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1 Introduction

This summer course will be a presentation of a solution to Hilbert’s 19th problem. Essentially, it
is a course on elliptic regularity theory. For the required background, I assume you are comfortable
with say, the content of the applied math II prelim course. Everything in this notes is a mixture of
content from the book “Regularity Theory for Elliptic PDE” by Fernandez-Real/Ros-Oton, or the
notes of Vasseur: THE DE GIORGI METHOD FOR ELLIPTIC AND PARABOLIC EQUATIONS
AND SOME APPLICATIONS.

In 1900, David Hilbert posed a list of 23 major unsolved problems in mathematics. We will focus
on problem 19, which was solved circa 1957 by Ennio de Giorgi & John Nash, using fairly different
methods. In this course, we will focus on the method of de Giorgi. Problem 19 is as follows:

PROBLEM: Consider any local minimizer u of an energy functional of the form:

E (w) =

ˆ
Ω

L(∇w)dx

where:

1. E : H1(Ω) → R

2. L : Rn → R is smooth & uniformly convex (Matrix of second order partial derivatives is
uniformly positive-definite & bounded)

3. Ω ⊂ Rn is open, bounded

Then, is it true that u ∈ C∞(Ω)?

A couple notes:

1. Energy functions of this form are generalizations of the Dirichlet energy D(w) = 1
2

´
Ω
|∇w|2dx.

In this case, local minimizers u verify ∆u = 0 weakly. Any weak solution can be shown to
actually be a strong solution u ∈ C2(Ω), using a combination of difference quotients & Sobolev
embedding. Then, harmonic functions are known to be smooth (in even dimensions, can be seen
as the real part of a holomorphic function. In general, granted by the mean-value property).
This suggests that Hilbert’s problem might be a reasonable conjecture.

2. If L is not convex, then we can cook up counterexamples even in dimension 1. Say, for example,
L reaches a minimum at two points p1 and p2. Then, any function with constant slope either p1
or p2 is a minimizer, but it is merely Lipschitz (for example, take p1 = −

√
2
2 , p2 =

√
2
2 , L(x) =

x4 − x2, u(x) =
√
2
2 |x|, which is only Lipschitz if 0 ∈ Ω).
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2 Outline of Proof

Today, we will give a brief outline of the proof (black-boxing many things), then spend the next
couple weeks filling in the holes. Firstly, we need to reduce the problem to an elliptic regularity
problem. Let’s firstly specify some things we said above:

Def. u ∈ H1(Ω) is a local minimizer of E if E (u) ≤ E (u+ ϕ) ∀ ϕ ∈ C∞
0 (Ω).

Def. We say L : Rn → R is uniformly convex if ∃ λ,Λ > 0 such that:

0 < λId ≤ D2L(p) ≤ ΛId ∀ p ∈ Rn

(for matrices, A ≥ B if A-B is PSD)

Note that the uniform convexity of L translates into a uniform ellipticity condition on D2L.

Now, let u minimize E . Then, for any η > 0, ϕ ∈ C∞
0 (Ω):

ˆ
Ω

L(∇u+ η∇ϕ)dx ≥
ˆ
Ω

L(∇u)dx

Taylor expanding L around ∇u, and using the uniform boundedness:

η

ˆ
Ω

DL(∇u) · ∇ϕ+

ˆ
Ω

o(||η∇ϕ||2)dx ≥ −η2Λ

2

ˆ
Ω

|∇ϕ|2dx

Since η > 0, dividing by η doesn’t change the sign of anything, so we can do so. Then, take the
limit η → 0 to obtain: ˆ

Ω

DL(∇u) · ∇ϕ ≥ 0 ∀ ϕ ∈ C∞
0

Doing the same procedure with −ϕ yields:

ˆ
Ω

DL(∇u) · ∇ϕ = 0 ∀ ϕ ∈ C∞
0

This is exactly the weak formulation of div(DL(∇u)) = 0.

Upshot: Any local minimizer is a weak solution to div(DL(∇u)) = 0.

Right now, we only know u ∈ H1. Assume we know that u ∈ H2.

■ BLACKBOX NUMBER 1

Theorem 1. Let u ∈ H1(Ω) solve div(DL(∇u)) = 0 weakly. Then, u ∈ H2(Ω).

With this, we can expand the equation and see that we have a weak solution to:∑
i,j=1

(∂ijL)(∇u)∂iju = 0
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Forgetting about the dependence of the coefficients on u, we can view this as a linear second order
equation: ∑

i,j=1

aij(x)∂iju = 0

where aij(x) = (∂ijL)(∇u). Note in particular that aij is as regular as ∇u is. So, if ∇u ∈ C0,α,
then aij ∈ C0,α. So, we need to show that ∇u ∈ C0,α. This particular step was the breakthrough
made by de Giorgi & Nash in the 50’s.

Going back to the above, we have a weak solution to:

div(DL(∇u)) = 0

Taking the derivative w.r.t. xi, we get:

div(D2L(∇u)∇w) = 0

where w = ∂iu. This is an equation for which we want some regularity on w, but we have no
information on D2L(∇u) besides the uniform ellipticity. The regularity is given by the theorem of
de Giorgi-Nash-Moser.

■ BLACKBOX NUMBER 2

Theorem 2. Let v ∈ H1(Ω) be a weak solution to div(A(x)∇v), where A is uniformly
elliptic. Then, ∃ α > 0 such that v ∈ C0,α(Ω).

Going back to our expansion, we now see that we have a solution u to:∑
i,j=1

aij(x)∂iju = 0

where aij ∈ C0,α. From here, we bootstrap using the Schauder estimates (in non-divergence form),
attributed to Schauder circa 1935:

■ BLACKBOX NUMBER 3

Theorem 3. Let u ∈ Ck,α solve: ∑
i,j=1

aij(x)∂iju = 0

in Ω. Then, u ∈ Ck+2,α(Ω).

Applying this with k = 0, we see that u ∈ C2,α. However, then this gives that the coefficients
aij are actually in C1,α. So, we can apply the Schauder estimates with k = 1 to see that u ∈ C3,α.
Continuing, we see u ∈ C∞.

aij ∈ C0,α =⇒ u ∈ C2,α =⇒ aij ∈ C1,α =⇒ u ∈ C3,α =⇒ ... =⇒ u ∈ C∞

So, we have a complete solution to the problem, modulo these three very non-trivial developments.
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