
Arrow Diagrams and Generalized Eigen Vectors

Arrow Diagrams

An arrow diagram is a table of arrows that represents the distribution of eigenvectors and generalized
eigenvectors of a matrix A ∈Mn(R).

Let λ1, λ2, . . . , λk be the eigenvalues of A. For each λi you will get a rectangular grid of arrows, for
example

λi :


←

← ← ←
← ← ← ←

with the following property: the number of arrows on the bottom row is the dimension of Eλ = ker(A−λI),
the number of arrows in the bottom two rows is the dimension of ker((A− λI)2), the number of arrows in
the bottom three rows is the dimension of ker((A− λI)3), and so on. Continue until the total number of
arrows equals the multiplicity of λi, mλi . For example, if you “have all your eigenvectors” for an eigenvalue
λ of multiplicity mλ, that is to say dim(Eλ) = mλ, then the arrow diagram for that λ will be a single row
of mλ arrows:

λ :
{
← ← · · · ←

The diagram always has one important feature: for any eigenvalue λ, the number of arrows in a row
can not exceed the number of arrows in a lower row.

Thus, if you have an eigenvalue λ of multiplicity mλ and you only have one eigenvector, that is to say
dim(Eλ) = 1, then the arrow diagram for that λ will be a single column of mλ arrows:

λ :


←
...
←
←

and this is exactly the situation in which we get a Jordan cycle.
If you have a 4 × 4 with eigenvalue −2 of multiplicity m−2 = 1 and eigenvalue −1 of multiplicity

m−1 = 3, then the possible arrow diagrams are

(a)
−2 :

{
← − 1 :

{
← ← ←

(b)

−2 :
{
← − 1 :

{
←

← ←

(c)

−2 :
{
← − 1 :


←
←
←

A 4× 4 with a single eigenvalue, λ, has the following possible arrow diagrams:

(a) λ :
{
← ← ← ← (b) λ :

{
←

← ← ← (c) λ :

{
← ←
← ← (d) λ :


←
←

← ←
(e) λ :


←
←
←
←



Example 1
Consider

d

dt
~x = A~x where A =

 0 −3 3
1 4 −1
−2 −2 5

 has eigenvalue λ = 3,m3 = 3.

1. What is the standard basis of E3?

2. Give the solution(s) generated by the standard vector(s) J ∈ ker((A − λI)2) \ ker(A − λI). These
are the vectors represented by arrows in the second row (from the bottom) of the arrow diagram.

3. What is the arrow diagram for the system?

Solution:

1. The standard basis of E3:

(A− 3I) =

 −3 −3 3
1 1 −1
−2 −2 2

 → RREF(A− 3I) =

 1 1 −1
0 0 0
0 0 0


so the standard basis of E3 is ~v 1

3 =

 −1
1
0

 , ~v 2
3 =

 1
0
1


Since there are two eigenvectors, the bottom row of our arrow diagram has two arrows, and now we
know the arrow diagram:

3 :

{
←

← ←

2. Solution(s) generated by generalized eigenvector(s) J in the second row:

We are looking for vectors J ∈ R3 such that (A− 3I)J is an eigenvector, that is

(A− 3I)J ∈ E3 = Span


 −1

1
0

 ,

 1
0
1


 −3 −3 3

1 1 −1
−2 −2 2

 J = α ·

 −1
1
0

 + β ·

 1
0
1

 =

 −α + β
α
β


So we row reduce −3 −3 3 −α + β

1 1 −1 α
−2 −2 2 β

 R1 ↔ R2

−→

 1 1 −1 α
−3 −3 3 −α + β
−2 −2 2 β


R2 + 3R1

−→
R3 + 2R1

 1 1 −1 α
0 0 0 2α + β
0 0 0 2α + β





This system is consistent only when the entries in the augmented column of rows with all zeroes are
also zero. This gives us a homogeneous system

