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Prelim Exam Solutions – By Topic

Measure Theory.

Problem 1 (Spring 2019). Let T : Rn → Rn be a Lipschitz transformation. Show that if A is a set
of Lebesgue measure zero, then T (A) also has Lebesgue measure zero.

Solution: Since A is measurable with |A| = 0, for any ϵ > 0 there exists a family of intervals
{Ik}∞k=1 such that

∞∑
k=1

|Ik| < |A|+ ϵ = ϵ.

Let Ik = [ak, bk] for some ak, bk ∈ R. By definition, since T is Lipschitz there exists a constant
Lip(T ) <∞ such that

|T (x)− T (y)| ≤ Lip(T )|x− y|
for any x, y ∈ R. It follows that

|T (Ik)| = |T (bk)− T (ak)| ≤ Lip(T )|bk − ak| = |Ik|

so
∞∑
k=1

|T (Ik)| ≤ Lip(T )

∞∑
k=1

|Ik| < ϵ.

Now, if y ∈ T (A) then there exists an x ∈ A such that T (x) = y. Because {Ik}∞k=1 covers A, we
know that x ∈ Ik for some k. Hence, y ∈ T (Ik) for some k and {T (Ik)}∞k=1 cover T (A). But by
monotonicity,

|T (A)| ≤
∞∑
k=1

|T (Ik)| < ϵ.

This holds for any ϵ > 0, and thus |T (A)| = 0.
NB: In Rn, you have to be a little careful adapting the above idea (a constant depending only

on n enters into play, if I remember correctly). If you define Lebesgue measure with balls, the same
idea generalizes to Rn without edits.

Problem 2 (Spring 2016). For any r ≥ 0 and any x ∈ R2, define the closed unit ball Br(x) := {y ∈
R2 | |y − x| ≤ r}. Let 0 < c < 1. Let E be a measurable subset of the unit square Q = [0, 1]2 ⊂ R2

with the property that for every x ∈ Q and every r > 0 there exists a y ∈ Br(x) such that
Bc|x−y|(y) ⊂ E. Prove that Q \ E has Lebesgue measure zero.

Solution (courtesy of Joe Miller): Let ϵ > 0. Then, choose an open set O, with Q \ E ⊂ O,
such that λ(O\ [Q\E]) < ϵ =⇒ λ(O) < λ(Q\E)+ ϵ. Then, let B denote that set of balls B|x−y|(y)
for x ∈ Q \ E and y chosen such that Bc|x−y|(y) ⊂ E, where y ∈ Br(x) for some r > 0 sufficiently
small such that B|x−y|(y) ⊂ O. This is easily seen to be a Vitali cover of Q \ E. So, by the Vitali
Covering Theorem (NOT the covering lemma), there exists a countable subcollection {Bk}∞k=1 of
pairwise disjoint balls in B such that:

λ(Q \ E \ ∪∞
k=1Bk) = 0

This implies:

0 = λ(Q\E\∪∞
k=1Bk) < λ(O\∪BK) = λ(O)−λ(∪Bk) < λ(Q\E)+ϵ−λ(∪Bk) =⇒ λ(∪Bk) < λ(Q\E)+ϵ

as the Bk are pairwise disjoint. Note that as ∪∞
k=1cBk is contained in E, we have that A ⊂

∪∞
k=1(Bk \ cBk). Furthermore, the collection {Bk \ cBk} is still disjoint. So:

λ(Q \ E) = λ(Q \ E \ ∪∞
k=1Bk) ≤ λ(∪∞

k=1(Bk \ cBk)) ≤
∞∑
k=1

λ(Bk \ cBk) = (1− c2)

∞∑
k=1

λ(Bk) ≤ (1− c2)λ(O) < (1− c2)[λ(Q \ E) + ϵ]

Taking ϵ→ 0, we see that λ(Q \ E) = (1− c2)λ(Q \ E), a contradiction unless λ(Q \ E) = 0.

https://joekmiller.wordpress.com/
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Problem 3 (Spring 2016). Let (X, d) be a compact metric space. Let {µn}n∈N be a sequence of
positive Borel measures on X that converge in the weak∗ topology to a finite positive Borel measure
µ. Show that for every compact K ⊂ X,

µ(K) ≥ lim sup
n→∞

µn(K).

Solution: Let K ⊆ X be compact. In particular, K is closed. Now, let Kj := {x ∈ X : d(K,x) < 1
j }.

By Urysohn’s lemma, there exists a continuous function ϕj such that ϕj is 1 on K, 0 on Kc
j , and

0 ≤ 1 in between. So we have:

µn(K) ≤
∫
ϕjµn → ϕjµ ≤ µ(Kj)

So this implies:

lim sup
n→∞

µn(K) ≤ µ(Kj)

Taking j → ∞, we obtain the result.

Problem 4 (Spring 2015, Spring 2012, Spring 2022). Let Z be a subset of R with measure zero.
Show that the set A = {x2 | x ∈ Z} also has measure zero.

Solution: A quick way to prove this is to note that f(x) = x2 is locally Lipschitz, and thus if
A is bounded we have |A| = 0 implies |f(A)| = 0. But, f(A) = Z. If A is not bounded we can define
An = A ∩ [−n, n] and note that An is bounded, so |f(An)| = 0. Consequently,

|Z| =
∣∣∣∣Z ∩

∞⋃
n=1

[0, n2]

∣∣∣∣ = ∣∣∣∣ ∞⋃
n=1

Z ∩ [0, n2]

∣∣∣∣ = ∣∣∣∣ ∞⋃
n=1

An

∣∣∣∣ ≤ ∞∑
n=1

|An| = 0.

Let’s prove this from first principles instead. We can still use the same localization procedure –
namely if {En}∞n=1 is a sequence of measurable sets such that |En| <∞ for all n and

⋃∞
n=1En = R

(remark: any measure space satisfying this is called σ-finite) then we just need to show |Z ∩En| = 0
for all n. Then,

|Z| =
∣∣∣∣Z ∩

∞⋃
n=1

En

∣∣∣∣ = ∣∣∣∣ ∞⋃
n=1

Z ∩ En
∣∣∣∣ ≤ ∞∑

n=1

|Z ∩ En| = 0.

Choose En = [−n2, n2]. It suffices then to show that if A ⊂ [0, n] then |Z| = 0 (you really need to
show that it holds if A ⊂ [−n, n], but you need to do [−n, 0] and [0, n] separately. The proofs are
the same). Since A is measurable for any ϵ > 0 there exist closed intervals {Ik}∞k=1 covering A such
that

∞∑
k=1

|Ik| ≤ |A|+ ϵ = ϵ.

Without loss of generality we may assume [ak, bk] = Ik ⊂ [0, n]. When we square this, the length is

|b2k − a2k| = |bk − ak|(bk + ak) ≤ 2n|bk − ak| = 2n|Ik|

since we assumed 0 ≤ ak, bk ≤ n. Denote this squared interval by Ik. Then,

|Z| ≤
∣∣∣∣ ∞⋃
k=1

Ik

∣∣∣∣ ≤ ∞∑
k=1

|Ik| ≤ 2n

∞∑
k=1

|Ik| = 2nϵ.

since the Ik cover Z.
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Problem 5 (Spring 2015, Spring 2012). Let E ⊂ R be a measurable set such that 0 < |E| < ∞.
Prove that for every α ∈ (0, 1) there is an open interval I such that

|E ∩ I| ≥ α|I|.

Solution: We prove the contrapositive. Suppose there exists an α ∈ (0, 1) such that every open
interval I satisfies |E ∩ I| < α|I|. Since E ⊂ R is Lebesgue measurable for every ϵ > 0 there exists
a covering {Ik}∞k=1 of E by open intervals such that

∞∑
k=1

|Ik| ≤ |E|+ ϵ.

Since E ⊂
⋃∞
k=1 Ik, applying the above bound we have

|E| =
∣∣∣∣E ∩

( ∞⋃
k=1

Ik

)∣∣∣∣ = ∣∣∣∣ ∞⋃
k=1

(E ∩ Ik)
∣∣∣∣ ≤ ∞∑

k=1

|E ∩ Ik| < α

∞∑
k=1

|Ik| ≤ α(|E|+ ϵ).

Thus, |E| < α(|E| + ϵ), and taking ϵ → 0 we get |E| ≤ α|E|. If |E| ̸= ∞, it follows that |E| = 0.
Hence either |E| = 0 or |E| = ∞.

Problem 6 (Fall 2013). Assume that µ is a finite Borel measure on Rn, and that there exists a
constant 0 < R <∞ such that the k-th moments of µ satisfy the bound∫

|x|k dµ < Rk
r

∀k ∈ N,

for some 0 < r ≤ 1. Prove that µ has bounded support contained in {x ∈ Rn | |x| ≤ R} if r = 1 and
in {x ∈ Rn | |x| ≤ 1} if 0 < r < 1.

Solution: First suppose r = 1. Then the k-th moments satisfy the bound∫
|x|k dµ < Rk ∀k ∈ N

for some 0 < R <∞. To show that spt(µ) ⊂ BR(0) we can show that

BR(0)
c ⊂ Rn \ spt(µ) = {x ∈ Rn | µ(Br(x)) = 0 for some r > 0}.

Let η > 0 so that

ηkµ(Bη(0)
c) <

∫
Bη(0)c

|x|k dµ ≤
∫
Rn

|x|k dµ < Rk

and

µ(Bη(0)
c) <

Rk

ηk
.

Hence, for all η > R we see that

µ(Bη(0)
c) < ϵk → 0

for some 1 > ϵ > 0. In other words, for all η > R

µ(Bη(0)
c) = 0.

Now let x ∈ BR(0)
c. Then |x| > R and by choosing r small enough we have Br(x) ⊂ Bη(0)

c for
some η > R. By monotonicity, µ(Br(x)) = 0 and so BR(0)

c ⊂ Rn \ spt(µ).

Now consider the 0 < r < 1 case. Here, we instead get

µ(Bη(0))
c <

Rk
r

ηk

which tends to zero as for any η > 1. By the same logic, we get that B1(0)
c ⊂ Rn \ spt(µ). Note

that we did not use the condition µ a finite measure. The above estimates show that in either case,
the measure of the whole space is the measure of a ball; so we need only locally finite.
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Problem 7 (Fall 2012). Let µ be a measure in the plane for which all open squares are measurable,
with the property that there exists α ≥ 1, such that if two open squares Q and Q′ are translates of
each other and their closures Cl(Q) and Cl(Q′) have a non-empty intersection, then

µ(Cl(Q)) ≤ αµ(Q′) <∞.

(For Lebesgue α = 1, in general α ≥ 1.) Show that horizontal lines have zero measure.

