Solution to Braun, 3.10, Example 2
Solve the equation

$$
\frac{d}{d t} \vec{x}=\left[\begin{array}{rrr}
2 & 1 & 3 \\
0 & 2 & -1 \\
0 & 0 & 2
\end{array}\right] \vec{x}
$$

First, we will solve using a Jordan Cycle

- The characteristic polynomial of A is

$$
p(\lambda)=-(\lambda-2)^{3}
$$

- The only eigenvalue is $\lambda=2$ with multiplicity 3 .
- For $\lambda=2$, we find the eigenspace $E_{\lambda}=E_{2}=\operatorname{ker}\left(A-2 I_{3}\right)$:

$$
A-2 I_{3}=\left[\begin{array}{rrr}
0 & 1 & 3 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right] \quad \text { and } \quad \operatorname{RREF}\left(A-2 I_{3}\right)=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

so

$$
\vec{v}_{2}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \text { and } \vec{x}^{1}(t)=e^{2 t}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- To find more solutions, we must find generalized eigenvectors with eigenvalue 2 . We do this by finding vectors in a Jordan Cycle.
The next step is to find a generalized eigenvector, \vec{J}_{1}, such that

$$
\left(A-2 I_{3}\right) \vec{J}_{1}=\vec{v}_{2}
$$

So we are solving the non homogeneous system

$$
\left[\begin{array}{rrr}
0 & 1 & 3 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right] \vec{J}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

We row reduce the augmented matrix

$$
\left[\begin{array}{rrr|r}
0 & 1 & 3 & 1 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \text { to get } \quad\left[\begin{array}{lll|l}
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Now write the equations

$$
\begin{aligned}
& x \text { is free } \\
& y=1 \\
& z=0
\end{aligned} \Rightarrow \begin{aligned}
& x=x \\
& y=1 \\
& z=0
\end{aligned}
$$

then write the solution in parametric form

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
x \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+x\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

and finally we obtain \vec{J}_{1} by setting the free variable equal to 0 :

$$
\vec{J}_{1}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Now our second solution is

$$
\begin{gathered}
\vec{x}^{2}(t)=e^{A t} \vec{J}_{1}=e^{2 t} e^{(A-2 I) t} \vec{J}_{1}= \\
=e^{2 t}\left(I_{3}+t\left(A-2 I_{3}\right)+\frac{t^{2}}{2}\left(A-2 I_{3}\right)^{2}+\cdots\right) \vec{J}_{1}
\end{gathered}
$$

To distribute \vec{J}_{1}, we calculate

$$
\begin{aligned}
I_{3} \vec{J}_{1} & =\vec{J}_{1} \\
\left(A-2 I_{3}\right) \vec{J}_{1} & \left.=\vec{v}_{2} \quad \text { (that's how we found } \vec{J}_{1}\right) \\
\left(A-2 I_{3}\right)^{2} \vec{J}_{1} & =\left(A-2 I_{3}\right)\left(A-2 I_{3}\right) \vec{J}_{1}=\left(A-2 I_{3}\right) \vec{v}_{2}=\overrightarrow{0} \\
\left(A-2 I_{3}\right)^{3} \vec{J}_{1} & =\left(A-2 I_{3}\right)^{2}\left(A-2 I_{3}\right) \vec{J}_{1}=\left(A-2 I_{3}\right)^{2} \vec{v}_{2}=\overrightarrow{0} \\
\left(A-2 I_{3}\right)^{4} \vec{J}_{1} & =\left(A-2 I_{3}\right)^{3}\left(A-2 I_{3}\right) \vec{J}_{1}=\left(A-2 I_{3}\right)^{3} \vec{v}_{2}=\overrightarrow{0} \\
& \vdots
\end{aligned}
$$

Thus

$$
\vec{x}^{2}(t)=e^{2 t}\left(\vec{J}_{1}+t \vec{v}_{2}\right)=e^{2 t}\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=e^{2 t}\left[\begin{array}{l}
t \\
1 \\
0
\end{array}\right]
$$

- The last step is to find a generalized eigenvector, \vec{J}_{2}, such that

$$
\left(A-2 I_{3}\right) \vec{J}_{2}=\vec{J}_{1}
$$

So we are solving the non homogeneous system

$$
\left[\begin{array}{rrr}
0 & 1 & 3 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right] \vec{J}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

We row reduce the augmented matrix

$$
\left[\begin{array}{rrr|r}
0 & 1 & 3 & 0 \\
0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \text { to get }\left[\begin{array}{rrr|r}
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Now write the equations

$$
\begin{aligned}
& x \text { is free } \\
& y=3 \\
& z=-1
\end{aligned} \Rightarrow \begin{aligned}
& x=x \\
& y=3 \\
& z=-1
\end{aligned}
$$

then write the solution in parametric form

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
x \\
3 \\
-1
\end{array}\right]=\left[\begin{array}{c}
0 \\
3 \\
-1
\end{array}\right]+x\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

and finally we obtain \vec{J}_{2} by setting the free variable equal to 0 :

$$
\vec{J}_{2}=\left[\begin{array}{c}
0 \\
3 \\
-1
\end{array}\right]
$$

Now our third solution is

$$
\begin{gathered}
\vec{x}^{3}(t)=e^{A t} \vec{J}_{2}=e^{2 t} e^{(A-2 I) t} \vec{J}_{2}= \\
=e^{2 t}\left(I_{3}+t\left(A-2 I_{3}\right)+\frac{t^{2}}{2}\left(A-2 I_{3}\right)^{2}+\cdots\right) \vec{J}_{2}
\end{gathered}
$$

