SMC 2023: HILBERT'S $19{ }^{\text {TH }}$ PROBLEM - Day IV

Jeffrey Cheng

June 5, 2023

1 Schauder Estimates for Elliptic Operators in Non-Divergence Form - I

Now, we move to the result we actually want to prove. Consider the following elliptic PDE in non-divergence form:

$$
\sum_{i, j=1}^{n} a_{i j}(x) \partial_{i j} u(x)=f(x) \text { in } B_{1}
$$

where $A(x)=\left[a_{i j}(x)\right]$ is uniformly elliptic $\left(0<\lambda I d \leq A(x) \leq \Lambda I d \forall x \in B_{1}\right)$. Then, we have an analogous a priori Schauder estimate (note that now, we require some regularity on the coefficients as well).
Theorem 1. Let $u \in C^{2, \alpha}$ solve:

$$
\sum_{i, j=1}^{n} a_{i j}(x) \partial_{i j} u(x)=f(x) \text { in } B_{1}
$$

for A uniformly elliptic, $a_{i j}, f \in C^{0, \alpha}$. Then:

$$
\|u\|_{C^{2, \alpha}\left(B_{\frac{1}{2}}\right)} \leq C\left(\left\|a_{i j}\right\|_{C^{0, \alpha}, \alpha}, n, \lambda, \Lambda\right)\left(\|u\|_{L^{\infty}\left(B_{1}\right)}+\|f\|_{C^{0, \alpha}\left(B_{1}\right)}\right)
$$

Note: WLOG, we can always assume that $A(x)$ is symmetric (let $a_{i j}=a_{j i}=\frac{a_{i j}+a_{j i}}{2}$).
Of course, we are going to need analogs of some of the results for harmonic functions from before.

2 Maximum Principle for Elliptic Operators in Non-Divergence Form

We firstly need a maximum principle:
Theorem 2. Let $\Omega \subset \mathbb{R}^{n}$ be bounded, open. Let $u \in C^{0}(\bar{\Omega}) \cap C^{2}(\Omega)$ satisfy:

$$
\sum_{i, j=1}^{n} a_{i j}(x) \partial_{i j} u(x)=f(x) \text { in } \Omega
$$

for A uniformly elliptic. Then:

$$
\sup _{\Omega} u=\sup _{\partial \Omega} u
$$

The proof is not that interesting and I don't want to do it. You can find it in the book of Evans or F-R/R-O.

Of course, we get a quantitative L^{∞} bound from the maximum principle in the same way we did for the Laplacian:

Theorem 3. Let $\Omega \subset \mathbb{R}^{n}$ be bounded, open. Let $u \in C^{0}(\bar{\Omega}) \cap C^{2}(\Omega)$ satisfy:

$$
\left\{\begin{array}{l}
\sum_{i, j=1}^{n} a_{i j}(x) \partial_{i j} u(x)=f(x) \text { in } \Omega \Omega \\
u=\tilde{g}
\end{array} \quad \text { on } \partial \Omega\right.
$$

for A uniformly elliptic. Then:

$$
\|u\|_{L^{\infty}(\Omega)} \leq C\left(\|f\|_{L^{\infty}(\Omega)}+\|g\|_{L^{\infty}(\partial \Omega)}\right)
$$

The proof is exactly as the same as it was before, using the new maximum principle.

3 Schauder Estimates for Elliptic Operators in Non-Divergence Form - II

Now, we can show the proof of the Schauder estimate. We need an interpolation inequality here that I will not prove:

■ BLACKBOX NUMBER 4

Theorem 4. Let $u \in C^{2, \alpha}\left(B_{1}\right)$. Then, $\forall \epsilon>0, \exists C_{\epsilon}$ such that:

$$
\|u\|_{C^{2}\left(\overline{B_{1}}\right)} \leq \epsilon\left[D^{2} u\right]_{C^{0, \alpha}\left(B_{1}\right)}+C_{\epsilon}\|u\|_{L^{\infty}\left(B_{1}\right)}
$$

Proof. F-R/R-O refer the reader to Gilbarg-Trudinger for the proof. It's really ugly.
Here is the Schauder estimate again:
Theorem 5. Let $u \in C^{2, \alpha}$ solve:

$$
\sum_{i, j=1}^{n} a_{i j}(x) \partial_{i j} u(x)=f(x) \text { in } B_{1}
$$

for A uniformly elliptic, $a_{i j}, f \in C^{0, \alpha}$. Then:

$$
\|u\|_{C^{2, \alpha}\left(B_{\frac{1}{2}}\right)} \leq C\left(\left\|a_{i j}\right\|_{C^{0, \alpha}}, \alpha, n, \lambda, \Lambda\right)\left(\|u\|_{L^{\infty}\left(B_{1}\right)}+\|f\|_{C^{0, \alpha}\left(B_{1}\right)}\right)
$$