Solution (courtesy of Joe Miller): Let L be a horizontal line with length 1. Let {Qk}2
n

k=1 be a
collection of open cubes of side length 2−n whose lower edges cover L. Since each cube Qk is a
translate of another one, µ(Qk) ≤ αµ(QK). So:

µ(L) ≤ µ(∪2n

k=1Qk) ≤ α

2n∑
k=1

µ(Qk) = αµ(∪2n

k=1Qk)

Since Rn := ∪2n

k=1Qk → ∅, we have by continuity of measure:

µ(L) ≤ lim
n→∞

µ(Rn) = µ(∅) = 0

Problem 8. Show that the following notions of measurability are equivalent. Here, we let λ : 2R →
[0,∞] be the Lebesgue outer measure.

a) E ⊂ R is measurable iff for every ϵ > 0 there exists an open set O ⊃ E such that λ(O\E) < ϵ.
b) E ⊂ R is measurable iff for every set A ⊂ R (measurable or not) we have

λ(A ∩ E) + λ(A ∩ Ec) = λ(A).

Solution: By definition, E ⊂ R is measurable iff for every ϵ > 0 there exists a collection of open
intervals {Ik}∞k=1 covering E such that

∞∑
k=1

|Ik| < |E|+ ϵ.

Now consider O =
⋃∞
k=1 Ik. It follows that

|O \ E| ≤
∞∑
k=1

|Ik \ E| =
∞∑
k=1

|Ik| −
∞∑
k=1

|Ik ∩ E| < ϵ+ |E| −
∞∑
k=1

|Ik ∩ E|

where we have assumed b). But, by monotonicity and the fact that E ⊂ O,

|E| = |E ∩O| =
∣∣∣∣ ∞⋃
k=1

Ik ∩ E
∣∣∣∣ ≤ ∞∑

k=1

|Ik ∩ E|.

Hence, the difference above is negative and

|O \ E| < ϵ+

[
|E| −

∞∑
k=1

|Ik ∩ E|

]
< ϵ

as desired. Now assume a). Let A ⊂ R and ϵ > 0. By subadditivity,

|A| = |(A ∩ E) ∪ (A ∩ Ec)| ≤ |A ∩ E|+ |A ∩ Ec|
so we need only show the other direction. As before, we can find a collection of open intervals
{Ik}∞k=1 covering A such that

∞∑
k=1

|Ik| < |A|+ ϵ.

Now, since E ∩ Ik and Ec ∩ Ik are measurable and disjoint we have

|Ik ∩ E|+ |Ik ∩ Ec| = |Ik|.
As the Ik cover A, we have

|A ∩ E|+ |A ∩ Ec| ≤
∞∑
k=1

[|Ik ∩ E|+ |Ik ∩ Ec|] =
∞∑
k=1

|Ik| < |A|+ ϵ.

https://joekmiller.wordpress.com/
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Taking ϵ→ 0 gives the result.

Problem 9 (Fall 2020). Let µ be a finite measure on a σ-algebra M, and let {Et}t>0 be a family of
elements of M indexed over (0,∞). Show that if:

µ(∪t>0Et) <∞
then µ(Et) = 0 for all but countably many values of t.

Solution: This is not true. Consider µ as Lebesgue measure on [0, 1]. Then, let Et = [0, 1 − 1
1+t ].

Then, µ(Et) > 0 for all t, and µ(∪t>0Et) ≤ 1 <∞.
NB:Perhaps they wanted to say that the sets are all disjoint. Then it is (probably?) true.

Integration and Limits.

Problem 1 (Spring 2019). Show that Cc(Rn) := {f ∈ C(Rn) | f has compact support} is dense in
L1(Rn).

Solution: We know that simple functions are dense in L1(Rn), so it suffices to show that Cc(Rn)
is dense in the set of simple functions. Since a simple function is just a finite linear combination
of indicator functions, we just need to approximate an arbitrary indicator function by a function
in Cc(Rn). So, let E be measurable with 0 < |E| < ∞. Consider now the case when n = 1. By
Littlewood’s first principle, there exists a finite collection of disjoint open intervals {Ik}Kk=1 such

that |E∆
⋃K
k=1 Ik| < ϵ/2. Now let η = ϵ/(2K) and consider the continuous function

gk(x) =


1 x ∈ (ak, bk)

−1/η(x− bk) + 1 x ∈ [bk, bk + η)

1/η(x− ak) + 1 x ∈ (ak − η, ak]

0 else

which is continuous and ∫
R
|gk − χIk | =

η

2
+
η

2
= |Ik|+ η.

Defining g = g1 + ...+ gK we then have∫
R
|g − χ∪kIk | = Kη =

ϵ

2

(here we use disjointness of the Ik). Finally, observe that

∥χE − χ∪kIk∥1 = ∥χE∆∪kIk∥1 <
ϵ

2
so

∥g − χE∥1 ≤ ∥g − χ∪kIk∥1 + ∥χE − χ∪kIk∥1 < ϵ.

The higher dimension case is similar, except we approximate boxes rather than intervals.

Problem 2 (Spring 2019). Find an uncountable family of measurable functions F ⊂ {f : R →
R measurable} that satisfies the following two conditions:

a) For all f ∈ F , ∥f∥∞ = 1.
b) For all f, g ∈ F , we have ∥f − g∥∞ = 1.

(Bonus: Show that this implies L∞ is not separable.)

Solution: Consider the collection of open intervals (−r/2, r/2). Note that each interval has measure
r > 0 and if (−R/2, R/2) is another open interval then

|(−r/2, r/2)∆(−R/2, R/2)| > |R− r| > 0.

By taking F to be the collection of indicator functions of these intervals, the above two statements
show the two necessary conditions. It is clearly an uncountable family.
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Suppose now that L∞ is separable. Then there exists a countable dense family {gk}∞k=1. Con-
sider the balls B1(f) (in the L∞ norm) with f ∈ F .

Problem 3 (Spring 2017, Fall 2014, Spring 2022). Let 1 ≤ p, q ≤ ∞ with 1/p+ 1/q = 1. Show that
if f ∈ Lp(Rn) and g ∈ Lq(Rn) then f ∗ g is bounded and continuous on Rn.

Solution: We show first f ∗ g is bounded. An easy estimate gives

|f ∗ g|(x) =
∣∣∣∣ ∫

Rn

f(x− y)g(y) dy

∣∣∣∣ ≤ ∫
Rn

|f(x− y)||g(y)| dy ≤
[∫

Rn

|f(x− y)|p dy
]1/p [∫

Rn

|g(y)|q dy
]1/q

= ∥f∥p∥g∥q <∞

by Hölder’s inequality and translation invariance. As for continuity, we show that if xn → x then
(f ∗ g)(xn) → (f ∗ g)(x). Another estimate gives

|(f ∗ g)(xn)− (f ∗ g)(x)| =
∣∣∣∣ ∫

Rn

f(xn − y)g(y) dy −
∫
Rn

f(x− y)g(y) dy

∣∣∣∣
=

∣∣∣∣ ∫
Rn

[f(xn − y)− f(x− y)]g(y) dy

∣∣∣∣ ≤ ∫
Rn

|f(xn − y)− f(x− y)|g(y) dy

≤
[∫

Rn

|f(xn − y)− f(x− y)|p dy
]1/p

∥g∥q

by Hölder’s inequality (justified since translations of f are in Lp(Rn) as well, and Lp(Rn) is a vector
space). Now, since f ∈ Lp(Rn) there exists a sequence {hk}∞k=1 of compactly supported continuous
functions such that ∥f − hk∥p → 0. Let ϵ > 0. Then there exists a K ∈ N such that if k ≥ K then
∥f − hk∥p < ϵ. Moreover, since each hk is continuous and xn − y → x− y, hk(xn − y) → hk(x− y).
Thus for fixed k, there exists an Nk ∈ N such that if n ≥ Nk then |hk(xn − y) − hk(x − y)| < ϵ.
Putting these together, we see that∫
Rn

|f(xn − y)− f(x− y)|p dy ≤
∫
Rn

|f(xn − y)− hK(xn − y)|p dy +
∫
Rn

|hK(xn − y)− hK(x− y)|p dy

+

∫
Rn

|hK(x− y)− f(x− y)|p dy

≤ 2ϵp +

∫
(x−S)∪(xn−S)

ϵp dy = [2 + |(x− S) ∪ (xn − S)|]ϵp

≤ 2[1 + |S|]ϵp

where S = spt(hK) is compact, and thus has finite measure. This estimate holds for all n ≥ NK ,
and thus

|(f ∗ g)(xn)− (f ∗ g)(x)| ≤ 21/p[1 + |S|]1/pϵ
establishing continuity.

Problem 4 (Spring 2017). Let B be the closed unit ball in Rn, and let f1, f2, f3,... be nonnegative
integrable functions on B. Assume that

i) fk → f almost everywhere.
ii) For every ϵ > 0 there exists M > 0 such that∫

{x∈B | fk(x)>M}
fk(x) dx < ϵ, k = 1, 2, 3, ...

Show that fk → f in L1(B).

Solution: Let’s first show that f ∈ L1(B). let ϵ > 0. Then there exists an M > 0 such that∫
B

fk(x) dx =

∫
{x∈B | fk(x)≤M}

fk(x) dx+

∫
{x∈B | fk(x)>M}

fk(x) dx ≤M |B|+ ϵ.
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By Fatou’s lemma, since fk → f almost everywhere∫
B

f(x) dx =

∫
B

lim inf
k→∞

fk(x) dx ≤ lim inf
k→∞

∫
B

fk(x) dx ≤M |B|+ ϵ.

Now, since f is integrable, given our ϵ > 0 there exists a δ > 0 such that whenever A is measurable
with |A| < δ, ∫

A

f(x) dx < ϵ.

Markov’s inequality states that

|{fk > λ}| ≤
∥fk∥L1(B)

λ
.

Now, we have proven that the fk are uniformly bounded in L1(B), say by C. Hence, by choosing λ
large enough we can guarantee that

|{fk > λ}| < δ

for all k ∈ N. Now, since ∫
{fk>M}

fk(x) dx

is nonincreasing with M , we can choose M ≥ λ so that simultaneously

Ak := |{fk > M}| < δ,

∫
Ak

fk(x) dx < ϵ

for all k ∈ N. Thus, we have that∫
B

|f − fk|(x) dx =

∫
{fk≤M}

|f − fk|(x) dx+

∫
{fk>M}

|f − fk|(x) dx

<

∫
{fk≤M}

|f − fk|(x) dx+

∫
Ak

f(x) dx+

∫
Ak

fk(x) dx

<

∫
{fk≤M}

|f − fk|(x) dx+ 2ϵ.

Finally, define gk := |f − fk|χ{fk≤M}. Then clearly |gk| ≤ M + |f | ∈ L1(B) since B has finite
measure. Since fk → f a.e. on B, we also get gk → 0. Hence by dominated convergence

lim
k→∞

∫
{fk≤M}

|f − fk|(x) dx = 0.

