, we have $Y=Z(f)$. Because Y is a variety, f is irreducible.

Definition 6. Let $q: \mathbb{A}^{n+1}-0 \rightarrow \mathbb{P}^{n}$ be the quotient map. For $Y \subset \mathbb{P}^{n}$ a nonempty algebraic set, we define the affine cone over Y to be

$$
C(Y)=q^{-1}(Y) \cup\{(0, \ldots, 0)\}
$$

Proposition 7 (Exer 2.8). The following hold:
a. $C(Y)$ is an algebraic set with ideal $I(Y)$,
b. $C(Y)$ is irreducible if, and only if, Y is irreducible,
c. $\operatorname{dim} C(Y)=\operatorname{dim} Y+1$.

Proof. Suppose $Y=Z(\mathfrak{a})$.
(a): $C(Y)=\{0\} \cup\left\{x \in \mathbb{A}^{n+1} \mid q(x) \in Y\right\}=\{0\} \cup\left\{x \in \mathbb{A}^{n+1} \mid f(x)=0 \forall f \in \mathfrak{a}\right\}=Z(\mathfrak{a})$.
(b): $C(Y)$ irreducible $\Longleftrightarrow \mathfrak{a}$ is prime $\Longleftrightarrow Y$ irreducible.
(c): $\operatorname{dim} Y=\operatorname{dim} S(Y)-1=\operatorname{dim} C(Y)-1$.

0.2 Linear Varieties

Definition 8 (Exer 2.11). A hyperplane (in \mathbb{P}^{n}) is a hypersurface $Z(f)$ defined by a linear polynomial f.

Proposition 9. If $Y \subset \mathbb{P}^{n}$ is a variety, then Y is an intersection of hyperplanes if, and only if, $I(Y)$ is generated by linear polynomials.

Proof. $Y=Z\left(f_{1}\right) \cap \cdots \cap Z\left(f_{n}\right) \Longleftrightarrow I(Y)=\left(f_{1}, \ldots, f_{n}\right)$ when the f_{i} are irreducible $(S$ is a UFD).

Proposition 10. Let $Y \subset \mathbb{P}^{n}$ be a linear variety of dimension r. Then, $I(Y)$ is minimally generated by $n-r$ homogeneous linear polynomials.

Proof. It suffices to show Y is the intersection of at least $n-r$ homogeneous linear polynomials.

Suppose

$$
Y=Z\left(T_{1}, \ldots, T_{m}\right)=Z\left(T_{1}\right) \cap \cdots \cap Z\left(T_{m}\right),
$$

where m is minimal. Because m is minimal, T_{1}, \ldots, T_{m} are linearly independent. Thus, by a linear change of variables, it suffices to consider the case

$$
Y=Z\left(X_{n}, \ldots, X_{n-m}\right)
$$

In this case, it is clear that $I(Y)=\left(X_{n}, \ldots, X_{n-m}\right)$, and $\operatorname{dim} S / I(Y)=n+1-m$. Thus, since

$$
r=\operatorname{dim} Y=\operatorname{dim} S / I(Y)-1=n-m
$$

we conclude $m=n-r$.
Proposition 11. Suppose $Y, Z \subset \mathbb{P}^{n}$ are linear varieties of dimension r, s. Then,

$$
r+s-n \geq 0 \Longrightarrow Y \cap Z \neq \emptyset
$$

Proof. Observe that $\operatorname{dim}_{k} C(Y)=r+1, \operatorname{dim}_{k} C(Z)=s+1$. Then,

$$
\operatorname{dim}_{k} C(Y) \cap C(Z) \geq r+1+s+1-n-1=r+s-n+1 \geq 1
$$

0.3 Two Canonical Embeddings

Definition 12 (The Segre Embedding). Let $r, s \in \mathbb{N}$ and $N=r s+r+s$. Define $\psi: \mathbb{P}^{r} \times \mathbb{P}^{s} \rightarrow$ \mathbb{P}^{N} to be the map

$$
\left[a_{0}, \ldots, a_{r}\right] \times\left[b_{0}, \ldots, b_{s}\right] \mapsto\left[a_{0} b_{0}, a_{0} b_{1}, \ldots, a_{0} b_{s}, a_{1} b_{0}, \ldots, a_{r} b_{s}\right] .
$$