2α + β = 0
2α + β = 0

We solve this using parametric form and get[
2 1
2 1

]
−→

[
1 1/2
0 0

]
⇒ α = −1

2
β ⇒

[
α
β

]
= β

[
−1

2

1

]
This gives us one linearly independent solution, α = −1/2, β = 1, so we will get one vector J . We
can find J by solving 1 1 −1 α

0 0 0 2α + β
0 0 0 2α + β

 =

 1 1 −1 −1
2

0 0 0 0
0 0 0 0

 ⇒ J =

 −1
2

0
0


and

(A− 3I)J =

 −α + β
α
β

 =

 3
2

−1
2

1


This gives us a solution

~x = e3t (J + t(A− 3I)J) = e3t

 −1
2

0
0

+ t

 3
2

−1
2

1

 = e3t

 −1
2

+ 3
2
t

−1
2
t

t


3. Arrow diagram

3 :

{
←

← ←



Example 2
Consider

d

dt
~x = A~x where A =


−1 0 2 0
−2 −3 1 2
−1 −1 0 1
−1 −1 2 0

 has eigenvalue λ = −1,m−1 = 4.

1. What is the standard basis of E−1?

2. Give the solution(s) generated by the standard vector(s) J ∈ ker((A − λI)2) \ ker(A − λI). These
are the vectors represented by arrows in the second row (from the bottom) of the arrow diagram.

3. What is the arrow diagram for the system?

Solution:

1. The standard basis of E−1:

(A+ I) =


0 0 2 0
−2 −2 1 2
−1 −1 1 1
−1 −1 2 1

 → RREF(A+ I) =


1 1 0 −1
0 0 1 0
0 0 0 0
0 0 0 0


so the standard basis of E−1 is ~v 1

−1 =


−1
1
0
0

 , ~v 2
−1 =


1
0
0
1




Since there are two eigenvectors, the bottom row of our arrow diagram has two arrows, and now we
know only one of the following pictures is our possible arrow diagram

−1 :

{
← ←
← ← or − 1 :


←
←

← ←

2. Solution(s) generated by generalized eigenvector(s) J in the second row:

We are looking for vectors J ∈ R4 such that (A+ I)J is an eigenvector, that is

(A+ I)J ∈ E−1 = Span



−1
1
0
0

 ,


1
0
0
1





0 0 2 0
−2 −2 1 2
−1 −1 1 1
−1 −1 2 1

 J = α ·


−1
1
0
0

 + β ·


1
0
0
1

 =


−α + β

α
0
β





So we row reduce
0 0 2 0 −α + β
−2 −2 1 2 α
−1 −1 1 1 0
−1 −1 2 1 β


R1 ↔ R3

−R1

−→
1
2
R3


1 1 −1 −1 0
−2 −2 1 2 α
0 0 1 0 −1

2
α + 1

2
β

−1 −1 2 1 β


R2 + 2R1

−R2

−→
R4 +R1


1 1 −1 −1 0
0 0 1 0 −α
0 0 1 0 −1

2
α + 1

2
β

0 0 1 0 β


R1 +R2

R3 −R2

−→
R4 −R2


1 1 0 −1 −α
0 0 1 0 −α
0 0 0 0 1

2
α + 1

2
β

0 0 0 0 α + β


This system is consistent only when the entries in the augmented column of rows with all zeroes are
also zero. This gives us a homogeneous system

1
2
α + 1

2
β = 0

α + β = 0

We solve this using parametric form and get[
1/2 1/2
1 1

]
−→

[
1 1
0 0

]
⇒ α = −β ⇒

[
α
β

]
= β

[
−1
1

]
This gives us one linearly independent solution, α = −1, β = 1, so we will get one vector J . Now we
know our arrow diagram is

−1 :


←
←

← ←
We can find J by solving

1 1 0 −1 −α
0 0 1 0 −α
0 0 0 0 1

2
α + 1

2
β

0 0 0 0 α + β

 =


1 1 0 −1 1
0 0 1 0 1
0 0 0 0 0
0 0 0 0 0

 ⇒ J =


1
0
1
0


and

(A+ I)J =


−α + β

α
0
β

 =


2
−1
0
1


This gives us a solution

~x = e−t (J + t(A+ I)J) = e−t




1
0
1
0

+ t


2
−1
0
1


 = e−t


1 + 2t
−t
1
t


3. Arrow diagram

−1 :


←
←

← ←



Example 3
Consider

d

dt
~x = A~x where A =


0 1 1 −1
−2 −3 1 2
0 0 −1 0
−1 −1 2 0

 has eigenvalue λ = −1,m−1 = 4.

