Info for Exam 3

- Let $A \in M_{n}(\mathbb{R})$ and $\lambda \in \mathbb{R}$. If there is a NONZERO vector $\vec{v} \in \mathbb{R}^{n}$ such that

$$
A \vec{v}=\lambda \vec{v}
$$

then we say λ is an eigenvalue for A, and \vec{v} is an eigenvector for A with eigenvalue λ. We also write $\vec{v}=\vec{v}_{\lambda}$.

- If $A \in M_{n}(\mathbb{R})$ has eigenvalue λ and eigenvector \vec{v}_{λ}, then

$$
\vec{x}(t)=e^{\lambda t} \vec{v}_{\lambda}
$$

is a solution to the system

$$
\frac{d}{d t} \vec{x}=A \vec{x}
$$

- If $A \in M_{n}(\mathbb{R})$, the characteristic polynomial of A is

$$
p(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)
$$

The roots of $p(\lambda)$ are the eigenvalues of A. The multiplicity of a root λ is denoted m_{λ}. For example, if A has characteristic polynomial

$$
p(\lambda)=(\lambda-2)^{3}(\lambda+1)(\lambda+5)^{2}
$$

then the eigenvalues of A are

$$
\lambda=2,-1, \text { and }-5
$$

with multiplicities

$$
m_{2}=3, m_{-1}=1, \text { and } m_{-5}=2 .
$$

- If $A \in M_{n}(\mathbb{R})$ has eigenvalue λ, then the set of eigenvectors (together with the zero vector) is a subspace of \mathbb{R}^{n} denoted E_{λ} :

$$
E_{\lambda}=\operatorname{Nul}(A-\lambda I)
$$

The standard basis of E_{λ} is the standard basis of $\operatorname{Nul}(A-\lambda I)$.

- The real eigenvalue/eigenvector method in Braun, Section 3.8, for solving a system of equations

$$
\frac{d}{d t} \vec{x}=A \vec{x}
$$

involves finding the eigenvalues of A, then finding the standard basis for E_{λ} :

$$
\left\{\vec{v}_{\lambda}^{1}, \vec{v}_{\lambda}^{2}, \ldots, \vec{v}_{\lambda}^{r}\right\}
$$

and creating the linear independent solutions

$$
\vec{x}^{1}=e^{\lambda t} \vec{v}_{\lambda}^{1}, \vec{x}^{2}=e^{\lambda t} \vec{v}_{\lambda}^{2}, \ldots, \vec{x}^{r}=e^{\lambda t} \vec{v}_{\lambda}^{r}
$$

- If A has a complex eigenvalue, then the conjugate is also an eigenvalue, thus A has eigenvalues $\alpha \pm \beta i$. In this case, just use

$$
\lambda=\alpha+\beta i \quad(\text { assuming } \beta>0,)
$$

find the complex eigenvector $\vec{v}_{\alpha+\beta i}$ by row reducing $A-(\alpha+\beta i) I$ (there will only be one for us) and compute the complex solution

$$
\vec{z}(t)=e^{(\alpha+\beta i) t} \vec{v}_{\alpha+\beta i}=\vec{x}^{1}(t)+i \vec{x}^{2}(t) .
$$

Then the two real solutions to the system are $\vec{x}^{1}(t)$ and $\vec{x}^{2}(t)$.

- If $A \in M_{n}(\mathbb{R})$, we define the matrix exponential of A to be

$$
e^{A t}=I_{n}+t A+\frac{t^{2}}{2!} A^{2}+\frac{t^{3}}{3!} A^{3}+\cdots
$$

If λ is any scalar in \mathbb{R}, we can "center" $e^{A t}$ at λ :

$$
e^{A t}=e^{\lambda t}\left(I_{n}+t(A-\lambda I)+\frac{t^{2}}{2!}(A-\lambda I)^{2}+\frac{t^{3}}{3!}(A-\lambda I)^{3}+\cdots\right)
$$

In this class, we only do this when λ is an eigenvalue of A.

- If $A \in M_{n}(\mathbb{R})$ has eigenvalue λ with multiplicity $m_{\lambda}>1$, and

$$
\operatorname{dim}\left(E_{\lambda}\right)<m_{\lambda}
$$

then more linearly independent solutions to the system

$$
\frac{d}{d t} \vec{x}=A \vec{x}
$$

can be found by taking bases of $\operatorname{Nul}(A-\lambda I)^{k}$ for $k>1$.

1. λ is the ONLY eigenvalue of A.

In this case, some power of $(A-\lambda I)$ is the zero matrix, and so $e^{A t}$ can be computed directly from the power series

$$
e^{A t}=e^{\lambda t}\left(I_{n}+t(A-\lambda I)+\frac{t^{2}}{2!}(A-\lambda I)^{2}+\frac{t^{3}}{3!}(A-\lambda I)^{3}+\cdots\right)
$$

Then the general solution to

$$
\frac{d}{d t} \vec{x}=A \vec{x}
$$

is the linear combination of the columns of $e^{A t}$:

$$
\vec{x}(t)=e^{A t} \cdot\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]
$$

2. $\operatorname{dim}\left(E_{\lambda}\right)=1$.