Proposition 13. The Segre embedding is well-defined and injective.
Proof. Well-definedness is clear by homogeneity of each component and the fact that some $a_{i} b_{j} \neq 0$. For injectivity, suppose $\psi(a, b)=\psi(c, d)$. Without loss of generality $a_{0} b_{0}=c_{0} d_{0}=$ 1. Then,

$$
\frac{a_{i}}{a_{0}}=\frac{a_{i} b_{0}}{a_{0} b_{0}}=\frac{c_{i} d_{0}}{c_{0} d_{0}}=\frac{c_{i}}{c_{0}}
$$

and similarly $\frac{b_{j}}{b_{0}}=\frac{d_{j}}{d_{0}}$. Thus, $a=c$ and $b=d$.

Proposition 14. The image of the Segre embedding is a subvariety of \mathbb{P}^{N}.
Proof. Consider the map $\Gamma: k\left[z_{i j}\right] \rightarrow k\left[x_{0}, \ldots, x_{r}, y_{0}, \ldots, y_{s}\right]$ which maps $z_{i j} \mapsto x_{i} y_{j}$. Observe that $\mathfrak{a}=\operatorname{ker} \Gamma$ is a homogeneous ideal. We claim $\operatorname{Im}(\psi)=Z(\mathfrak{a})$.

For the easy direction (\subset), consider $c=\psi(a, b)=\left[a_{0} b_{0}: \cdots: a_{r} b_{s}\right] \in \operatorname{Im}(\psi)$. Let $f \in \mathfrak{a}$, so $\Gamma(f)=0$. We see

$$
f(c)=f(\psi(a, b))=\Gamma(f)(a, b)=0 .
$$

Thus, $c \in Z(\mathfrak{a})$.
For the hard direction (\supset), suppose $c=\left[c_{00}: \cdots: c_{r s}\right] \in Z(\mathfrak{a})$. Without loss of generality suppose $c_{00} \neq 0$. Observe that $\Gamma\left(z_{i 0} z_{0 j}-z_{00} z_{i j}\right)=0$ for all i, j. Define $a=\left[a_{0}: a_{1}: \cdots\right.$: $\left.a_{r}\right] \in \mathbb{P}^{r}, b=\left[b_{0}: b_{1}: \cdots: b_{s}\right] \in \mathbb{P}^{s}$ by

$$
a_{i}=\frac{c_{i 0}}{c_{00}}, \quad b_{j}=\frac{c_{0 j}}{c_{00}} .
$$

Because $c_{00} \neq 0, a$ and b are well-defined. We see

$$
\begin{aligned}
\psi(a, b) & =\left[\frac{c_{00}^{2}}{c_{00}^{2}}: \frac{c_{10} c_{00}}{c_{00}^{2}}: \cdots: \frac{c_{r 0} c_{0 s}}{c_{00}^{2}}\right] \\
& =\left[c_{00}: \cdots: c_{r s}\right] .
\end{aligned}
$$

Thus, $c \in \operatorname{Im} \psi$.
Irreducibility of $Z(\mathfrak{a})$ follows from the fact that 0 is prime in $k\left[x_{0}, \ldots, x_{r}, y_{0}, \ldots, y_{s}\right]$. Thus, $\operatorname{Im} \psi=Z(\mathfrak{a})$ is a subvariety of \mathbb{P}^{N}.

Definition 15 (The d-Uple Embedding). Fix $n, d>0$ and let $N=\binom{n+d}{n}-1$. Denote by M_{0}, \ldots, M_{N} the monomials of degree d in $n+1$ variables x_{0}, \ldots, x_{n}. Let $\rho_{d}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{N}$ be defined, for $a=\left[a_{0}: \cdots: a_{n}\right] \in \mathbb{P}^{n}$, by

