Arrow Diagrams and Generalized Eigen Vectors

Arrow Diagrams

An arrow diagram is a table of arrows that represents the distribution of eigenvectors and generalized eigenvectors of a matrix $A \in M_{n}(\mathbb{R})$.

Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be the eigenvalues of A. For each λ_{i} you will get a rectangular grid of arrows, for example

$$
\lambda_{i}:\left\{\begin{array}{rlll}
& & \leftarrow \\
& \leftarrow & \leftarrow & \leftarrow \\
\leftarrow & \leftarrow & \leftarrow & \leftarrow
\end{array}\right.
$$

with the following property: the number of arrows on the bottom row is the dimension of $E_{\lambda}=\operatorname{ker}(A-\lambda I)$, the number of arrows in the bottom two rows is the dimension of $\operatorname{ker}\left((A-\lambda I)^{2}\right)$, the number of arrows in the bottom three rows is the dimension of $\operatorname{ker}\left((A-\lambda I)^{3}\right)$, and so on. Continue until the total number of arrows equals the multiplicity of $\lambda_{i}, m_{\lambda_{i}}$. For example, if you "have all your eigenvectors" for an eigenvalue λ of multiplicity m_{λ}, that is to say $\operatorname{dim}\left(E_{\lambda}\right)=m_{\lambda}$, then the arrow diagram for that λ will be a single row of m_{λ} arrows:

$$
\lambda:\{\leftarrow \leftarrow \cdots \leftarrow
$$

The diagram always has one important feature: for any eigenvalue λ, the number of arrows in a row can not exceed the number of arrows in a lower row.

Thus, if you have an eigenvalue λ of multiplicity m_{λ} and you only have one eigenvector, that is to say $\operatorname{dim}\left(E_{\lambda}\right)=1$, then the arrow diagram for that λ will be a single column of m_{λ} arrows:

$$
\lambda:\left\{\begin{array}{c}
\leftarrow \\
\vdots \\
\leftarrow \\
\leftarrow
\end{array}\right.
$$

and this is exactly the situation in which we get a Jordan cycle.
If you have a 4×4 with eigenvalue -2 of multiplicity $m_{-2}=1$ and eigenvalue -1 of multiplicity $m_{-1}=3$, then the possible arrow diagrams are
(a)

$$
-2:\{\leftarrow \quad-1:\{\leftarrow \leftarrow \leftarrow
$$

(b)

$$
-2:\left\{\leftarrow \quad-1: \begin{cases} & \leftarrow \\ \leftarrow & \leftarrow\end{cases}\right.
$$

(c)

$$
-2:\left\{\leftarrow \quad-1:\left\{\begin{array}{l}
\leftarrow \\
\leftarrow \\
\leftarrow
\end{array}\right.\right.
$$

A 4×4 with a single eigenvalue, λ, has the following possible arrow diagrams:
(a) $\lambda:\{\leftarrow \leftarrow \leftarrow \leftarrow$
(b) $\lambda: \begin{cases} & \leftarrow \\ \leftarrow & \leftarrow\end{cases}$
(c) $\lambda: \begin{cases}\leftarrow & \leftarrow \\ \leftarrow & \leftarrow\end{cases}$
(d) $\lambda: \begin{cases} & \leftarrow \\ & \leftarrow \\ \leftarrow & \leftarrow\end{cases}$
(e) $\lambda:\left\{\begin{array}{l}\leftarrow \\ \leftarrow \\ \leftarrow \\ \leftarrow\end{array}\right.$

Example 1

Consider

$$
\frac{d}{d t} \vec{x}=A \vec{x} \text { where } A=\left[\begin{array}{ccc}
0 & -3 & 3 \\
1 & 4 & -1 \\
-2 & -2 & 5
\end{array}\right] \text { has eigenvalue } \lambda=3, m_{3}=3
$$

1. What is the standard basis of E_{3} ?
2. Give the solution(s) generated by the standard vector(s) $J \in \operatorname{ker}\left((A-\lambda I)^{2}\right) \backslash \operatorname{ker}(A-\lambda I)$. These are the vectors represented by arrows in the second row (from the bottom) of the arrow diagram.
3. What is the arrow diagram for the system?

