Homework #6 Solutions

- **4.1.5.** If a is an odd integer, then we may write a=2k+1 for some integer k. Thus $a^2=4k^2+4k+1=4(k^2+k)+1$. Now, k^2 and k have the same parity (i.e. they are either both even or both odd), so in any case the integer k^2+k is even (as the sum of two integers of the same parity is always even). Thus $4(k^2+k)$ is divisible by 8, so $a^2=4(k^2+k)+1\equiv 1\pmod 8$.
- **4.1.10.** I refuse to look at LaTeX documentation or define a macro to duplicate the non-standard notation the textbook is using here. Instead, I will denote the two integers by r_1 and r_2 (i.e., r_1 is the remainder when m is divided into a, and r_2 is the remainder when m is divided into b). Without a loss of generality, we may assume that $r_1 \geq r_2$. Using the division algorithm, we may write $a = q_1m + r_1$ and $b = q_2m + r_2$ for integers q_1 and q_2 . We therefore have $a b = m(q_1 q_2) + r_1 r_2$. As $a \equiv b \pmod{m}$, m divides a b, so this last equation implies that $r_1 r_2 = a b m(q_1 q_2)$ is divisible by m. Since $0 \leq r_2 \leq r_1 < m$, $0 \leq r_1 r_2 < m$, which forces $r_1 r_2 = 0$, i.e., $r_1 = r_2$.
- **4.1.20.** Here is the addition table, in all its typeset glory.

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

- **4.1.27.** (We should assume $n \ge 2$ here since the assertion does not make sense for n = 1.) For any integer $n \ge 2$, $\sum_{k=1}^{n-1} k = n(n-1)/2$ by Exercise 1.3.6. If in addition n is odd, then n-1 is even, so (n-1)/2 is an integer, and therefore $\sum_{k=1}^{n-1} k = n((n-1)/2)$ is divisible by n, i.e., $\sum_{k=1}^{n-1} k \equiv 0 \pmod{n}$. If n is even, then the sum in question is the product of the integers n/2 and n-1. If n divides this product, then because (n, n-1) = 1, n divides n/2 by Lemma 3.4. But 0 < n/2 < n, so this is impossible. Therefore the congruence never holds for n even.
- **4.1.30.** When n = 1, both sides of the putative congruence are equal to 4, so the congruence is valid. Assume now that the congruence holds for some integer $k \ge 1$. We then have

$$4^{k+1} = 4 \cdot 4^k \equiv 4(1+3k) \equiv 4+12k \equiv 1+3+3k \equiv 1+3(k+1) \pmod{9}.$$

So, by induction, the congruence holds for all $n \geq 1$.

4.1.33. If a is any integer, and r is the remainder when a is divided by 4, then $0 \le r < 4$, and since $a \equiv r \pmod{4}$, $a^2 \equiv r^2 \pmod{4}$. We have $0^2 = 0$, $1^2 = 1$, $2^2 = 4 \equiv 0 \pmod{4}$,

Date: March 22, 2018.

and $3^2 = 9 \equiv 1 \pmod{4}$. Thus the square of an integer is congruent to either 0 or 1 modulo 4. It follows that a sum of two squares is congruent to either 0, 1, or 2 modulo 4. Therefore, if $n \equiv 3 \pmod{4}$, then n cannot be the sum of two squares.

4.1.34. If x=0 or x=1, then $x^2=x$, so certainly $x^2\equiv x\pmod p$. Conversely, suppose x is an integer satisfying $x^2\equiv x\pmod p$. Then p divides $x^2-x=x(x-1)$. As p is prime, it follows that p divides either x or x-1. In the first case, $x\equiv 0\pmod p$, while in the second case, $x\equiv 1\pmod p$.