Definition 7.1: The three properties used to determine when a subset $W$ of a vector space $V$ is a subspace:
|
| Question 1: | Is $V = \left\{ [x,y] \in \mathbb{R}^2 \, \middle\vert \, y=5x \right\} \subset \mathbb{R}^2$ a subspace of $\mathbb{R}^2$? Prove or disprove Property AC. |
| Question 2: | Is $W = \left\{ [x,y] \in \mathbb{R}^2 \, \middle\vert \, x^2=y^2 \right\} \subset \mathbb{R}^2$ a subspace of $\mathbb{R}^2$? Prove or disprove Property AC. |
| Solution 1: | The subset $V = \left\{ [x,y] \in \mathbb{R}^2 \, \middle\vert \, y=5x \right\} \subset \mathbb{R}^2$ is a subspace of $\mathbb{R}^2.$ If $u, v \in V$ then $u = [x_1, 5 x_1]$ and $v = [x_2, 5 x_2].$ Thus $$u+v = [x_1, 5 x_1] + [x_2, 5 x_2] = [x_1+x_2, 5 x_1 + 5 x_2] = [(x_1+x_2),5(x_1+x_2)]$$ which is again a vector in $V.$ Thus $V$ has Property AC. |
| Solution 2: | The subset $W = \left\{ [x,y] \in \mathbb{R}^2 \, \middle\vert \, x^2=y^2 \right\} \subset \mathbb{R}^2$ is not a subspace of $\mathbb{R}^2.$ For example, $u = [1,1] \in W,$ since $(1)^2 = (1)^2,$ and $v = [-1,1] \in W,$ since $(-1)^2 = (1)^2,$ but $u+v=[-1,1]+[1,1]=[0,2] \notin W$ since $(0)^2 \neq (2)^2.$ |
|
Definition 1: The Kernel, or Null Space, of an $m \times n$ matrix $A$ is the set $$\text{ker}(A)\ = \ \textrm{Nul}(A) \ = \ \left\{ \, {\bf x}\ \in\ {\mathbb R}^n \middle\vert \, A {\bf x} \ = \ {\bf 0}\, \right\}$$ of all solutions ${\bf x}$ in ${\mathbb R}^n$ of the Homogeneous Equation $A {\bf x} \,=\, {\bf 0}.$ Note: $\textrm{Nul}(A) \subseteq \mathbb{R}^n$ is always a subspace. In fact, every subspace of $\mathbb{R}^n$ is the null space of some matrix $A.$ |
| $$\mathcal{P}_0 \subseteq \mathcal{P}_1 \subseteq \mathcal{P}_2 \subseteq \cdots \subseteq \mathcal{P}_n \subseteq \cdots \subseteq \mathcal{P} \subseteq C^{\, \infty}(\mathbb{R}) \subseteq \cdots $$ $$\cdots \subseteq C^{\, k}(\mathbb{R}) \subseteq \cdots \subseteq C^{\, 2}(\mathbb{R}) \subseteq C^{\, 1}(\mathbb{R}) \subseteq C^{\, 0}(\mathbb{R}) = C(\mathbb{R})$$ |