Solution:

1. The standard basis of E_{3} :

$$
(A-3 I)=\left[\begin{array}{ccc}
-3 & -3 & 3 \\
1 & 1 & -1 \\
-2 & -2 & 2
\end{array}\right] \quad \rightarrow \quad \operatorname{RREF}(A-3 I)=\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

so the standard basis of E_{3} is

$$
\left\{\vec{v}_{3}^{1}=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right], \vec{v}_{3}^{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right\}
$$

Since there are two eigenvectors, the bottom row of our arrow diagram has two arrows, and now we know the arrow diagram:

$$
3: \begin{cases} & \leftarrow \\ \leftarrow & \leftarrow\end{cases}
$$

2. Solution(s) generated by generalized eigenvector(s) J in the second row:

We are looking for vectors $J \in \mathbb{R}^{3}$ such that $(A-3 I) J$ is an eigenvector, that is

$$
\begin{gathered}
(A-3 I) J \in E_{3}=\operatorname{Span}\left\{\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right\} \\
{\left[\begin{array}{ccc}
-3 & -3 & 3 \\
1 & 1 & -1 \\
-2 & -2 & 2
\end{array}\right] J=\alpha \cdot\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+\beta \cdot\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-\alpha+\beta \\
\alpha \\
\beta
\end{array}\right]}
\end{gathered}
$$

So we row reduce

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-3 & -3 & 3 & -\alpha+\beta \\
1 & 1 & -1 & \alpha \\
-2 & -2 & 2 & \beta
\end{array}\right]} \\
\begin{array}{c}
R_{1} \leftrightarrow R_{2} \\
\longrightarrow
\end{array}\left[\begin{array}{ccc|c}
1 & 1 & -1 & \alpha \\
-3 & -3 & 3 & -\alpha+\beta \\
-2 & -2 & 2 & \beta
\end{array}\right] \\
\\
R_{2}+3 R_{1} \\
R_{3}+2 R_{1}
\end{gathered}\left[\begin{array}{ccc|c}
1 & 1 & -1 & \alpha \\
0 & 0 & 0 & 2 \alpha+\beta \\
0 & 0 & 0 & 2 \alpha+\beta
\end{array}\right] .
$$

This system is consistent only when the entries in the augmented column of rows with all zeroes are also zero. This gives us a homogeneous system

$$
\begin{aligned}
& 2 \alpha+\beta=0 \\
& 2 \alpha+\beta=0
\end{aligned}
$$

We solve this using parametric form and get

$$
\left[\begin{array}{ll}
2 & 1 \\
2 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & 1 / 2 \\
0 & 0
\end{array}\right] \Rightarrow \alpha=-\frac{1}{2} \beta \Rightarrow\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=\beta\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

This gives us one linearly independent solution, $\alpha=-1 / 2, \beta=1$, so we will get one vector J. We can find J by solving

$$
\left[\begin{array}{ccc|c}
1 & 1 & -1 & \alpha \\
0 & 0 & 0 & 2 \alpha+\beta \\
0 & 0 & 0 & 2 \alpha+\beta
\end{array}\right]=\left[\begin{array}{ccc|c}
1 & 1 & -1 & -\frac{1}{2} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow J=\left[\begin{array}{c}
-\frac{1}{2} \\
0 \\
0
\end{array}\right]
$$

and

$$
(A-3 I) J=\left[\begin{array}{c}
-\alpha+\beta \\
\alpha \\
\beta
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{2} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

This gives us a solution

$$
\vec{x}=e^{3 t}(J+t(A-3 I) J)=e^{3 t}\left(\left[\begin{array}{c}
-\frac{1}{2} \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
\frac{3}{2} \\
-\frac{1}{2} \\
1
\end{array}\right]\right)=e^{3 t}\left[\begin{array}{c}
-\frac{1}{2}+\frac{3}{2} t \\
-\frac{1}{2} t \\
t
\end{array}\right]
$$

3. Arrow diagram

$$
3: \begin{cases} & \leftarrow \\ \leftarrow & \leftarrow\end{cases}
$$

Example 2

Consider

$$
\frac{d}{d t} \vec{x}=A \vec{x} \text { where } A=\left[\begin{array}{cccc}
-1 & 0 & 2 & 0 \\
-2 & -3 & 1 & 2 \\
-1 & -1 & 0 & 1 \\
-1 & -1 & 2 & 0
\end{array}\right] \text { has eigenvalue } \lambda=-1, m_{-1}=4
$$

1. What is the standard basis of E_{-1} ?
2. Give the solution(s) generated by the standard vector(s) $J \in \operatorname{ker}\left((A-\lambda I)^{2}\right) \backslash \operatorname{ker}(A-\lambda I)$. These are the vectors represented by arrows in the second row (from the bottom) of the arrow diagram.
3. What is the arrow diagram for the system?

