Determinants


Determinants

We need to define determinants and list a few of their principal properties.

For example, $$\textrm{det} \left[ \begin{array}{cc} 4 & 2 \\ 3 & 1 \\ \end{array} \right] \ = \ 4 \cdot 1 \, - \, 2 \cdot 3 \ = \ -2 \, ,$$ and $$\textrm{det} \left[ \begin{array}{ccc} 1 & 2 & -3 \\ 4 & 1 & 1 \\ 1 & 2 & -1 \\ \end{array} \right] \ = \ 1 \cdot \textrm{det} \left[ \begin{array}{cc} 1 & 1 \\ 2 & -1 \\ \end{array} \right] - 2 \cdot \textrm{det} \left[ \begin{array}{cc} 4 & 1 \\ 1 & -1 \\ \end{array} \right] -3 \cdot \textrm{det} \left[ \begin{array}{cc} 4 & 1 \\ 1 & 2 \\ \end{array} \right] \ = \ -3 -2(-5) -3(7) \ = \ -14\,. $$ The formula for the general determinant depends on submatrices.

Let $A = \left[ a_{i,\,j} \right] \in M_n(\mathbb{R}).$ For any pair $(i,j)$ with $1 \leq i , j \leq n$ we define the Submatrix $$A_{i,\,j} \in M_{n-1}(\mathbb{R})$$ be deleting the $i^{th}$ row and $j^{th}$ column of $A.$

For example, if $$A = \left[ \begin{array}{ccc} 1 & 2 & -3 \\ 4 & 1 & 1 \\ 1 & 2 & -1 \\ \end{array} \right]$$ then $$A_{1,1} = \left[ \begin{array}{cc} 1 & 1 \\ 2 & -1 \\ \end{array} \right]$$ and $$A_{3,2} = \left[ \begin{array}{cc} 1 & -3 \\ 4 & 1 \\ \end{array} \right].$$

For $A = \left[ a_{i,\,j} \right] \in M_n(\mathbb{R}),$ we define the Determinant of $A$ as $$ \textrm{det} (A) \ = \ a_{1,1} \textrm{det} (A_{1,1}) - a_{1,2} \textrm{det} (A_{1,2}) + \ldots + (-1)^{n-1}a_{1,\, n} \textrm{det} (A_{1,\, n}).$$

Let's see how this gives the determinant of a $4 \times 4:$ $$\begin{align} \textrm{det} \left[ \begin{array}{cccc} 2 & 7 & -1 & 5 \\ -3 & 4 & 2 & 0 \\ 3 & 1 & -2 & 4 \\ 0 & 2 & 5 & 3 \\ \end{array} \right] \ = \ & 2 \cdot \textrm{det} \left[ \begin{array}{ccc} 4 & 2 & 0 \\ 1 & -2 & 4 \\ 2 & 5 & 3 \\ \end{array} \right] - 7 \cdot \textrm{det} \left[ \begin{array}{ccc} -3 & 2 & 0 \\ 3 & -2 & 4 \\ 0 & 5 & 3 \\ \end{array} \right] \\ & - 1 \cdot \textrm{det} \left[ \begin{array}{ccc} -3 & 4 & 0 \\ 3 & 1 & 4 \\ 0 & 2 & 3 \\ \end{array} \right] -5 \cdot \textrm{det} \left[ \begin{array}{ccc} -3 & 4 & 2 \\ 3 & 1 & -2 \\ 0 & 2 & 5 \\ \end{array} \right]. \\ \end{align}$$


Let $A , B \in M_n(\mathbb{R}).$ Then

Finally, the most important fact about determinants for us is that a matrix is nonsingular if and only if its determinant is nonzero. We will add this to our list of statements equivalent to a matrix being nonsingular.

Theorem: For $A \in M_n(\mathbb{R}),$ the following are equivalent: