Solution to Braun, 3.8, Number 3
Solve the equation

$$
\frac{d}{d t} \vec{x}=\left[\begin{array}{lll}
3 & 2 & 4 \\
2 & 0 & 2 \\
4 & 2 & 3
\end{array}\right] \vec{x}
$$

- The characteristic polynomial of A is

$$
p(\lambda)=-\lambda^{3}+6 \lambda^{2}+15 \lambda+8=-(\lambda-8)(\lambda+1)^{2}
$$

- The eigenvalues are $\lambda=8$ (with multiplicity 1) and $\lambda=-1$ with multiplicity 2 .
- For $\lambda=8$, we find the eigenspace $E_{\lambda}=E_{8}=\operatorname{ker}\left(A-8 I_{3}\right)$:

$$
\operatorname{RREF}\left(A-8 I_{3}\right)=\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & -1 / 2 \\
0 & 0 & 0
\end{array}\right]
$$

gives us equations

$$
\begin{aligned}
x-z=0 \\
y-\frac{1}{2} z=0 \Rightarrow \\
z \text { is free }
\end{aligned}
$$

so the solution is

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
z \\
1 / 2 z \\
z
\end{array}\right]=z\left[\begin{array}{c}
1 \\
1 / 2 \\
1
\end{array}\right]
$$

so

$$
\vec{v}_{\lambda}=\vec{v}_{8}=\left[\begin{array}{c}
1 \\
1 / 2 \\
1
\end{array}\right] \text { and } E_{8}=\operatorname{span}\left\{\left[\begin{array}{c}
1 \\
1 / 2 \\
1
\end{array}\right]\right\}
$$

and

$$
\vec{x}^{1}(t)=e^{\lambda t} \vec{v}_{\lambda}=e^{8 t}\left[\begin{array}{c}
1 \\
1 / 2 \\
1
\end{array}\right]
$$

- For $\lambda=-1$, we find the eigenspace $E_{\lambda}=E_{-1}=\operatorname{ker}\left(A+I_{3}\right)$:

$$
\operatorname{RREF}\left(A+I_{3}\right)=\left[\begin{array}{rrr}
1 & 1 / 2 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

gives us equations

$$
\begin{aligned}
x+\frac{1}{2} y+z=0 \\
y \text { is free } \\
z \text { is free }
\end{aligned} \quad \Rightarrow \quad \begin{aligned}
& x=-\frac{1}{2} y-z \\
& y=y \\
& z=z
\end{aligned}
$$

so the solution is

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-1 / 2 y-z \\
y \\
z
\end{array}\right]=y\left[\begin{array}{c}
-1 / 2 \\
1 \\
0
\end{array}\right]+z\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

SO

$$
\vec{v}_{-1}^{1}=\left[\begin{array}{c}
-1 / 2 \\
1 \\
0
\end{array}\right], \quad \vec{v}_{-1}^{2}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right], \quad \text { and } E_{-1}=\operatorname{span}\left\{\left[\begin{array}{c}
-1 / 2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right\}
$$

and

$$
\vec{x}^{2}(t)=e^{-t}\left[\begin{array}{c}
-1 / 2 \\
1 \\
0
\end{array}\right] \quad \text { and } \quad \vec{x}^{3}(t)=e^{-t}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

- The general solution is

$$
\vec{x}(t)=c_{1} e^{8 t}\left[\begin{array}{c}
1 \\
1 / 2 \\
1
\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{c}
-1 / 2 \\
1 \\
0
\end{array}\right]+c_{3} e^{-t}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

Suppose we also wanted to solve the I.V.P.

$$
\frac{d}{d t} \vec{x}=\left[\begin{array}{lll}
3 & 2 & 4 \\
2 & 0 & 2 \\
4 & 2 & 3
\end{array}\right] \vec{x}, \quad \vec{x}(0)=\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right]
$$

First, we would find the general solution, as above:

$$
\vec{x}(t)=c_{1} e^{8 t}\left[\begin{array}{c}
1 \\
1 / 2 \\
1
\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{c}
-1 / 2 \\
1 \\
0
\end{array}\right]+c_{3} e^{-t}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

Then

$$
\vec{x}(0)=c_{1}\left[\begin{array}{c}
1 \\
1 / 2 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 / 2 \\
1 \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 / 2 & -1 \\
1 / 2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right]
$$

so we row reduce

$$
\left[\begin{array}{cccc}
1 & -1 / 2 & -1 & 3 \\
1 / 2 & 1 & 0 & 1 \\
1 & 0 & 1 & 1
\end{array}\right]
$$

to get

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1
\end{array}\right]
$$

which tells us $c_{1}=2, c_{2}=0$, and $c_{3}=-1$, thus the unique solution to the I.V.P. is

$$
\vec{x}(t)=2 e^{8 t}\left[\begin{array}{c}
1 \\
1 / 2 \\
1
\end{array}\right]-e^{-t}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