Solution:

1. The standard basis of E_{-1} :

$$
(A+I)=\left[\begin{array}{cccc}
0 & 0 & 2 & 0 \\
-2 & -2 & 1 & 2 \\
-1 & -1 & 1 & 1 \\
-1 & -1 & 2 & 1
\end{array}\right] \quad \rightarrow \quad \operatorname{RREF}(A+I)=\left[\begin{array}{cccc}
1 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

so the standard basis of E_{-1} is

$$
\left\{\vec{v}_{-1}^{1}=\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right], \vec{v}_{-1}^{2}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

Since there are two eigenvectors, the bottom row of our arrow diagram has two arrows, and now we know only one of the following pictures is our possible arrow diagram

$$
-1:\left\{\begin{array}{l}
\leftarrow \leftarrow \\
\leftarrow \leftarrow
\end{array} \quad \text { or } \quad-1:\left\{\begin{array}{l}
\leftarrow \\
\leftarrow \\
\leftarrow
\end{array}\right.\right.
$$

2. Solution(s) generated by generalized eigenvector(s) J in the second row:

We are looking for vectors $J \in \mathbb{R}^{4}$ such that $(A+I) J$ is an eigenvector, that is

$$
\begin{gathered}
(A+I) J \in E_{-1}=\operatorname{Span}\left\{\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]\right\} \\
{\left[\begin{array}{cccc}
0 & 0 & 2 & 0 \\
-2 & -2 & 1 & 2 \\
-1 & -1 & 1 & 1 \\
-1 & -1 & 2 & 1
\end{array}\right] J=\alpha \cdot\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]+\beta \cdot\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-\alpha+\beta \\
\alpha \\
0 \\
\beta
\end{array}\right]}
\end{gathered}
$$

So we row reduce

$$
\left.\begin{array}{l}
{\left[\begin{array}{cccc|c}
0 & 0 & 2 & 0 & -\alpha+\beta \\
-2 & -2 & 1 & 2 & \alpha \\
-1 & -1 & 1 & 1 & 0 \\
-1 & -1 & 2 & 1 & 0
\end{array}\right]}
\end{array} \begin{array}{c}
R_{1} \leftrightarrow R_{3} \\
-R_{1} \\
\hline
\end{array}\right]\left[\begin{array}{cccc|c}
1 & 1 & -1 & -1 & 0 \\
-2 & -2 & 1 & 2 & \alpha \\
0 & 0 & 1 & 0 & -\frac{1}{2} \alpha+\frac{1}{2} \beta \\
-1 & -1 & 2 & 1 & \beta
\end{array}\right]
$$

This system is consistent only when the entries in the augmented column of rows with all zeroes are also zero. This gives us a homogeneous system

$$
\begin{gathered}
\frac{1}{2} \alpha+\frac{1}{2} \beta=0 \\
\alpha+\beta=0
\end{gathered}
$$

We solve this using parametric form and get

$$
\left[\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 & 1
\end{array}\right] \longrightarrow\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \Rightarrow \alpha=-\beta \Rightarrow\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=\beta\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

This gives us one linearly independent solution, $\alpha=-1, \beta=1$, so we will get one vector J. Now we know our arrow diagram is

$$
-1:\left\{\begin{aligned}
& \leftarrow \\
& \leftarrow \\
\leftarrow & \leftarrow
\end{aligned}\right.
$$

We can find J by solving

$$
\left[\begin{array}{cccc|c}
1 & 1 & 0 & -1 & -\alpha \\
0 & 0 & 1 & 0 & -\alpha \\
0 & 0 & 0 & 0 & \frac{1}{2} \alpha+\frac{1}{2} \beta \\
0 & 0 & 0 & 0 & \alpha+\beta
\end{array}\right]=\left[\begin{array}{cccc|c}
1 & 1 & 0 & -1 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \Rightarrow J=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]
$$

and

$$
(A+I) J=\left[\begin{array}{c}
-\alpha+\beta \\
\alpha \\
0 \\
\beta
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1 \\
0 \\
1
\end{array}\right]
$$