Proof. We make the same reductions as before: $\|f\|_{C^{0, \alpha}\left(B_{1}\right)} \leq 1,\|u\|_{L^{\infty}\left(B_{1}\right)} \leq 1, \underline{\left\|D^{2} u\right\|_{L^{\infty}\left(B_{1}\right)} \leq 1,}$ and it STS that:

$$
\left[D^{2} u\right]_{C^{0, \alpha}\left(B_{\frac{1}{2}}\right)} \leq C\left(\|u\|_{L^{\infty}\left(B_{1}\right)}+\|f\|_{C^{0, \alpha}\left(B_{1}\right)}\right)
$$

(we can use the interpolation inequality to cover the other terms in the $C^{2, \alpha}$ norm). Now, we try to proceed as before, but we are gonna get caught up a bit. Let u_{k} solve:

$$
\begin{cases}\sum_{i, j=1}^{n} a_{i j}(0) \partial_{i j} u_{k}(x)=f(0) & \text { in } B_{2^{-k}} \\ u_{k}=u & \text { on } \partial B_{2^{-k}}\end{cases}
$$

Note that now, the coefficients are not constant, so we need to freeze these at 0 as well. Then, $v_{k}:=u-u_{k}$ satisfies:

$$
\begin{cases}\sum_{i, j=1}^{n} a_{i j}(0) \partial_{i j} v_{k}(x)=f(x)-f(0)+\sum_{i, j=1}^{n}\left(a_{i j}(0)-a_{i j}(x)\right) \partial_{i j} u & \text { in } B_{2^{-k}} \\ u_{k}=0 & \text { on } \partial B_{2^{-k}}\end{cases}
$$

Now, as before, we can use the estimate 3 (rescaled) to translate this into a quantitative statement:

$$
\begin{gathered}
\left.\left\|u-u_{k}\right\|_{L^{\infty}\left(B_{2-k}\right)} \leq C 2^{-2 k}\left(\|f(0)-f\|_{L^{\infty}\left(B_{2}-k\right.}\right)+\left\|\sum_{i, j=1}^{n}\left[a_{i j}(x)-a_{i j}(0)\right] \partial_{i j} u\right\|_{L^{\infty}\left(B_{2}-k\right)}\right) \leq \\
C 2^{-2 k}\left(2^{-\alpha k}+n^{2} 2^{-\alpha k}\right) \leq C 2^{-k(2+\alpha)}
\end{gathered}
$$

So, using the exact same proof as the Laplacian case, we can show:

$$
\left[D^{2} u\right]_{C^{0, \alpha}\left(B_{\frac{1}{2}}\right)} \leq C(\|u\|_{L^{\infty}\left(B_{1}\right)}+\|f\|_{C^{0, \alpha}\left(B_{1}\right)}+\underbrace{\left\|D^{2} u\right\|_{L^{\infty}\left(B_{1}\right)}}_{\text {need to kill }})
$$

(we gain the third bad term in the RHS because of the fact that we have the extra term on the RHS of the PDE that v_{k} solves). So we just need to get rid of that term. We will do so using the interpolation inequality. So, for any $\delta>0$, we have the following:

$$
\begin{gathered}
{\left[D^{2} u\right]_{C^{0, \alpha}\left(B_{\frac{1}{2}}\right)} \leq C\left(C_{\epsilon}\|u\|_{L^{\infty}\left(B_{1}\right)}+\|f\|_{C^{0, \alpha}\left(B_{1}\right)}+\epsilon\left[D^{2} u\right]_{C^{0, \alpha}\left(B_{1}\right)}\right) \underbrace{\leq}_{\text {choose } \epsilon=\frac{\delta}{C}}} \\
C_{\delta}\left(\|u\|_{L^{\infty}\left(B_{1}\right)}+\|f\|_{C^{0, \alpha}\left(B_{1}\right)}\right)+\delta\left[D^{2} u\right]_{C^{0, \alpha}\left(B_{1}\right)}
\end{gathered}
$$

Finally, we need to be able to compare the Holder constant in $B_{\frac{1}{2}}$ versus B_{1} in order to absorb it.
Lemma 1. Let $k \in \mathbb{R}, \gamma>0$. Let S be a non-neg. function on the class of open convex sets of B_{1} that is sub-additive. Then, $\exists \delta(n, k)>0$ such that if:

$$
\rho^{k} S\left(B_{\frac{\rho}{2}}\left(x_{0}\right) \leq \delta \rho^{k} S\left(B_{\rho}\left(x_{0}\right)\right)+\gamma \forall B_{\rho\left(x_{0}\right)} \subset B_{1}\right.
$$

then:

$$
S\left(B_{\frac{1}{2}}\right) \leq C(n, k) \gamma
$$

Proof. Let $Q:=\sup _{B_{\rho}\left(x_{0}\right) \subset B_{1}} \rho^{k} S\left(B_{\frac{\rho}{2}}\left(x_{0}\right)\right)$. By assumption, we have:

$$
\left(\frac{\rho}{2}\right)^{k} S\left(B_{\frac{\rho}{4}}\left(x_{0}\right)\right) \leq \delta\left(\frac{\rho}{2}\right)^{k} S\left(B_{\frac{\rho}{2}}\left(x_{0}\right)\right)+\gamma \leq \delta Q+\gamma \forall B_{\rho}\left(x_{0}\right) \subset B_{1}
$$

