Heat Equation and Sine Series

- There are three big equations in the world of second-order partial differential equations:

1. The Heat Equation:

$$
\frac{\partial u}{\partial t}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

2. The Wave Equation:

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

3. Laplace's Equation (The Potential Equation):

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

- We're going to focus on the heat equation, in particular, a boundary value problem involving the heat equation: Find $u(x, t)$ if

$$
\begin{gathered}
\frac{\partial u}{\partial t}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}} \\
u(x, 0)=f(x), 0<x<l \\
u(0, t)=u(l, t)=0
\end{gathered}
$$

- If $f(x)$ is any finite linear combination of functions of the form

$$
f(x)=\sum_{n=1}^{N} b_{n} \sin \frac{n \pi x}{l}
$$

then the function

$$
u(x, t)=\sum_{n=1}^{N}\left(b_{n} \sin \frac{n \pi x}{l} \cdot e^{-\alpha^{2} n^{2} \pi^{2} t / l^{2}}\right)
$$

solves the heat equation.

- IN FACT, this is also true if $f(x)$ is an infinite series of such functions. If

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l}
$$

then the function

$$
u(x, t)=\sum_{n=1}^{\infty}\left(b_{n} \sin \frac{n \pi x}{l} \cdot e^{-\alpha^{2} n^{2} \pi^{2} t / l^{2}}\right)
$$

solves the heat equation.

- Heat Equation:

To solve the Heat Equation

$$
\begin{gathered}
\frac{\partial u}{\partial t}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}} \\
u(x, 0)=f(x), 0<x<l \\
u(0, t)=u(l, t)=0
\end{gathered}
$$

where f and f^{\prime} are piecewise continuous on the interval $0 \leq x \leq l$, we compute the Sine Series for $f(x)$:

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l}
$$

where

$$
b_{n}=\frac{2}{l} \int_{0}^{l} f(x) \sin \frac{n \pi x}{l} d x, \quad n=1,2, \ldots
$$

Then $u(x, t)$ is given by

$$
u(x, t)=\sum_{n=1}^{\infty}\left[b_{n} \cdot \sin \frac{n \pi x}{l} \cdot e^{-\left(\frac{\alpha n \pi}{l}\right)^{2} t}\right]
$$

- NOTE:

Of the examples below, 2,5 , and 6 are the ones we will be working with. I left the others up... because the pictures are cool.

Links to converging Fourier Series:

1. https://www.desmos.com/calculator/auavzwptdr

Braun, Section 5.4, Example 1
Fourier Series

$$
f(x)= \begin{cases}0 & -1 \leq x<0 \\ 1 & 0 \leq x<1\end{cases}
$$

2. https://www.desmos.com/calculator/43jvcy9w61

Braun, Section 5.5, Example 6
Sine Series

$$
f(x)=\left\{\begin{array}{rl}
-e^{-x} & -1<x<0 \\
e^{x} & 0<x<1
\end{array}\right.
$$

3. https://www.desmos.com/calculator/wo0xwqagla

Braun, Section 5.4, Exercise 9
Cosine Series

$$
f(x)=\left\{\begin{array}{rl}
e^{-x} & -1<x<0 \\
e^{x} & 0<x<1
\end{array}\right.
$$

4. https://www.desmos.com/calculator/mvwdtjfjyd

Braun, Section 5.4, Exercise 10
Fourier Series

$$
f(x)= \begin{cases}e^{x} & -l<x<l\end{cases}
$$

5. https://www.desmos.com/calculator/rbjvydrnbg

Similar to
Braun, Section 5.6, Example 1
Braun, Section 5.6, Exercise 1 (a)
Fourier Series AND Heat Distribution

$$
f(x)= \begin{cases}A & 0<x<l\end{cases}
$$

6. https://www.desmos.com/calculator/epladkiwoe

Fourier Series AND Heat Distribution

$$
f(x)= \begin{cases}x & 0 \leq x<1\end{cases}
$$

Homework:

1. Braun, Section 5.3, Numbers 1 and 2 (See Braun, Section 5.3, Example 1)
2. Braun, Section 5.5, Numbers 7, 8, and 10.
(a) For number 8 , let $a=1$.
(b) For number 10 , let $l=1$.

If you're bored, go back and do number 8 with $a=2$ and number 10 with $l=2$.
Now you're twice as bored.
3. Braun, Section 5.6, Number 1 parts a, c, and d.
4. Now go back and use your Sine Series from the homework in Section 5.5 and do those like Heat Equation problems in 5.6.

