Monday Tuesday Wednesday Thursday Friday
1/18 1/19 1/20
SIR Model
1/21 1/22
Braun 1.2
1/25
Braun 1.4
1/26
Quiz 1
Start:
8 AM
1/27
Euler's Method
1/28
Quiz 1
Due:
5 PM
1/29
Euler's Method
Linear Algebra Lesson 1: Vectors and Matrices
2/1
Braun 2.1
2/2
Quiz 2
Start:
8 AM
2/3
Braun 2.2
2/4
Quiz 2
Due:
5 PM
2/5
Braun 2.2.1
Linear Algebra Lesson 2: Solving Linear Systems
2/8
Braun 2.2.2
2/9
Quiz 3
Start:
8 AM
2/10
Braun 2.3
2/11
Quiz 3
Due:
5 PM
2/12
Braun 2.5
Linear Algebra Lesson 3: Matrix Inverses
2/15
Braun 2.5
2/16
Quiz 4
Start:
8 AM
2/17
Braun 2.5
2/18
Quiz 4
Due:
5 PM
2/19
Review
Linear Algebra Lesson 4: Determinants
Exam 1
Start Time: Friday, 2/19, 5 PM
Due: Monday, 2/22, 8 AM
2/22
Oscillators
2/23
Quiz 5
Start:
8 AM
2/24
Oscillators
2/25
Quiz 5
Due:
5 PM
2/26
Braun 3.1
3/1
Braun 3.1
3/2
Quiz 6
Start:
8 AM
3/3
LinAlg 5
3/4
Quiz 6
Due:
5 PM
3/5
LinAlg 6
3/8
LinAlg 7
3/9
Quiz 7
Start:
8 AM
3/10
LinAlg 7
3/11
Quiz 7
Due:
5 PM
3/12
LinAlg 8
3/15
Spring Break
3/16 3/17 3/18 3/19
3/22
LinAlg 8
3/23
Quiz 8
Start:
8 AM
3/24
LinAlg 8
3/25
Quiz 8
Due:
5 PM
3/26
Review
Exam 2
Start Time: Friday, 3/26, 5 PM
Due: Monday, 3/29, 8 AM
3/29
Braun 3.8
3/30
Quiz 9
Start:
8 AM
3/31
Braun 3.8
4/1
Quiz 9
Due:
5 PM
4/2
Braun 3.9
4/5
Braun 3.9
4/6
Quiz 10
Start:
8 AM
4/7
Braun 3.10
4/8
Quiz 10
Due:
5 PM
4/9
Braun 3.10
4/12
Braun 3.11
4/13
Quiz 11
Start:
8 AM
4/14
Braun 4.7
4/15
Quiz 11
Due:
5 PM
4/16
Braun 4.7
4/19
Braun 4.10
4/20
Quiz 12
Start:
8 AM
4/21
Braun 4.10
4/22
Quiz 12
Due:
5 PM
4/23
Braun 4.10
4/26
Braun Ch. 5
4/27
Quiz 13
Start:
8 AM
4/28
Braun Ch. 5
4/29
Quiz 13
Due:
5 PM
4/30
Braun Ch. 5
5/3
Braun Ch. 5
5/4
Quiz 14
Start:
8 AM
5/5
Braun Ch. 5
5/6
Quiz 13
Due:
5 PM
5/7
Review
Exam 3
Start Time: Friday, 5/7, 5 PM
Due: Saturday, 5/15, 10 PM
SIR Model
Resource: Judson, Section 2.1.3
SIR model pdf
Vectors and Matrices
Resource: LinAlg1.html
Homework: LinAlg1HW.html
First Order Linear
Resource: Braun, Section 1.2
Homework: Braun, Section 1.2:
Exercises 1, 3, 4, 6, 11, 15, 16, 20-23
Do not do the limits in 20-23
faculty.sfasu.edu/judsontw/ode/html-20180819/firstlook05.html
Exercises 1-20
Challenge: Braun, Section 1.2:
Exercises 17, 18, 19
Applications:
Separable
Resource: Braun, Section 1.4
Homework: Braun, Section 1.4:
Exercises 1-10
faculty.sfasu.edu/judsontw/ode/html-20180819/firstlook02.html
Exercises 1-9, 10-21
Challenge: Braun, Section 1.4:
Exercises 11, 13-18
Applications:
Euler's Method
Resource: Judson, Section 1.4.1
Homework: Braun, Section 1.13:
Exercises 1-5
Judson, Section 1.4, Exercises
Exercise 1, parts a, b, and c
Solving Linear Systems
Resource: LinAlg2.html
Homework: LinAlg2HW.html
LSPG.html
Second Order Linear
Resource: Braun, Section 2.1
Homework: Braun, Section 2.1:
Exercises 1-9
Challenge: Braun, Section 2.1:
Exercises 10-19
Applications:
Distinct Real Roots
Resource: Braun, Section 2.2
Homework: Braun, Section 2.2:
Exercises 1-8 (Note Braun's remark for problems 3 and 5)
faculty.sfasu.edu/judsontw/ode/html-20180819/firstlook01.html
Exercises 11-14
Challenge: Braun, Section 2.2:
Exercises 9-12
Matrix Inverses
Resource: LinAlg3.html
Homework: LinAlg3HW.html
Complex Roots
Resource: Braun, Section 2.2.1