Problem 5 (Fall 2016, Fall 2022). Let {fk}∞k=1 ⊂ Lp with 1 ≤ p <∞. If fk → f pointwise a.e. and
∥fk∥p → ∥f∥p, show that ∥f − fk∥p → 0.

Solution: Recall the generalized dominated convergence theorem: If {gk}∞k=1 is a sequence of mea-
surable functions such that gk → g pointwise a.e., and there is a sequence of integrable functions
{hk}∞k=1 such that |gk| ≤ hk for all k then limk→∞

∫
hk =

∫
h implies limk→∞

∫
gk =

∫
g. Here, let

gk = |fk − f |p, g = 0, hk = 2p(|fk|p + |f |p), and h = 2p+1|f |p. Note that

|gk| ≤ (|fk|+ |f |)p ≤ 2pmax{|fk|, |f |}p ≤ 2p(|fk|p + |f |p) = hk.

So, to apply generalized dominated convergence we need only show

lim
k→∞

∫
hk →

∫
h

or, alternatively,

lim
k→∞

∫
|fk|p =

∫
f

but this is assumed. Hence, we get

lim
k→∞

∫
|fk − f |p = lim

k→∞

∫
gk =

∫
g = 0

as desired.
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Here’s another way to do it without generalized dominated convergence directly. Define gk by
gk := 2p(|fk|p+ |f |p)−|fk−f |p. By the above inequality, each gk ≥ 0 and gk → 2p+1|f |p a.e. Hence
by Fatou and the hypothesis ∥fk∥p → ∥f∥p,

2p+1∥f∥pp =
∫

2p+1|f |p =
∫

lim inf
k→∞

gk ≤ lim inf
k→∞

∫
gk = 2p

[
lim inf
k→∞

∥fk∥pp + ∥f∥pp
]
− lim sup

k→∞

∫
|f − fk|p

= 2p+1∥f∥pp − lim sup
k→∞

∥f − fk∥pp

Rearranging this then gives

lim sup
k→∞

∥f − fk∥pp ≤ 0

which completes the proof.

Problem 6 (Fall 2015, Spring 2023). Let f ∈ L1(R) and φϵ be a mollifier. This means that φϵ(x) =
ϵ−1φ(x/ϵ) and φ : R → R is a function that satisfies: φ ≥ 0, φ is compactly supported, and

∫
φ = 1.

Let fϵ := f ∗ φϵ. Show that ∫
R
lim inf
ϵ→0

|fϵ| ≤
∫
R
|f |.

Solution: First by Fubini-Tonelli,∫
R
|fϵ|(x) dx ≤

∫
R

∫
R
|f(x− y)|φϵ(y) dydx =

∫
R
φϵ(y)

[∫
R
|f(x− y)| dx

]
dy

= ∥f∥1
∫
R
φϵ(y) dy = ∥f∥1

Then, Fatou’s inequality implies that∫
R
lim inf
ϵ→0

|fϵ| ≤ lim inf
ϵ→0

∫
R
|fϵ| ≤ ∥f∥1

as desired.

Problem 7 (Fall 2014, Spring 2021). Let f ∈ L1(X,µ). Prove that for every ϵ > 0, there exists
δ > 0 such that

∣∣∣∣ ∫
A

f dµ

∣∣∣∣ < ϵ

for all measurable A ⊂ X such that µ(A) < δ.

Solution: Suppose not. Then there exists an ϵ > 0 such that whenever δ > 0 there exists an
A ⊂ X measurable with µ(Aδ) < δ and ∫

A

f dµ ≥ ϵ.

Consider δ = 1/n and set gn = χA1/n
f . All the gn are dominated by f , which is integrable, and

gn → 0 since µ(A1/n) < 1/n→ 0. Then by dominated convergence

ϵ ≤ lim
n→∞

∫
A1/n

f dµ = lim
n→∞

∫
X

gn dµ =

∫
X

lim
n→∞

gn dµ = 0

a contradiction.
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Problem 8 (Fall 2014, Fall 2022). Let p ∈ [1,∞) and suppose {fn}∞n=1 ⊂ Lp(R) is a sequence that
converges to 0 in Lp(R). Prove that one can find a subsequence {fnk

} such that fnk
→ 0 almost

everywhere.

Solution: Firstly note that Lp convergence implies convergence in measure by Chebyshev. So,
fn converges to 0 in measure. So, it suffices to show the general fact that a sequence that converges
in measure has a subsequence that converges pointwise .a.e.. Indeed, fn converges to 0 in measure,
so for all k, ∃ an index nk such that if we define Ak := {x ∈ R : |fnk

(x)−0| ≥ 1
k}, then λ(Ak) < 2−k

(note that we can choose nk > nk−1). Construct the subsequence fnk
in this way. Then, fnk

converges pointwise to 0 outside of lim supk→∞Ak, which has measure zero by Borel-Cantelli.

Problem 9 (Fall 2014, Fall 2021). Show that, if f ∈ L4(R), then∫
|f(λx)− f(x)|4 dx→ 0

as λ→ 1.

Solution: Consider g = χE where E ⊂ R is measurable and |E| <∞. Let’s first show that∫
|g(λx)− g(x)|4 dx→ 0.

To do this, we’ll first analyze the symmetric difference of intervals. Let I = [a, b] and λ > 0 so that
λI = [λa, λb]. There are two cases. First, if 0 ∈ I then for all 0 < λ < 1 we have λI ⊂ I and thus

|I∆(λI)| = (b− λb) + (λa− a) = (1− λ)(b− a).

On the other hand, if λ > 1 then

|I∆(λI)| = (λb− b) + (a− λa) = (λ− 1)(b− a).

Either way, if 0 ∈ I then
|I∆(λI)| = |1− λ|(b− a).

Now suppose 0 /∈ I. Assume first a > 0. Let λ1 = a/b and λ2 = b/a. For all 0 < λ < λ1 and
λ > λ2 we have that I and λI are disjoint. These cases are irrelevant since we take λ → 1, and
λ1 < 1 < λ2. For a/b ≤ λ ≤ b/a, λI translates to the right and increases in size, filling in more
and more of I. Eventually, it becomes all of I. Then, while still increasing in size, it continues to
translate rightwards and empty I. Thus, for a/b < λ < 1

|I∆(λI)| = b− λb+ a− λa = (1− λ)(b+ a)

for 1 < λ < b/a we have

|I∆(λI)| = λb− b+ λa− a = (λ− 1)(b+ a)

Similar analysis holds when b < 0. In all cases, we end up getting

|I∆(λI)| = |λ− 1|(|b|+ |a|).
It is clear then that as λ→ 1, |I∆(λI)| → 0.

Now, if E ⊂ R is measurable with |E| < ∞, then by Littlewood’s first principle of analysis for
ϵ > 0 there exists a disjoint finite collection of intervals Ik = [ak, bk], k = 1, ...,K such that∣∣∣∣ K⋃

k=1

(E∆Ik)

∣∣∣∣ = ∣∣∣∣E∆

(
K⋃
k=1

Ik

)∣∣∣∣ < ϵ.

By dilation properties of the Lebesgue measure, we also have that∣∣∣∣ K⋃
k=1

λ(E∆Ik)

∣∣∣∣ = ∣∣∣∣ K⋃
k=1

((λE)∆(λIk))

∣∣∣∣ < λϵ

when λ > 0. Now, as previously seen

|Ik∆(λkIk)| = |λk − 1|(|bk|+ |ak|)
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for λk small. Since we have finitely many intervals, we can choose λ small so that

|Ik∆(λIk)| = |λ− 1|(|bk|+ |ak|) <
ϵ

K

for k = 1, ...,K. Finally, with this λ,

|E∆(λE)| ≤
∣∣∣∣ K⋃
k=1

(E∆Ik)

∣∣∣∣+ K∑
k=1

|Ik∆(λIk)|+
∣∣∣∣ K⋃
k=1

((λE)∆(λIk))

∣∣∣∣ < (2 + λ)ϵ < Cϵ

where C > 0 is a constant independent of λ (we chose λ small, so it is bounded by some constant).
It follows too that |E∆(λE)| → 0 as λ → 1. Since |g(λx) − g(x)| = |χλE − χE | = χE∆(λE) this
completes the first part of the proof.

Finally, let f ∈ L4(R). Then for ϵ > 0 there exists a simple function g ∈ L4(R) such that∫
R
|f(x)− g(x)|4 dx < ϵ.

By a change of variables, we see that∫
R
|f(λx)− g(λx)|4 dx =

1

λ

∫
R
|f(x)− g(x)|4 dx < ϵ

λ
.

By taking, say, λ > 1/2 we get that∫
R
|f(λx)− g(λx)|4 dx < 2ϵ.

We already saw that
∫
R |g(λx)− g(x)|4dx→ 0 by the previous step. Hence, for λ close to 1 we get∫

R
|f(λx)− f(x)|4 dx ≤

∫
R
|f(λx)− g(λx)|4 dx+

∫
R
|g(λx)− g(x)|4 dx+

∫
R
|g(x)− f(x)|4 dx < (3 + C)ϵ

Solution (2): By the triangle inequality & density of C∞
c (R) in L4(R), it STS the result for

g ∈ C∞
c (R). So, let g ∈ C∞

c (R). We show the result via the generalized DCT: let fn(x) :=
|g([1− 1

n ]x)− g(x)|4, hn(x) := (|g([1− 1
n ]x)|+ |g(x)|)4. Then, we have the following:

|fn(x)| ≤ |hn(x)|
fn → 0 & hn → (2|g(x)|)4 pointwise∫

hn(x)dx→
∫
(2|g(x)|)4dx =

∫
h(x)dx by the regular DCT with dominating function 24||g||4∞χsupp(g)

So, by the generalized DCT,
∫
fndx→ 0 as n→ ∞.

Problem 10 (Spring 2014). Let f, g be bounded measurable functions on Rn. Assume that g is
integrable and satisfies

∫
g = 0. Define gk(x) = kng(kx) for k ∈ N. Show that f ∗ gk → 0 pointwise

a.e. as k → ∞.

Solution: First note that∫
Rn

gk(x) dx =

∫
Rn

kng(kx) dx =

∫
Rn

g(x) dx = 0.

We then have that ∫
Rn

f(x)gk(y) dy = f(x)

∫
Rn

gk(y) dy = 0

and so

f ∗ gk(x) =
∫
Rn

f(x− y)gk(y) dy =

∫
Rn

[f(x− y)− f(x)]gk(y) dy.

Now let δ > 0 and consider the following splitting:

f ∗ gk(x) =
∫
|y|≤δ

[f(x− y)− f(x)]gk(y) dy +

∫
|y|>δ

[f(x− y)− f(x)]gk(y) dy.
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For the first integral, we have∣∣∣∣ ∫
|y|<δ

[f(x− y)− f(x)]gk(y) dy

∣∣∣∣ ≤ ∫
|y|<δ

|f(x− y)− f(x)|gk(y) dy ≤ ∥g∥∞kn
∫
|y|<δ

|f(x− y)− f(x)| dy

= ∥g∥∞kn
∫
|y−x|<δ

|f(y)− f(x)| dy = ∥g∥∞kn
∫
Bδ(x)

|f(y)− f(x)| dy.

