SMC 2023: HILBERT'S $19^{\rm TH}$ PROBLEM – Day V

Jeffrey Cheng

June 5, 2023

1 Extending A Priori Estimates

Today, we will talk about extending a priori estimates (in the case of the Laplacian. The case of non-divergence form operators is exactly the same). What we have right now is:

Theorem 1. Let $\alpha \in (0,1)$, $u \in C^{2,\alpha}(B_1)$ satisfy:

$$\Delta u = f \in B_1$$

where $f \in C^{0,\alpha}(B_1)$. Then:

$$||u||_{C^{2,\alpha}(B_{\frac{1}{2}})} \le C(\alpha, n)(||u||_{L^{\infty}(B_{1})} + ||f||_{C^{0,\alpha}(B_{1})})$$

However, what we really want is the following:

Theorem 2. Let $\alpha \in B_1$, $u \in H^1(B_1) \cap L^{\infty}(B_1)$ be a weak solution to:

 $\Delta u = f$ in B_1

where $f \in C^{0,\alpha}(B_1)$. Then, $\forall r \in (0,1), u \in C^{2,\alpha}(B_r)$, and:

$$||u||_{C^{2,\alpha}(B_r)} \le C(r)(||u||_{L^{\infty}(B_1)} + ||f||_{C^{0,\alpha}(B_1)})$$

<u>Note</u>: As we will see, $C(r) \uparrow +\infty$ as $r \uparrow 1$.

The proof is a simple use of mollification and the theorem of Arzela-Ascoli. We show a (special case of it) here:

Theorem 3. Let $\Omega \subset \mathbb{R}^n$, $\{u_k\}$ a sequence such that:

$$||u_k||_{C^{0,\alpha}(\Omega)} \le C$$

Then, \exists a subsequence $\{u_{j_k}\}$ that converges uniformly to u.

Proof. Use the classical Arzela-Ascoli theorem, noting that equicontinuity is given by the uniform bounds on the Holder constant. \Box

The way we will use this theorem is in the following theorem:

Theorem 4. Let $\{u_j\} \to u$ uniformly in Ω , $||u_j||_{C^{k,\alpha}(\Omega)} \leq C$. Then, $u \in C^{k,\alpha}(\Omega)$, and:

$$||u||_{C^{k,\alpha}(\Omega)} \le C$$

Proof. k = 0: u is continuous as a uniform limit of continuous functions. Further, for any $x \neq y \in \Omega$:

$$||u_j||_{L^{\infty}(\Omega)} + \frac{|u_j(x) - u_j(y)|}{|x - y|^{\alpha}} \le C$$

Take the limit, then the sup over $x \neq y$ to obtain the result.

<u> $k \ge 1$ </u>: Note that we have $C^{m,\alpha}(\Omega) \subset C^{k,\alpha}(\Omega) \forall m \le k$. Further, $||u_j||_{C^{m,\alpha}(\Omega)} \le ||u_j||_{C^{k,\alpha}(\Omega)} \le C$. So, for any differential operator D^{β} , $|\beta| \le k$, $\{D^{\beta}u_j\} \subset C^{k-|\beta|,\alpha}(\Omega)$, and $||D^{\beta}u_j||_{C^{0,\alpha}(\Omega)} \le C$. So, can pass to subsequences over and over using 3 until we have a sequence $\{u_j\}$ such that all partial derivatives converge uniformly (the limit of the derivatives is the derivative of the limit as all the convergences are uniform). So, for any $x \ne y \in \Omega$:

$$||u_j||_{C^k(\Omega)} + \frac{|D^k u_j(x) - D^k u_j(y)|}{|x - y|^{\alpha}} \le C$$

take the limit, then the sup as before to obtain the result.

Finally, we can show the proof of the Schauder theorem:

Proof. Let $r \in (0, 1)$. Then, consider the standard mollifier:

$$\phi(x) = \begin{cases} C(n)e^{\frac{1}{|x|^2 - 1}} & |x| \le 1\\ 0 & |x| > 1 \end{cases}$$

where C(n) is chosen such that $\int_{\mathbb{R}^n} \phi(x) dx = 1$. Now, let $\epsilon_0 := \frac{1-r}{2}$. For any $\epsilon < \epsilon_0$, define:

$$\phi_{\epsilon}(x) := \frac{1}{\epsilon^{n}} \phi(\frac{x}{\epsilon})$$
$$u_{\epsilon} := u * \phi_{\epsilon}$$
$$f_{\epsilon} := f * \phi_{\epsilon}$$

Note that $u_{\epsilon} \in C^{\infty}$, as ϕ_{ϵ} is (derivatives get showed onto smooth function). Further, these functions satisfy:

$$\Delta u_{\epsilon} = f_{\epsilon} \text{ in } B_{1-\epsilon}$$

So, applying our a priori Schauder estimate (rescaled):

$$||u_{\epsilon}||_{C^{2,\alpha}(B_{\frac{1-\epsilon_{0}}{2}})} \le C(\epsilon_{0})(||u_{\epsilon}||_{L^{\infty}(B_{1-\epsilon_{0}})} + ||f_{\epsilon}||_{C^{0,\alpha}(B_{1-\epsilon_{0}})})$$

Next, we employ the covering argument to move back to B_r :

$$||u_{\epsilon}||_{C^{2,\alpha}(B_{r})} \leq C(\epsilon_{0}, r)(||u_{\epsilon}||_{L^{\infty}(B_{1-\epsilon_{0}})} + ||f_{\epsilon}||_{C^{0,\alpha}(B_{1-\epsilon_{0}})})$$

It is very crucial that this can be done in a uniform manner independent of ϵ . Moreover, <u>u is $C^{0,\alpha}$ </u> (I cannot justify it to you now, but we will talk about it next week...even if we don't prove it fully). This implies that the convergence $u_{\epsilon} \to u$ is uniform (on compact subsets of \mathbb{R}^n). Finally, we need to get uniform bounds on the RHS in order to apply 4 and finish. We see:

- 1. $|u_{\epsilon}(x)| = |u * \phi_{\epsilon}(x)| = |\int_{\mathbb{R}^n} u(x)\phi_{\epsilon}(x-y)dy| \le ||u||_{\infty} ||\phi_{\epsilon}||_1 = ||u||_{\infty}$
- 2. Same as above for $|f_{\epsilon}(x)|$
- 3. For $x, y \in B_{1-\epsilon_0}$, $|f_{\epsilon}(x) f_{\epsilon}(y)| = |\int_{B_{\epsilon}} [f(x-z) f(y-z)]\phi_{\epsilon}(z)dz| \le \int_{B_{\epsilon}} |f(x-z) f(y-z)|\phi_{\epsilon}(z)dz \le [f]_{C^{0,\alpha}(B_1)}|x-y|^{\alpha}$

Thus, we see $||u_{\epsilon}||_{L^{\infty}(B_{1-\epsilon_{0}})} \leq ||u||_{L^{\infty}(B_{1})}$, and $||f_{\epsilon}||_{C^{0,\alpha}(B_{1-\epsilon_{0}})} \leq ||f||_{C^{0,\alpha}(B_{1})}$. Apply 4 to finish. \Box