$$
\rho_{d}(a)=\left[M_{0}(a): \cdots: M_{N}(a)\right] .
$$

Proposition 16. The d-Uple embedding is well-defined and injective.
Proof. Well-definedness is clear because M_{i} are all homogeneous of the same degree and at least one of $a_{0}^{d}, \ldots, a_{n}^{d}$ is necessarily nonzero. For injectivity, suppose $\left[M_{0}(a): \cdots: M_{N}(a)\right]=$ $\left[M_{0}(b): \cdots: M_{N}(b)\right]$. Without loss of generality suppose $a_{0}^{d}=b_{0}^{d} \neq 0$. Then,

$$
\frac{a_{i}}{a_{0}}=\frac{a_{0}^{d-1} a_{i}}{a_{0}^{d}}=\frac{b_{0}^{d-1} b_{i}}{b_{0}^{d}}=\frac{b_{i}}{b_{0}}
$$

for all i, so $a=b$.
Proposition 17. The image of the d-Uple embedding is a subvariety of \mathbb{P}^{N}.

Proof. Consider $\Theta: k\left[y_{0}, \ldots, y_{N}\right] \rightarrow k\left[x_{0}, \ldots, x_{n}\right]$ which maps y_{i} to M_{i}. Let $\mathfrak{b}=\operatorname{ker} \Theta$, a homogeneous ideal. We claim $\operatorname{Im}\left(\rho_{d}\right)=Z(\mathfrak{b})$.

For the easy direction (\subset), let $c=\rho_{d}(a)=\left[M_{0}(a), \ldots, M_{N}(a)\right]$. Let $f \in \mathfrak{b}$. Then,

$$
f(c)=f\left(\rho_{d}(a)\right)=\Theta(f)(a)=0
$$

Thus, $c \in Z(\mathfrak{b})$.
For the hard direction (\supset), let $c \in Z(\mathfrak{b})$. Denote by $c\left[x_{0}^{i_{0}} \ldots x_{n}^{i_{n}}\right]=c\left[x^{I}\right]$ the component of c corresponding to the monomial x^{I}, where $I=\left(i_{0}, \ldots, i_{n}\right), i_{0}+\cdots+i_{n}=d$.

We claim $c\left[x_{k}^{d}\right] \neq 0$ for some k. For any I, the polynomial $p \in k\left[y_{0}, \ldots, y_{N}\right]$ defined by

$$
p(y)=y\left[x^{I}\right]^{d}-y\left[x_{0}^{d}\right]^{i_{0}} \cdot \ldots y\left[x_{n}^{d}\right]^{i_{n}} .
$$

We see

$$
\Theta(p)=x_{0}^{i_{0} d} \ldots x_{n}^{i_{n} d}-x_{0}^{d i_{0}} \ldots x_{n}^{d i_{n}}=0
$$

Thus,

$$
c\left[x^{I}\right]^{d}=c\left[x_{0}^{d}\right]^{i_{0}} \cdot \ldots c\left[x_{n}^{d}\right]^{i_{n}} .
$$

Because $c \in \mathbb{P}^{N}$, there exists $J=\left(j_{0}, \ldots, j_{n}\right)$ such that $c\left[x^{J}\right] \neq 0$. Because $j_{k} \neq 0$ for some k, there exists k such that $c\left[x_{k}^{d}\right] \neq 0$.

Without loss of generality let $k=0$. Define $a \in \mathbb{P}^{n}$ by

$$
a_{i}=c\left[x_{0}^{d-1} x_{i}\right] .
$$

It is clear that $a_{0} \neq 0$ so $a \in \mathbb{P}^{n}$.
Let $b=\rho_{d}(a)$. We claim $b=c$. Indeed, we see

$$
\frac{b\left[x_{i}^{d}\right]}{b\left[x_{0}^{d}\right]}=\frac{a_{i}^{d}}{a_{0}^{d}}=\frac{c\left[x_{0}^{d-1} x_{i}\right]^{d}}{c\left[x_{0}^{d}\right]^{d}}=\frac{c\left[x_{0}^{d}\right]^{d-1} c\left[x_{i}^{d}\right]}{c\left[x_{0}^{d}\right]^{d}}=\frac{c\left[x_{i}^{d}\right]}{c\left[x_{0}^{d}\right]} .
$$

Further checks require a few more calculations which we leave as an exercise for a lazy sunday afternoon.