We now recognize the integral from the Lebesgue differentiation theorem. Recall that it states

lim
δ→0

1

|Bδ|

∫
Bδ(x)

f(y) dy = f(x)

for almost every x. For Lebesgue points (which also occur almost everywhere), we have the stronger
statement that

lim
δ→0

1

|Bδ|

∫
Bδ(x)

|f(y)− f(x)| dy

So, we need to introduce a factor of 1/|Bδ|. Observe that we already have a factor of kn, so we are
inclined to use δ = C/k, where C is a constant to be chosen. We will see the importance of C later.
Regardless, we have∣∣∣∣ ∫

|y|<δ
[f(x− y)− f(x)]gk(y) dy

∣∣∣∣ ≤ ∥g∥∞Cn|B1|
|BC/k|

∫
BC/k(x)

|f(y)− f(x)| dy → 0

for k large enough. For the second integral, we have∣∣∣∣ ∫
|y|>δ

[f(x− y)− f(x)]gk(y) dy

∣∣∣∣ ≤ 2∥f∥∞
∫
|y|>kδ

|g(y)| dy = 2∥f∥∞
∫
|y|>C

|g(y)| dy

where we have applied the fact that f is bounded and a change of variable ky 7→ y. Notice if we did
not have control over C (i.e., if we just carelessly chose δ = 1/k previously) we would not be able
to proceed. But, as C → ∞ the sets |y| > C decrease to the empty set. It follows by dominated
convergence that

lim
k→∞

∫
|y|>C

|g(y)| dy = 0.

Problem 11 (Fall 2013). Suppose that {fn}∞n=1 is a sequence of integrable functions on [0, 1] such
that ∥fn∥L1([0,1]) ≤ n−2 for all n ∈ N. Show that fn → 0 pointwise a.e.

Solution: Define f := |f1| + |f2| + .... (which is well defined in the extended reals). Now, by
the triangle inequality we have

∥f∥L1([0,1]) ≤
∞∑
n=1

∥fn∥L1([0,1]) ≤
∞∑
n=1

1

n2
<∞.

This tells us that f is integrable, and hence is finite almost everywhere. Now, consider the series

|f(x)| =
∞∑
n=1

|fn(x)| <∞

for almost every x. It follows for these x that |fn(x)| → 0, otherwise the series would diverge.

Problem 12 (Spring 2013). Let f ∈ L∞(µ) be a nonnegative bounded µ-measurable function. Con-
sider the set Rf consisting of all positive real numbers w such that µ({x | |f(x)− w| ≤ ϵ}) > 0 for
every ϵ > 0.

a) Prove that Rf is compact.
b) Prove that ∥f∥∞ = supRf .

Solution:
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a) Clearly Rf is bounded. We show now it is closed. Let wn → w ∈ [0,∞) such that w is a limit
point of Rf . Let ϵ > 0; then there exists an N ∈ N such that if n ≥ N then |wn −w| < ϵ/2.
By definition of wn, we have for all n that

µ({x | |f(x)− wn| ≤ ϵ/2}) > 0

Now, by the triangle inequality, if |f(x)− wn| ≤ ϵ/2 then

|f(x)− w| ≤ |f(x)− wn|+ |wn − w| < ϵ

for all n ≥ N . Hence

{x | |f(x)− wn| ≤ ϵ/2} ⊂ {x | |f(x)− w| < ϵ}

for n ≥ N , and by monotonicity we find that w ∈ Rf .
b) Clearly if f ≡ 0 there is nothing to do. By definition,

∥f∥∞ := inf{M ≥ 0 | |f(x)| ≤M for almost every x}
= inf{M ≥ 0 | µ({x | |f(x)| ≥M}) = 0}.

We show that, equivalently,

∥f∥∞ = sup{w ≥ 0 | µ({x | |f(x)− w| ≤ ϵ}) > 0}

for all ϵ > 0. Denote the above sup by S. Suppose that ∥f∥∞ > S. Then there exists
an ϵ > 0 such that µ({x | |f(x)| ≥ ∥f∥∞ − ϵ}) = 0. But, this contradicts the definition
of ∥f∥∞ since we would have ∥f∥∞ − ϵ as an admissible M in the inf definition. Hence
∥f∥∞ ≤ S. On the other hand, suppose ∥f∥∞ < S. Then there exists an ϵ > 0 such that
∥f∥∞ < ∥f∥∞+3ϵ/2 < S. By definition of ∥f∥∞ we have µ({x | |f(x)| ≥ ∥f∥∞+ ϵ/2}) = 0.
This implies, in particular, that

µ({x | |f(x)− (∥f∥∞ + ϵ)| ≤ ϵ/2}) = 0

by monotonicity. It follows that S < ∥f∥∞ + ϵ, a contradiction. Hence ∥f∥∞ = S.

Problem 13 (Spring 2013). Let f , f1, f2, ... be functions in L1([0, 1]) such that fk → f pointwise
almost everywhere. Show that ∥f − fk∥1 → 0 if and only if for every ϵ > 0 there exists δ > 0, such
that |

∫
A
fk dx| < ϵ for all k and all measurable sets A ⊂ [0, 1] with measure |A| < δ.

Solution: That ∥f − fk∥1 → 0 implies that∫
[0,1]

|f − fk| dx→ 0

In particular, on any measurable subset A ⊂ [0, 1] we have∫
A

|f − fk| dx ≤
∫
[0,1]

|f − fk| dx→ 0.

Now since f is integrable, if ϵ > 0 there exists a δ > 0 such that∫
A

|f | dx < ϵ

2

for all measurable A ⊂ [0, 1] with |A| < δ (see Problem 7). Consequently,∣∣∣∣ ∫
A

fk dx

∣∣∣∣ ≤ ∫
A

|f − fk| dx+

∫
A

|f | dx.

Now, choose K large enough so that for all k ≥ K we have∫
A

|f − fk| dx <
ϵ

2

from which we immediately deduce ∣∣∣∣ ∫
A

fk dx

∣∣∣∣ < ϵ
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for k ≥ K. However, we need this statement for all k. So, we reapply Problem 7 with f1, ..., fk−1

and extract δ1, ..., δk−1 such that ∣∣∣∣ ∫
A

fi dx

∣∣∣∣ < ϵ

for all measurable A ⊂ [0, 1] with |A| < δi. Hence, taking δ′ = min{δ, δ1, ..., δk−1} we get∣∣∣∣ ∫
A

fk dx

∣∣∣∣ < ϵ

for all k whenever A ⊂ [0, 1] is measurable with |A| < δ′.

Suppose the latter and let ϵ > 0. Then there exists a δ > 0 such that∣∣∣∣ ∫
A

fk dx

∣∣∣∣ < ϵ

2

for all k and measurable A ⊂ [0, 1] with measure |A| < δ. Define A+
k := {fk ≥ 0} and A−

k := {fk ≤
0}. Then, ∫

A

|fk| dx =

∫
A+

k

|fk| dx+

∫
A−

k

|fk| dx =

∫
A+

k

fk dx+

∫
A−

k

(−fk) dx

≤
∣∣∣∣ ∫
A+

k

fk dx

∣∣∣∣+ ∣∣∣∣ ∫
A−

k

(−fk) dx
∣∣∣∣ = ∣∣∣∣ ∫

A+
k

fk dx

∣∣∣∣+ ∣∣∣∣ ∫
A−

k

fk dx

∣∣∣∣ < ϵ

since monotonicity implies that |A+
k | < δ and |A−

k | < δ. Now, we apply Problem 7 once more and,
by taking a minimum if necessary, find a δ > 0 such that whenever |A| < δ then∫

A

|f | dx < ϵ,

∫
A

|fk| dx < ϵ ∀k ∈ N.

Since [0, 1] is compact, we can cover it with finitely many balls Bδ(xn), n = 1, ..., N . Then,∫
[0,1]

|fk − f | dx ≤
N∑
n=1

∫
[0,1]∩Bδ(xn)

|fk − f | dx ≤
N∑
n=1

∫
An

|fk| dx+

N∑
n=1

∫
An

|f | dx < 2Nϵ

where An = [0, 1] ∩Bδ(xn) is a measurable subset of [0, 1] with |An| < δ. XXX

Problem 14 (Spring 2012, Spring 2021). Let fk → f a.e. on R. Show that given ϵ > 0, there exists
E, with |E| < ϵ, so that fk → f uniformly on I \ E, for any given finite interval I.

Solution: This is just Egorov’s theorem. Let I be a finite interval. Let ϵ > 0. Then, for n fixed,
define the set Ak,n := {x ∈ I : |fj(x) − f(x)| > 1

n∀j ≥ k}. The sequence of sets {Ak,n}∞k=1 is an
increasing sequence, and as the convergence of fk to f holds pointwise a.e., ∪∞

k=1Akn = I \N , where
N is a set of measure zero. So, by continuity of measure, ∃ an index kn such that λ(I \Akn,n) < ϵ

2n .
In this way, define sets {Akn,n}∞n=1. Then, taking E = ∩∞

n=1Akn,n is the desired set.
NB: The counterexample in the infinite measure space case is fn(x) = χ[n,n+1], of fn(x) = χ−∞,n].

Problem 15 (Fall 2012). Let (X,A, µ) be a measure space with µ(X) <∞. Show that a measurable
function f : X → [0,∞) is integrable if and only if

∑∞
n=0 µ({x ∈ X | f(x) ≥ n}) converges.

Solution: Suppose first that the series converges. Construct the function

g(x) =

∞∑
n=0

χ{f≥n}(x).

Observe that g(x) < f(x). Suppose that N ≤ f(x0) < N + 1 for some N ∈ N. Then x0 ∈ {f ≥ n}
for 0 ≤ n ≤ N but x0 /∈ {f ≥ n} for n > N . Hence,

g(x0) =

∞∑
n=0

χ{f≥n}(x0) =

N∑
n=0

1 = N + 1 > f(x0).
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Consequently, ∫
X

f(x) dµ(x) <

∫
X

g(x) dµ(x) =

∞∑
n=0

µ({f ≥ n}) <∞.

Now suppose f is integrable. Construct the function

h(x) =

∞∑
n=1

χ{f≥n}(x).

Once more, if N ≤ f(x0) < N + 1 then

h(x0) =

N∑
n=1

1 = N ≤ f(x0)

and so
∞∑
n=1

µ({f ≥ n}) =
∫
X

h(x) dµ(x) ≤
∫
X

f(x) dµ(x) <∞.

But, since µ(X) <∞ we know also µ({f ≥ 0}) <∞. In total, the entire series converges.