1. What is the standard basis of E−1?

2. Give the solution(s) generated by the standard vector(s) J ∈ ker((A − λI)2) \ ker(A − λI). These
are the vectors represented by arrows in the second row (from the bottom) of the arrow diagram.

3. What is the arrow diagram for the system?

Solution:

1. The standard basis of E−1:

(A+ I) =


1 1 1 −1
−2 −2 1 2
0 0 0 0
−1 −1 2 1

 → RREF(A+ I) =


1 1 0 −1
0 0 1 0
0 0 0 0
0 0 0 0


so the standard basis of E−1 is ~v 1

−1 =


−1
1
0
0

 , ~v 2
−1 =


1
0
0
1




Since there are two eigenvectors, the bottom row of our arrow diagram has two arrows, and now we
know only one of the following pictures is our possible arrow diagram

−1 :

{
← ←
← ← or − 1 :


←
←

← ←

2. Solution(s) generated by generalized eigenvector(s) J in the second row:

We are looking for vectors J ∈ R4 such that (A+ I)J is an eigenvector, that is

(A+ I)J ∈ E−1 = Span



−1
1
0
0

 ,


1
0
0
1





1 1 1 −1
−2 −2 1 2
0 0 0 0
−1 −1 2 1

 J = α ·


−1
1
0
0

 + β ·


1
0
0
1

 =


−α + β

α
0
β





So we row reduce
1 1 1 −1 −α + β
−2 −2 1 2 α
0 0 0 0 0
−1 −1 2 1 β


R3 ↔ R4

R2 + 2R1

−→
R3 +R1


1 1 1 −1 −α + β
0 0 3 0 −α + 2β
0 0 3 0 −α + 2β
0 0 0 0 0


R3 −R2

1
3
R2

−→


1 1 1 −1 −α + β
0 0 1 0 −1

3
α + 2

3
β

0 0 0 0 0
0 0 0 0 0


R1 −R2

−→


1 1 0 −1 −2

3
α + 1

3
β

0 0 1 0 −1
3
α + 2

3
β

0 0 0 0 0
0 0 0 0 0


This system is consistent only when the entries in the augmented column of rows with all zeroes
are also zero. Of course, these entries are already zero, which means α and β can be anything, or
that they are free. We solve this using parametric form and get two solutions: α = 1, β = 0, and
α = 0, β = 1. So we will get two linearly independent vectors, J1 and J2. Now we know our arrow
diagram is

−1 :

{
← ←
← ←

(a) We can find J1 using the solution α = 1, β = 0.
1 1 0 −1 −2

3
α + 1

3
β

0 0 1 0 −1
3
α + 2

3
β

0 0 0 0 0
0 0 0 0 0

 =


1 1 0 −1 −2

3

0 0 1 0 −1
3

0 0 0 0 0
0 0 0 0 0

 ⇒ J1 =


−2

3

0
−1

3

0


and

(A+ I)J1 =


−α + β

α
0
β

 =


−1
1
0
0


This gives us a solution

~x = e−t
(
J1 + t(A+ I)J1

)
= e−t



−2

3

0
−1

3

0

+ t


−1
1
0
0


 = e−t


−2

3
− t
t
−1

3

0


(b) We can find J2 using the solution α = 0, β = 1.

