SMC 2023: HILBERT'S $19{ }^{\text {TH }}$ PROBLEM - Day III

Jeffrey Cheng

June 5, 2023

1 Estimates for Harmonic functions (again)

Theorem 1. Let $\Delta w=0$ in B_{r}. Then

$$
\left\|D^{k} w\right\|_{L^{\infty}\left(B_{\frac{r}{2}}\right)} \leq C(n, k) r^{-k}\|w\|_{L^{\infty}\left(B_{r}\right)}
$$

Theorem 2. Let $\Delta w=\lambda$ in B_{r}. Then

$$
\left\|D^{2} w\right\|_{L^{\infty}\left(B_{\frac{r}{2}}\right)} \leq C(n) r^{-2}\left(\|w\|_{L^{\infty}\left(B_{r}\right)}+|\lambda|\right)
$$

Theorem 3. Let u be a weak solution of:

$$
\begin{cases}\Delta u=f & \text { in } B_{1} \\ u=g & \text { on } \partial B_{1}\end{cases}
$$

Then, for any $k \in \mathbb{N}$:

$$
\|u\|_{L^{\infty}\left(B_{2-k}\right)} \leq C\left(r^{-2}\|f\|_{L^{\infty}\left(B_{2-k}\right)}+\|g\|_{L^{\infty}\left(\partial B_{2-k}\right)}\right)
$$

2 Schauder Estimates for the Laplacian - II (cont.)

Proof. Recall that we have:

$$
\left|D^{2} u(z)-D^{2} u(0)\right| \leq \underbrace{\left|D^{2} u(z)-D^{2} u_{k}(z)\right|}_{I_{2}}+\underbrace{\left|D^{2} u_{k}(z)-D^{2} u_{k}(0)\right|}_{I_{3}}+\underbrace{\left|D^{2} u_{k}(0)-D^{2} u(0)\right|}_{I_{1}}
$$

It $\operatorname{STS} I_{j} \leq C|z|^{\alpha}$ for $j=1,2,3, z \in B_{\frac{1}{16}}$.
$\underline{I_{1}}$: Note that $u_{k}-u$ solves:

$$
\begin{cases}\Delta\left(u_{k}-u\right)=f(0)-f & \text { in } B_{2^{-k}} \\ u_{k}-u=0 & \text { on } \partial B_{2^{-k}}\end{cases}
$$

Now, using 3 and the fact that $[f]_{C^{0, \alpha}\left(B_{1}\right)} \leq 1$:

$$
\left\|u_{k}-u\right\|_{L^{\infty}\left(B_{2-k}\right)} \leq C\left(2^{-k}\right)^{2}\|f(0)-f\|_{L^{\infty}\left(B_{2-k}\right)} \leq C 2^{-k(2+\alpha)}
$$

Note: This is a quantitative justification to my previous assertion that " u_{k} is a good approximation to u zooming in close to 0 ".
So, via the triangle inequality:

$$
\left\|u_{k+1}-u_{k}\right\|_{L^{\infty}\left(B_{2-k-1}\right)} \leq C 2^{-k(2+\alpha)}
$$

Further, $u_{k+1}-u_{k}$ is harmonic in $B_{2^{-k-1}}$, so by using 1 .

$$
\left\|D^{2}\left(u_{k+1}-u_{k}\right)\right\|_{L^{\infty}\left(B_{2-k-2}\right)} \leq C\left(2^{(k+1)}\right)^{2}\left\|u_{k+1}-u_{k}\right\|_{L^{\infty}\left(B_{2-k-1}\right)} \leq C 2^{2(k+1)} 2^{-2 k-k \alpha}=C 2^{-k \alpha}
$$

Next, we need to know that $D^{2} u(0)=\lim _{k \rightarrow \infty} D^{2} u_{k}(0)$. Indeed, let $\tilde{u}(x):=u(0)+x \cdot \nabla u(0)+$ $\frac{1}{2} x^{T} D^{2} u(0) x$ be the second order Taylor expansion of u at 0 . A couple notes:

1. $\|\tilde{u}-u\|_{L^{\infty}\left(B_{r}\right)}=o\left(r^{2}\right)$ as $r \rightarrow 0$ (Taylor's theorem)
2. $D^{2} \tilde{u}(0)=D^{2} u(0)$

So:

$$
\begin{gathered}
\left|D^{2} u_{k}(0)-D^{2} u(0)\right| \leq\left\|D^{2}\left(u_{k}-\tilde{u}\right)\right\|_{L^{\infty}\left(B_{2-k-1}\right)} \underbrace{\leq}_{\text {1 }} C 2^{2 k}\left\|u_{k}-\tilde{u}\right\|_{L^{\infty}\left(B_{2-k}\right)} \leq \\
C 2^{2 k}\left\|u_{k}-u\right\|_{L^{\infty}\left(B_{2-k}\right)}+C 2^{2 k}\|u-\tilde{u}\|_{L^{\infty}\left(B_{2}-k\right)} \rightarrow 0 \text { as } k \rightarrow \infty
\end{gathered}
$$

(the first term goes to zero using the bound $\left\|u_{k}-u\right\|_{L^{\infty}\left(B_{2}-k\right)} \leq C 2^{-k(2+\alpha)}$ and the second one goes to zero by Taylor's theorem).