In this case we find a Jordan Cycle. First, put the solution to

$$
(A-\lambda I) \vec{J}_{1}=\vec{v}_{\lambda}
$$

in parametric form and find \vec{J}_{1} by setting the free variable to zero. (There will be only one free variable since $\operatorname{dim}\left(E_{\lambda}\right)=1$.) Then

$$
\vec{x}^{2}(t)=e^{\lambda t}\left(I_{n}+t(A-\lambda I)+\frac{t^{2}}{2!}(A-\lambda I)^{2}+\frac{t^{3}}{3!}(A-\lambda I)^{3}+\cdots\right) \vec{J}_{1} .
$$

Further solutions can be found similarly be setting the one free variable equal to zero in the solutions to

$$
(A-\lambda I) \vec{J}_{i+1}=\vec{J}_{i}
$$

and forming

$$
\vec{x}^{i+2}(t)=e^{\lambda t}\left(I_{n}+t(A-\lambda I)+\frac{t^{2}}{2!}(A-\lambda I)^{2}+\frac{t^{3}}{3!}(A-\lambda I)^{3}+\cdots\right) \vec{J}_{i+1}
$$

3. $\operatorname{dim}\left(E_{\lambda}\right)>1$.

For all other cases, see the handout on Generalized Eigenvectors and Arrow Diagrams.

- Having found n solutions, $\left\{\vec{x}^{1}, \vec{x}^{2}, \ldots, \vec{x}^{n}\right\}$, to

$$
\frac{d}{d t} \vec{x}=A \vec{x}
$$

we want to make sure they give us the general solution, i.e. we want to make sure $\left\{\vec{x}^{1}, \vec{x}^{2}, \ldots, \vec{x}^{n}\right\}$ is a basis for V_{A}. To do this, we put the vectors in a matrix

$$
\chi(t)=\left[\begin{array}{llll}
\vec{x}^{1}(t) & \vec{x}^{2}(t) & \ldots & \vec{x}^{n}(t)
\end{array}\right]
$$

and check that

$$
\operatorname{det}(\chi(0)) \neq 0
$$

Then $\left\{\vec{x}^{1}, \vec{x}^{2}, \ldots, \vec{x}^{n}\right\}$ is a basis for V_{A} and the general solution to the system is

$$
\vec{x}=c_{1} \vec{x}^{1}+c_{2} \vec{x}^{2}+\cdots+c_{n} \vec{x}^{n}=\chi(t) \cdot\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]
$$

In this case, we say $\chi(t)$ is a fundamental matrix solution.

- An equivalent definition of a fundamental matrix solution is an $n \times n$ matrix $\chi(t)$ of functions such that

$$
\frac{d}{d t} \chi(t)=A \cdot \chi(t) \quad \text { and } \operatorname{det}(\chi(0)) \neq 0
$$

- The matrix exponential, $e^{A t}$, is a fundamental matrix solution, since

$$
\frac{d}{d t} e^{A t}=A \cdot e^{A t}
$$

and

$$
e^{A \cdot 0}=I_{n} \quad \Rightarrow \quad \operatorname{det}\left(e^{A \cdot 0}\right)=\operatorname{det}\left(I_{n}\right)=1 \neq 0 .
$$

In fact, it is the case that any fundamental matrix $\chi(t)$ such that $\chi(0)=I_{n}$ must be the matrix exponential:

$$
\frac{d}{d t} \chi(t)=A \cdot \chi(t) \quad \text { and } \quad \chi(0)=I_{n} \quad \Rightarrow \quad \chi(t)=e^{A t}
$$

- This gives us the following method for computing $e^{A t}$ for any $A \in M_{n}(\mathbb{R})$:

1. Find a basis $\left\{\vec{x}^{1}, \vec{x}^{2}, \ldots, \vec{x}^{n}\right\}$ for V_{A}.
2. Construct the fundamental matrix solution

$$
\chi(t)=\left[\begin{array}{llll}
\vec{x}^{1}(t) & \vec{x}^{2}(t) & \ldots & \vec{x}^{n}(t)
\end{array}\right]
$$

3. Compute $(\chi(0))^{-1}$, the inverse.
4. Finally,

$$
e^{A t}=\chi(t) \cdot(\chi(0))^{-1}
$$

- The columns of $e^{A t}$ are the standard basis of V_{A}.
- To solve an I.V.P.

$$
\frac{d}{d t} e^{A t}=A \cdot e^{A t} \quad \vec{x}(0)=\vec{b}
$$

first solve the O.D.E. to get a fundamental matrix solution $\chi(t)$, then row reduce the augmented matrix

$$
[\chi(0) \mid \vec{b}] \rightarrow \cdots \rightarrow\left[\begin{array}{l|l}
I_{n} & \vec{c}] .
\end{array}\right.
$$

The vector

$$
\vec{c}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]
$$

is the vector of coefficients and the solution is

$$
\vec{x}=c_{1} \vec{x}^{1}+c_{2} \vec{x}^{2}+\cdots+c_{n} \vec{x}^{n}=\chi(t) \cdot\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right] .
$$

Note that if $\chi(t)=e^{A t}$, then

$$
[\chi(0) \mid \vec{b}]=\left[\begin{array}{l|l}
I_{n} & \vec{c}]
\end{array}\right]
$$

thus $\vec{b}=\vec{c}$ and the solution is

$$
\vec{x}=b_{1} \vec{x}^{1}+b_{2} \vec{x}^{2}+\cdots+b_{n} \vec{x}^{n}=\chi(t) \cdot\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right] .
$$

- If $A \in M_{n}(\mathbb{R})$, then we can recover A from $e^{A t}$ using the following formula:

$$
\left.\left(\frac{d}{d t} e^{A t}\right)\right|_{t=0}=A
$$

