First, we must give the definition of a vector space, although we will not use this definition very often in what follows.
The best way to understand the notion of a vector space is to see some examples:
$$ M_{r \, \times \, c}(\mathbb{R}) = \left\{ \quad \left[ \begin{array}{cccc} a_{1,1} & a_{1,2} & \cdots & a_{1,c} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,c} \\ \vdots & \vdots & \ddots & \vdots \\ a_{r,1} & a_{r,2} & \cdots & a_{r,c} \\ \end{array} \right] \quad \middle\vert \quad \begin{array}{c} a_{\,i,\,j} \in \mathbb{R} \\ \textrm{for } i = 1, 2, \dots , r \\ \textrm{and } j = 1, 2, \dots , c \\ \end{array} \quad \right\} $$ |
$$ \mathcal{P}_n = \left\{ a_0 + a_1 t + a_2 t^2 + \cdots + a_n t^n \, \middle\vert \, \, a_0, a_1, \dots, a_n \in \mathbb{R} \right\} $$ |
$$ \mathcal{P} = \left\{ a_0 + a_1 t + a_2 t^2 + \cdots + a_n t^n \, \middle\vert \, \, n = 0, 1, 2, \dots \textrm{ and } a_0, a_1, \dots, a_n \in \mathbb{R} \right\} $$ |
$$\mathcal{P}_0 \subseteq \mathcal{P}_1 \subseteq \mathcal{P}_2 \subseteq \cdots \subseteq \mathcal{P}_n \subseteq \cdots \subseteq \mathcal{P}$$ |
$$ \mathbb{C} = \left\{ \alpha + \beta i \, \middle\vert \, \, \alpha, \beta \in \mathbb{R} \right\} $$ |
$$ C(\mathbb{R}) = \left\{ \, f : \mathbb{R} \to \mathbb{R} \, \middle\vert \, \, f \textrm{ is continuous on } \mathbb{R} \right\} $$ |
$$ C^{\, k}(\mathbb{R}) = \left\{ \, f : \mathbb{R} \to \mathbb{R} \, \middle\vert \, \, \frac{d^kf}{dx^k} = f^{(k)} \textrm{ is continuous on } \mathbb{R} \right\} $$ |
$$ C^{\, \infty}(\mathbb{R}) = \left\{ \, f : \mathbb{R} \to \mathbb{R} \, \middle\vert \, \, f \textrm{ is infinitely differentiable } \right\} $$ |
$$C^{\, \infty}(\mathbb{R}) \subseteq \cdots \subseteq C^{\, k}(\mathbb{R}) \subseteq \cdots \subseteq C^{\, 2}(\mathbb{R}) \subseteq C^{\, 1}(\mathbb{R}) \subseteq C^{\, 0}(\mathbb{R}) = C(\mathbb{R})$$ |
$$\mathcal{P}_0 \subseteq \mathcal{P}_1 \subseteq \mathcal{P}_2 \subseteq \cdots \subseteq \mathcal{P}_n \subseteq \cdots \subseteq \mathcal{P} \subseteq C^{\, \infty}(\mathbb{R}) \subseteq \cdots $$ $$\cdots \subseteq C^{\, k}(\mathbb{R}) \subseteq \cdots \subseteq C^{\, 2}(\mathbb{R}) \subseteq C^{\, 1}(\mathbb{R}) \subseteq C^{\, 0}(\mathbb{R}) = C(\mathbb{R})$$ |
$$ V_L = \left\{ \, y \in C(\mathbb{R}) \, \middle\vert \, \, L[y] = 0 \right\}$$ |
|
$$ V_A = \left\{ \, \vec{x} \in C^{\, \infty}(\mathbb{R},\mathbb{R}^n) \, \middle\vert \, \, \frac{d}{dt} \vec{x} = A \vec{x} \right\}$$ |
|