Problem 16 (Spring 2012). Let (Ω,F , µ) be a probability space and f ∈ L1(Ω). Prove that

lim
p→0

[∫
Ω

|f |p dµ
]1/p

= exp

[∫
Ω

log |f | dµ
]
,

where exp[−∞] = 0. To simplify the problem, you may assume log |f | ∈ L1(Ω).

Solution: If f = 0 a.e. we have equality, so assume that f ̸= 0 on a set of positive measure.
Then ∫

Ω

|f |p dµ > 0

for all p. Define ap by

a(p) :=

[∫
Ω

|f |p dµ
]1/p

so that a(p) > 0 for all p. Then by continuity of the logarithm,

log

(
lim
p→0

a(p)

)
= lim
p→0

log a(p) = lim
p→0

(
1

p
log

(∫
Ω

|f |p dµ
))

.

As p → 0, |f |p → 1, and since µ is a probability measure the integral tends to 1. Hence, the
logarithm tends to zero while the denominator does too. Applying L’hopital’s rule gives

lim
p→0

(
1

p
log

(∫
Ω

|f |p dµ
))

= lim
p→0

(
d

dp
log

(∫
Ω

|f |pdµ
))

= lim
p→0

(∫
Ω
|f |p log |f | dµ∫
Ω
|f |p dµ

)
.

Once more, as p→ 0, we have |f |p → 1 and µ is a probability measure. Thus

log

(
lim
p→0

[∫
Ω

|f |p dµ
]1/p)

=

∫
Ω

log |f | dµ.

Problem 17 (Spring 2012). Let h be a bounded, measurable function, such that, for any interval I∣∣∣∣ ∫
I

h

∣∣∣∣ ≤ |I|1/2.

Let hϵ = h(x/ϵ). Show that for any A with |A| <∞,∫
A

hϵ(x) dx→ 0, as ϵ→ 0.
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Solution: Since A is measurable with |A| < ∞ for δ > 0 there exist a collection of finite intervals
{Ik}∞k=1 which cover A and

∞∑
k=1

|Ik| < |A|+ δ.

It suffices to show that ∣∣∣∣ ∫
A

hϵ(x) dx

∣∣∣∣→ 0

as ϵ→ 0. To this end, note that∣∣∣∣ ∫
A

hϵ(x) dx

∣∣∣∣ ≤ ∞∑
k=1

∣∣∣∣ ∫
Ik

h
(x
ϵ

) ∣∣∣∣ = ϵ

∞∑
k=1

∣∣∣∣ ∫
Ik/ϵ

h

∣∣∣∣ ≤ ϵ√
ϵ

∞∑
k=1

|Ik| <
√
ϵ(|A|+ δ).

Since |A|+ δ <∞, taking ϵ→ 0 gives the result. XXX

Problem 18 (Fall 2011). For 1/p+ 1/q = 1, let S = {f ∈ Lp(R) | spt(f) ⊂ [−1, 1], and ∥f∥p ≤ 1},
and let g be a fixed but arbitrary function in L1(R), with spt(g) ⊂ [−1, 1]. Show that the image of
S under the map f 7→ f ∗ g is a compact set in C0([−2, 2]).

Solution: XXX

Problem 19 (Fall 2011). Let f0, f1, f2, ... be nonnegative Lebesgue-integrable functions on Rn, such
that

∞∑
k=1

∫
(fk − fk−1)

+ <∞, lim
k→∞

∫
fk = 0.

Show that lim supk→∞ fk ≡ 0 almost everywhere.

Solution: Define gn by

gn =

n∑
k=1

(fk − fk−1)
+

so that g1 ≤ g2 ≤ .... Then, by monotone convergence∫ ∞∑
k=1

(fk − fk−1)
+ =

∫
lim
n→∞

gn = lim
n→∞

∫
gn = lim

n→∞

n∑
k=1

∫
(fk − fk−1)

+ <∞.

Next, observe that for each k

fk − fk−1 ≤ (fk − fk−1)
+

and thus

fn − f0 =

n∑
k=1

fk − fk−1 ≤
n∑
k=1

(fk − fk−1)
+ = gn ≤ g.

Hence, the fn are dominated by g + f0 and g + f0 ∈ L1(Rn). It follows that

0 = lim
n→∞

∫
fn =

∫
lim sup
n→∞

fn

from which we discover lim supn→∞ fn = 0.

Problem 20 (Fall 2020). Given f : Rn → R, let τM (f) = χBM (0)min{M,max{f,−M}} for M > 0.
Show that τM (f) → f in Lp(Rn, µ) as M → ∞ whenever p ∈ [1,∞), f ∈ Lp(Rn, µ), and µ is a
locally finite Borel measure on Rn. Does the result hold if p = ∞?.

Solution: If f non-negative, then result follows from monotone convergence. Otherwise, split f
into f+, f−. The result does not hold if p = ∞: consider f = 1 on Rn with Lebesgue measure.
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Problem 21 (Fall 2020). Let L be a bounded, contractive (||L|| < 1) linear map from a Banach
space to itself. Define the sequence {xk} by the recursive relation xk+1 = L(xk). Show that {xk} is
a Cauchy sequence, and deduce the existence of a fixed point of L.

Solution: The sequence is Cauchy: ||xm − xn|| = ||Lm(x0) − Ln(x0)|| = ||Ln[(Lm−n(x0)) − x0]|| ≤
||L||n||(Lm−n(x0)) − x0|| ≤ 2||L||n||x0|| → 0 as m,n → ∞ (assuming WLOG that m > n). So, by
completeness, ∃ a limit x. x is a fixed point of L:

x = limk→∞xk = limk→∞L(xk−1) = L(limk→∞xk−1) = L(x)

Problem 22 (Fall 2020). Let (X,M, µ) be a finite measure space and let f : X × (−1, 1) → R be
a function f(x, t) such that for each t ∈ (−1, 1), f(·, t) : X → R is M−measurable and for µ−a.e.
x ∈ X, f(x, ·) has a classical derivative in the following sense:

∂f

∂t
(x, 0) = lim

h→0+

f(x, h)− f(x, 0)

h

which exists for µ−a.e. x ∈ X. Show that if there exists M such that:

|f(x, t)− f(x, 0)| ≤M |t| for µ-a.e. x ∈ X

then the function:

g(t) =

∫
X

f(x, t)dµ(x)

is differentiable at t = 0 with:

g′(0) =

∫
X

∂f

∂t
(x, 0)dµ(x)

Solution: Dominated convergence theorem on the sequence fk(x) =
f(x, 1k )−f(x,0)

1
k

. The sequence

is dominated by g =M , which is integrable as X is a finite measure space.

Problem 23 (Spring 2022). Let f : Rn → [0,∞] be a measurable function. Show:

(1) |{x ∈ Rn : f(x) ≥ k} ≤ 1
k

∫
f

(2) If f is integrable, then |{x ∈ Rn : f(x) = ∞} = 0.

Solution:
(a) Chebyshev inequality (pf. is the same).
(b) Use part (a) and see that as k → ∞, 1

k

∫
f goes to zero.

∫
f <∞ as f is integrable.

Problem 24 (Fall 2021). Let Σ be a compact set of functions in Lp([0, 1]). Show that the subset of
Σ Σ+ := {f+ : f ∈ Σ} is also compact.

Solution: It STS that every sequence in Σ+ has a convergent subsequence. Let f+n be a sequence
in Σ+. Then, fn is a sequence in Σ, so there exists a convergent subsequence fnk

→ f in Lp. So,
there exists a further subsequence {fnkj

} that converges to f pointwise a.e.. It follows that {f+nkj
}

converges to f+ pointwise a.e.. Finally, {f+nkj
} converges to f+ in Lp by the generalized dominated

convergence theorem.

Convergence in Measure.

Problem 1 (Spring 2019). Let the sequence of measurable functions fk(x) converge in measure to
zero in B1(Rn) and satisfy ∥fk∥L2 less or equal thanM for all k. Show that fk converges to zero in L

1.

See Problem 4
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Problem 2 (Fall 2016). Prove that, on a finite measure space, if fk → f in measure and gk → g in
measure, then fkgk → fg in measure.

Solution: It suffices to show that all subsequences of fkgk have a further subsequence that con-
verges to fg in measure. So, let fkjgkj be a subsequence. Then, fkj converges to f in measure,
so there exists a subsequence fkjℓ that converges to f pointwise a.e.. Now, gkjℓ converges to g in
measure, so ∃ a subsequence gkjℓn

that converges to g pointwise a.e..

In total, we can find a subsequence of fkjgkj that converges to fg pointwise a.e.. On a finite
measure space, convergence pointwise a.e. implies convergence in measure (Egorov), so we are done.

Problem 3 (Fall 2014). Recall that a sequence {fi}∞i=1 of real-valued measurable functions on the
real line is said to converge in measure to a function f if

lim
i→∞

λ({x ∈ R | |fi(x)− f(x)| ≥ ϵ}) = 0, ∀ϵ > 0

where λ denotes Lebesgue measure on R. Suppose that in addition to this, there exists an integrable
function g such that |fi| ≤ g for all i. Prove that {fi}∞i=1 converges to f in L1(R).

Solution: Recall that if a sequence of real numbers is such that every subsequence has a further
subsequence which converges to the same limit, then the original sequence does too. To this end,
since fi → f in measure, all of its subsequences do, and there exists a subsubsequence {fink

} which

converges to f almost everywhere. Hence, by dominated convergence fink
→ f in L1(R). By the

above observation, fi → f in L1(R).

Problem 4 (Spring 2014). Let (X,Σ, µ) be a finite measure space and 1 ≤ q < p < ∞. Let f1,
f2, ... ∈ Lp(X,µ) with ∥fk∥p ≤ 1 for all k. Assuming fk → f in measure, show that f ∈ Lp(X,µ),
and that ∥fk − f∥q → 0.

Solution: First, since fk → f in measure there exists a subsequence fkn which converges to f
µ-almost everywhere in X. In particular, |fkn | → |f | µ-almost everywhere. It follows by Fatou’s
lemma that∫

X

|f |p dµ =

∫
X

lim inf
n→∞

|fkn |p dµ ≤ lim inf
n→∞

∫
X

|fkn |p dµ = lim inf
n→∞

∥fkn∥pp ≤ 1.

It follows f ∈ Lp(X,µ).
Now, to show that fk → f in Lq, it suffices to show that all subsequences have a further subse-

quence that converges to f in Lq. So, let fkj be a subsequence. Then, it converges to f in measure,
so there is a subsequence fkjn that converges to f pointwise a.e.. Now, let ϵ > 0. Then, by Egorov,
∃ a set A such that µ(X \A) < ϵ, and the converges to f is uniform on A. So:

||fk − f ||qq =
∫
X

|fk − f |q =
∫
A

|fk − f |q +
∫
X\A

|fk − f |q

The first term, we bound by µ(X)ϵq for k sufficiently large. The second term, use Holder to bound

it by ϵ1−
q
p ||fk − f ||qp ≤ ϵ1−

q
p (2)q by the uniform bounds on the Lp norm.

