(Affine)
Nullstellensatz (Zero Place Thm)
Ring, Ideal
Radical of Ideal
Z - zero set
ン Inclusion reversing
I - ideal
$Z(I)$ vs $I(Z)$
'Null stellensatz
ileal grind 'Multidimensional Version
heal gid
ba sing apical
pay

$\overbrace{c}^{\substack{\text { no repeated } \\ \text { rose }}}$ in $\mathbb{C}[z]$ knowing zero set of f is enough to get radical

Pf of Null (Allock whelp of K, conrad) by essentially same as Zairkis Jacob sou 1 Hilbert rives an nogs veer

Examples of k-algetoras (Vector space over a field)
complex numbers, $V S$ is \mathbb{R}^{2}, bilinear product is $\left(a+b_{i}\right)(c+d i)$ us $\mathbb{R}^{3}, \quad \frac{a}{a} \times \vec{b} \quad i^{2}=-1$ polys $\mathbb{R}[X]$ is $V S$, product is poly milt.

General algebra:

$$
\begin{gathered}
f: A \rightarrow B \text { ring homom } \\
\bullet u{ }^{*}=f(a) b \\
a \cdot b=f
\end{gathered}
$$

\downarrow
gives A -module soto to B B called an A-algebra
i.e. B an A-algebra $\Rightarrow B_{\text {a ring }}+$ ring ham $f: A \rightarrow B$ any ring is a \mathbb{Z}-algebra

Finite if B is finley send
finite type
if $\exists A$-alg honor
from $A\left[t_{1}, \ldots, t_{n}\right] \rightarrow B$
k alg closed field (e.g. \mathbb{C})
affine n-space over k $\mathbb{A}_{k}^{n}\left(\mathbb{A}^{n}\right)$
set of all n-tuples of $e l t s$ of k (ie. k^{n})

$$
\begin{aligned}
& P \in \mathbb{X}^{n} \text { is a } p t \\
& "\left(a_{1}, \ldots, a_{n}\right), a_{i} \in k
\end{aligned}
$$

words of P

$$
\left.\begin{array}{lll}
A=k\left[x_{1}, \ldots, x_{n}\right] \quad \text { is } & f \text { nes } f: \mathbb{X}_{k}^{n} \rightarrow k \\
& f(p)=f\left(a_{1}, \ldots, a_{n}\right)
\end{array}\right] .
$$

zeroes of f
for $T \subset A$, zero set of $T \quad Z(T)=\left\{p \in \mathbb{A}^{n}: f(p)\right.$
a ideal gand by $T \Rightarrow z(T)=z(\alpha) \forall f \in T\}$
A noetherion $\Rightarrow \alpha=\left(f_{1}, \ldots, f_{r}\right)(\alpha$ is what mutters, not the f_{i})
so $z(T)=\left\{P \in \mathbb{A}^{n}: f_{1}(P)=\ldots=f_{r}(P)=0\right)$
$4 \subset \mathbb{A}^{n}$ is algebraic if $\exists T \leqslant A$ s.t.

$$
y=z(T)
$$

Prop 1.1 Union of 2 alg sets is an alg set Intersection of any family of alg sets
$\left(\begin{array}{cc}\text { is an alg set. } \varnothing \text { o whole spare are alg sets } \\ \text { "1 } & \text { "11 } \\ Z(1) & Z(0)\end{array}\right.$
Zariski Topology loper sets are complements of alg sets)
Not Hausdorff!

Union: $V(x) \cup V(y)=V(x y)$
Intersection: $V(x) \cap V(y)$

$$
\bigcap Y_{\alpha}=\bigcap Z\left(T_{\alpha}\right)=Z\left(U T_{\alpha}\right)
$$

let $P_{\in} \in Y_{\alpha}$

$$
Z\left(U T_{\alpha}\right) \neq \bigcup_{11} Z\left(T_{a}\right)
$$

so $\quad f_{\alpha_{i}^{(9)}}^{(9)}=0 \quad \forall^{f} \alpha_{i}$
$\left\{P: f(P)=0\right.$ for some $\left.T_{a}\right\}$
$U T_{\alpha}=$ union of all f in each T_{a}
think of this as a collection of polys, a T^{\prime}
$Y \leqslant x$ irreducible if it con't be expressed as muon of 2 proper subsets, $Y=Y_{1} \cup Y_{2}$, each closed in Y