This gives us a solution

$$
\vec{x}=e^{-t}(J+t(A+I) J)=e^{-t}\left(\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
2 \\
-1 \\
0 \\
1
\end{array}\right]\right)=e^{-t}\left[\begin{array}{c}
1+2 t \\
-t \\
1 \\
t
\end{array}\right]
$$

3. Arrow diagram

$$
-1: \begin{cases} & \leftarrow \\ & \leftarrow \\ \leftarrow & \leftarrow\end{cases}
$$

Example 3

Consider

$$
\frac{d}{d t} \vec{x}=A \vec{x} \text { where } A=\left[\begin{array}{cccc}
0 & 1 & 1 & -1 \\
-2 & -3 & 1 & 2 \\
0 & 0 & -1 & 0 \\
-1 & -1 & 2 & 0
\end{array}\right] \text { has eigenvalue } \lambda=-1, m_{-1}=4
$$

1. What is the standard basis of E_{-1} ?
2. Give the solution(s) generated by the standard vector(s) $J \in \operatorname{ker}\left((A-\lambda I)^{2}\right) \backslash \operatorname{ker}(A-\lambda I)$. These are the vectors represented by arrows in the second row (from the bottom) of the arrow diagram.
3. What is the arrow diagram for the system?

Solution:

1. The standard basis of E_{-1} :

$$
(A+I)=\left[\begin{array}{cccc}
1 & 1 & 1 & -1 \\
-2 & -2 & 1 & 2 \\
0 & 0 & 0 & 0 \\
-1 & -1 & 2 & 1
\end{array}\right] \quad \rightarrow \quad \operatorname{RREF}(A+I)=\left[\begin{array}{cccc}
1 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

so the standard basis of E_{-1} is

$$
\left\{\vec{v}_{-1}^{1}=\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right], \vec{v}_{-1}^{2}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

Since there are two eigenvectors, the bottom row of our arrow diagram has two arrows, and now we know only one of the following pictures is our possible arrow diagram

$$
-1:\left\{\begin{array}{ll}
\leftarrow \leftarrow & \text { or }
\end{array} \quad-1:\left\{\begin{array}{l}
\leftarrow \\
\leftarrow \leftarrow \\
\leftarrow
\end{array}\right.\right.
$$

2. Solution(s) generated by generalized eigenvector(s) J in the second row:

We are looking for vectors $J \in \mathbb{R}^{4}$ such that $(A+I) J$ is an eigenvector, that is

$$
\begin{gathered}
(A+I) J \in E_{-1}=\operatorname{Span}\left\{\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]\right\} \\
{\left[\begin{array}{cccc}
1 & 1 & 1 & -1 \\
-2 & -2 & 1 & 2 \\
0 & 0 & 0 & 0 \\
-1 & -1 & 2 & 1
\end{array}\right] J=\alpha \cdot\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]+\beta \cdot\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-\alpha+\beta \\
\alpha \\
0 \\
\beta
\end{array}\right]}
\end{gathered}
$$

So we row reduce

$$
\left.\begin{array}{c}
{\left[\begin{array}{cccc|c}
1 & 1 & 1 & -1 & -\alpha+\beta \\
-2 & -2 & 1 & 2 & \\
0 & 0 & 0 & 0 & 0 \\
-1 & -1 & 2 & 1 & \beta
\end{array}\right] \begin{array}{|c}
R_{3} \leftrightarrow R_{4} \\
R_{2}+2 R_{1}
\end{array} \begin{array}{cccc|c}
\longrightarrow \\
R_{3}+R_{1}
\end{array}}
\end{array} \begin{array}{cccc|c}
1 & 1 & -1 & -\alpha+\beta \\
0 & 0 & 3 & 0 & -\alpha+2 \beta \\
0 & 0 & 3 & 0 & -\alpha+2 \beta \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

This system is consistent only when the entries in the augmented column of rows with all zeroes are also zero. Of course, these entries are already zero, which means α and β can be anything, or that they are free. We solve this using parametric form and get two solutions: $\alpha=1, \beta=0$, and $\alpha=0, \beta=1$. So we will get two linearly independent vectors, J^{1} and J^{2}. Now we know our arrow diagram is

$$
-1: \begin{cases}\leftarrow & \leftarrow \\ \leftarrow & \leftarrow\end{cases}
$$