NB: It is tempting to try to show that fk → f in Lp and thus converges in Lq by Holder as we
are on a finite measure space, but this is actually not true: consider the sequence fk = p

√
kχ[0, 1k ]

defined on [0, 1] with the Lebesgue measure. Then, ||fk||p = 1 and fk converges to 0 in measure,
but not in Lp.

Weak Lp and Fubini.

Problem 1 (Spring 2019). Let H be a monotone function of f(x), a non-negative measurable func-
tion. Write ∫

H(f(x)) dx

in terms of g(λ) = |{f > λ}|.
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Solution: Since H is monotone, it has a derivative almost everywhere. We may also assume that
H(0) = 0. By the fundamental theorem of calculus we have that

H(f(x)) =

∫ f(x)

0

H ′(t) dt =

∫ ∞

−∞
χ[0,f(x)](t)H

′(t) dt.

Then, applying Fubini’s theorem∫
H(f(x)) dx =

∫ ∫ ∞

−∞
χ[0,f(x)](t)H

′(t) dtdx =

∫ ∞

−∞
H ′(t)

[∫
χ[0,f(x)](t) dx

]
dt =

∫ ∞

−∞
H ′(t)g(t) dt.

Problem 2 (Spring 2016). Show that if p > 1 and f ∈ Lp([0,∞),m) then the ‘mean functional’ of f ,

F (y) :=
1

y

∫ y

0

f(t) dt =

∫ 1

0

f(xy) dx

is also in Lp([0,∞),m) and moreover

∥F∥p ≤
p

p− 1
∥f∥p.

Hint: consider f(xy) as a function of two variables on [0, 1]×[0,∞) and use the generalized Minkowski
inequality (which states that if g : X × Y → R is any measurable function on the direct product of
two sigma-finite measure spaces (X,µ), (Y, ν) then

∥∥g∥L1(X,µ)∥Lp(Y,ν) ≤ ∥∥g∥Lp(Y,ν)∥L1(X,µ)).

Solution: Using the hint, let’s define g(x, y) = f(xy) on X × Y = [0, 1] × [0,∞). Both (X,m) and
(Y,m) are sigma-finite measure spaces so that we can apply generalized Minkowski:[∫ ∞

0

[∫ 1

0

|g(x, y)| dx
]p
dy

]1/p
≤
∫ 1

0

[∫ ∞

0

|g(x, y)|p dy
]1/p

dx.

Note that

|F (y)| ≤
∫ 1

0

|f(xy)| dx =

∫ 1

0

|g(x, y)| dx

so the left hand side is bounded below by[∫ ∞

0

[∫ 1

0

|g(x, y)| dx
]p
dy

]1/p
≥
[∫ ∞

0

F (y)pdy

]1/p
= ∥F∥p.

It suffices now to bound the right-hand side in terms of p/(p− 1)∥f∥p. We have that∫ 1

0

[∫ ∞

0

|g(x, y)|p dy
]1/p

dx =

∫ 1

0

[∫ ∞

0

|f(xy)|p dy
]1/p

dx =

∫ 1

0

[∫ ∞

0

1

x
|f(y)|p dy

]1/p
dx

=

∫ 1

0

1

x1/p

[∫ ∞

0

|f(y)|p dy
]1/p

dx = ∥f∥p
∫ 1

0

1

x1/p
dx

=
∥f∥p

1− 1/p
x1−1/p

∣∣∣∣1
0

=
p

p− 1
∥f∥p

by a change of variables xy 7→ y. Note that p > 1 is vital, since we need 1− 1/p > 0 in order for the
lower limit to be defined.

Problem 3 (Fall 2016). Let f be a locally integrable function on R2. Assume that, for any given
real numbers a and b outside some set of measure zero, f(x, a) = f(x, b) for almost every x ∈ R and
f(a, y) = f(b, y) for almost every y ∈ R. Show that f is constant almost everywhere on R2.

Solution: Let E ⊂ R be such that |Ec| = 0 and for all a, b ∈ E we have f(x, a) = f(x, b) for
almost every x ∈ R and f(a, y) = f(b, y) for almost every y ∈ R. Choose a, b ∈ E such that
f(a, y) = f(b, y) for almost every y ∈ R. Now, since E has full measure there exist c, d ∈ E such
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that f(x, c) = f(x, d) for almost every x ∈ R and both f(a, c) = f(a, d) and f(b, c) = f(b, d).
Consider now the following difference of integrals:∫ d

c

∫ b

a

f(x, y) dxdy −
∫ d

c

∫ b+δ

a+δ

f(x, y) dxdy =

∫ d

c

∫ b

a

[f(x, y)− f(x, y + δ)] dxdy

Let a, b, c, d ∈ R, δ > 0 and consider the following difference of integrals:∫ d

c

∫ b

a

f(x, y) dxdy −
∫ d

c

∫ b+δ

a+δ

f(x, y) dxdy =

∫ d

c

∫ b

a

[f(x, y)− f(x, y + δ)] dxdy.

Define gy(x) = f(x, y)− f(x, y+ δ). If y is such that y and y+ δ are in E then gy(x) = 0 for almost
every x. But, E has full measure, so E + δ does too. Hence E ∩ (E + δ) has full measure, and in
particular for every y ∈ [c, d] we have y and y+ δ are in E. It follows that gy(x) = 0 a.e. for almost
every y ∈ [c, d]. Hence, the above difference is zero and∫ d

c

∫ b

a

f(x, y) dxdy =

∫ d

c

∫ b+δ

a+δ

f(x, y) dxdy.

A similar conclusion holds by translating the y coordinate instead. Hence, we see that
∫
Q
f(x, y)dxdy

depends only on |Q|. Let I(Q) :=
∫
Q
f(x, y) dxdy. Lebesgue differentiation says that for almost

every (x0, y0) ∈ R2,

f(x0, y0) = lim
r→0

1

|Qr|

∫
Qr(x0,y0)

f(x, y) dxdy = lim
r→0

I(Qr)

Qr
= c.

Where Qr(x0, y0) is a square of side length r centered at (x0, y0).

Problem 4 (Fall 2015). Let f and g be real valued measurable integrable functions on a measure
space (X,µ) and let

Ft = {x ∈ X | f(x) > t}, Gt = {x ∈ X | g(x) > t}.

Prove that

∥f − g∥1 =

∫ ∞

−∞
µ(Ft∆Gt) dt

where

Ft∆Gt = (Ft \Gt) ∪ (Gt \ Ft).
Solution: Note the resemblance to the layer-cake formula. We use this as our inspiration for solving
the problem. First, break up the integral as follows

∥f − g∥1 =

∫
X

|f(x)g(x)| dµ(x) =
∫
{f>g}

[f(x)− g(x)] dµ(x) +

∫
{g>f}

[g(x)− f(x)] dµ(x).

We compute the first integral and note the second will be the same, except with f replaced by g
(and vice verse). If x is such that f(x) > g(x) then

f(x)− g(x) =

∫ f(x)

g(x)

1 dt =

∫ ∞

−∞
χ[g(x),f(x)](t) dt =

∫ ∞

−∞
χ{g<t}(x)χ{f>t}(x) dt.

Observe that if g(x) > f(x) then for almost every t ∈ R we never have that x ∈ {t > g} ∩ {f > t}.
Hence we can actually conclude that

χ{f>g}(x)[f(x)− g(x)] =

∫ ∞

−∞
χ{g<t}(x)χ{f>t}(x) dt =

∫ ∞

−∞
χ{g<t}(x)χFt\Gt

(x) dt

Next, by Fubini’s theorem∫
{f>g}

[f(x)− g(x)] dµ(x) =

∫
X

χ{f>g}(x)[f(x)− g(x)] dµ(x) =

∫
X

[∫ ∞

−∞
χFt\Gt

(x) dt

]
dµ(x)

=

∫ ∞

−∞

[∫
X

χFt\Gt
(x) dµ(x)

]
dt =

∫ ∞

−∞
µ(Ft \Gt) dt.
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Using our previous symmetry observation,∫
{g>f}

[g(x)− f(x)] dµ(x) =

∫ ∞

−∞
µ(Gt \ Ft) dt.

Finally, note that Ft \Gt and Gt \ Ft are disjoint for all t, so that

∥f−g∥1 =

∫ ∞

−∞
µ(Ft\Gt) dt+

∫ ∞

−∞
µ(Gt\Ft) dt =

∫ ∞

−∞
µ([Ft\Gt]∪[Gt\Ft]) dt =

∫ ∞

−∞
µ(Ft∆Gt) dt.

Problem 5 (Spring 2014, Fall 2022). Let 0 < q < p <∞. Let E ⊂ Rn be measurable with measure
|E| < ∞. Let f be a measurable function on Rn such that N := supλ>0 λ

p|{x ∈ Rn | |f(x)| > λ}|
is finite.

a) Prove that
∫
E
|f |q is finite.

b) Refine the argument of a) to prove that∫
E

|f |q ≤ CNq/p|E|1−q/p,

where C is a constant that depends only on n, p, and q.

Solution:

a) Let 0 < q < p <∞ so there exists an ϵ > 0 such that p− q = ϵ > 0. Then by the layer-cake
formula, ∫

E

|f |q ≤
∫
Rn

|f |q =
∫ ∞

0

|{|f |q > λ}| dλ =

∫ ∞

0

|{|f | > λ1/q}| dλ

= q

∫ ∞

0

λq−1|{|f | > λ}| dλ

where we applied a change of variables λ1/q 7→ λ. Notice that the integrand is almost in the
form of N , so we need to introduce a λp. We transform it as follows:∫

E

|f |q = q

∫ δ

0

λq−1|{|f | > λ}| dλ+ q

∫ ∞

δ

λp|{|f | > λ}|
λp−q+1

dλ

≤ q

∫ δ

0

λq−1|E| dλ+ q

∫ ∞

0

N

λϵ+1
dλ = |E|λq

∣∣∣∣δ
0

− qN

ϵλϵ

∣∣∣∣∞
δ

= |E|δq + qN

(p− q)δp−q
<∞

whenever δ > 0. Note that we have to take δ > 0; if not, it would be as if we took δ = 0 in
the above, which clearly diverges.

b) To refine this, notice that we can optimize in δ That is, let g(δ) = |E|δq + qN/((p− q)δp−q).
Then, the derivative of this is

g′(δ) = q|E|δq−1 − qN

δp−q+1

and this is zero if

q|E|δq−1 =
qNδq−1

δp
⇔ δ =

(
N

|E|

)1/p

This point is a local minimum of g, and thus is the best δ to use to bound
∫
E
|f |q. We have

that

g(δ) ≥ |E|
(
N

|E|

)q/p
+

qN

p− q

(
N

|E|

)(q−p)/p

= Nq/p|E|1−q/p +
(

q

p− q

)
N1+q/p−1|E|(p−q)/p =

(
p

p− q

)
|N |q/p|E|1−q/p

Hence, ∫
E

|f |q ≤
∫
δ>0

g(δ) =

(
p

p− q

)
|N |q/p|E|1−q/p.
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Problem 6 (Spring 2013). . Let p > 0, and denote by Lpweak(R) the space of all measurable functions
f : R → R for which

Np(f) := sup
α>0

αp|{x ∈ Rn | |f(x)| > α}|

is finite. Prove that the simple functions are not dense in Lpweak(R), in the sense that there exists a
function f ∈ Lpweak(R) such that Np(f −hk) → 0 fails to hold for every sequence of simple functions
h1, h2, ...