Eg. $\not A^{\prime}, k[x]$ is P ID so $y=z(\alpha), \alpha=(f)$

$$
\begin{array}{ll}
f=d\left(x-a_{1}, \ldots\left(x-a_{n}\right)\right. & \text { so } \\
Z(f)=\left\{a_{1}, \ldots, a_{n}\right\} & , f=0
\end{array}
$$

alg. sets are finite sets $+\mathbb{A}^{\prime}$
cofinite sets $+\phi$ are open (not Heardorff)
$x x^{2}$
A^{\prime} is cred can ty proper dosed subsets are
finite)
Affine alg var. an irred closed subset of $\int A^{n}$ open subset of affine is quasi-affine variety

For $y \subset A^{n}$, ideal of Y in $A=k\left[x_{1, \cdots}, y_{n}\right]$

$$
\begin{aligned}
& \text { in } I(Y)=\{f \in A \mid f(p)=0 \quad \forall P \in Y\} \\
& \left\{\begin{array}{c}
\text { subsets of } \\
A
\end{array}\right\},\{\text { alg sets }\}
\end{aligned}
$$

Might expect inclusion-revering correspondence
Null: This is between alg gets o radical ideals

$$
\begin{aligned}
& \text { if } T_{1} \subset T_{2} \Rightarrow Z\left(T_{1}\right) \supseteq Z\left(T_{2}\right) \\
& \text { if } Y_{1} \subset Y_{2} \Rightarrow I\left(Y_{1}\right) \supseteq I\left(Y_{2}\right) \\
& I\left(Y_{1} \cup Y_{2}\right)=I\left(Y_{1}\right) \cap I\left(Y_{2}\right) \\
& Z I(y)=\bar{Y} \\
& I Z(\alpha)=\sqrt{\alpha}
\end{aligned}
$$

Pf starts here
Pf of Null:
Tho $1 \rightarrow W_{k}$ Null \rightarrow Null
(Mumford uses Noether Norm Lemme z Goingllp the of con om
Than 1: k a field, K field ext -sidemberg) fin. genid as k-alg. $\Rightarrow K$ is algebraic over k (
every $\alpha \in K$ is root of some nonzero poly $\omega /$ coefficients in k
idea of Pf: if k infinite $\& K=k(x)$
not a root
them if $f_{1}, \ldots, f_{m a} \in K$, then k-Alg they of any gen is smaller than K miveriate poly al coeffink

Choose a c not our of the
poles of the f_{i},
then

$$
\frac{1}{x-c} \in K \backslash A
$$

Actual Pf: Assume K is transcendental over $k+$ fingenid as a k-alg

$$
\Rightarrow \rightarrow \checkmark \quad \ngtr
$$

Case 1: K has transcendence degree 1
ie. contains subfield $k(x)$ a copy of rat'l function field,
K is alg. over $k(x)$
80 since \mathbb{R} is f_{λ} gand, it has finite dim as a $k(x)-u s$.

Choose basis e_{1}, \ldots, e_{l}.
Them $e_{i} e_{j}=\sum_{k} \frac{a_{i j_{k}}(x)}{b_{i j_{k}}(x)} e_{k}$
Where a 's, b's $\in K[x]$

Show for as $f_{1}, \ldots, f_{m} \in K, k$-alg A they gen is smaller than K.

