
Info for Exam 3

• Let A ∈Mn(R) and λ ∈ R. If there is a NONZERO vector ~v ∈ Rn such that

A~v = λ~v

then we say λ is an eigenvalue for A, and ~v is an eigenvector for A with eigenvalue λ. We also write ~v = ~vλ.

• If A ∈Mn(R) has eigenvalue λ and eigenvector ~vλ, then

~x(t) = eλt~vλ

is a solution to the system
d

dt
~x = A~x.

• If A ∈Mn(R), the characteristic polynomial of A is

p(λ) = det(A− λIn).

The roots of p(λ) are the eigenvalues of A. The multiplicity of a root λ is denoted mλ. For example, if A has
characteristic polynomial

p(λ) = (λ− 2)3(λ+ 1)(λ+ 5)2

then the eigenvalues of A are
λ = 2,−1, and − 5

with multiplicities
m2 = 3,m−1 = 1, and m−5 = 2.

• If A ∈Mn(R) has eigenvalue λ, then the set of eigenvectors (together with the zero vector) is a subspace of Rn

denoted Eλ:
Eλ = Nul(A− λI)

The standard basis of Eλ is the standard basis of Nul(A− λI).

• The real eigenvalue/eigenvector method in Braun, Section 3.8, for solving a system of equations

d

dt
~x = A~x

involves finding the eigenvalues of A, then finding the standard basis for Eλ:{
~v 1
λ , ~v

2
λ , . . . , ~v

r
λ

}
and creating the linear independent solutions

~x 1 = eλt~v 1
λ , ~x

2 = eλt~v 2
λ , . . . , ~x

r = eλt~v rλ .

• If A has a complex eigenvalue, then the conjugate is also an eigenvalue, thus A has eigenvalues α± βi. In this
case, just use

λ = α + βi (assuming β > 0,)

find the complex eigenvector ~vα+βi by row reducing A− (α + βi)I (there will only be one for us) and compute
the complex solution

~z(t) = e (α+βi)t~vα+βi = ~x 1(t) + i~x 2(t).

Then the two real solutions to the system are ~x 1(t) and ~x 2(t).



• If A ∈Mn(R), we define the matrix exponential of A to be

eAt = In + tA+
t2

2!
A2 +

t3

3!
A3 + · · ·

If λ is any scalar in R, we can “center” eAt at λ:

eAt = eλt
(
In + t(A− λI) +

t2

2!
(A− λI)2 +

t3

3!
(A− λI)3 + · · ·

)
In this class, we only do this when λ is an eigenvalue of A.

• If A ∈Mn(R) has eigenvalue λ with multiplicity mλ > 1, and

dim(Eλ) < mλ

then more linearly independent solutions to the system

d

dt
~x = A~x

can be found by taking bases of Nul(A− λI)k for k > 1.

1. λ is the ONLY eigenvalue of A.

In this case, some power of (A− λI) is the zero matrix, and so eAt can be computed directly from the
power series

eAt = eλt
(
In + t(A− λI) +

t2

2!
(A− λI)2 +

t3

3!
(A− λI)3 + · · ·

)
Then the general solution to

d

dt
~x = A~x

is the linear combination of the columns of eAt:

~x(t) = eAt ·


c1
c2
...
cn

 .
2. dim(Eλ) = 1.

In this case we find a Jordan Cycle. First, put the solution to

(A− λI) ~J1 = ~vλ

in parametric form and find ~J1 by setting the free variable to zero. (There will be only one free variable
since dim(Eλ) = 1.) Then

~x 2(t) = eλt
(
In + t(A− λI) +

t2

2!
(A− λI)2 +

t3

3!
(A− λI)3 + · · ·

)
~J1.

Further solutions can be found similarly be setting the one free variable equal to zero in the solutions to

(A− λI) ~Ji+1 = ~Ji

and forming

~x i+2(t) = eλt
(
In + t(A− λI) +

t2

2!
(A− λI)2 +

t3

3!
(A− λI)3 + · · ·

)
~Ji+1.



3. dim(Eλ) > 1.

For all other cases, see the handout on Generalized Eigenvectors and Arrow Diagrams.

• Having found n solutions, {~x 1, ~x 2, . . . , ~xn}, to

d

dt
~x = A~x

we want to make sure they give us the general solution, i.e. we want to make sure {~x 1, ~x 2, . . . , ~xn} is a basis
for VA. To do this, we put the vectors in a matrix

χ(t) =

 ~x 1(t) ~x 2(t) . . . ~xn(t)


and check that

det(χ(0)) 6= 0.

Then {~x 1, ~x 2, . . . , ~xn} is a basis for VA and the general solution to the system is

~x = c1~x
1 + c2~x

2 + · · ·+ cn~x
n = χ(t) ·


c1
c2
...
cn

 .
In this case, we say χ(t) is a fundamental matrix solution.

• An equivalent definition of a fundamental matrix solution is an n× n matrix χ(t) of functions such that

d

dt
χ(t) = A · χ(t) and det(χ(0)) 6= 0.

• The matrix exponential, eAt, is a fundamental matrix solution, since

d

dt
eAt = A · eAt

and
eA·0 = In ⇒ det(eA·0) = det(In) = 1 6= 0.

In fact, it is the case that any fundamental matrix χ(t) such that χ(0) = In must be the matrix exponential:

d

dt
χ(t) = A · χ(t) and χ(0) = In ⇒ χ(t) = eAt.

• This gives us the following method for computing eAt for any A ∈Mn(R):

1. Find a basis {~x 1, ~x 2, . . . , ~xn} for VA.

2. Construct the fundamental matrix solution

χ(t) =

 ~x 1(t) ~x 2(t) . . . ~xn(t)


3. Compute (χ(0))−1, the inverse.

4. Finally,
eAt = χ(t) · (χ(0))−1



• The columns of eAt are the standard basis of VA.

• To solve an I.V.P.
d

dt
eAt = A · eAt ~x(0) = ~b

first solve the O.D.E. to get a fundamental matrix solution χ(t), then row reduce the augmented matrix χ(0) ~b

→ · · · →
 In ~c

 .
The vector

~c =

 c1
...
cn


is the vector of coefficients and the solution is

~x = c1~x
1 + c2~x

2 + · · ·+ cn~x
n = χ(t) ·


c1
c2
...
cn

 .

Note that if χ(t) = eAt, then  χ(0) ~b

 =

 In ~c


thus ~b = ~c and the solution is

~x = b1~x
1 + b2~x

2 + · · ·+ bn~x
n = χ(t) ·


b1
b2
...
bn

 .

• If A ∈Mn(R), then we can recover A from eAt using the following formula:(
d

dt
eAt
) ∣∣∣∣∣

t=0

= A