1 1 0 −1 −2
3
α + 1

3
β

0 0 1 0 −1
3
α + 2

3
β

0 0 0 0 0
0 0 0 0 0

 =


1 1 0 −1 1

3

0 0 1 0 2
3

0 0 0 0 0
0 0 0 0 0

 ⇒ J2 =


1
3

0
2
3

0


and

(A+ I)J2 =


−α + β

α
0
β

 =


1
0
0
1





This gives us a solution

~x = e−t
(
J2 + t(A+ I)J2

)
= e−t




1
3

0
2
3

0

+ t


1
0
0
1


 = e−t


1
3

+ t
0
2
3

t


So the answer to number 2 is

eA tJ1 = e−t


−2

3
− t
t
−1

3

0

 and eA tJ2 = e−t


1
3

+ t
0
2
3

t


3. Arrow diagram

−1 :

{
← ←
← ←



Example 4
Consider

d

dt
~x = A~x where A =


−4 −3 3 3
1 0 −1 −1
−2 −2 1 2
0 0 0 −1

 has eigenvalue λ = −1,m−1 = 4.

1. What is the standard basis of E−1?

2. Give the solution(s) generated by the standard vector(s) J ∈ ker((A − λI)2) \ ker(A − λI). These
are the vectors represented by arrows in the second row (from the bottom) of the arrow diagram.

3. What is the arrow diagram for the system?

Solution:

1. The standard basis of E−1:

(A+ I) =


−3 −3 3 3
1 1 −1 −1
−2 −2 2 2
0 0 0 0

 → RREF(A+ I) =


1 1 −1 −1
0 0 0 0
0 0 0 0
0 0 0 0


so the standard basis of E−1 is~v 1

−1 =


−1
1
0
0

 , ~v 2
−1 =


1
0
1
0

 , ~v 3
−1 =


1
0
0
1




Since there are three eigenvectors, the bottom row of our arrow diagram has three arrows, and now
we know the arrow diagram is

−1 :

{
←

← ← ←

2. Solution(s) generated by generalized eigenvector(s) J in the second row:

We are looking for a vector J ∈ R4 such that (A+ I)J is an eigenvector, that is

(A+ I)J ∈ E−1 = Span



−1
1
0
0

 ,


1
0
1
0

 ,


1
0
0
1




−3 −3 3 3
1 1 −1 −1
−2 −2 2 2
0 0 0 0

 J = α ·


−1
1
0
0

 + β ·


1
0
1
0

 + γ ·


1
0
0
1

 =


−α + β + γ

α
β
γ


So we row reduce

−3 −3 3 3 −α + β + γ
1 1 −1 −1 α
−2 −2 2 2 β
0 0 0 0 γ


R1 ↔ R2

R2 + 3R1

−→
R3 + 2R1


1 1 −1 −1 α
0 0 0 0 2α + β + γ
0 0 0 0 2α + β
0 0 0 0 γ





This system is consistent only when the entries in the augmented column of rows with all zeroes are
also zero. This gives us a homogeneous system

2α + β + γ = 0
2α + β = 0
γ = 0

We solve this using parametric form and get 2 1 1
2 1 0
0 0 1

 −→
 1 1/2 0

0 0 1
0 0 0

 ⇒ α = −1
2
β

γ = 0
⇒

 α
β
γ

 = β

 −1
2

1
0


This gives us one linearly independent solution, α = −1/2, β = 1, γ = 0. We can find J by solving

1 1 −1 −1 α
0 0 0 0 2α + β + γ
0 0 0 0 2α + β
0 0 0 0 γ

 =


1 1 −1 −1 −1

2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ⇒ J =


−1

2

0
0
0


and

(A+ I)J =


−α + β + γ

α
β
γ

 =


3
2

−1
2

1
0


This gives us a solution

~x = e−t (J + t(A+ I)J) = e−t



−1

2

0
0
0

+ t


3
2

−1
2

1
0


 = e−t


−1

2
+ 3

2
t

−1
2
t

t
0


3. Arrow diagram

−1 :

{
←

← ← ←