Finally, putting it all together: choose $k \in \mathbb{N}$ such that $2^{k-4} \leq|z| \leq 2^{-k-3}$ (we don't need this for I_{3}, but it will become needed in I_{2}). Then:

$$
\begin{gathered}
\left|D^{2} u_{k}(0)-D^{2} u(0)\right|=\lim _{j \rightarrow \infty}\left|D^{2} u_{k}(0)-D^{2} u_{k}(0)\right| \leq \lim _{j \rightarrow \infty} \sum_{n=k}^{j}\left|D^{2} u_{n}(0)-D^{2} u_{n+1}(0)\right|= \\
\sum_{n=k}^{\infty}\left|D^{2} u_{n}(0)-D^{2} u_{n+1}(0)\right| \leq C \sum_{n=k}^{\infty} 2^{-n \alpha}=C \sum_{n=k}^{\infty}\left(2^{-\alpha}\right)^{n}=C 2^{-k \alpha} \\
\leq C 2^{-k \alpha} 2^{-4 \alpha} \leq C|z|^{\alpha}
\end{gathered}
$$

$\underline{I_{2}}$: We can employ the same strategy as before, but this time zooming in around z instead of 0 . Let v_{k} solve:

$$
\begin{cases}\Delta v_{k}=f(z) & \text { in } B_{2^{-k}(z)} \\ v_{k}=u & \text { on } \partial B_{2^{-k}(z)}\end{cases}
$$

Then:

$$
\left|D^{2} u_{k}(z)-D^{2} u(z)\right| \leq\left|D^{2} u_{k}(z)-D^{2} v_{k}(z)\right|+\left|D^{2} v_{k}(z)-D^{2} u(z)\right|
$$

The second term is seen to be $\leq C 2^{-k \alpha}$ using the same proof as I_{1} (translated), so we just need to deal with the first term. Choosing k sufficiently large $\left(|z| \leq 2^{-k-3}\right)$ such that $B_{2^{-k-1}(z)} \subset B_{2^{-k}} \cap B_{2^{-k}(z)}$. Then, in $B_{2^{-k-2}}$, we have:

$$
\begin{gathered}
\left|D^{2} u_{k}(z)-D^{2} v_{k}(z)\right| \leq\left\|D^{2}\left(u_{k}-v_{k}\right)\right\|_{L^{\infty}\left(B_{2-k-2}(z)\right)} \underbrace{\leq}_{\text {2 }} C 2^{2 k}\left\|u_{k}-v_{k}\right\|_{L^{\infty}\left(B_{2-k-1}(z)\right)}+C|f(z)-f(0)| \leq \\
C 2^{2 k}\left\|u_{k}-v_{k}\right\|_{L^{\infty}\left(B_{2-k-1}(z)\right)}+C 2^{-k \alpha}
\end{gathered}
$$

(the last term is because $|z| \leq 2^{-k-3}$ and $[f]_{C^{0, \alpha}\left(B_{1}\right)} \leq 1$). Finally, k has been chosen sufficiently large such that $\left.B_{2^{-k-1}}(z)\right)$ is a region for which both $v_{k}, u_{k} \sim u$. So, we derive the final quantitative estimate using 3 as before:

$$
\left\|u_{k}-u\right\|_{L^{\infty}\left(B_{2-k-1}(z)\right)} \leq\left\|u_{k}-u\right\|_{L^{\infty}\left(B_{2}-k\right.} \leq C 2^{-k(2+\alpha)}
$$

$$
\left\|v_{k}-u\right\|_{L^{\infty}\left(B_{2-k-1}(z)\right)} \leq\left\|v_{k}-u\right\|_{L^{\infty}\left(B_{2-k}(z)\right)} \leq C 2^{-k(2+\alpha)}
$$

