Judiciuos Guessing

1. Solving ODE's of the form

$$
a y^{\prime \prime}+b y^{\prime}+c y=p(t)
$$

where $a, b, c \in \mathbb{R}$ and $p(t)$ is a polynomial of degree n.
(a) If $c \neq 0$, initial guess is

$$
\psi(t)=A_{n} t^{n}+A_{n-1} t^{n-1}+\cdots+A_{1} t+A_{0}
$$

(b) If $c=0$ and $b \neq 0$, initial guess is

$$
\psi(t)=\left(A_{n} t^{n}+A_{n-1} t^{n-1}+\cdots+A_{1} t+A_{0}\right) t
$$

(c) If $c=b=0$, initial guess is

$$
\psi(t)=\left(A_{n} t^{n}+A_{n-1} t^{n-1}+\cdots+A_{1} t+A_{0}\right) t^{2}
$$

2. Solving ODE's of the form

$$
a y^{\prime \prime}+b y^{\prime}+c y=p(t) e^{\alpha t}
$$

where $a, b, c, \alpha \in \mathbb{R}$ and $p(t)$ is a polynomial of degree n.
Recall that $a r^{2}+b r+c$ is the characteristic polynomial of the equation.
(a) If α is not a root of the characteristic polynomial, initial guess is

$$
\psi(t)=\left(A_{n} t^{n}+A_{n-1} t^{n-1}+\cdots+A_{1} t+A_{0}\right) e^{\alpha t}
$$

(b) If α is a root of the characteristic polynomial with multiplicity $m_{\alpha}=1$, initial guess is

$$
\psi(t)=\left(A_{n} t^{n}+A_{n-1} t^{n-1}+\cdots+A_{1} t+A_{0}\right) t e^{\alpha t}
$$

(c) If α is a root of the characteristic polynomial with multiplicity $m_{\alpha}=2$, initial guess is

$$
\psi(t)=\left(A_{n} t^{n}+A_{n-1} t^{n-1}+\cdots+A_{1} t+A_{0}\right) t^{2} e^{\alpha t}
$$

3. Solving ODE's of the form

$$
a y^{\prime \prime}+b y^{\prime}+c y=p(t) e^{\alpha t} \cos \beta t
$$

or

$$
a y^{\prime \prime}+b y^{\prime}+c y=p(t) e^{\alpha t} \sin \beta t
$$

where $a, b, c, \alpha, \beta \in \mathbb{R}$ and $p(t)$ is a polynomial of degree n.
Recall that $a r^{2}+b r+c$ is the characteristic polynomial of the equation.
Note that

$$
p(t) e^{(\alpha+i \beta) t}=\left(p(t) e^{\alpha t} \cos \beta t\right)+i\left(p(t) e^{\alpha t} \sin \beta t\right)
$$

so we will solve

$$
a y^{\prime \prime}+b y^{\prime}+c y=p(t) e^{(\alpha+i \beta) t}
$$

as in case 2.
(a) If $\alpha+i \beta$ is not a root of the characteristic polynomial, initial guess is

$$
\Psi(t)=\left(A_{n} t^{n}+A_{n-1} t^{n-1}+\cdots+A_{1} t+A_{0}\right) e^{(\alpha+i \beta) t}
$$

(b) If $\alpha+i \beta$ is a root of the characteristic polynomial, initial guess is

$$
\Psi(t)=\left(A_{n} t^{n}+A_{n-1} t^{n-1}+\cdots+A_{1} t+A_{0}\right) t e^{(\alpha+i \beta) t}
$$

After solving, $g(t)=p(t) e^{\alpha t} \cos \beta t \Rightarrow \psi(t)=\operatorname{Re}(\Psi(t))$ and $g(t)=p(t) e^{\alpha t} \sin \beta t \Rightarrow \psi(t)=\operatorname{Im}(\Psi(t))$.