(a) We can find J^{1} using the solution $\alpha=1, \beta=0$.

$$
\left[\begin{array}{cccc|c}
1 & 1 & 0 & -1 & -\frac{2}{3} \alpha+\frac{1}{3} \beta \\
0 & 0 & 1 & 0 & -\frac{1}{3} \alpha+\frac{2}{3} \beta \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{cccc|c}
1 & 1 & 0 & -1 & -\frac{2}{3} \\
0 & 0 & 1 & 0 & -\frac{1}{3} \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \Rightarrow J^{1}=\left[\begin{array}{c}
-\frac{2}{3} \\
0 \\
-\frac{1}{3} \\
0
\end{array}\right]
$$

and

$$
(A+I) J^{1}=\left[\begin{array}{c}
-\alpha+\beta \\
\alpha \\
0 \\
\beta
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]
$$

This gives us a solution

$$
\vec{x}=e^{-t}\left(J^{1}+t(A+I) J^{1}\right)=e^{-t}\left(\left[\begin{array}{c}
-\frac{2}{3} \\
0 \\
-\frac{1}{3} \\
0
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]\right)=e^{-t}\left[\begin{array}{c}
-\frac{2}{3}-t \\
t \\
-\frac{1}{3} \\
0
\end{array}\right]
$$

(b) We can find J^{2} using the solution $\alpha=0, \beta=1$.

$$
\left[\begin{array}{cccc|c}
1 & 1 & 0 & -1 & -\frac{2}{3} \alpha+\frac{1}{3} \beta \\
0 & 0 & 1 & 0 & -\frac{1}{3} \alpha+\frac{2}{3} \beta \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{cccc|c}
1 & 1 & 0 & -1 & \frac{1}{3} \\
0 & 0 & 1 & 0 & \frac{2}{3} \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \Rightarrow J^{2}=\left[\begin{array}{c}
\frac{1}{3} \\
0 \\
\frac{2}{3} \\
0
\end{array}\right]
$$

and

$$
(A+I) J^{2}=\left[\begin{array}{c}
-\alpha+\beta \\
\alpha \\
0 \\
\beta
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]
$$

This gives us a solution

$$
\vec{x}=e^{-t}\left(J^{2}+t(A+I) J^{2}\right)=e^{-t}\left(\left[\begin{array}{c}
\frac{1}{3} \\
0 \\
\frac{2}{3} \\
0
\end{array}\right]+t\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]\right)=e^{-t}\left[\begin{array}{c}
\frac{1}{3}+t \\
0 \\
\frac{2}{3} \\
t
\end{array}\right]
$$

So the answer to number 2 is

$$
e^{A t} J^{1}=e^{-t}\left[\begin{array}{c}
-\frac{2}{3}-t \\
t \\
-\frac{1}{3} \\
0
\end{array}\right] \quad \text { and } \quad e^{A t} J^{2}=e^{-t}\left[\begin{array}{c}
\frac{1}{3}+t \\
0 \\
\frac{2}{3} \\
t
\end{array}\right]
$$

3. Arrow diagram

$$
-1: \begin{cases}\leftarrow & \leftarrow \\ \leftarrow & \leftarrow\end{cases}
$$

Example 4

Consider

$$
\frac{d}{d t} \vec{x}=A \vec{x} \text { where } A=\left[\begin{array}{cccc}
-4 & -3 & 3 & 3 \\
1 & 0 & -1 & -1 \\
-2 & -2 & 1 & 2 \\
0 & 0 & 0 & -1
\end{array}\right] \text { has eigenvalue } \lambda=-1, m_{-1}=4
$$

1. What is the standard basis of E_{-1} ?
2. Give the solution(s) generated by the standard vector(s) $J \in \operatorname{ker}\left((A-\lambda I)^{2}\right) \backslash \operatorname{ker}(A-\lambda I)$. These are the vectors represented by arrows in the second row (from the bottom) of the arrow diagram.

3 . What is the arrow diagram for the system?