Then, taking the sup over $B_{\rho}\left(x_{0}\right) \subset B_{1}$:

$$
\tilde{Q}:=\sup _{B_{\rho}\left(x_{0}\right) \subset B_{1}}\left(\frac{\rho}{2}\right)^{k} S\left(B_{\frac{\rho}{4}}\left(x_{0}\right)\right) \leq \delta Q+\gamma
$$

Claim: $Q \leq C \tilde{Q}, C=C(n, k)$. It so:

$$
\frac{1}{C} Q \leq \tilde{Q} \leq \delta Q+\gamma \Longrightarrow Q \leq \tilde{C}(\delta, n, k) \gamma
$$

if δ is small enough. So, it STS this claim.
Let $B_{\rho}\left(x_{0}\right) \subset B_{1}$. Then, cover $B_{\frac{\rho}{2}}\left(x_{0}\right)$ with N smaller balls $B_{\frac{\rho}{8}}\left(z_{j}\right)$, with $z_{j} \in B_{\frac{\rho}{2}}\left(x_{0}\right)$. Note
that this can be uniformly bounded in terms of the dimension: $N \leq C(n) . B_{\rho}\left(x_{0}\right) \subset B_{1}$, so, we have:

$$
\left(\frac{\rho}{4}\right)^{k} S\left(B_{\frac{\rho}{8}}\left(x_{0}\right)\right) \leq \tilde{Q}
$$

This implies:

$$
\rho^{k} S\left(B_{\frac{\rho}{2}}\left(x_{0}\right)\right) \leq \sum_{j=1}^{N} \rho^{k} S\left(B_{\frac{\rho}{8}}\left(x_{0}\right)\right) \leq N 3^{k} \tilde{Q}=C \tilde{Q}
$$

Finally, we use this lemma to get our final result. We take:

1. $S(A)=\left[D^{2} u\right]_{C^{0, \alpha}(A)}$
2. $k=2+\alpha$
3. γ to be determined

It STS that $\exists \delta$ small enough such that:

$$
\rho^{\alpha}\left[D^{2} u\right]_{C^{0, \alpha}\left(B_{\frac{\rho}{2}}\left(x_{0}\right)\right)} \leq \delta \rho^{\alpha}\left[D^{2} u\right]_{C^{0, \alpha}\left(B_{\rho}\left(x_{0}\right)\right)}+\gamma \forall B_{\rho}\left(x_{0}\right) \subset B_{1}
$$

We have:

$$
\left[D^{2} u\right]_{C^{0, \alpha}\left(B_{\frac{1}{2}}\right)} \leq C_{\delta}\left(\|u\|_{L^{\infty}\left(B_{1}\right)}+\|f\|_{C^{0, \alpha}\left(B_{1}\right)}\right)+\delta\left[D^{2} u\right]_{C^{0, \alpha}\left(B_{1}\right)}
$$

Rescaled to $B_{\rho}\left(x_{0}\right)$ (just look at the function $u_{\rho}(x)=u\left(x_{0}+\rho x\right)$):

$$
\begin{gathered}
\rho^{2+\alpha}\left[D^{2} u\right]_{C^{0, \alpha}\left(B_{\frac{\rho}{2}}\left(x_{0}\right)\right)} \leq \delta \rho^{2+\alpha}\left[D^{2} u\right]_{C^{0, \alpha}\left(B_{\rho}\left(x_{0}\right)\right)}+C_{\delta}\left(\|u\|_{L^{\infty}\left(B_{1}\right)}+\rho^{2}\|f\|_{L^{\infty}\left(B_{1}\right)}+\rho^{2+\alpha}[f]_{C^{0, \alpha}\left(B_{1}\right)}\right) \leq \\
\delta \rho^{2+\alpha}\left[D^{2} u\right]_{C^{0, \alpha}\left(B_{\rho}\left(x_{0}\right)\right)}+\gamma
\end{gathered}
$$

with $\gamma=C_{\delta}\left(\|u\|_{L^{\infty}\left(B_{1}\right)}+\|f\|_{C^{0, \alpha}\left(B_{1}\right)}\right)$. So, using the lemma, we see:

$$
\left[D^{2} u\right]_{C^{0, \alpha}\left(B_{\frac{1}{2}}\right)} \leq C_{\delta}\left(\|u\|_{L^{\infty}\left(B_{1}\right)}+\|f\|_{C^{0, \alpha}\left(B_{1}\right)}\right)
$$

Using the interpolation inequality to cover the other components of the $C^{2, \alpha}$ norm gives the result.

