Homework #9 Solutions

7.1.8. Suppose n is a positive integer such that $\varphi(n) = 14 = 2 \cdot 7$. Since $\varphi(2^a) = 2^{a-1}$ for any integer $a \geq 1$, n cannot be a power of 2. Therefore n must have an odd prime divisor p. If n has a second odd prime divisor, say q, then the product formula for φ implies that (p-1)(q-1) divides $\varphi(n) = 14$. However, as both p-1 and q-1 are even, this forces 4 to divide 14, a contradiction. Therefore $n=2^ap^b$ for integers $a\geq 0$ and $b\geq 1$, and $\varphi(n)=2^{a-1}p^{b-1}(p-1)$. We must then have $a\leq 1$ since otherwise $14=\varphi(n)$ would be divisible by 4 as above. If n is even, then $\varphi(n/2)=\varphi(n)=14$, so, replacing n with n/2 if necessary, we may assume that $n=p^b$ for an odd prime p and an integer $b\geq 1$, and we have $14=\varphi(n)=p^{b-1}(p-1)$. If b>1, then $p\mid 14$, so p=7 and 6=p-1 divides 14, a contradiction. This means b=1, from which it follows that $14=\varphi(n)=p-1$, and thus p=15, which is totally ridiculous, and I am vaguely insulted that you have suggested it. So no such n can exist.

7.1.14. Let n have prime factorization $n = p_1^{e_1} p_2^{e_1} \cdots p_r^{e_r}$. Using the product formula for φ , we see that $\varphi(n)$ divides n if and only if

$$\frac{n}{\varphi(n)} = \prod_{i=1}^{r} \left(1 - \frac{1}{p_i} \right)^{-1} = \prod_{i=1}^{r} \frac{p_i}{p_i - 1}$$

is an integer. We assume that this is the case. Each odd prime factor of n contributes at least one factor of 2 to the denominator of the rational number $n/\varphi(n)$, but the numerator of $n/\varphi(n)$ has at most one factor of 2. Therefore n can have at most one odd prime divisor, so we may write $n = 2^a p^b$ for an odd prime p and nonnegative integers a and b. If a = 0 and $b \ge 1$, then

$$\frac{n}{\varphi(n)} = \frac{p}{p-1},$$

which is not an integer as p is odd, so either $a \ge 1$ or b = 0. When $b \ge 1$ (and so necessarily $a \ge 1$ as well), we have

$$\frac{n}{\varphi(n)} = 2\frac{p}{p-1} = \frac{2p}{p-1}.$$

As $n/\varphi(n)$ is an integer, it follows that p-1 divides 2p, and since (p,p-1)=1, p-1 divides 2, which forces p=3. Thus the possibilities are n=1, $n=2^a$ for $a\geq 1$, and $n=2^a3^b$ for $a,b\geq 1$. Conversely, it can be verified that $n/\varphi(n)$ is an integer for each of these possibilities. Namely, when n=1, $n=\varphi(n)=1$, when $n=2^a$ for $a\geq 1$, $n/\varphi(n)=2^a/2^{a-1}=2$, and when $n=2^a3^b$ for $a,b\geq 1$, $n/\varphi(n)=3$. We have therefore identified all of the positive integers n for which $\varphi(n)$ divides n.

7.1.20. If p does not divide n, then, as p is prime, (p, n) = 1, so, by the multiplicativity of φ , $\varphi(pn) = \varphi(p)\varphi(n) = (p-1)\varphi(n)$. Assume now that p divides n, and write $n = p^e m$ with $e \ge 1$ and (p, m) = 1. We then have

$$\varphi(pn) = \varphi(p^{e+1}m) = \varphi(p^{e+1})\varphi(m) = p^e(p-1)\varphi(m),$$

Date: April 12, 2018.

while

$$(p-1)\varphi(n) = (p-1)\varphi(p^{e}m)$$

$$= (p-1)\varphi(p^{e})\varphi(m)$$

$$= (p-1)p^{e-1}(p-1)\varphi(m) = p^{e-1}(p-1)^{2}\varphi(m).$$

Thus $\varphi(pn)/((p-1)\varphi(n)) = p/(p-1) \neq 1$, i.e., $\varphi(pn) \neq (p-1)\varphi(n)$. Therefore, if $\varphi(pn) = (p-1)\varphi(n)$, then it must be that $p \nmid n$.

7.1.22. Let m have prime factorization $m = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r}$, so that m^k has prime factorization $p_1^{e_1 k} p_2^{e_2 k} \cdots p_r^{e_r k}$. We therefore have

$$\varphi(m^k) = m^k \prod_{i=1}^r \left(1 - \frac{1}{p_i} \right) = m^{k-1} \left(m \prod_{i=1}^r \left(1 - \frac{1}{p_i} \right) \right) = m^{k-1} \varphi(m).$$

So we win.

- **7.1.27.** For a prime p and a positive integer m, we denote by $v_p(m)$ the exponent of p in the prime factorization of m. Let n be any positive integer with $\varphi(n) = k$. Then, using the multiplicativity of φ , we have that $p^{v_p(n)-1}(p-1) \mid k$. Therefore $p^{v_p(n)-1} \mid k$ and $p-1 \mid k$. The first divisibility implies that $v_p(n) 1 \le v_p(k)$, or equivalently, that $v_p(n) \le v_p(k) + 1$. The second divisibility implies that $p-1 \le k$, or equivalently, that $p \le k+1$. Therefore n can only be divisible by the finitely many primes not exceeding k+1, and the possible multiplicities of these primes in n are bounded independently of n (namely, by one plus the multiplicity of the corresponding prime in k). By unique factorization, there are only finitely many such positive integers n, and thus only finitely many positive integers n satisfying $\varphi(n) = k$.
- **7.2.40.** Since φ is multiplicative by Theorem 7.4, Theorem 7.8 implies that the summatory function F of φ , given by $F(n) = \sum_{d|n} \varphi(d)$, is also multiplicative. We wish to show that F(n) = n for all positive integers n. Observe that, if n has prime factorization $n = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r}$, then, by multiplicativity of F,

$$F(n) = F(p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r}) = F(p_1^{e_1}) F(p_2^{e_2}) \cdots F(p_r^{e_r}),$$

and it therefore suffices to show that $F(p^e) = p^e$ for a prime p and a positive integer e (we are omitting n = 1 here, but it is clear that F(1) = 1 (this is not a proof by intimidation, as the fact that F(1) = 1 really is clear, objectively)). We will prove the necessary formula by induction on e. When e = 1, since the divisors of $p^e = p$ are 1 and p, we have

$$F(p) = \varphi(1) + \varphi(p) = 1 + p - 1 = p.$$

Assume now that for some integer $e \ge 1$, we have $F(p^e) = p^e$. The divisors of p^{e+1} are the powers p^i with $0 \le i \le e+1$, so we then have

$$\begin{split} F(p^{e+1}) &= \sum_{i=0}^{e+1} \varphi(p^i) \\ &= \left(\sum_{i=0}^{e} \varphi(p^i)\right) + \varphi(p^{e+1}) \\ &= F(p^e) + p^{e+1} - p^e = p^e + p^{e+1} - p^e = p^{e+1}. \end{split}$$

So, by induction, $F(p^e) = p^e$ for all integers $e \ge 1$, completing the proof.