Solution:

1. The standard basis of E_{-1} :

$$
(A+I)=\left[\begin{array}{cccc}
-3 & -3 & 3 & 3 \\
1 & 1 & -1 & -1 \\
-2 & -2 & 2 & 2 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \rightarrow \quad \operatorname{RREF}(A+I)=\left[\begin{array}{cccc}
1 & 1 & -1 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

so the standard basis of E_{-1} is

$$
\left\{\vec{v}_{-1}^{1}=\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right], \vec{v}_{-1}^{2}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right], \vec{v}_{-1}^{3}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

Since there are three eigenvectors, the bottom row of our arrow diagram has three arrows, and now we know the arrow diagram is

$$
-1:\left\{\begin{array}{lll}
& \leftarrow \\
\leftarrow & \leftarrow
\end{array}\right.
$$

2. Solution(s) generated by generalized eigenvector(s) J in the second row:

We are looking for a vector $J \in \mathbb{R}^{4}$ such that $(A+I) J$ is an eigenvector, that is

$$
\begin{gathered}
(A+I) J \in E_{-1}=\operatorname{Span}\left\{\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]\right\} \\
{\left[\begin{array}{cccc}
-3 & -3 & 3 & 3 \\
1 & 1 & -1 & -1 \\
-2 & -2 & 2 & 2 \\
0 & 0 & 0 & 0
\end{array}\right] J=\alpha \cdot\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]+\beta \cdot\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]+\gamma \cdot\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-\alpha+\beta+\gamma \\
\alpha \\
\beta \\
\gamma
\end{array}\right]}
\end{gathered}
$$

So we row reduce

$$
\left[\begin{array}{cccc|c}
-3 & -3 & 3 & 3 & -\alpha+\beta+\gamma \\
1 & 1 & -1 & -1 & \alpha \\
-2 & -2 & 2 & 2 & \beta \\
0 & 0 & 0 & 0 & \gamma
\end{array}\right] \begin{gathered}
R_{1} \leftrightarrow R_{2} \\
R_{2}+3 R_{1} \\
\longrightarrow \\
R_{3}+2 R_{1}
\end{gathered}\left[\begin{array}{cccc|c}
1 & 1 & -1 & -1 & \alpha \\
0 & 0 & 0 & 0 & 2 \alpha+\beta+\gamma \\
0 & 0 & 0 & 0 & 2 \alpha+\beta \\
0 & 0 & 0 & 0 & \gamma
\end{array}\right]
$$

This system is consistent only when the entries in the augmented column of rows with all zeroes are also zero. This gives us a homogeneous system

$$
\begin{array}{cc}
2 \alpha+\beta+\gamma & =0 \\
2 \alpha+\beta & =0 \\
\gamma & =0
\end{array}
$$

We solve this using parametric form and get

$$
\left[\begin{array}{lll}
2 & 1 & 1 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & 1 / 2 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \Rightarrow \begin{aligned}
& \alpha=-\frac{1}{2} \beta \\
& \gamma=0
\end{aligned} \Rightarrow\left[\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right]=\beta\left[\begin{array}{c}
-\frac{1}{2} \\
1 \\
0
\end{array}\right]
$$

This gives us one linearly independent solution, $\alpha=-1 / 2, \beta=1, \gamma=0$. We can find J by solving

$$
\left[\begin{array}{cccc|c}
1 & 1 & -1 & -1 & \alpha \\
0 & 0 & 0 & 0 & 2 \alpha+\beta+\gamma \\
0 & 0 & 0 & 0 & 2 \alpha+\beta \\
0 & 0 & 0 & 0 & \gamma
\end{array}\right]=\left[\begin{array}{cccc|c}
1 & 1 & -1 & -1 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \quad \Rightarrow \quad J=\left[\begin{array}{c}
-\frac{1}{2} \\
0 \\
0 \\
0
\end{array}\right]
$$

and

$$
(A+I) J=\left[\begin{array}{c}
-\alpha+\beta+\gamma \\
\alpha \\
\beta \\
\gamma
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{2} \\
-\frac{1}{2} \\
1 \\
0
\end{array}\right]
$$

This gives us a solution

$$
\vec{x}=e^{-t}(J+t(A+I) J)=e^{-t}\left(\left[\begin{array}{c}
-\frac{1}{2} \\
0 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
\frac{3}{2} \\
-\frac{1}{2} \\
1 \\
0
\end{array}\right]\right)=e^{-t}\left[\begin{array}{c}
-\frac{1}{2}+\frac{3}{2} t \\
-\frac{1}{2} t \\
t \\
0
\end{array}\right]
$$

3. Arrow diagram

$$
-1: \begin{cases} & \leftarrow \\ \leftarrow & \leftarrow\end{cases}
$$