Solution: XXX

Problem 7 (Fall 2011). Let 1 < p < ∞ and f(x) = |x|−n/p for x ∈ Rn. Prove that f is
not the limit of a sequence fk ∈ C∞

0 (Rn) in the sense of convergence in Lpweak(Rn). That is,
lim supk→∞ supλ>0 λ

p|{x ∈ Rn | |f(x)− fk(x) > λ}| > 0 for any such sequence.

Solution: XXX

Problem 8 (Fall 2020). Let µ1 be counting measure on R, and µ2 be Lebesgue measure. Let E =
{(x, y) ∈ R2 : 0 ≤ x = y ≤ 1}. Show that the integrals∫

dµ1(x)

∫
χEdµ2(x)∫

dµ2(x)

∫
χEdµ1(x)

are well-defined, but not equal. Explain why this does not contradiction Fubini/Tonelli’s theorem.

Solution: First integrates to zero, second integrates to to 1. This does not contradict Tonelli because
µ1 is not σ-finite.

Problem 9 (Fall 2021). Show an example of a function f(x) such that f ∈ Lp,w(Bn1 (0), dx), but not
in the classical Lp(Bn1 (0)).

Solution: f(x) = |x|
−n
p .

Maximal Functions.

Problem 1 (Spring 2017). For f ∈ L1(R) denote by Mf be the restricted maximal function defined
by

(Mf)(x) = sup
0<t<1

1

2t

∫ x+t

x−t
|f(z)| dz.

Show that M(f ∗ g) ≤ (Mf) ∗ (Mg) for all f, g ∈ L1(R).

Solution: By Fubini we have

sup
0<t<1

1

2t

∫ x+t

x−t

∣∣∣∣ ∫ ∞

−∞
f(z − y)g(y) dy

∣∣∣∣ dz ≤ sup
0<t<1

1

2t

∫ ∞

−∞
|g(y)|

[∫ x+t

x−t
|f(z − y)| dz

]
dy

=

∫ ∞

−∞
|g(y)|

[
sup

0<t<1

1

2t

∫ x+t

x−t
|f(z − y)| dz

]
dy

=

∫ ∞

−∞
|g(y)|

[
sup

0<t<1

1

2t

∫ x−y+t

x−y−t
|f(z)| dz

]
dy

=

∫ ∞

−∞
|g(y)|Mf(x− y) dy

By Lebesgue differentiation, we have for almost every x ∈ R that

lim
r→0

1

2r

∫ x+r

x−r
|g(y)| dy = |g|(x)
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In particular, for fixed 0 < r < 1 we have

1

2r

∫ x+r

x−r
|g(y)| dy ≤ (Mg)(x)

and by taking r → 0 we see |g|(x) ≤ (Mg)(x) almost everywhere. Hence,∫ ∞

−∞
|g(y)|Mf(x− y) dy ≤

∫ ∞

−∞
Mf(x− y)Mg(y) = (Mf) ∗ (Mg)(x).

Problem 2 (Fall 2016, Fall 2022). For a function f ∈ L1(R2) let M̃f be the unrestricted maximal
function

M̃f(x0, y0) = sup
Q

1

|Q|

∫
Q

|f(x, y)| dxdy,

where the supremum is over all Q = [x0 − k, x0 + k]× [y0 − l, y0 + l] with k, l > 0.

a) Show that M̃f(x0, y0) ≤M1M2f(x0, y0), where

M1f(x0, y) = sup
k>0

1

2k

∫ x0+k

x0−k
|f(x, y)| dx, M2f(x, y0) = sup

l>0

1

2l

∫ y0+l

y0−l
|f(x, y)| dy.

b) Show that there exists C > 0 such that if f ∈ L2(R2) then

∥M̃f∥L2(R2) ≤ C∥f∥L2(R2).

Solution:

a) Let Q = [x0 − k, x0 + k]× [y0 − l, y0 + l]. Then clearly by Fubini,

1

|Q|

∫
Q

|f(x, y)| dydx =
1

4kl

∫ x0+k

x0−k

[∫ y0+l

y0−l
|f(x, y)| dy

]
dx

=
1

2k

∫ x0+k

x0−k

[
1

2l

∫ y0+l

y0−l
|f(x, y)| dy

]
dx ≤ 1

2k

∫ x0+k

x0−k
M2f(x, y0)dx

≤ 1

2k

∫ x0+k

x0−k
M2f(x, y0) dx ≤M1M2f(x0, y0).

It follows from this that M̃f(x0, y0) ≤M1M2f(x0, y0).
b) I suspect there is a more direct way to do this (likely with part a...), but I’m not sure how.

Rather, we know that M̃ is a bounded operator from L1(R2) to L1
weak(R2) – this is the

well known Hardy-Littlewood maximal theorem. We can also show that M̃ is a bounded
operator from L∞(R2) to L∞(R2). Indeed, if f ∈ L∞(R2) then,

M̃f(x, y) = sup
Q

1

|Q|

∫
Q

|f(u, v)| dudv ≤ sup
Q

1

|Q|
∥f∥L∞(R2)|Q| = ∥f∥L∞(R2).

It follows by the Marcinkiewicz interpolation theorem that M̃ is a bounded operator from
Lp(R)2 to Lp(R2) for any 1 < p <∞.

Problem 3 (Spring 2014). Consider the Hardy-Littlewood maximal function (for balls)

Mf(x) := sup
B∋x

1

|B|

∫
B

|f |, f(x) :=

{
1 if |x| ≤ 1,

0 if |x| > 1,
x ∈ Rn,

Prove that Mf belongs to L1
weak(Rn).

Solution: Recall the Vitali covering lemma, which says if we have a collection of open balls B
in Rn then there exist disjoint B1, ..., Bk ∈ B such that∣∣∣∣ ⋃

B∈B
B

∣∣∣∣ ≤ 3n
k∑
i=1

|Bi|.
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The proof proceeds by using a compact subset which approximates the union, extracting a finite
subcover, then applying a greedy algorithm. Now let Et = {Mf > t}. For each x ∈ Et we can
choose an rx > 0 and cx such that Bx := Brx(cx) contains x and

1

|Bx|

∫
Bx

|f | > t.

Applying the Vitali covering lemma to the collection B = {Bx | x ∈ Et} yields a finite subcollection
B1
x, ..., B

k
x such that

|Et| ≤
∣∣∣∣ ⋃
B∈B

B

∣∣∣∣ ≤ 3n
k∑
i=1

|Bi| ≤ 3n
k∑
i=1

1

t

∫
Bi

x

|f | = 3n

t

∫
∪iBi

x

|f | ≤ 3n

t
∥f∥1

where we used the disjointness of the Bix to combine the integrals. The above says that

|{Mf > t}| ≤ 3n

t
∥f∥1

so that Mf ∈ L1
weak(Rn).

Weak Derivatives and Absolute Continuity.

Problem 1 (Spring 2016). Let 1 < p <∞. Assume f ∈ Lp(R) satisfies

sup
0<|h|<1

∫ ∣∣∣∣f(x+ h)− f(x)

h

∣∣∣∣p dx <∞.

Show that f has a weak derivative g ∈ Lp, which by definition satisfies
∫
ψg = −

∫
ψ′f for every

C∞ function ψ on R with compact support.

Solution: Let fk(x) =
f(x+ 1

k )−f(x)
1
k

. What the assumption tells us is that ||fk||p is uniformly bounded.

So, by the theorem of Banach-Alaoglu, ∃ a weak-* convergent subsequence, that converges to a limit
function g ∈ Lp.

Now, we just need to show that g satisfies the definition of the weak derivative. Let ψ ∈ C∞
c (R).

Then: ∫
ψgdx = lim

k→∞

∫
ψ(x)fk(x)dx

Now: ∫
ψ(x)

f(x+ 1
k )− f(x)
1
k

dx =

∫
ψ(x)f(x+ 1

k )
1
k

dx−
∫
ψ(x)f(x)

1
k

=∫
ψ(x− 1

k )f(x)
1
k

dx−
∫
ψ(x)f(x)

1
k

=

∫
f(x)

ψ(x− 1
k )− f(x)
1
k

dx

Now, via the mean value theorem, for every x, ∃ a point cn(x) such that
ψ(x− 1

k )−f(x)
1
k

= ψ′(cn(x)).

So, we can bound |f(x)ψ(x−
1
k )−f(x)
1
k

| by |f |||ψ′||∞χsupp(ψ′), which is integrable on because f ∈
Lp(supp(ψ′)), which has finite measure, so f ∈ L1(supp(ψ′)). So, using DCT, we can pass to the
limit again and see: ∫

ψgdx = lim
k→∞

∫
ψ(x)fk(x)dx = −

∫
f(x)ψ′(x)dx

Problem 2 (Spring 2016, Fall 2021). Assuming f : [0, 1] → R is absolutely continuous, prove that f
is Lipschitz if and only if f ′ belongs to L∞([0, 1]).

Solution:
( =⇒ ) Let f be Lipschitz. Then, let x ∈ [0, 1]. Then:

limh→0
f(x+ h)− f(x)

h
≤ |f(x+ h)− f(x)|

|(x+ h)− x|
≤ limh→0C = C

where C is is Lipschitz constant for f .
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( ⇐= ) Let f ′ ∈ L∞([0, 1]). Then, for x, y ∈ [0, 1], |f(y)− f(x)| = |
∫ y
x
f ′(x)dx| ≤ C|x− y|, where

C = ||f ||∞.

Problem 3 (Fall 2015, Spring 2017). Let f be a nondecreasing function on [0, 1]. You may assume
that f is differentiable almost everywhere.

a) Prove that ∫ 1

0

f ′(t) dt ≤ f(1)− f(0).

b) Let {fn} be a sequence of non-decreasing functions on [0, 1] such that F (x) =
∑∞
n=1 fn(x)

converges for x ∈ [0, 1]. Prove that F ′(x) =
∑∞
n=1 f

′
n(x) almost-everywhere.