Add 1 as a generator
"fo

Express f_{i} interns of e_{i} :

$$
f_{i}=\sum_{j} \frac{c_{i j}(x)}{d_{i j}(x)} e_{j}, c^{\prime} s, d^{\prime} s \in k[x]
$$

$86 a \in A$ is k-lin comb. of $f_{0}=12$ products of f_{i} 's expand in terms of basis
so that a is k-lin comb of product s of e_{i} wi denims involve only d's mut rule for $e_{i} e_{j}$ now has denoms only inushe b 's o d 's and have a $k(x)$-liner comb of ii
i.e. a expressed in lowest terms as a means all coff's demon's irred factors cone from irred factors of b's $+d^{\prime}$'s
Pick some other irred factor α then $\frac{1}{\alpha} \notin A \Rightarrow A$ smaller than K
(Need infinitely many irred polys in $k[x]$ for k infinite use polys $(x-c), c \in k$ else mimic Euclid's pf of infinitude of primes)

Case 2: Suppose K has trdeg >1 over K. Choose a subset k^{\prime} where K has trdeg $=1$ over k^{\prime}
from Cere 1: K not fin gen'd as a k '-all, So can't be fingenid as a k-alg.
(Cam build k^{\prime} explicitly) chore k-alg gens x_{1}, \ldots, x_{n} for K over K,

$$
k=k\left(x_{1}, \ldots x_{l, 1}\right)
$$

Least of x_{i}^{\prime} 's transcendental over field gene by predecessors

Wk Nulstellensatz:
k alg. closed. Then every max'l ideal in poly ring $R=k\left[x_{1}, \ldots, x_{n}\right]$ has form $\left(x-a_{1}, \ldots, x-a_{n}\right)$ for some $a_{1}, \ldots, a_{n} \in k$.
Thus a family of poly function on $k^{n} w / n o$ common zeros generates unit ideal of R.

Pf: If m is maxi ideal of R
$\Rightarrow R / m$ is field finitely gand as a
k-alg. (R is noetherian)

By prev. tum, R / m is alg over k.

$$
\begin{array}{r}
\Rightarrow R / m=k \text { (alg. closed) } \\
\Rightarrow \text { each } x_{i} \mapsto \text { some } a_{i} \in k \\
R^{n} \text { under } R \rightarrow R / m=k \\
\Rightarrow m \supset\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)
\end{array}
$$

this is maximal so $\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)=m$

Part 2: Consider ideal I genie by some poly fees w/ no common zeros

Then $I \notin\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$
For some $\left(a_{1}, \ldots, a_{n}\right) \in k^{n}$

$$
\Rightarrow I=R=(1) .
$$

Nullstellensatz:
k alg. closed, $g, f, \ldots, f, f=k\left[x_{1}, \ldots, x_{n}\right]$ regarded as poly furs on k^{n}.
If g vanishes on common zero locus of f_{i} 's

$$
\left\{\begin{array}{cr}
\text { then } g \in \sqrt{\left(f_{1}, \ldots, f_{m}\right)} & \text { (ie. } g^{n} \in\left(f_{1}, \ldots, f_{m}\right) \\
\quad g \in I\left(z\left(\left(f_{1}, \ldots, f_{m}\right)\right)\right. & \text { for some } n>0)
\end{array}\right.
$$

Pf: Rabinowitsch trick.
Extend to k $k^{n+1}+$ look at $f_{1}, \ldots, f_{m}, x_{n+1} g-1$
These have no common zeros in k^{n+1}.

Wk Null: $1=p_{1} f_{1}+\ldots+p_{m} f_{m}+p_{m+1}\left(x_{n+1} g-1\right)$
p_{i} are polys in x_{1}, \ldots, x_{n+1}

$$
P_{i}\left(x_{1}, \ldots, x_{n+1}\right)
$$

Take image of At under homom

$$
\begin{aligned}
k\left[x_{1}, \ldots, x_{n+1}\right] & \rightarrow k\left(x_{1}, \ldots, x_{n}\right) \\
x_{n+1} & \longmapsto 1 / g
\end{aligned}
$$

* $\quad I=p_{1}\left(x_{1}, \ldots, x_{n}, 1 / g\right) f_{1}+\ldots+p_{m}\left(x_{1}, \ldots, x_{n}, 1_{g}\right) f_{m}$

Multiply out bn necessary power of g to clear out denoms

$$
g^{n}=b_{1} f_{1}+\ldots+b_{m} f_{m}
$$