To distribute \vec{J}_{2}, we calculate

$$
\begin{aligned}
I_{3} \vec{J}_{2} & =\vec{J}_{2} \\
\left(A-2 I_{3}\right) \vec{J}_{2} & \left.=\vec{J}_{1} \quad \text { (that's how we found } \vec{J}_{2}\right) \\
\left(A-2 I_{3}\right)^{2} \vec{J}_{2} & =\left(A-2 I_{3}\right)\left(A-2 I_{3}\right) \vec{J}_{2}=\left(A-2 I_{3}\right) \vec{J}_{1}=\vec{v}_{2} \\
\left(A-2 I_{3}\right)^{3} \vec{J}_{2} & =\left(A-2 I_{3}\right)\left(A-2 I_{3}\right)\left(A-2 I_{3}\right) \vec{J}_{2}=\left(A-2 I_{3}\right)\left(A-2 I_{3}\right) \vec{J}_{1} \\
& =\left(A-2 I_{3}\right) \vec{v}_{2}=\overrightarrow{0} \\
\left(A-2 I_{3}\right)^{4} \vec{J}_{2} & =\left(A-2 I_{3}\right)^{2}\left(A-2 I_{3}\right)\left(A-2 I_{3}\right) \vec{J}_{2}=\left(A-2 I_{3}\right)^{2}\left(A-2 I_{3}\right) \vec{J}_{1} \\
& =\left(A-2 I_{3}\right)^{2} \vec{v}_{2}=\overrightarrow{0} \\
& \vdots
\end{aligned}
$$

Thus

$$
\begin{aligned}
\vec{x}^{3}(t) & =e^{2 t}\left(\vec{J}_{2}+t \vec{J}_{1}+\frac{t^{2}}{2} \vec{v}_{2}\right) \\
& =e^{2 t}\left(\left[\begin{array}{c}
0 \\
3 \\
-1
\end{array}\right]+t\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+\frac{t^{2}}{2}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right) \\
& =e^{2 t}\left[\begin{array}{c}
t^{2} / 2 \\
3+t \\
-1
\end{array}\right]
\end{aligned}
$$

- The general solution is

$$
\vec{x}(t)=c_{1} e^{2 t}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+c_{2} e^{2 t}\left[\begin{array}{l}
t \\
1 \\
0
\end{array}\right]+c_{3} e^{2 t}\left[\begin{array}{c}
t^{2} / 2 \\
3+t \\
-1
\end{array}\right]
$$

Second, we will solve by calculating the matrix exponential

- We know by the Caley Hamilton Theorem that a matrix A satisfies its own characteristic polynomial. For our matrix A, the characteristic polynomial is

$$
p(\lambda)=-(\lambda-2)^{3}
$$

thus we know

$$
-\left(A-2 I_{3}\right)^{3}=0
$$

so we know

$$
\begin{aligned}
e^{A t} & =e^{2 t}\left(I_{3}+t\left(A-2 I_{3}\right)+\frac{t^{2}}{2}\left(A-2 I_{3}\right)^{2}+\frac{t^{2}}{2}\left(A-2 I_{3}\right)^{3}+\cdots\right) \\
& =e^{2 t}\left(I_{3}+t\left(A-2 I_{3}\right)+\frac{t^{2}}{2}\left(A-2 I_{3}\right)^{2}\right)
\end{aligned}
$$

- We compute the nonzero powers of $A-2 I_{3}$:

$$
\begin{aligned}
A-2 I_{3} & =\left[\begin{array}{rrr}
0 & 1 & 3 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right] \\
\left(A-2 I_{3}\right)^{2} & =\left[\begin{array}{rrr}
0 & 0 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

- Now

$$
\begin{aligned}
e^{A t} & =e^{2 t}\left(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+t\left[\begin{array}{rrr}
0 & 1 & 3 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right]+\frac{t^{2}}{2}\left[\begin{array}{rrr}
0 & 0 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\right) \\
& =e^{2 t}\left[\begin{array}{rrc}
1 & t & 3 t-\frac{t^{2}}{2} \\
0 & 1 & -t \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

- The general solution is the span of the columns of $e^{A t}$:

$$
\vec{x}(t)=c_{1} e^{2 t}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+c_{2} e^{2 t}\left[\begin{array}{l}
t \\
1 \\
0
\end{array}\right]+c_{3} e^{2 t}\left[\begin{array}{c}
3 t-\frac{t^{2}}{2} \\
-t \\
1
\end{array}\right]
$$