Putting this all together, we see $\left|D^{2} u_{k}(z)-D^{2} v_{k}(z)\right| \leq C 2^{-k \alpha}$.
$\underline{I_{3}}:$ This result is significantly different in spirit than the first two. Denote $h_{j}:=u_{j}-u_{j-1}$ for $\overline{j=} 1, \ldots, k$. Note that h_{j} are harmonic in $B_{2^{-j}}$. So:

$$
\begin{gathered}
\left|\frac{D^{2} h_{j}(z)-D^{2} h_{j}(0)}{|z|}\right| \underbrace{\leq}_{\text {MVT }}\left\|D^{3} h_{j}\right\|_{L^{\infty}\left(B_{2-k-3}\right)} \leq\left\|D^{3} h_{j}\right\|_{L^{\infty}\left(B_{2-k-1}\right)} \underbrace{\leq}_{\text {- }} \\
C 2^{3 j}\left\|h_{j}\right\|_{L^{\infty}\left(B_{2-j}\right)} \underbrace{\leq}_{\text {Max. Princ. }} C 2^{3 j}\left\|h_{j}\right\|_{L^{\infty}\left(\partial B_{2-j}\right)}=C 2^{3 j}\left\|u-u_{j-1}\right\|_{L^{\infty}\left(\partial B_{2-j}\right)} \leq \\
C 2^{3 j}\left\|u-u_{j-1}\right\|_{L^{\infty}\left(B_{2}-j\right)} \leq C 2^{3 j}\left\|u-u_{j-1}\right\|_{L^{\infty}\left(B_{2-j+1}\right)} \underbrace{\leq}_{\text {B }} C 2^{j(1-\alpha)}
\end{gathered}
$$

So:
$\left|D^{2} u_{k}(0)-D^{2} u_{k}(z) \leq\left|D^{2} u_{0}(z)-D^{2} u_{0}(0)\right|+\sum_{j=1}^{k}\right| D^{2} h_{j}(z)-D^{2} h_{j}(0)\left|\leq\left|D^{2} u_{0}(z)-D^{2} u_{0}(0)\right|+C\right| z \mid \sum_{j=1}^{k} 2^{j(1-\alpha)}$
Unfortunately, we need to deal with the $j=0$ term separately. Define $w=u_{0}-\frac{f(0)}{2 n}|x|^{2}+\frac{f(0)}{2 n}$. Then, we have the following properties:

1. w is harmonic in B_{1}
2. $D^{3} w=D^{3} u_{0}$
3. $w=u_{0}$ on ∂B_{1}

So:

$$
\begin{gathered}
\left|\frac{D^{2} u_{0}(z)-D^{2} u_{0}(0)}{z}\right| \underbrace{\leq}_{\text {MVT }}\left\|D^{3} u_{0}\right\|_{L^{\infty}\left(B_{\frac{1}{2}}\right)}=\left\|D^{3} w\right\|_{L^{\infty}\left(B_{\frac{1}{2}}\right)} \underbrace{\leq}_{\text {回 }} C\|w\|_{L^{\infty}\left(B_{1}\right)} \underbrace{\leq}_{\text {Max. Princ. }} \\
C\|w\|_{L^{\infty}\left(\partial B_{1}\right)}=C\left\|u_{0}\right\|_{L^{\infty}\left(\partial B_{1}\right)}
\end{gathered}
$$

So:

$$
\left|D^{2} u_{k}(0)-D^{2} u_{k}(z) \leq C\right| z\left|\left|\left|u_{0} \|_{L^{\infty}\left(B_{1}\right)}+C\right| z\right| \sum_{j=1}^{k} 2^{j(1-\alpha)}\right.
$$

Now, the first term here is $\leq C|z|$, because $\left\|u_{0}-u\right\|_{L^{\infty}\left(B_{1}\right)} \underbrace{\leq} C \Longrightarrow\left\|u_{0}\right\|_{L^{\infty}\left(B_{1}\right)} \leq 1+C=$ C. The second term is bounded by $C|z| 2^{k(1-\alpha)}$, because $\sum_{j=1}^{k} 2^{j(1-\alpha)}=2^{k(1-\alpha)} \sum_{j=1}^{k}\left(2^{\alpha-1}\right)^{j} \leq$ $2^{k(1-\alpha)} \sum_{j=1}^{\infty}\left(2^{\alpha-1}\right)^{j}=C 2^{k(1-\alpha)}$. So, we have:

$$
\begin{gathered}
\left|D^{2} u_{k}(0)-D^{2} u_{k}(z) \leq C\right| z|+C| z \mid 2^{k(1-\alpha)} \leq C 2^{-k-3}+C 2^{-k \alpha} \leq \\
C\left(2^{-k-3}\right)^{\alpha}+C 2^{-k \alpha} \leq C 2^{-k \alpha} \leq C|z|^{\alpha}
\end{gathered}
$$

Note: You can get higher order Schauder estimates by induction (in general, if $f \in C^{k, \alpha}$, then $u \in \overline{C^{k+2, \alpha}}$.

