Solution to Braun, 3.10, Exercise 5

Solve the equation

$$
\frac{d}{d t} \vec{x}=\left[\begin{array}{ccc}
-1 & 1 & 2 \\
-1 & 1 & 1 \\
-2 & 1 & 3
\end{array}\right] \vec{x}
$$

First, we will solve using a Jordan Cycle

- The characteristic polynomial of A is

$$
p(\lambda)=-(\lambda-1)^{3}
$$

- The only eigenvalue is $\lambda=1$ with multiplicity 3 .
- For $\lambda=1$, we find the eigenspace $E_{\lambda}=E_{1}=\operatorname{ker}\left(A-I_{3}\right)$:

$$
A-I_{3}=\left[\begin{array}{lll}
-2 & 1 & 2 \\
-1 & 0 & 1 \\
-2 & 1 & 2
\end{array}\right] \quad \text { and } \quad \operatorname{RREF}\left(A-I_{3}\right)=\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

so

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \text { and } \vec{x}^{1}(t)=e^{t}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

- To find more solutions, we must find generalized eigenvectors with eigenvalue 1 . We do this by finding vectors in a Jordan Cycle.
The next step is to find a generalized eigenvector, \vec{J}_{1}, such that

$$
\left(A-I_{3}\right) \vec{J}_{1}=\vec{v}_{1}
$$

So we are solving the non homogeneous system

$$
\left[\begin{array}{lll}
-2 & 1 & 2 \\
-1 & 0 & 1 \\
-2 & 1 & 2
\end{array}\right] \vec{J}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

We row reduce the augmented matrix

$$
\left[\begin{array}{lll|l}
-2 & 1 & 2 & 1 \\
-1 & 0 & 1 & 0 \\
-2 & 1 & 2 & 1
\end{array}\right] \quad \text { to get }\left[\begin{array}{rrr|r}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Now write the equations

$$
\begin{aligned}
& x-z=0 \\
& y=1 \Rightarrow \begin{array}{l}
x
\end{array}=z \\
& y \text { is free }
\end{aligned}
$$

then write the solution in parametric form

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
z \\
1 \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+z\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

and we obtain \vec{J}_{1} by setting the free variable equal to 0 :

$$
\vec{J}_{1}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Now our second solution is

$$
\begin{aligned}
\vec{x}^{2}(t) & =e^{A t} \vec{J}_{1}=e^{t} e^{(A-I) t} \vec{J}_{1} \\
& =e^{t}\left(I_{3}+t\left(A-I_{3}\right)+\frac{t^{2}}{2}\left(A-I_{3}\right)^{2}+\cdots\right) \vec{J}_{1} \\
& =e^{t}\left(\vec{J}_{1}+t \vec{v}_{1}\right) \\
& =e^{t}\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right)=e^{t}\left[\begin{array}{l}
t \\
1 \\
t
\end{array}\right]
\end{aligned}
$$

- The last step is to find a generalized eigenvector, \vec{J}_{2}, such that

$$
\left(A-I_{3}\right) \vec{J}_{2}=\vec{J}_{1}
$$

So we are solving the non homogeneous system

$$
\left[\begin{array}{lll}
-2 & 1 & 2 \\
-1 & 0 & 1 \\
-2 & 1 & 2
\end{array}\right] \vec{J}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

We row reduce the augmented matrix

$$
\left[\begin{array}{lll|l}
-2 & 1 & 2 & 0 \\
-1 & 0 & 1 & 1 \\
-2 & 1 & 2 & 0
\end{array}\right] \quad \text { to get }\left[\begin{array}{rrr|r}
1 & 0 & -1 & -1 \\
0 & 1 & 0 & -2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and we obtain \vec{J}_{2} :

$$
\vec{J}_{2}=\left[\begin{array}{c}
-1 \\
-2 \\
0
\end{array}\right]
$$

Now our third solution is

$$
\begin{aligned}
\vec{x}^{3}(t) & =e^{A t} \vec{J}_{2}=e^{t} e^{(A-I) t} \vec{J}_{2} \\
& =e^{t}\left(I_{3}+t\left(A-I_{3}\right)+\frac{t^{2}}{2}\left(A-I_{3}\right)^{2}+\cdots\right) \vec{J}_{2} \\
& =e^{t}\left(\vec{J}_{2}+t \vec{J}_{1}+\frac{t^{2}}{2} \vec{v}_{1}\right. \\
& =e^{t}\left(\left[\begin{array}{c}
-1 \\
-2 \\
0
\end{array}\right]+t\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+\frac{t^{2}}{2}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right)=e^{t}\left[\begin{array}{c}
-1+\frac{t^{2}}{2} \\
-2+t \\
\frac{t^{2}}{2}
\end{array}\right]
\end{aligned}
$$

- The general solution is

$$
\vec{x}(t)=c_{1} e^{t}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+c_{2} e^{t}\left[\begin{array}{l}
t \\
1 \\
t
\end{array}\right]+c_{3} e^{t}\left[\begin{array}{c}
-1+\frac{t^{2}}{2} \\
-2+t \\
\frac{t^{2}}{2}
\end{array}\right]
$$

Second, we will solve by calculating the matrix exponential

- We know by the Caley Hamilton Theorem that a matrix A satisfies its own characteristic polynomial. For our matrix A, the characteristic polynomial is

$$
p(\lambda)=-(\lambda-1)^{3}
$$

thus we know

$$
-\left(A-I_{3}\right)^{3}=0
$$

so we know

$$
\begin{aligned}
e^{A t} & =e^{t}\left(I_{3}+t\left(A-I_{3}\right)+\frac{t^{2}}{2}\left(A-I_{3}\right)^{2}+\frac{t^{3}}{3!}\left(A-I_{3}\right)^{3}+\cdots\right) \\
& =e^{t}\left(I_{3}+t\left(A-I_{3}\right)+\frac{t^{2}}{2}\left(A-I_{3}\right)^{2}\right)
\end{aligned}
$$

- We compute the nonzero powers of $A-I_{3}$:

$$
\begin{gathered}
A-I_{3}=\left[\begin{array}{lll}
-2 & 1 & 2 \\
-1 & 0 & 1 \\
-2 & 1 & 2
\end{array}\right] \\
\left(A-I_{3}\right)^{2}=\left[\begin{array}{rrr}
-1 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 1
\end{array}\right]
\end{gathered}
$$

- Now

$$
\begin{aligned}
e^{A t} & =e^{t}\left(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+t\left[\begin{array}{lll}
-2 & 1 & 2 \\
-1 & 0 & 1 \\
-2 & 1 & 2
\end{array}\right]+\frac{t^{2}}{2}\left[\begin{array}{rrr}
-1 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 1
\end{array}\right]\right) \\
& =e^{t}\left[\begin{array}{ccc}
1-2 t-\frac{t^{2}}{2} & t & 2 t+\frac{t^{2}}{2} \\
-t & 1 & t \\
-2 t-\frac{t^{2}}{2} & t & 1+2 t+\frac{t^{2}}{2}
\end{array}\right]
\end{aligned}
$$

- The general solution is the span of the columns of $e^{A t}$:

$$
\vec{x}(t)=c_{1} e^{t}\left[\begin{array}{c}
1-2 t-\frac{t^{2}}{2} \\
-t \\
-2 t-\frac{t^{2}}{2}
\end{array}\right]+c_{2} e^{t}\left[\begin{array}{l}
t \\
1 \\
t
\end{array}\right]+c_{3} e^{t}\left[\begin{array}{c}
2 t+\frac{t^{2}}{2} \\
t \\
1+2 t+\frac{t^{2}}{2}
\end{array}\right]
$$