Solution:
(a) Firstly, extend f to [0, 2] by just saying f(x) = f(1) for x ∈ [1, 2]. Then, by Fatou’s lemma and
a change of variables:∫ 1

0

f ′(t)dt ≤ lim inf
h→∞

∫ 1

0

f(t+ 1
h )− f(t)

( 1h )
dt = lim inf

h→∞
h

∫ 1+ 1
h

1
h

f(t)dt− h

∫ 1

0

f(t)dt

Now, using the fact that f is non-decreasing:

lim inf
h→∞

h

∫ 1+ 1
h

1
h

f(t)dt−h
∫ 1

0

f(t)dt = lim inf
h→∞

∫ 1+ 1
h

1

f(t)dt−h
∫ 1

h

0

f(t)dt ≤ lim inf
n→∞

f(1)−f(0) = f(1)−f(0)

(b) Now, let fn be a sequence of non-decreasing functions on [0, 1] such that F (x) =
∑∞
n=1 fn(x).

Then, we have:

F ′(x) = S′
n(x) + h′n(x)

where Sn(x) =
∑n
k=1 fn(x). and hn(x) =

∑∞
k=n+1 fn(x). So, to show that F ′(x) = limn→∞ S′

n(x)
almost everywhere, it STS that h′n(x) converges to zero almost everywhere.

Firstly, we show that h′n(x) goes to zero in L1([0, 1]). By (a),
∫ 1

0
|h′n(t)|dt =

∫ 1

0
h′n(t)dt ≤

hn(1) − hn(0) → 0 as Sn converges at 0, 1. So, convergence in L1 is established. Now, by passing
to a subsequence, we get a subsequence h′nk

(x) that converges to 0 pointwise a.e.. However, as hn
is a monotone decreasing sequence (as all the terms are positive), it follows that the full sequence
converges to 0 pointwise a.e..

Problem 4 (Spring 2014). Is the function f : [0, 1] → R defined by

f(x) =

{
x sin(1/x) if x > 0,

0 if x = 0,

absolutely continuous on [0, 1]? Explain fully.

Solution: Recall that absolutely continuous functions are of bounded variation, so it suffices to
show that f is not of bounded variation. Recall that f is of bounded variation on [a, b] if

V (f) := sup
P∈P

nP−1∑
i=0

|f(xi+1)− f(xi)| <∞

where P is the set of partitions P = {x0, ..., xnP
} of [a, b] (that is, xi ≤ xi+1 for all 0 ≤ i < nP and

the partition is formed by [x0, x1], [x1, x2],...,[xnP−1, 1]).

Let n ≥ 0 be even and choose the partition P = {x0, x1, ..., xn, xn/2+1} with

xi =
2

(n− 2i+ 1)π

for i = 1, ..., n/2 and x0 = 0, xn/2+1 = 1. XXX
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Problem 5 (Spring 2013). Let f : R → R be absolutely continuous with compact support, and let
g ∈ L1(R). Prove that f ∗ g is absolutely continuous on R.

Solution: XXX

Explicit Computations and Counterexamples.

Problem 1 (Fall 2015). Find a non-empty closed set in L2([0, 1]) which does not contain an element
of minimal norm.

Solution: An example is the set C that is the union of the sequence:

fn(x) =
(1 + 1

n )√
1
n

χ[0, 1n ]

Firstly, note that straightfoward calculation shows ||fn||2 = 1 + 1
n . Further C is closed: indeed,

assume that there is a sequence {fk} in C that converges to g ̸∈ C in L2. Then, by passing to a
subsequence if necessary, we can assume that {fk} converges pointwise a.e. to g. However, it is
clear that g must equal 0 then, as the original sequence fn converges pointwise a.e. to 0. However,
fk cannot converge to 0 in L2 as ||fk|| > 1 for all k, a contradiction. So, C is closed.

Problem 2 (Fall 2015). Give an example of a sequence {fh}h∈N ⊂ L1(R) such that fh → 0 a.e. on
R but fh does not converge to 0 in L1

loc(R).

Solution: We let fh(x) = hχ[0,1/h](x) so that fh(x) → 0 a.e. but ∥fh∥L1(0,1) = 1 for all h. If

fh → 0 in L1
loc(R), then fh → 0 in L1(Ω) for each Ω ⊂⊂ R. With Ω = (0, 1), we see that fh cannot

converge to 0 in L1
loc(R).

Problem 3 (Spring 2015). For any natural number n construct a function f ∈ L1(Rn) such that for
any ball B ⊂ Rn, f is not essentially bounded on B.

Solution: First define g : Rn → (0,∞) by

g(x) =

{
1/|x|n−1/2 |x| ≤ 1,

1/|x|n+1 else
.

Then,∫
Rn

|g(x)| dx =

∫ ∞

0

[∫
Sn−1

g(r)rn−1 dSn−1

]
dr = |Sn−1|

∫ 1

0

rn−1g(r) dr + |Sn−1|
∫ ∞

1

rn−1g(r) dr

= |Sn−1|
∫ 1

0

1

r1/2
dr + |Sn−1|

∫ ∞

1

1

r2
dr = 3|Sn−1|.

So, g ∈ L1(Rn) but is not essentially bounded for any ball B containing the origin. Now let {qk}∞k=1

be an enumeration of Qn. Define f by

f(x) :=
∑
k=1

2−kg(x− qk).

Note that∫
Rn

|f(x)| dx ≤
∞∑
k=1

1

2k

∫
Rn

|g(x− qk)| dx =

∞∑
k=1

1

2k

∫
Rn

|g(x)| dx = 3|Sn−1|
∞∑
k=1

2−k = 3|Sn−1| <∞.

So, f ∈ L1(Rn) too. Yet, for any ball B ⊂ Rn surely there exists a qk ∈ B. Now, all the g(x−qi) are
non-negative, and in particular g(x−qk) is not essentially bounded on B. Hence, f is not essentially
bounded on B either.
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Problem 4 (Spring 2015). Let g ∈ L1(Rn), ∥g∥L1(Rn) < 1. Prove that there is a unique f ∈ L1(Rn)
such that

f(x) + (f ∗ g)(x) = e−|x|2 , x ∈ Rn a.e.

Solution: Suppose that such an f exists. Taking the Fourier transform of both sides gives

F [f(x)](t) + (2π)n/2F [f(x)](t)F [g(x)](t) = F [e−|x|2 ](t).

Recall that

F [e−|x|2/2](t) = e−|t|2/2, F [f(rx)](t) =
1

rn
F [f ](t/r).

Putting the two together, we see that

F [e−|x|2 ](t) = F [e−|
√
2x|2/2](t) =

1

2n/2
F [e−|x|2/2](t/

√
2) =

1

2n/2
e−|t|2/4.

Hence,

F [f(x)](t) =
e−|t|2/4/2n/2

1 + (2π)n/2F [g(x)](t)
=

e−|t|2/4

2n/2 + 2nπn/2F [g(x)](t)
.

Thus, if such an f exists it is unique. We can also use this to show existence. Since ∥g∥L1(Rn) < 1
we have

|F [g(x)](t)| ≤ 1

(2π)n/2

∫
Rn

|g(x)| dx < 1

(2π)n/2
.

It follows that

|F [g(x)](t) ≤ 1

(2π)n/2
− ϵ

for some ϵ > 0 and thus
1

2nπn/2ϵ
≥ 1

2n/2 + 2nπn/2F [g(x)](t)
.

Consequently,

|F [f(x)](t)]| ≤ e−|t|2/4

2nπn/2ϵ

and thus F [f(x)](t) ∈ L1(Rn). By L1 inversion we conclude that such an f exists.

Problem 5 (Fall 2013). Provide an example of a sequence of measurable functions on [0, 1] which
converges in L1 to the zero function but does not converge pointwise a.e.

Solution: Consider the sequence {fn}∞n=1 defined by fn = χ[(n−2k)/2k,(n−2k+1)/2k] for k ≥ 0 and

2k ≤ n < 2k+1. What this effectively does is produce an interval of size 1/2k, starting at [0, 1/2k],
translate it rightward in steps of 1/2k until it gets to [1− 1/2k, 1], then increase k by 1 and repeat.
Hence for any x ∈ [0, 1] there exist infinitely many n such that fn(x) = 0 and infinitely many n
where fn(x) = 1. It follows that fn does not converge pointwise for any x. However, for every
2k ≤ n < 2k+1 we obviously have ∥fn∥L1 = 1/2k which tends to zero. So, fn → 0 in L1. This
sequence is commonly called the typewriter sequence.

Problem 6 (Fall 2013). Let (x1, x2, ...) be an arbitrary sequence of real numbers in [0, 1] (possibly
dense). Show that the series ∑

k

k−3/2|x− xk|−1/2

converges for almost every x ∈ [0, 1].

Solution: XXX
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Problem 7 (Fall 2013). Let f be a continuous function on [0, 1]. Find

lim
n→∞

n

∫ 1

0

xnf(x) dx.

Justify your answer.

Solution: We first make the change of variables xn 7→ x to find

n

∫ 1

0

xnf(x) dx =

∫ 1

0

x1/nf(x1/n) dx.

Define gn(x) := x1/nf(x1/n). We have that gn(0) = f(0) for all n, but for 0 < x ≤ 1 notice that
x1/n → 0 as n → ∞. Hence gn(x) → f(1) on (0, 1]. Since f is continuous, it is bounded on [0, 1],
say by M . Then, note that

|gn(x)| = |x|1/n|f(x1/n)| ≤ |f(x1/n)| ≤M

since x1/n maps [0, 1] to [0, 1]. But M is integrable over [0, 1], so by dominated convergence

lim
n→∞

n

∫ 1

0

xnf(x) dx = lim
n→∞

gn(x) dx =

∫ 1

0

lim
n→∞

gn(x) dx =

∫ 1

0

f(1) dx = f(1).

Problem 8 (Fall 2012). If f(x, y) ∈ L2(R2), show that f(x+ x3, y + y3) ∈ L1(R2).

Solution: XXX

Problem 9 (Spring 2021). Show that if X is a complete metric space and X is the countable union
of closed sets Xj , then at least one Xj has non-empty interior.

Solution: If all Xj had empty interior, this would contradict Baire Category Theorem.

Problem 10 (Fall 2021, Spring 2021). Give an example of a sequence that weakly converges in L2(R)
but admits no pointwise a.e. convergent subsequence.

Solution: The sequence is fn = cos(nx)χ[0,π]]. You can easily check that it converges to zero
weakly by approximating by step functions. However, no subsequence converges to zero pointwise
a.e.: indeed, assume a subsequence fnk

converged to zero pointwise a.e.. (We know that the point-
wise limit of any subsequence, if it exists, must be zero because ||fn|| is bounded). Then, DCT with
χ[0,π]] would imply that fn → f in L2, a contradiction as ||fn|| ̸→ 0 (just calculate this).
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