Homework: Braun, Section 2.2.1:
Exercises 1-6, 8-10
Challenge: Braun, Section 2.2.1:
Exercises 12-19
Applications:
Repeated Roots
Resource: Braun, Section 2.2.2
Homework: Braun, Section 2.2.2:
Exercises 1-7
faculty.sfasu.edu/judsontw/ode/html-20180819/secondorder01.html
Exercises 1-20
Challenge: Braun, Section 2.2.2:
Exercises 8-20
Second Order Nonhomogeneous
Resource: Braun, Section 2.3
Homework: Braun, Section 2.3:
Exercises 1-3
Challenge: Braun, Section 2.3:
Exercises 4 and 5
Determinants
Resource: LinAlg4.html
Homework: LinAlg4HW.html
Judicious Guessing
Resource: Braun, Section 2.5
JudGuess.pdf
Judson: Undetermined Coefficients
Judson: Strategy
Homework: Braun, Section 2.5:
Exercises 1-14
faculty.sfasu.edu/judsontw/ode/html-20180819/secondorder02.html
Exercises 1-24
Challenge: Braun, Section 2.5:
Exercises 15, 16, 18
Harmonic Oscillators
Resource: Oscillators.html
Judson: Spring-Mass Model
Judson: Spring-Mass Equation
Judson: Oscillators with Sage
Applications:
Linear Systems
Resource: Braun, Section 3.1
Pesticide Example pdf
Homework: Braun, Section 3.1:
Exercises 4-9
Applications:
Vector Spaces
Resource: LinAlg5.html
Homework: Memorize Blue Boxes
Subspaces
Resource: LinAlg6.html
Homework: LinAlg6HW.html
Span
Resource: LinAlg7.html
Homework: LinAlg7HW.html
Basis
Resource: LinAlg8.html
LinAlgReview.html
Homework: LinAlg8HW.html
Real Eigenvalues
Resource: Braun, Section 3.8
Solution to number 3
Homework: Braun, Section 3.8:
Exercises 1-12
Hint for 6: p(λ)=λ4-64 λ3
Challenge: Braun, Section 3.8:
Exercises 14-21
Complex Eigenvalues
Resource: Braun, Section 3.9
Solution to number 4
Complex Alternative Questions
Homework: Braun, Section 3.9:
Exercises 1-8
Note: For 7, just find the general solution. Do not solve the IVP. The solution in the textbook is wrong.
Challenge: Braun, Section 3.9:
Exercise 9
UPDATE
Homework: Braun, Section 3.9:
Exercises 1, 5, 6
http://faculty.sfasu.edu/judsontw/ode/html-20190821/linear04.html
Exercises 1-8
Generalized Eigenvectors
Resource: Braun, Section 3.10
Solution to example 2
Solution to number 5
Generalized Eigenvectors and Arrow Diagrams
Generalized Eigenvectors Examples
Homework: Braun, Section 3.10:
Exercises 1-8 (Include Arrow Diagrams)
Challenge: Braun, Section 3.10:
Exercises 9-20
UPDATE
Homework: http://faculty.sfasu.edu/judsontw/ode/html-20190821/linear05.html
Exercises 1-8
Matrix Exponential
Resource: Braun, Section 3.11
Judson, 3.9; The Matrix Exponential
EigenReview.pdf
Homework: Braun, Section 3.11:
Exercises 1-7
Phase Plane
Resource: Braun, Section 4.7
Phase Plane Portraits
MIT Phase Plane Mathlet
sagePhase.html
Homework: Braun, Section 4.7:
Exercises 1-11
Judson 3.7
Exercises 1-8
Nonlinear Systems
Resource: Braun, Section 4.10
nonlinear.pdf
Lotka Volterra Equations
Judson, 2.2; The Geometry Of Systems
Judson, 5.1; Linearization of Nonlinear Systems
sagePhase.html
Homework: Braun, Section 4.10:
Exercises 3, 4
Describe the phase plane at each equilibrium point.
Judson, 5.1
Exercises 1-9
Describe the phase plane at each equilibrium point.
PDEs and Heat Equation
Resource: Braun, Chapter 5
Heat Equation and Sine Series
Homework: See the pdf above